JP3760589B2 - Steel for cold forging - Google Patents

Steel for cold forging Download PDF

Info

Publication number
JP3760589B2
JP3760589B2 JP25461097A JP25461097A JP3760589B2 JP 3760589 B2 JP3760589 B2 JP 3760589B2 JP 25461097 A JP25461097 A JP 25461097A JP 25461097 A JP25461097 A JP 25461097A JP 3760589 B2 JP3760589 B2 JP 3760589B2
Authority
JP
Japan
Prior art keywords
cold forging
steel
content
less
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25461097A
Other languages
Japanese (ja)
Other versions
JPH10158779A (en
Inventor
秀一 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP25461097A priority Critical patent/JP3760589B2/en
Publication of JPH10158779A publication Critical patent/JPH10158779A/en
Application granted granted Critical
Publication of JP3760589B2 publication Critical patent/JP3760589B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、加工度の大きい冷間鍛造に使用する鋼に関する。
【0002】
【従来の技術】
近年、パーツフォーマー(自動車部品などを製造するための冷間鍛造機)の普及に伴い、各種形状の部品が冷間鍛造法により製造されている。冷間鍛造中の材料は、加工硬化が進むことにより強度が上昇するものの延性が低下する。加えて、冷間鍛造に供される材料には加工による発熱が生じるので、100〜400℃程度にまで温度が上昇して、所謂「青熱脆性」が生ずる温度域に入ってしまうこともある。こうして青熱脆性域にまで温度上昇した材料は、変形抵抗が増大するので、延性が低下してしまう。その結果、材料が脆化して割れが発生することがある。あるいは又、冷間鍛造後の製品の寸法精度や表面粗度の低下をきたす。更に、変形抵抗が増大した材料を冷間鍛造するには高い冷間鍛造荷重を必要とするため、冷間鍛造用工具には摩耗、塑性変形あるいは破壊が生じやすくなり、工具寿命の低下を招く。
【0003】
従来から冷間鍛造法においては、冷間鍛造を行う前に球状化焼鈍を必要回数繰り返して材料の延性を改善したり、材料の変形能に悪影響を及ぼす化学成分を制限して材料の変形抵抗を下げることが行われている。
【0004】
特開昭61−157640号公報には、球状化焼鈍後に特定の温度域で時効処理を行うことにより、冷間鍛造中の材料の時効硬化を防ぐ技術が開示されている。又、特開昭63−105951号公報には、加工割れを助長するおそれのある化学成分を制限し、熱間圧延後に特定の温度域で焼鈍することにより、冷間鍛造性を高める技術が開示されている。更に、特開昭61−113744号公報には、Mn、Si及びCrの含有量に特定の関係を満足させることにより、冷間鍛造時の変形抵抗を下げる技術が提案されている。更に又、特開平1−225750号公報には、Mn及びCrの含有量に特定の関係を満足させることにより、変形抵抗の小さい冷間鍛造用鋼を得る技術が開示されている。
【0005】
しかし、特開昭61−157640号公報及び特開昭63−105951号公報に開示された技術は、製造工程の合理化を主体とするものである。又、特開昭61−113744号公報及び特開平1−225750号公報に開示された技術は、材料の変形抵抗を下げることとは相反する材料の焼入れ性を高めることをも同時に狙ったものである。このため、上記の各公報で提案された技術を用いても、大きな加工度で冷間鍛造する必要のある場合には、いずれも充分に対応できるものではなかった。
【0006】
一方、本発明者らは特開平4−358041号公報において、加工度の大きい冷間鍛造に使用する鋼を提案した。しかし、その後、この鋼を用いた場合でも冷間鍛造用工具の寿命にばらつきが生ずることがわかった。そして、この工具寿命のばらつきは冷間鍛造用工具の購入ロットには関係なく生じ、ある特定のチャンスで溶製した鋼を被鍛造材として使用した場合に工具寿命の低下が生じる場合のあることが判明した。これに関連して更に調査したところ、特定のチャンスで溶製した鋼からなる被鍛造材を、特に圧縮率で90%以上となる大きな加工度で冷間鍛造した場合に青熱脆性が生じて、材料の変形抵抗が高くなり、このため工具寿命が短くなったことがわかった。このように、本発明者らが「冷間鍛造用鋼」として提案した鋼を用いても、特に圧縮率で90%を超える大きな加工度で冷間鍛造する場合にはまだまだ充分ではなかったのである。
【0007】
加工硬化による延性の低下あるいは青熱脆性域での変形抵抗の増大及び延性の低下は冷間鍛造用材料の宿命である。これらは、冷間鍛造後の製品品質を悪化させたり、加工力の大きい冷間鍛造機を必要としたり、更には工具寿命を著しく低下させたりする。そして、最終的には製品不良の発生と冷間鍛造コストの増大を招くことになる。
【0008】
冷間鍛造法は、元来材料損失が少なく、冷間鍛造後の仕上げ加工が不要であり、更には加工硬化により製品の強度が向上するなど長所を有するが、上記のような素材の変形抵抗の増大及び延性の低下という問題は、本来の冷間鍛造法の長所を損なうことになる。
【0009】
【発明が解決しようとする課題】
本発明の目的は、加工度の大きな冷間鍛造、なかでも圧縮率で90%以上となる大きな加工度で冷間鍛造を行って材料温度が上昇した場合でも、加工硬化による延性の低下を防止して変形能を維持したままで、且つ青熱脆性を起こすことなく変形抵抗の小さいままで鍛造ができる鋼を提供することにある。
【0010】
【課題を解決するための手段】
本発明の要旨は、下記(1)〜(3)に示す冷間鍛造用鋼にある。
【0011】
(1)重量%で、C:0.10〜0.60%、Al:0.05%を超え0.10%まで、Si:0.35%以下、Mn:0.5〜1.2%、Cr:0〜0.14%、Ti:0.01〜0.07%、B:0〜0.003%を含有し、残部はFe及び不可避不純物からなり、不純物中のPは0.01%未満、Sは0.01%未満及びNは0.005%未満で、更に、{N(%)/Al(%)}が0.05以下、且つ、Si、Mn、P及びNの含有量で表される下記(1)式のρの値が20未満であることを特徴とする冷間鍛造用鋼。
【0012】
ρ=30×Si(%)+10×Mn(%)+300×P(%)+500×N(%)・・・・・(1)
(2)重量%で、C:0.10〜0.60%、Al:0.05%を超え0.10%まで、Si:0.35%以下、Mn:0.5〜1.2%、Cr:0〜0.14%、Ti+0.5Zr:0.01〜0.10%、B:0〜0.003%を含有し、残部はFe及び不可避不純物からなり、不純物中のPは0.01%未満、Sは0.01%未満及びNは0.005%未満で、更に、{N(%)/Al(%)}が0.05以下、且つ、記(1)式で表されるρの値が20未満であることを特徴とする冷間鍛造用鋼。
【0013】
(3)重量%で、Cu含有量の許容上限が0.40%、Ni含有量の許容上限が0.40%である上記(1)又は(2)に記載の冷間鍛造用鋼。
【0014】
本発明の鋼は、通常、熱間圧延と冷間圧延の工程を経て、棒鋼あるいは線材として製造される。この棒鋼あるいは線材を適当な寸法に切断し、焼鈍して冷間鍛造に供する。冷間鍛造を施された鋼は、更に焼入れ、焼戻しなどの熱処理あるいは必要最小限度の加工を施されて最終の製品となる。冷間鍛造に供する状態(通常、焼鈍された状態)では、引張強度が70kgf/mm2(686MPa)以下であることが望ましい。
【0015】
以下、上記の(1)〜(3)をそれぞれ(1)〜(3)の発明という。
【0016】
【発明の実施の形態】
先ず、本発明鋼の組成を上記の範囲に規定した理由について説明する。なお、成分含有量の「%」は「重量%」を意味する。
【0017】
C:
Cは、鋼の強度を確保するために有用な元素であり、0.10%未満では熱処理後に所定の強度が得られないため、下限を0.10%とした。一方、Cの含有量が余りに多いと加工度の高い冷間鍛造(例えば、圧縮率で70%以上の冷間鍛造)では、材料に割れが発生するため、上限を0.60%とした。
【0018】
Al:
Alは本発明の重要な添加元素である。すなわち、AlはNを固定して冷間鍛造中の時効硬化、なかでも圧縮率で90%以上となる大きな加工度による冷間鍛造中の時効硬化を抑制する作用を有する。この他にAlには鋼の脱酸作用や熱間圧延前の鋼の加熱においてオーステナイト結晶の粗大化を防止する作用もある。しかし、その含有量が0.05%以下では、特に、圧縮率で90%以上となる大きな加工度での冷間鍛造中の時効硬化抑制作用が得られない。一方、Al含有量が0.10%を超えると熱間加工性の劣化をきたす。したがって、Al含有量を0.05%を超え0.10%までとした。
【0019】
Si:
Siは、脱酸作用を有する。しかしながらSiには、基地に固溶して硬度を上昇させ、冷間鍛造時の変形抵抗を大きくして、冷間鍛造性を低下させてしまうという弊害もある。特に、0.35%を超えて含有させると、冷間鍛造性の大きな低下が生ずる。したがって、Siの含有量を0.35%以下とした。なお、Siの好ましい含有量は0.30%以下である。
【0020】
Mn:
Mnは、脱酸作用、脱硫作用、熱間脆性防止作用及び強度向上作用を有する。これらの効果を確実に得るには、Mnは0.5%以上の含有量とする必要がある。しかし、その含有量が1.2%を超えると、偏析が顕著になるとともに材料の変形抵抗が増大して冷間鍛造性の低下を招く。したがって、Mnの含有量を0.5〜1.2%とした。
【0021】
Cr:
Crは添加しなくても良い。添加すれば鋼の強度と焼入れ性を向上させる作用を有する。この効果を確実に得るには、Crは0.05%以上の含有量とすることが好ましい。しかし、その含有量が高すぎると、鋼の変形抵抗を増大させて冷間鍛造性の劣化を招くようになる。したがって、Crの含有量を0〜0.14%とした。
【0022】
Ti、Zr:
Ti、Zrは、Alと同様にNを固定し、冷間鍛造中の昇温による時効硬化を抑制する効果を有する。この効果を確実に得るには、Tiは単独では0.01%以上の含有量を必要とする。又、Tiの含有量とZrの含有量の半分の和であるTi+0.5Zrの値を0.01%以上とすることによっても上記の効果を確実に得ることができる。しかし、Tiの含有量が0.07%を超えると、鋼中のTiの炭化物、窒化物や炭窒化物が粗大化するとともに、それらの数が増加して冷間鍛造性の劣化を招く。したがって、本発明における(1)の発明にあってはTiの含有量を0.01〜0.07%とした。又、Ti+0.5Zrの値が0.10%を超える場合にも鋼中のTi、Zrの炭化物、窒化物や炭窒化物が粗大化するとともに、それらの数が増加して冷間鍛造性の劣化を招く。このため、本発明における(2)の発明の場合にはTi、Zrの含有量をTi+0.5Zrの値で0.01〜0.10%とした。なお、(2)の発明の場合にもTiの含有量の上限は0.07%とする必要がある。(2)の発明においてZrを単独で添加する場合、その含有量の上限は0.10%とすることが好ましい。
【0023】
B:
Bは添加しなくても良い。添加すれば鋼の焼入性を向上させ、強度を上昇させる効果を有する。こうした効果を確実に得るには、Bは0.0005%以上の含有量とすることが好ましい。しかし、その含有量が0.003%を超えると、熱間加工性の劣化を招く。したがって、Bの含有量を0〜0.0.003%とした。
【0024】
本発明の対象とする冷間鍛造用鋼においては、不純物元素としてのP、S及びNの含有量を下記のとおりに制限する。
【0025】
P:
Pは、通常原料などから鋼中に不純物として混入するものであるが、Pの含有量が多いと材料の変形抵抗が増加して冷間鍛造が困難になり、且つ、延性も損なわれる。特に、Pの含有量が0.01%以上になると、冷間鍛造性及び延性の劣化が著しい。このため、本発明ではPの含有量を0.01%未満とした。
【0026】
S:
Sは、Pと同様に原料などから鋼中に不純物として混入するものであるが、S含有量が多いと材料の延性が損なわれる。特に、Sの含有量が0.01%以上になると、延性の低下が著しい。このため、本発明ではSの含有量を0.01%未満とした。
【0027】
N:
Nは、鋼の延性及び靱性を低下させ、冷間鍛造時の昇温により鋼を時効硬化させてしまう。特に、その含有量が0.005%以上になると、圧縮率で90%以上の大きな加工度での冷間鍛造時の時効硬化の程度が大きくなり、冷間鍛造性の著しい劣化をもたらす。このため、本発明ではNの含有量を0.005%未満とした。
【0028】
本発明における(3)の発明の場合は、不純物元素としてのCu及びNiの含有量を下記のとおりに制限する。
【0029】
Cu:
Cuは、スクラップなどの原料から鋼中に不純物として混入するものであるが、Cuの含有量が多いと熱間加工時に疵や割れが生じる。特に、0.40%を超えて含有すると、高温での熱間加工性、例えば分塊圧延や熱間鍛造における加工性が著しく低下して熱間加工時に疵や割れが生ずることが多い。更に、材料の変形抵抗が増大するために冷間鍛造性も損なわれる。したがって、Cu含有量の許容上限を0.40%とした。なお、Cu含有量は0.30%以下とすることが望ましく、0.20%以下にすることがより好ましい。一層好ましいCu含有量の上限は0.10%である。
【0030】
Ni:
Niは、スクラップなどの原料から鋼中に不純物として混入するものであるが、Niの含有量が多いと材料の変形抵抗が増大して冷間鍛造性が損なわれる。特に、0.40%を超えて含有すると、冷間鍛造性の低下が著しい。したがって、Ni含有量の許容上限を0.40%とした。なお、Ni含有量は0.30%以下とすることが望ましく、0.20%以下にすることがより好ましい。一層好ましいNi含有量の上限は0.10%である。
【0031】
N(%)/Al(%):
Nの含有量が0.005%未満の場合であっても、{N(%)/Al(%)}の値が0.05を超えると、圧縮率で90%以上の大きな加工度での冷間鍛造時の時効硬化の程度が大きくなり、冷間鍛造性の著しい劣化を招く。このため、本発明では{N(%)/Al(%)}の値を0.05以下とした。{N(%)/Al(%)}の値の下限は特に規定する必要はなく0(零)でも構わない。
【0032】
ρの値:
各元素の含有量が上記の範囲にあるだけでは必ずしも十分な冷間鍛造性は得られない。本発明においては、前記の(1)式で表されるρの値が20未満を満足することを重要な骨子としている。このρは加工硬化指数に相当するもので、次に示す実験に基づいて得られた。
【0033】
すなわち、CからNまでの含有量及び{N(%)/Al(%)}の値が上記した本発明で規定する範囲にある種々の鋼を通常の方法で試験炉溶製した。なお、この試験炉溶製した鋼の前記ρの値の範囲は16.8から23.0に亘るものであった。
【0034】
次いで、通常の方法によって、前記の鋼を直径26.0mmの線材に熱間圧延し、更に、この線材を冷間で1次伸線して直径が21.4mmの鋼線とした。この後、前記の鋼線に740℃で16時間の焼鈍処理を施し、更に2次伸線して直径を21.0mmに減少させた。
【0035】
上記の2次伸線した鋼線から直径21.0mmで長さが32.0mmの試験片を切り出し、通常の方法で長さ3.2mmに圧縮率で90%の据え込み試験を行った。
【0036】
上記の据え込み試験時の圧縮変形抵抗と前記(1)式で表されるρの値との相関を調べたところ、一定の比例関係があることが判明した。図1に、圧縮変形抵抗とρの値との関係を示す。図1から、ρの値の減少に比例して試験片の圧縮変形抵抗が低下することが認められる。
【0037】
工具寿命を長くし、且つ、一般に用いられている冷間鍛造機の能力の範囲内で冷間鍛造を行うためには、圧縮変形抵抗を92kgf/mm2(902MPa)未満に抑える必要がある。
【0038】
図1から、ρの値を20未満とすれば圧縮変形抵抗が92kgf/mm2未満となるので、工具の長寿命化が図れるとともに、一般に常用される冷間鍛造機の能力の範囲内で冷間鍛造を行えることがわかる。
【0039】
ρの値を20未満とするためには、その構成因子であるSi、Mn、P及びNの含有量を、前記のそれぞれの含有量の範囲内で調整して決定すればよい。
【0040】
ところで、本発明の冷間鍛造用鋼は、特に、圧縮率で90%以上となる大きな加工度の冷間鍛造用素材として好適であるが、加工度の小さい冷間鍛造用素材としても勿論使用できる。
【0041】
【実施例】
表1、表2に示す化学成分とρの値を有する直径が22.5mmの熱間圧延線材を用いて、通常の方法で、先ず直径が18.3mmとなる1次伸線を行った。次いで、740℃で16時間の焼鈍を行い、その後更に、直径が17.9mmとなる2次伸線を行った。
【0042】
【表1】

Figure 0003760589
【0043】
【表2】
Figure 0003760589
【0044】
上記の直径17.9mmに2次伸線した鋼線を、長さ32mmに切断して冷間鍛造試験片を作製した。この試験片に圧縮率が90%の冷間鍛造を行って、冷鍛鍛造荷重を調べた。
【0045】
前述した92kgf/mm2の圧縮変形抵抗は、本実施例における冷間鍛造荷重に変換すると231.4tfとなる。そこで、冷間鍛造荷重が231.4tf未満か否かによって冷間鍛造性を評価し、その結果を表1、表2に併記した。
【0046】
試験番号1〜3、試験番号5、試験番号8、試験番号9及び試験番号11〜13は本発明例である。いずれも化学成分が本発明で規定する冷間鍛造用鋼の組成の範囲内で、ρの値を20未満としたから、冷間鍛造荷重は231.4tf未満となった。又、ρの値の低下に応じて冷間鍛造荷重が減少する傾向となった。
【0047】
試験番号14〜21は比較例である。試験番号14、15においては、Alの含有量が本発明で規定する範囲を超えるとともに{N(%)/Al(%)}の値も0.05を超え、更にρの値も20を超えていたため、冷間鍛造荷重は231.4tfを超えた。
【0048】
試験番号16においては、各元素の含有量と{N(%)/Al(%)}の値は本発明で規定する範囲内であったものの、ρの値が20を超えていたため、冷間鍛造荷重は231.4tfを超えた。
【0049】
試験番号17〜18においては、それらのρの値は20未満であったものの、本発明で規定するいずれかの元素の含有量と{N(%)/Al(%)}の値が本発明の範囲外であったため、やはり冷間鍛造荷重が231.4tfを超えた。
【0050】
試験番号19〜21においては、本発明で規定するいずれかの元素の含有量と{N(%)/Al(%)}の値が本発明の範囲外であったばかりでなく、ρの値も20を超えていたため、冷間鍛造荷重が231.4tfを超えた。
【0051】
上記のように鋼の化学成分と{N(%)/Al(%)}の値を本発明で規定する範囲内とし、且つ(1)式で定義したρの値を20未満とすれば、90%という高い加工度の冷間鍛造を行っても、圧縮変形抵抗が規準値(92kgf/mm2)未満となることを確かめることができた。
【0052】
【発明の効果】
本発明の冷間鍛造用鋼を用いれば、材料の延性が良好で変形抵抗が小さいため、加工度の大きい冷間鍛造、なかでも圧縮率で90%以上となる大きな加工度で冷間鍛造を行って材料温度が上昇した場合でも、鍛造荷重を低下させることができる。したがって、工具の長寿命化を図ることができる。実際に、自動車部品に本発明の冷間鍛造用鋼を用いた結果、製品工数換算の工具寿命が35000個から70000個にまで向上した。工具寿命の増大は、冷間鍛造製品の品質を向上させ、冷間鍛造コストを低減させることにもつながるので、本発明の効果は極めて大きい。
【0053】
【図面の簡単な説明】
【図1】 圧縮変形抵抗と(1)式で表されるρの値との相関を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to steel used for cold forging with a high degree of work.
[0002]
[Prior art]
In recent years, with the widespread use of part formers (cold forging machines for manufacturing automobile parts and the like), various shaped parts are manufactured by the cold forging method. In the material during cold forging, although the strength increases as work hardening progresses, the ductility decreases. In addition, since the material used for cold forging generates heat due to processing, the temperature rises to about 100 to 400 ° C. and may enter a temperature range where so-called “blue brittleness” occurs. . In this way, the material whose temperature has risen to the blue heat brittle region has an increased deformation resistance, so that the ductility is lowered. As a result, the material may become brittle and cracks may occur. Alternatively, the dimensional accuracy and surface roughness of the product after cold forging are lowered. Furthermore, since a high cold forging load is required to cold forge a material with increased deformation resistance, wear, plastic deformation or fracture is likely to occur in the cold forging tool, leading to a reduction in tool life. .
[0003]
Conventionally, in the cold forging method, spheroidizing annealing is repeated as many times as necessary before cold forging to improve the ductility of the material or limit the chemical components that adversely affect the deformability of the material, thereby reducing the deformation resistance of the material. Has been done.
[0004]
Japanese Patent Laid-Open No. 61-157640 discloses a technique for preventing age hardening of a material during cold forging by performing an aging treatment in a specific temperature range after spheroidizing annealing. Japanese Patent Application Laid-Open No. 63-105951 discloses a technique for improving the cold forgeability by limiting chemical components that may promote work cracking and annealing in a specific temperature range after hot rolling. Has been. Furthermore, Japanese Patent Application Laid-Open No. 61-113744 proposes a technique for reducing deformation resistance during cold forging by satisfying a specific relationship with the contents of Mn, Si and Cr. Furthermore, Japanese Patent Application Laid-Open No. 1-225750 discloses a technique for obtaining a steel for cold forging having a low deformation resistance by satisfying a specific relationship with the contents of Mn and Cr.
[0005]
However, the techniques disclosed in Japanese Patent Application Laid-Open Nos. 61-157640 and 63-105951 are mainly based on rationalization of the manufacturing process. Further, the techniques disclosed in Japanese Patent Application Laid-Open Nos. 61-1113744 and 1-222550 are aimed at simultaneously increasing the hardenability of the material, which is contrary to lowering the deformation resistance of the material. is there. For this reason, even if the technique proposed in each of the above publications is used, none of the techniques can sufficiently cope with the case where it is necessary to perform cold forging with a large degree of work.
[0006]
On the other hand, the present inventors have proposed steel used for cold forging with a high degree of work in Japanese Patent Laid-Open No. 4-35841. However, after that, it was found that even when this steel was used, the life of the cold forging tool varied. And this variation in tool life occurs regardless of the purchase lot of cold forging tools, and there is a case where the tool life may be reduced when steel melted at a specific opportunity is used as the material to be forged. There was found. Further investigation in this regard revealed that blue hot brittleness occurred when a forged material made of steel melted at a specific chance was cold-forged with a large degree of work, particularly a compression ratio of 90% or more. It was found that the deformation resistance of the material was increased, which shortened the tool life. Thus, even when using the steel proposed by the present inventors as “steel for cold forging”, it was still not sufficient particularly when cold forging with a large workability exceeding 90% in compression rate. is there.
[0007]
A decrease in ductility due to work hardening or an increase in deformation resistance in a blue brittle region and a decrease in ductility are the fate of cold forging materials. These deteriorate the product quality after cold forging, require a cold forging machine with a large working force, and further significantly reduce the tool life. Eventually, product defects will occur and cold forging costs will increase.
[0008]
The cold forging method has the advantages of inherently low material loss, no need for finishing after cold forging, and further improving the strength of the product by work hardening. The problem of the increase in the thickness and the decrease in the ductility detracts from the advantages of the original cold forging method.
[0009]
[Problems to be solved by the invention]
The object of the present invention is to prevent the reduction of ductility due to work hardening even when the material temperature rises by performing cold forging with a high workability, especially cold forging with a high workability of 90% or higher compression ratio. Thus, it is an object of the present invention to provide a steel that can be forged while maintaining its deformability and with low deformation resistance without causing blue heat brittleness.
[0010]
[Means for Solving the Problems]
The gist of the present invention resides in the steel for cold forging shown in the following (1) to (3).
[0011]
(1) By weight, C: 0.10 to 0.60%, Al: more than 0.05% to 0.10% , Si: 0.35% or less, Mn: 0.5 to 1.2% , Cr: 0 to 0.14% , Ti: 0.01 to 0.07 %, B: 0 to 0.003% , the balance is made of Fe and inevitable impurities, and P in the impurities is 0.01 %, S is less than 0.01%, N is less than 0.005%, and {N (%) / Al (%)} is 0.05 or less, and Si, Mn, P and N are contained. A steel for cold forging, wherein the value of ρ in the following formula (1) expressed by the quantity is less than 20.
[0012]
ρ = 30 × Si (%) + 10 × Mn (%) + 300 × P (%) + 500 × N (%) (1)
(2) By weight, C: 0.10 to 0.60%, Al: more than 0.05% to 0.10% , Si: 0.35% or less, Mn: 0.5 to 1.2% , Cr: 0 to 0.14% , Ti + 0.5Zr: 0.01 to 0.10%, B: 0 to 0.003% , the balance is made of Fe and inevitable impurities, and P in the impurities is 0 less than .01% S is less than less than 0.01% and N 0.005%, further, {N (%) / Al (%)} is 0.05 or less, and, in front SL (1) A steel for cold forging having a represented value of ρ of less than 20.
[0013]
(3) The steel for cold forging according to (1) or (2), wherein the allowable upper limit of Cu content is 0.40% and the allowable upper limit of Ni content is 0.40% by weight.
[0014]
The steel of the present invention is usually produced as a steel bar or wire through a hot rolling process and a cold rolling process. The steel bar or wire is cut to an appropriate size, annealed, and subjected to cold forging. The steel that has undergone cold forging is further subjected to heat treatment such as quenching and tempering or processing to a minimum degree to obtain a final product. In a state for cold forging (usually an annealed state), it is desirable that the tensile strength is 70 kgf / mm 2 (686 MPa) or less.
[0015]
Hereinafter, the above (1) to (3) are referred to as inventions (1) to (3), respectively.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
First, the reason why the composition of the steel of the present invention is defined within the above range will be described. In addition, “%” of the component content means “% by weight”.
[0017]
C:
C is an element useful for ensuring the strength of the steel, and if it is less than 0.10%, a predetermined strength cannot be obtained after heat treatment, so the lower limit was made 0.10%. On the other hand, if the C content is too high, cracks occur in the material in cold forging with a high workability (for example, cold forging with a compression ratio of 70% or more), so the upper limit was made 0.60%.
[0018]
Al:
Al is an important additive element of the present invention. That is, Al has the effect of fixing N to suppress age hardening during cold forging, and in particular, age hardening during cold forging due to a large degree of work with a compressibility of 90% or more. In addition, Al also has the effect of preventing the austenite crystal from coarsening in the deoxidizing action of steel and heating of the steel before hot rolling. However, when the content is 0.05% or less, it is not possible to obtain an age hardening suppressing effect during cold forging at a large degree of work, particularly at a compression ratio of 90% or more. On the other hand, when the Al content exceeds 0.10%, the hot workability deteriorates. Therefore, the Al content is more than 0.05% and up to 0.10% .
[0019]
Si:
Si has a deoxidizing action. However, Si also has a detrimental effect of increasing the hardness by dissolving in the base, increasing the deformation resistance during cold forging, and reducing the cold forgeability. In particular, when the content exceeds 0.35%, a large decrease in cold forgeability occurs. Therefore, the Si content is set to 0.35% or less. In addition, the preferable content of Si is 0.30% or less.
[0020]
Mn:
Mn has a deoxidizing action, a desulfurizing action, a hot brittleness preventing action, and a strength improving action. In order to reliably obtain these effects, it is necessary to set the Mn content to 0.5% or more . However, if its content exceeds 1.2%, segregation becomes prominent and the deformation resistance of the material increases, leading to a decrease in cold forgeability. Therefore, the Mn content is set to 0.5 to 1.2% .
[0021]
Cr:
It is not necessary to add Cr. If added, it has the effect of improving the strength and hardenability of the steel. In order to reliably obtain this effect, the Cr content is preferably 0.05% or more. However, if the content is too high , the deformation resistance of the steel is increased and the cold forgeability is deteriorated. Therefore, the content of Cr is set to 0 to 0.14% .
[0022]
Ti, Zr:
Ti and Zr have the effect of fixing N in the same way as Al and suppressing age hardening due to temperature rise during cold forging. In order to ensure this effect, Ti alone needs to have a content of 0.01% or more. The above effect can also be reliably obtained by setting the value of Ti + 0.5Zr, which is the sum of the content of Ti and the content of Zr, to 0.01% or more. However, if the Ti content exceeds 0.07%, Ti carbides, nitrides, and carbonitrides in the steel become coarse, and the number thereof increases to cause deterioration of cold forgeability. Therefore, in the invention of (1) in the present invention, the Ti content is set to 0.01 to 0.07%. Further, even when the value of Ti + 0.5Zr exceeds 0.10%, Ti, Zr carbides, nitrides and carbonitrides in the steel are coarsened, and the number thereof increases to increase the cold forgeability. It causes deterioration. For this reason, in the case of the invention of (2) in the present invention, the content of Ti and Zr is set to 0.01 to 0.10% as a value of Ti + 0.5Zr. In the case of the invention (2), the upper limit of the Ti content needs to be 0.07%. In the invention of (2), when Zr is added alone, the upper limit of the content is preferably 0.10%.
[0023]
B:
B may not be added. If added, the hardenability of the steel is improved and the strength is increased. In order to surely obtain such an effect, it is preferable that B has a content of 0.0005% or more. However, when the content exceeds 0.003%, the hot workability is deteriorated. Therefore, the content of B is set to 0 to 0.003% .
[0024]
In the steel for cold forging which is the object of the present invention, the contents of P, S and N as impurity elements are limited as follows.
[0025]
P:
P is usually mixed as an impurity in the steel from raw materials and the like, but if the content of P is large, the deformation resistance of the material increases, cold forging becomes difficult, and ductility is also impaired. In particular, when the P content is 0.01% or more, the cold forgeability and ductility are significantly deteriorated. For this reason, in this invention, content of P was made into less than 0.01%.
[0026]
S:
S, like P, is mixed as an impurity in the steel from raw materials and the like, but if the S content is large, the ductility of the material is impaired. In particular, when the S content is 0.01% or more, the ductility is significantly reduced. For this reason, in this invention, content of S was made into less than 0.01%.
[0027]
N:
N decreases the ductility and toughness of the steel, and age hardens the steel by the temperature rise during cold forging. In particular, when the content is 0.005% or more, the degree of age hardening at the time of cold forging at a large workability of 90% or more in terms of compressibility increases, resulting in a significant deterioration in cold forgeability. For this reason, in this invention, content of N was made into less than 0.005%.
[0028]
In the case of the invention of (3) in the present invention, the contents of Cu and Ni as impurity elements are limited as follows.
[0029]
Cu:
Cu is mixed as an impurity in steel from raw materials such as scrap, but if the content of Cu is large, wrinkles and cracks occur during hot working. In particular, when the content exceeds 0.40%, hot workability at high temperatures, for example, workability in block rolling or hot forging, is remarkably deteriorated, and flaws and cracks often occur during hot working. Furthermore, since the deformation resistance of the material is increased, the cold forgeability is also impaired. Therefore, the allowable upper limit of the Cu content is set to 0.40%. Note that the Cu content is preferably 0.30% or less, and more preferably 0.20% or less. A more preferable upper limit of the Cu content is 0.10%.
[0030]
Ni:
Ni is mixed as an impurity in the steel from raw materials such as scrap, but if the Ni content is large, the deformation resistance of the material increases and the cold forgeability is impaired. In particular, when the content exceeds 0.40%, the cold forgeability is remarkably lowered. Therefore, the upper limit of Ni content is set to 0.40%. Note that the Ni content is preferably 0.30% or less, and more preferably 0.20% or less. A more preferable upper limit of the Ni content is 0.10%.
[0031]
N (%) / Al (%):
Even if the content of N is less than 0.005%, if the value of {N (%) / Al (%)} exceeds 0.05, the compression ratio is 90% or more in a large degree of processing. The degree of age hardening at the time of cold forging increases, and the cold forgeability deteriorates significantly. For this reason, in the present invention, the value of {N (%) / Al (%)} is set to 0.05 or less. The lower limit of the value of {N (%) / Al (%)} does not need to be specified and may be 0 (zero).
[0032]
ρ value:
Sufficient cold forgeability cannot always be obtained if the content of each element is in the above range. In the present invention, it is important that the value of ρ represented by the above formula (1) satisfies less than 20. This ρ corresponds to the work hardening index, and was obtained based on the following experiment.
[0033]
That is, various steels in which the content from C to N and the value of {N (%) / Al (%)} are within the range defined in the present invention were melted in a test furnace by a usual method. Note that the range of the value of ρ of the steel melted in this test furnace ranged from 16.8 to 23.0.
[0034]
Next, the steel was hot-rolled into a wire having a diameter of 26.0 mm by a normal method, and the wire was further cold-drawn to obtain a steel wire having a diameter of 21.4 mm. Thereafter, the steel wire was subjected to an annealing treatment at 740 ° C. for 16 hours, and further subjected to secondary wire drawing to reduce the diameter to 21.0 mm.
[0035]
A test piece having a diameter of 21.0 mm and a length of 32.0 mm was cut out from the above-described secondary wire, and an upsetting test was performed by a usual method to a length of 3.2 mm and a compression rate of 90%.
[0036]
When the correlation between the compression deformation resistance during the upsetting test and the value of ρ represented by the above equation (1) was examined, it was found that there was a certain proportional relationship. FIG. 1 shows the relationship between the compression deformation resistance and the value of ρ. It can be seen from FIG. 1 that the compression deformation resistance of the test piece decreases in proportion to the decrease in the value of ρ.
[0037]
In order to extend the tool life and perform cold forging within the capacity of a commonly used cold forging machine, it is necessary to suppress the compression deformation resistance to less than 92 kgf / mm 2 (902 MPa).
[0038]
From FIG. 1, if the value of ρ is less than 20, the compression deformation resistance is less than 92 kgf / mm 2 , so that the tool life can be extended and the cold forging machine can be used within the range of commonly used cold forging machines. It can be seen that the forging can be performed.
[0039]
In order to make the value of ρ less than 20, the contents of Si, Mn, P, and N, which are constituent factors, may be adjusted and determined within the respective content ranges.
[0040]
By the way, the steel for cold forging according to the present invention is particularly suitable as a material for cold forging having a large workability with a compression ratio of 90% or more. it can.
[0041]
【Example】
First, primary wire drawing with a diameter of 18.3 mm was performed by a usual method using a hot rolled wire rod having a diameter of 22.5 mm having chemical components and values of ρ shown in Tables 1 and 2. Subsequently, annealing was performed at 740 ° C. for 16 hours, and then secondary wire drawing with a diameter of 17.9 mm was further performed.
[0042]
[Table 1]
Figure 0003760589
[0043]
[Table 2]
Figure 0003760589
[0044]
The steel wire secondarily drawn to a diameter of 17.9 mm was cut into a length of 32 mm to produce a cold forged test piece. This test piece was subjected to cold forging with a compression ratio of 90%, and the cold forging load was examined.
[0045]
The above-mentioned compression deformation resistance of 92 kgf / mm 2 is 231.4 tf when converted into the cold forging load in this embodiment. Therefore, cold forgeability was evaluated depending on whether or not the cold forging load was less than 231.4 tf, and the results are also shown in Tables 1 and 2.
[0046]
Test numbers 1 to 3, Test number 5, Test number 8 , Test number 9 and Test numbers 11 to 13 are examples of the present invention. In any case, the value of ρ was less than 20 within the range of the composition of the steel for cold forging specified by the present invention in the chemical component, so the cold forging load was less than 231.4 tf. Further, the cold forging load tended to decrease as the value of ρ decreased.
[0047]
Test numbers 14 to 21 are comparative examples. In Test Nos. 14 and 15, the Al content exceeds the range specified in the present invention, the value of {N (%) / Al (%)} exceeds 0.05, and the value of ρ exceeds 20 Therefore, the cold forging load exceeded 231.4 tf.
[0048]
In test number 16, although the content of each element and the value of {N (%) / Al (%)} were within the range specified in the present invention, the value of ρ exceeded 20, The forging load exceeded 231.4 tf.
[0049]
In Test Nos. 17 to 18, although the value of ρ was less than 20, the content of any element defined in the present invention and the value of {N (%) / Al (%)} Therefore, the cold forging load exceeded 231.4 tf.
[0050]
In the test numbers 19 to 21, not only the content of any element defined in the present invention and the value of {N (%) / Al (%)} were outside the scope of the present invention, but also the value of ρ Since it exceeded 20, the cold forging load exceeded 231.4 tf.
[0051]
As described above, if the chemical composition of steel and the value of {N (%) / Al (%)} are within the range defined by the present invention, and the value of ρ defined by equation (1) is less than 20, Even when cold forging with a high workability of 90% was performed, it was confirmed that the compression deformation resistance was less than the standard value (92 kgf / mm 2 ).
[0052]
【The invention's effect】
If the steel for cold forging according to the present invention is used, the material has good ductility and low deformation resistance. Even when the temperature of the material increases, the forging load can be reduced. Therefore, the tool life can be extended. Actually, as a result of using the cold forging steel of the present invention for automobile parts, the tool life in terms of product man-hours was improved from 35,000 to 70000. The increase in tool life leads to an improvement in the quality of cold forging products and a reduction in cold forging costs, so the effect of the present invention is extremely great.
[0053]
[Brief description of the drawings]
FIG. 1 is a graph showing the correlation between compression deformation resistance and the value of ρ represented by equation (1).

Claims (3)

重量%で、C:0.10〜0.60%、Al:0.05%を超え0.10%まで、Si:0.35%以下、Mn:0.5〜1.2%、Cr:0〜0.14%、Ti:0.01〜0.07%、B:0〜0.003%を含有し、残部はFe及び不可避不純物からなり、不純物中のPは0.01%未満、Sは0.01%未満及びNは0.005%未満で、更に、{N(%)/Al(%)}が0.05以下、且つ、下記(1)式で表されるρの値が20未満であることを特徴とする冷間鍛造用鋼。
ρ=30×Si(%)+10×Mn(%)+300×P(%)+500×N(%)・・・・・(1)
By weight%, C: 0.10 to 0.60%, Al: more than 0.05% to 0.10% , Si: 0.35% or less, Mn: 0.5 to 1.2% , Cr: 0 to 0.14% , Ti: 0.01 to 0.07% , B: 0 to 0.003% , the balance is composed of Fe and inevitable impurities, P in the impurities is less than 0.01%, S is less than 0.01%, N is less than 0.005%, and {N (%) / Al (%)} is 0.05 or less, and the value of ρ represented by the following formula (1) Is a steel for cold forging characterized by having less than 20.
ρ = 30 × Si (%) + 10 × Mn (%) + 300 × P (%) + 500 × N (%) (1)
重量%で、C:0.10〜0.60%、Al:0.05%を超え0.10%まで、Si:0.35%以下、Mn:0.5〜1.2%、Cr:0〜0.14%、Ti+0.5Zr:0.01〜0.10%、B:0〜0.003%を含有し、残部はFe及び不可避不純物からなり、不純物中のPは0.01%未満、Sは0.01%未満及びNは0.005%未満で、更に、{N(%)/Al(%)}が0.05以下、且つ、下記(1)式で表されるρの値が20未満であることを特徴とする冷間鍛造用鋼。
ρ=30×Si(%)+10×Mn(%)+300×P(%)+500×N(%)・・・・・(1)
By weight%, C: 0.10 to 0.60%, Al: more than 0.05% to 0.10% , Si: 0.35% or less, Mn: 0.5 to 1.2% , Cr: 0 to 0.14% , Ti + 0.5Zr: 0.01 to 0.10%, B: 0 to 0.003% , the balance is composed of Fe and inevitable impurities, and P in the impurities is 0.01% , S is less than 0.01% and N is less than 0.005%, and {N (%) / Al (%)} is 0.05 or less, and ρ represented by the following formula (1) The steel for cold forging characterized by having a value of less than 20.
ρ = 30 × Si (%) + 10 × Mn (%) + 300 × P (%) + 500 × N (%) (1)
重量%で、Cu含有量の許容上限が0.40%、Ni含有量の許容上限が0.40%である請求項1又は請求項2に記載の冷間鍛造用鋼。  The steel for cold forging according to claim 1 or 2, wherein the allowable upper limit of Cu content is 0.40% and the allowable upper limit of Ni content is 0.40% by weight.
JP25461097A 1996-10-01 1997-09-19 Steel for cold forging Expired - Lifetime JP3760589B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25461097A JP3760589B2 (en) 1996-10-01 1997-09-19 Steel for cold forging

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-260462 1996-10-01
JP26046296 1996-10-01
JP25461097A JP3760589B2 (en) 1996-10-01 1997-09-19 Steel for cold forging

Publications (2)

Publication Number Publication Date
JPH10158779A JPH10158779A (en) 1998-06-16
JP3760589B2 true JP3760589B2 (en) 2006-03-29

Family

ID=26541759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25461097A Expired - Lifetime JP3760589B2 (en) 1996-10-01 1997-09-19 Steel for cold forging

Country Status (1)

Country Link
JP (1) JP3760589B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5325432B2 (en) * 2007-10-24 2013-10-23 Jfeスチール株式会社 Manufacturing method of cold processed products
CN102994700B (en) * 2012-11-28 2014-01-29 武钢集团昆明钢铁股份有限公司 Smelting method for stably increasing content of boron in boron-containing steel

Also Published As

Publication number Publication date
JPH10158779A (en) 1998-06-16

Similar Documents

Publication Publication Date Title
JP3562192B2 (en) Component for induction hardening and method of manufacturing the same
JP5649886B2 (en) Case-hardened steel and method for producing the same
JP3606024B2 (en) Induction-hardened parts and manufacturing method thereof
KR102042062B1 (en) Steel wire rod for cold forging and methods for manufacturing thereof
JP5649887B2 (en) Case-hardened steel and method for producing the same
JP5649838B2 (en) Case-hardened steel and method for producing the same
JP4328924B2 (en) Manufacturing method of high-strength shaft parts
JP3550886B2 (en) Manufacturing method of gear steel for induction hardening excellent in machinability and fatigue strength
JP2004238702A (en) Carburized component excellent in low-cycle impact fatigue resistance
JP3857835B2 (en) Steel for high strength bolt and method for producing high strength bolt
CN108699650B (en) Rolled wire
JP3760589B2 (en) Steel for cold forging
JP3277878B2 (en) Wire drawing reinforced high-strength steel wire and method of manufacturing the same
JP3644217B2 (en) Induction-hardened parts and manufacturing method thereof
JP4393344B2 (en) Manufacturing method of case hardening steel with excellent cold workability and grain coarsening resistance
JP3428282B2 (en) Gear steel for induction hardening and method of manufacturing the same
JP3528676B2 (en) Steel wire rod, steel wire and manufacturing method thereof
JP3217943B2 (en) Method for producing steel for machine structural use having excellent machinability, cold forgeability and fatigue properties after quenching and tempering
JP3823413B2 (en) Induction hardening component and manufacturing method thereof
JPH0797659A (en) Steel for machine structural use excellent in machinability, cold forgeability, fatigue strength characteristic after quench-and-temper, member of the same, and their production
JP2728084B2 (en) Manufacturing method of high strength parts
JP2004018990A (en) Method for warm-forging precipitation-hardening martensitic stainless steel, and forged parts manufactured by the method
JP3728014B2 (en) Machine structural steel with excellent cold forgeability and induction hardenability
JP3154036B2 (en) Machine structural steel with excellent cold workability
JP2813800B2 (en) Warm forging steel for machine structures

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040426

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060102

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100120

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110120

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120120

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130120

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130120

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130120

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140120

Year of fee payment: 8

EXPY Cancellation because of completion of term