JP5649838B2 - Case-hardened steel and method for producing the same - Google Patents

Case-hardened steel and method for producing the same Download PDF

Info

Publication number
JP5649838B2
JP5649838B2 JP2010073685A JP2010073685A JP5649838B2 JP 5649838 B2 JP5649838 B2 JP 5649838B2 JP 2010073685 A JP2010073685 A JP 2010073685A JP 2010073685 A JP2010073685 A JP 2010073685A JP 5649838 B2 JP5649838 B2 JP 5649838B2
Authority
JP
Japan
Prior art keywords
less
steel
precipitates
case
slab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010073685A
Other languages
Japanese (ja)
Other versions
JP2010248630A (en
Inventor
正之 笠井
正之 笠井
丸田 慶一
慶一 丸田
木村 秀途
秀途 木村
福岡 和明
和明 福岡
冨田 邦和
邦和 冨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
JFE Bars and Shapes Corp
Original Assignee
JFE Steel Corp
JFE Bars and Shapes Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, JFE Bars and Shapes Corp filed Critical JFE Steel Corp
Priority to JP2010073685A priority Critical patent/JP5649838B2/en
Publication of JP2010248630A publication Critical patent/JP2010248630A/en
Application granted granted Critical
Publication of JP5649838B2 publication Critical patent/JP5649838B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、自動車や建産機分野などにおいて、浸炭処理を施して使用される機械構造部品の素材として用いられる肌焼鋼およびその製造方法に関するものである。特に、歯車やシャフト類、軸受などの素材として鋼材を浸炭処理して使用する際に、1000℃以上の高温で浸炭処理を行った場合でも結晶粒が粗大化しない、すなわち結晶粒度特性に優れると共に、冷間鍛造時に割れが発生しない、すなわち加工性に優れ、かつ高い靭性を有する肌焼鋼と、その製造方法に関するものである。   The present invention relates to a case-hardened steel used as a material for machine structural parts used by carburizing in the field of automobiles and industrial machinery, and a method for producing the same. In particular, when steel materials are carburized and used as materials for gears, shafts, bearings, etc., even when carburized at a high temperature of 1000 ° C. or higher, crystal grains do not become coarse, that is, they have excellent crystal grain size characteristics. The present invention relates to a case-hardened steel that does not crack during cold forging, that is, has excellent workability and high toughness, and a method for producing the same.

自動車、建設機械、その他各種の産業機械として用いられる機械部品において、高疲労強度や耐摩耗性が要求される部品には、従来から浸炭、窒化および浸炭窒化などの表面硬化熱処理が施される。これらの用途には、通常、JIS規格でSCr、SCM、SNCMなどの肌焼鋼が用いられ、鍛造や切削等の機械加工により所望の部品形状に成形したのち、上記した表面硬化熱処理を施される。その後、研磨などの仕上げ工程を経て部品へと製造される。   In machine parts used as automobiles, construction machines, and other various industrial machines, parts requiring high fatigue strength and wear resistance are conventionally subjected to surface hardening heat treatment such as carburizing, nitriding, and carbonitriding. For these applications, case-hardened steel such as SCr, SCM, SNCM, etc. is usually used in JIS standards, and after forming into the desired part shape by machining such as forging or cutting, the above-mentioned surface hardening heat treatment is applied. The Then, it is manufactured into parts through a finishing process such as polishing.

近年、自動車、建設機械、その他の産業機械等に使用される部品の製造コストの低減が強く望まれており、鍛造・切削等の機械加工にかかるコストを低減する取り組みがなされている。例えば、切削加工から鍛造加工への変更や、鍛造でも熱間鍛造に代えて、寸法精度が高く、鍛造後の切削コストを低減できる冷間鍛造が指向されている。   In recent years, it has been strongly desired to reduce the manufacturing cost of parts used in automobiles, construction machines, other industrial machines, and the like, and efforts are being made to reduce the cost of machining such as forging and cutting. For example, a change from cutting to forging, or cold forging that has high dimensional accuracy and can reduce cutting costs after forging is directed instead of hot forging in forging.

また、浸炭処理工程では、従来のガス浸炭に代えて真空浸炭が用いられるようになってきている。真空浸炭は、高温で行うため浸炭時間を短縮でき、また浸炭部品表面の粒界酸化に伴う浸炭異常層が軽減されるという利点がある。
しかしながら、高温で処理されるため、オーステナイト粒(γ粒)の粗大化が起こりやすいという問題がある。その結果、焼入れ後に熱歪が生じ、部品寸法が変化するため、仕上げ加工や研磨等の余分な工程が必要となり、生産性が著しく阻害され、コスト上昇を招く。
In the carburizing process, vacuum carburizing has been used instead of conventional gas carburizing. Since the vacuum carburization is performed at a high temperature, the carburizing time can be shortened, and there is an advantage that an abnormal carburizing layer associated with grain boundary oxidation on the surface of the carburized part is reduced.
However, since it is processed at a high temperature, there is a problem that austenite grains (γ grains) are likely to be coarsened. As a result, thermal distortion occurs after quenching and the part dimensions change, so that extra steps such as finishing and polishing are required, productivity is significantly hindered, and costs are increased.

このような事情から、冷間鍛造に適し、しかも高温あるいは真空浸炭処理にも適用できるような肌焼鋼が強く求められている。このため、浸炭時における肌焼鋼の結晶粒粗大化を防止するために、これまでにも様々な技術が提案されていて、Al,Nb,Ti等の元素を添加することによって、AlN,Nb(CN),TiC等の析出物を微細に分散させる技術が汎用されている。   Under such circumstances, there is a strong demand for case-hardened steel that is suitable for cold forging and that can be applied to high temperature or vacuum carburization. For this reason, in order to prevent grain coarsening of the case-hardened steel during carburizing, various techniques have been proposed so far, and by adding elements such as Al, Nb, Ti, etc., AlN, Nb A technique for finely dispersing precipitates such as (CN) and TiC is widely used.

例えば、特許文献1および2にはそれぞれ、Al,Nb,N量を調整し、AlとNb窒化物のピン止め効果によって粗大化の発生を抑制する技術が提案されている。しかしながら、この技術では、工業的に安定して粗大化の発生を抑制することができないという問題があった。   For example, Patent Documents 1 and 2 each propose a technique of adjusting the amounts of Al, Nb, and N and suppressing the occurrence of coarsening by the pinning effect of Al and Nb nitride. However, this technique has a problem that it cannot industrially stably suppress the occurrence of coarsening.

また、特許文献3および4は、Al,Nb,Tiなどの窒化物、炭化物、炭窒化物形成元素の含有量と、各析出物の大きさ、分布密度、ベイナイト組織分率、フェライトバンド評点および圧延条件を制御することによって、上記した問題の解決を図っているが、種々の寸法形状の鋼材を圧延により製造する実操業では、これら多数のパラメーターを制御することは事実上不可能であった。   Patent Documents 3 and 4 describe the contents of nitride, carbide, carbonitride-forming elements such as Al, Nb, and Ti, the size of each precipitate, distribution density, bainite structure fraction, ferrite band score, and Although the above-mentioned problems are solved by controlling the rolling conditions, it is practically impossible to control these many parameters in the actual operation of manufacturing steel materials of various sizes and shapes by rolling. .

特開昭58−45354号公報JP 58-45354 A 特開昭61−261427号公報JP 61-261427 A 特開平11−50191号公報Japanese Patent Laid-Open No. 11-50191 特開平11−335777号公報JP 11-335777 A

本発明は、上記の実情に鑑み開発されたもので、冷間鍛造を行っても良好な鍛造性を示すだけでなく、浸炭処理のための加熱による結晶粒の粗大化を効果的に抑制することのできる肌焼鋼を、その有利な製造方法と共に提案することを目的とする。   The present invention has been developed in view of the above circumstances, and not only exhibits good forgeability even when cold forging is performed, but also effectively suppresses coarsening of crystal grains due to heating for carburizing treatment. The object is to propose a case-hardened steel with its advantageous production method.

さて、発明者らは、上記の目的を達成すべく、鋼組成や析出物の存在形態などについて鋭意研究を重ねた結果、鋼組成を特定した上で、Tiを含む析出物の大きさおよびその個数を規定することによって、優れた結晶粒度特性と冷間鍛造性を兼ね備えた肌焼鋼が得られることを見出した。
本発明は、上記の知見に立脚するものである。
Now, in order to achieve the above object, the inventors have conducted extensive research on the steel composition and the existence form of precipitates, and as a result of identifying the steel composition, the size of the precipitate containing Ti and its It was found that by setting the number, a case-hardened steel having excellent grain size characteristics and cold forgeability can be obtained.
The present invention is based on the above findings.

すなわち、本発明の要旨構成は次のとおりである。
1.質量%で、C:0.05%以上0.40%以下、Si:1.0%以下、Mn:1.0%以下、P:0.03%以下、S:0.03%以下、Cr:2.0%以下、Al:0.1%以下、Ti:0.05%以上0.30%以下、Mo:0.05%以上1.0%以下、N:0.0060%以下およびO:0.0020%以下を含み、残部はFeおよび不可避的不純物の組成になり、Tiを含む析出物で直径:5nm以上30nm以下のものが30個/μm2以上存在し、直径:5nm以上50nm以下のTi析出物の5nm以上の全Ti析出物に対する個数比率が50%以上であることを特徴とする、冷間鍛造性、靭性および結晶粒度特性に優れた肌焼鋼。
That is, the gist configuration of the present invention is as follows.
1. In mass%, C: 0.05% or more and 0.40% or less, Si: 1.0% or less, Mn: 1.0% or less, P: 0.03% or less, S: 0.03% or less, Cr: 2.0% or less, Al: 0.1% or less, Ti : 0.05% or more and 0.30% or less, Mo: 0.05% or more and 1.0% or less, N: 0.0060% or less, and O: 0.0020% or less. The balance is the composition of Fe and inevitable impurities. : there those 5nm or 30nm or less 30 / [mu] m 2 or more, the diameter: the number ratio of total Ti precipitates 5nm or more of 5nm or 50nm or less of Ti precipitates, characterized in that 50% or more, Case-hardened steel with excellent cold forgeability, toughness and grain size characteristics.

2.質量%でさらに、Ni:3.0%以下を含有することを特徴とする前記1に記載の肌焼鋼。 2. 2. The case-hardened steel according to 1 above, further containing Ni: 3.0% or less by mass%.

3.質量%でさらに、B:0.0010%超0.0030%以下を含有することを特徴とする前記1または2に記載の肌焼鋼。 3. 3. The case-hardened steel according to 1 or 2 above, further containing, in mass%, B: more than 0.0010% and 0.0030% or less.

4.質量%でさらに、Ca:0.010%以下を含有することを特徴とする前記1乃至3のいずれかに記載の肌焼鋼。 4). 4. The case-hardened steel as described in any one of 1 to 3 above, further containing, by mass%, Ca: 0.010% or less.

5.質量%でさらに、Pb:0.1%以下およびBi:0.1%以下のうちから選んだ一種または二種を含有することを特徴とする前記1乃至4のいずれかに記載の肌焼鋼。 5. 5. The case-hardened steel as described in any one of 1 to 4 above, further comprising one or two selected from Pb: 0.1% or less and Bi: 0.1% or less in terms of mass%.

6.質量%でさらに、Nb:0.5%以下、V:0.5%以下、Zr:0.5%以下およびW:0.5%以下のうちから選んだ一種または二種以上を含有することを特徴とする前記1乃至5のいずれかに記載の肌焼鋼。 6). 1 to 5 above, further comprising one or more selected from the group consisting of Nb: 0.5% or less, V: 0.5% or less, Zr: 0.5% or less, and W: 0.5% or less. The case-hardened steel according to any one of the above.

7.前記1乃至6のいずれかに記載の肌焼鋼を製造するに当たり、前記1乃至6のいずれかに記載の成分組成になる溶鋼を、連続鋳造時の凝固開始から終了までの冷却速度を5℃/分以上として鋳片とし、該鋳片を1200℃以上の温度に加熱後、鋼片圧延し、次いで900〜1050℃に加熱後、棒鋼圧延を施すことを特徴とする、冷間鍛造性、靭性および結晶粒度特性に優れた肌焼鋼の製造方法。 7). In producing a hardened steel according to any one of 1 to 6, the molten steel to become component composition according to any one of 1 to 6, 5 ° C. The cooling rate to the end from the solidification start of the continuous casting Cold forgeability, characterized in that the slab is heated to a temperature of 1200 ° C or higher, and then rolled into a slab, and then heated to 900 to 1050 ° C and then rolled into a steel bar, A method for producing case-hardened steel having excellent toughness and grain size characteristics.

本発明によれば、冷間鍛造によっても良好な鍛造性を示すだけでなく、浸炭処理のための加熱による結晶粒の粗大化が効果的に抑制され、しかも浸炭時の浸炭異常層を有効に抑制した肌焼鋼を得ることができ、かかる肌焼鋼は各種機械部品用の素材として極めて有用である。   According to the present invention, not only shows good forgeability even by cold forging, but also coarsening of crystal grains due to heating for carburizing treatment is effectively suppressed, and an effective carburizing layer during carburizing is effectively performed. Suppressed case-hardened steel can be obtained, and such case-hardened steel is extremely useful as a material for various machine parts.

以下、本発明を具体的に説明する。
まず、本発明において、鋼の成分組成を前記の範囲に限定した理由について説明する。なお、成分に関する「%」表示は特に断らない限り質量%を意味するものとする。
Hereinafter, the present invention will be specifically described.
First, the reason why the component composition of steel is limited to the above range in the present invention will be described. Unless otherwise specified, “%” in relation to ingredients means mass%.

C:0.05%以上0.40%以下
Cは、機械部品として必要な強度を確保する上で重要な元素であり、0.05%以上含有させる。C量が0.05%未満では硬さが不足し、部品としての強度が低下する。一方、C量が多過ぎると、過度に硬くなり鍛造性や被削性が低下するので、0.40%以下に抑制する必要がある。このため、C含有量は0.05%以上0.40%以下の範囲とした。なお、好ましいC量は0.15〜0.35%の範囲である。
C: 0.05% or more and 0.40% or less C is an element that is important in securing the strength necessary for machine parts, and is contained by 0.05% or more. If the amount of C is less than 0.05%, the hardness is insufficient and the strength as a part is reduced. On the other hand, if the amount of C is too large, it becomes excessively hard and the forgeability and machinability deteriorate, so it is necessary to suppress it to 0.40% or less. For this reason, C content was made into the range of 0.05% or more and 0.40% or less. A preferable amount of C is in the range of 0.15 to 0.35%.

Si:1.0%以下
Siは、強度向上に有用なだけでなく、焼き戻し軟化抵抗を向上させ、浸炭部の表層硬さを確保するのに有効な元素である。これらの効果はその含有量が増加するにつれて大きくなるが、Si含有量があまりに多くなると素材の変形抵抗が増し、鍛造性が劣化することに加え、浸炭時の粒界酸化を助長し、面疲労強度を低下させる。それ故、Si含有量は1.0%以下に限定する。好ましくは0.75%以下であり、より好ましくは0.50%以下である。
Si: 1.0% or less
Si is an element effective not only for improving the strength but also for improving the temper softening resistance and securing the surface hardness of the carburized portion. These effects increase as the content increases, but if the Si content increases too much, the deformation resistance of the material increases and the forgeability deteriorates.In addition, grain boundary oxidation during carburization is promoted and surface fatigue is increased. Reduce strength. Therefore, the Si content is limited to 1.0% or less. Preferably it is 0.75% or less, More preferably, it is 0.50% or less.

Mn:1.0%以下
Mnは、焼入れ性と強度を向上させるために含有させる。しかしながら、Mn含有量の増加に伴って偏析が顕著となり、材質が不均一となって、冷間加工性が低下するだけでなく、浸炭時の粒界酸化を助長し、面疲労強度を低下させる。そのため、Mn含有量は1.0%以下に限定する。好ましくは0.9%以下であり、より好ましくは0.85%以下である。
Mn: 1.0% or less
Mn is contained in order to improve hardenability and strength. However, as the Mn content increases, segregation becomes prominent, the material becomes non-uniform, and cold workability is not only lowered, but also promotes grain boundary oxidation during carburizing and reduces surface fatigue strength. . Therefore, the Mn content is limited to 1.0% or less. Preferably it is 0.9% or less, More preferably, it is 0.85% or less.

P:0.03%以下
Pは、鋼中に不可避的に混入し、結晶粒界に偏析して靭性を低下させるので、極力低減することが望ましい。このため、P含有量は0.03%以下に抑制するものとした。なお、P含有量の好ましい上限は0.02%、より好ましい上限は0.015%である。
P: 0.03% or less P is inevitably mixed in the steel and segregates at the grain boundaries to lower the toughness, so it is desirable to reduce it as much as possible. For this reason, P content shall be suppressed to 0.03% or less. In addition, the upper limit with preferable P content is 0.02%, and a more preferable upper limit is 0.015%.

S:0.03%以下
Sは、本発明のようなTi添加鋼ではTi硫化物あるいは炭硫化物を生成する作用がある。また、Mnと硫化物を形成し、部品の疲労強度、靭性を低下させる作用がある。一方でTiやMnの硫化物は、被削性を向上させる作用も有するので、その含有量は許容範囲内で適宜調整することが望ましい。本発明では、疲労強度および靭性の観点から、S含有量は0.03%以下に抑制するものとした。なお、S含有量の好ましい上限は0.020%、より好ましい上限は0.017%である。
S: 0.03% or less S has the effect of producing Ti sulfide or carbon sulfide in the Ti-added steel as in the present invention. It also forms sulfides with Mn and has the effect of reducing the fatigue strength and toughness of the parts. On the other hand, since sulfides of Ti and Mn also have an effect of improving machinability, it is desirable that the content thereof is appropriately adjusted within an allowable range. In the present invention, from the viewpoint of fatigue strength and toughness, the S content is suppressed to 0.03% or less. In addition, the upper limit with preferable S content is 0.020%, and a more preferable upper limit is 0.017%.

Cr:2.0%以下
Crは、強度および靭性の向上に有効な元素である。また、焼入れ性を向上させる効果も有する。上記の効果を発揮させるためには、Cr含有量は0.8%以上とすることが好ましい。しかしながら、Cr含有量があまりに多くなると、素材が過度に硬くなり、被削性および加工性が劣化するので、Cr含有量は2.0%以下とする。なお、Cr含有量の好ましい上限は1.5%である。
Cr: 2.0% or less
Cr is an element effective for improving strength and toughness. It also has the effect of improving hardenability. In order to exhibit the above effects, the Cr content is preferably 0.8% or more. However, if the Cr content is too large, the material becomes excessively hard and the machinability and workability deteriorate, so the Cr content is set to 2.0% or less. In addition, the upper limit with preferable Cr content is 1.5%.

Al:0.1%以下
Alは、脱酸剤として有効に作用し、鋼材の品質を向上させる効果がある。しかしながら、Al含有量があまりに多くなると、粗大なAl2O3非金属介在物がクラスター状に生成することに加え、浸炭時の粒界酸化を助長し、面疲労強度を低下させる。このため、Al含有量は0.1%以下に抑制するものとした。なお、Alの好ましい上限は0.05%であり、より好ましい上限は0.04%である。
Al: 0.1% or less
Al acts effectively as a deoxidizer and has the effect of improving the quality of the steel material. However, if the Al content is excessively large, coarse Al 2 O 3 nonmetallic inclusions are generated in a cluster shape, and grain boundary oxidation during carburization is promoted to reduce surface fatigue strength. For this reason, Al content shall be suppressed to 0.1% or less. In addition, the upper limit with preferable Al is 0.05%, and a more preferable upper limit is 0.04%.

Ti:0.05%以上0.30%以下
Tiは、Ti炭窒化物およびTi炭硫化物あるいはMoと共にTi-Mo炭化物を形成し、浸炭時のγ粒の粗大化を抑制する作用を有する。しかしながら、Ti含有量が0.05%未満では、十分な数量の析出物が得られないため、γ粒の粗大化を抑制できず、一方0.30%を超えると、粗大なTiNが生成し、被削性や面疲労強度を低下させるだけでなく、冷間加工性を低下させる。従って、Ti含有量は0.05%以上0.30%以下の範囲に限定する。なお、好ましいTi含有量の上限は0.25%である。
Ti: 0.05% or more and 0.30% or less
Ti forms Ti-Mo carbide together with Ti carbonitride and Ti carbon sulfide or Mo, and has the effect of suppressing the coarsening of γ grains during carburizing. However, if the Ti content is less than 0.05%, a sufficient quantity of precipitates cannot be obtained, so that coarsening of γ grains cannot be suppressed. On the other hand, if it exceeds 0.30%, coarse TiN is generated and machinability is not achieved. In addition to reducing surface fatigue strength, it also reduces cold workability. Therefore, the Ti content is limited to a range of 0.05% to 0.30%. In addition, the upper limit of preferable Ti content is 0.25%.

Mo:0.05%以上1.0%以下
Moは、本発明において重要な役割を持つ元素である。Moは、浸炭焼入れ時の焼入れ性を向上させる効果に加え、靭性の向上に有効であり、さらに浸炭時のSiやAl,Cr,Mnといった元素の粒界酸化に伴う浸炭異常層の生成を抑制する上でも有効である。このような効果は、Moを0.05%以上含有させることにより発現する。しかしながら、Mo含有量が1.0%を超えると、その効果が飽和するだけでなく、素材が過度に硬くなり、被削性や冷間鍛造性、靭性が低下するので、Mo含有量は1.0%以下とする。より好ましくは0.10%以上0.50%以下の範囲である。
Mo: 0.05% to 1.0%
Mo is an element having an important role in the present invention. Mo is effective in improving the toughness in addition to the effect of improving the hardenability during carburizing and quenching, and also suppresses the formation of an abnormal carburizing layer due to grain boundary oxidation of elements such as Si, Al, Cr and Mn during carburizing. It is also effective in doing. Such an effect is manifested by containing 0.05% or more of Mo. However, if the Mo content exceeds 1.0%, not only will the effect be saturated, but the material will become too hard, and the machinability, cold forgeability, and toughness will decrease, so the Mo content will not exceed 1.0% And More preferably, it is 0.10% or more and 0.50% or less of range.

N:0.0060%以下
Nは、極力低減することが好ましい不純物元素である。N含有量があまりに多くなると粗大なTiNが生成して被削性や面疲労強度を低下させる。また、TiNは、炭窒化物の析出サイトとなりやすく、微細な析出物を減少させる弊害もある。また、素材の硬さ、変形抵抗を増大させて、冷間加工性を低下させる不利もある。このような理由からN含有量は0.0060%以下に抑制する。より好ましくは0.0040%以下である。
N: 0.0060% or less N is an impurity element that is preferably reduced as much as possible. If the N content is too large, coarse TiN is generated and the machinability and surface fatigue strength are reduced. In addition, TiN tends to be a carbonitride precipitation site, and has a detrimental effect of reducing fine precipitates. In addition, there is a disadvantage in that the hardness and deformation resistance of the material are increased and the cold workability is lowered. For these reasons, the N content is suppressed to 0.0060% or less. More preferably, it is 0.0040% or less.

O:0.0020%以下
Oは、鋼中に不可避的に含まれる不純物元素であり、過剰に含まれると、粗大な酸化物系介在物が生成して、種々の疲労特性や靭性を低下させるので、極力低減することが望ましい。このようなことからO含有量は0.0020%以下に抑制する。好ましくは0.0015%以下、より好ましくは0.0010%以下である。
O: 0.0020% or less O is an impurity element inevitably contained in the steel, and if included excessively, coarse oxide inclusions are generated, and various fatigue properties and toughness are reduced. It is desirable to reduce as much as possible. For these reasons, the O content is suppressed to 0.0020% or less. Preferably it is 0.0015% or less, More preferably, it is 0.0010% or less.

本発明における基本成分は、上記したとおりであり、残部はFeおよび不可避的不純物である。かかる不可避的不純物としては、原料、製造設備等から不可避的に混入する不純物が挙げられる。   The basic components in the present invention are as described above, and the balance is Fe and inevitable impurities. Examples of such unavoidable impurities include impurities inevitably mixed from raw materials, production facilities, and the like.

以上、本発明の基本成分について説明したが、本発明では、その他にも必要に応じて、以下に述べる元素を適宜含有させることができる。
Ni:3.0%以下
Niは鋼材の耐食性を向上させるのに有効な元素である。また、Niは、靭性の向上にも有効に作用する。従って、Niは0.1%以上、好ましくは0.3%以上含有させることが望ましい。しかしながら、Ni含有量が3.0%を超えると、コスト上昇を招くので、Niは3.0%以下で含有させることが好ましい。好ましくは2.0%以下、より好ましくは1.5%以下である。
The basic components of the present invention have been described above. However, in the present invention, the following elements can be appropriately contained as necessary.
Ni: 3.0% or less
Ni is an element effective for improving the corrosion resistance of steel. Ni also acts effectively to improve toughness. Therefore, it is desirable that Ni is contained at 0.1% or more, preferably 0.3% or more. However, if the Ni content exceeds 3.0%, the cost increases, so Ni is preferably contained at 3.0% or less. Preferably it is 2.0% or less, More preferably, it is 1.5% or less.

B:0.0010%超0.0030%以下
Bは、鋼材の焼入れ性を高める作用があり、しかも結晶粒界に偏析することで粒界を強化し、靭性を大幅に高める作用がある。このような作用は、0.0010%超添加することで有効に発揮される。しかしながら、これらの効果は、含有量が0.0030%を超えると飽和するばかりでなく、B含有量があまりに多くなるとB窒化物が生成し易くなり、冷間加工性および熱間加工性が劣化する。好ましいB含有量は0.0025%以下であり、より好ましくは0.0020%以下である。
B: More than 0.0010% and 0.0030% or less B has an effect of enhancing the hardenability of the steel material, and further has an effect of strengthening the grain boundary by segregating to the crystal grain boundary and greatly increasing the toughness. Such an effect is effectively exhibited by adding over 0.0010%. However, these effects are not only saturated when the content exceeds 0.0030%, but when the B content becomes too large, B nitrides are easily formed, and cold workability and hot workability deteriorate. A preferable B content is 0.0025% or less, and more preferably 0.0020% or less.

Ca:0.010%以下
Caは、硫化物の展伸を抑制して衝撃特性を向上させる効果がある。この効果は、Ca含有量が0.0005%以上で発現する。しかしながら、Ca含有量が0.010%を超えると、粗大な酸化物が生成し強度が低下する。なお、Ca含有量の好適下限は0.0008%であり、またCa含有量の好ましい上限は0.0030%、さらに好ましい上限は0.0020%である。
Ca: 0.010% or less
Ca has an effect of improving impact properties by suppressing the spreading of sulfides. This effect is manifested when the Ca content is 0.0005% or more. However, when the Ca content exceeds 0.010%, a coarse oxide is generated and the strength is lowered. The preferred lower limit for the Ca content is 0.0008%, and the preferred upper limit for the Ca content is 0.0030%, and the more preferred upper limit is 0.0020%.

Pb:0.1%以下およびBi:0.1%以下のうちから選んだ一種または二種
PbおよびBiはいずれも、鋼材の被削性を向上させる元素であり、必要に応じて含有させる。しかしながら、含有量があまりに多くなると強度が低下するので、いずれも0.1%以下とすることが好ましい。なお、含有量の好ましい下限はいずれも0.02%、より好ましい下限は0.03%であり、一方より好ましい上限はいずれも0.07%、さらに好ましい上限は0.06%である。
One or two selected from Pb: 0.1% or less and Bi: 0.1% or less
Pb and Bi are both elements that improve the machinability of the steel material, and are contained as necessary. However, if the content is too large, the strength decreases, so it is preferable that both be 0.1% or less. Note that the preferable lower limit of the content is 0.02%, and the more preferable lower limit is 0.03%, while the more preferable upper limit is 0.07%, and the more preferable upper limit is 0.06%.

Nb:0.5%以下、V:0.5%以下、Zr:0.5%以下およびW:0.5%以下のうちから選んだ一種または二種以上
Nb,V,ZrおよびWはいずれも、炭素および窒素と親和力が強い元素であり、微細な析出物を生成することで、γ粒の粗大化を抑制する効果があり、この効果の面からいずれも0.5%以下の範囲で含有させることができる。より好ましくは0.3%以下、さらに好ましくは0.2%以下である。
One or more selected from Nb: 0.5% or less, V: 0.5% or less, Zr: 0.5% or less, and W: 0.5% or less
Nb, V, Zr and W are all elements having a strong affinity for carbon and nitrogen, and have the effect of suppressing the coarsening of γ grains by producing fine precipitates. May be contained in the range of 0.5% or less. More preferably, it is 0.3% or less, More preferably, it is 0.2% or less.

以上、本発明の好適成分組成範囲について説明したが、本発明は、成分組成を上記の範囲に調整しただけでは不十分で、鋼組織についても調整することが重要である。
すなわち、本発明の肌焼鋼では、Tiを含有させることによって炭化物等の析出物が生成するが、これら析出物の形態および個数を規定することが重要である。
これらを規定した理由は次のとおりである。
The preferred component composition range of the present invention has been described above. However, it is not sufficient for the present invention to adjust the component composition within the above range, and it is important to adjust the steel structure.
That is, in the case-hardened steel of the present invention, precipitates such as carbides are produced by containing Ti, but it is important to define the form and number of these precipitates.
The reasons for specifying these are as follows.

Tiを含む析出物で直径:30nm以下のものが30個/μm2 以上
Tiを含む析出物は、微細なものほど結晶粒の粗大化を抑制するピニング効果が強い。しかしながら、鋼の凝固時に溶鋼中のNがTiと結合することにより、不可避的に生成するTiN析出物は粗大であり、結晶粒の成長を抑制する効果はない。このような析出物のうち、粗大な析出物は鋼材の加工性を低下させるので、できるだけ微細に生成させることが好ましい。そこで、Tiを含む析出物で直径が30nm以下のものの個数を、単位面積μm2当たり30個以上と規定した。
Precipitates containing Ti with a diameter of 30 nm or less: 30 / μm 2 or more
The finer the precipitate containing Ti, the stronger the pinning effect that suppresses the coarsening of crystal grains. However, when N in the molten steel is combined with Ti during solidification of the steel, TiN precipitates inevitably generated are coarse and have no effect of suppressing the growth of crystal grains. Among such precipitates, coarse precipitates reduce the workability of the steel material, and therefore it is preferable to generate them as finely as possible. Therefore, the number of precipitates containing Ti and having a diameter of 30 nm or less was defined as 30 or more per unit area μm 2 .

直径:5nm以上50nm以下のTi析出物の全Ti析出物に対する個数比率が50%以上
直径が30nm以下の微細なTi析出物は、結晶粒の粗大化抑制に効果がある。しかし、50nm超のTi析出物の全Ti析出物に対する存在比率(個数比率)が大きくなると、疲労特性に悪影響を及ぼす。疲労特性を確保するためには、50nm以下のTi析出物の全Ti析出物に対する存在比率(個数比率)50%以上とする必要がある。
なお、本発明では、後述するレプリカ法でTi析出物の個数比率の測定を行うが、直径:5nm未満のTi析出物についてはこの方法での確認は困難である。よって、直径:5nm以上50nm以下のTi析出物の全Ti析出物に対する個数比率を50%以上とすればよい。
Diameter: The number ratio of Ti precipitates of 5 nm or more and 50 nm or less to the total Ti precipitates is 50% or more. Fine Ti precipitates having a diameter of 30 nm or less are effective in suppressing coarsening of crystal grains. However, if the abundance ratio (number ratio) of Ti precipitates exceeding 50 nm with respect to all Ti precipitates is increased, the fatigue characteristics are adversely affected. In order to ensure the fatigue characteristics, it is necessary to make the existence ratio (number ratio) of 50 nm or less of Ti precipitates to the total Ti precipitates 50% or more.
In the present invention, the number ratio of Ti precipitates is measured by a replica method to be described later. However, it is difficult to confirm Ti precipitates having a diameter of less than 5 nm by this method. Therefore, the number ratio of Ti precipitates having a diameter of 5 nm or more and 50 nm or less to all Ti precipitates may be 50% or more.

なお、Tiを含む析出物としては、例えばTiC、Ti(C,S)および(Ti,Mo)Cが挙げられる。
また、かようなTi含有析出物を、上記したように微細に分散させるためには、製造工程中、連続鋳造、鋼片圧延時の加熱(均熱処理)、棒鋼圧延時の加熱工程が重要で、これらの工程における処理条件を以下に説明する条件とする必要がある。
Examples of the precipitate containing Ti include TiC, Ti (C, S), and (Ti, Mo) C.
In addition, in order to finely disperse such Ti-containing precipitates as described above, heating during continuous casting, strip slab rolling (soaking), and heating during bar rolling are important. The processing conditions in these steps need to be the conditions described below.

本発明に従う肌焼鋼の具体的な製造方法について説明する。
本発明に係る肌焼鋼は、上述した成分組成になる溶鋼を、連続鋳造により鋳片となし、該鋳片を均熱処理した後に鋼片に熱間圧延し(以下、鋼片圧延と呼ぶ)、さらに得られた鋼片を加熱して熱間圧延して棒鋼とすること(以下、棒鋼圧延と呼ぶ)で製造される。ここで、連続鋳造時の凝固開始から終了までの冷却速度を5℃/分以上とし、また、均熱処理温度を1200℃以上とし、さらに棒鋼圧延時の加熱温度:900〜1050℃とするのがとりわけ好適である。
また、本発明では、上記した棒鋼圧延を施した後に、さらに、球状化熱処理を施すことができる。この時の処理温度は、740℃以上が好ましい。
The specific manufacturing method of the case hardening steel according to this invention is demonstrated.
The case-hardened steel according to the present invention is made of molten steel having the above-described component composition as a slab by continuous casting, and hot-rolling the slab into a steel slab after soaking the slab (hereinafter referred to as steel slab rolling). Further, the obtained steel slab is heated and hot-rolled to form a steel bar (hereinafter referred to as steel bar rolling). Here, the cooling rate from the start to the end of solidification during continuous casting is set to 5 ° C./min or more, the soaking temperature is set to 1200 ° C. or more, and the heating temperature during bar rolling is set to 900 to 1050 ° C. Especially preferred.
Moreover, in this invention, after performing the above-mentioned steel bar rolling, a spheroidizing heat treatment can be further performed. The treatment temperature at this time is preferably 740 ° C. or higher.

以下、各処理条件を上記のように限定した理由について説明する。
連続鋳造時の凝固開始から終了までの冷却速度:5℃/分以上
連続鋳造時の凝固開始から終了までの冷却速度が遅い場合には、冷却中に析出するTi析出物が大きくなり、鋳片の均熱処理時に析出物を十分に固溶させることができない。その結果、最終的に粗大なTi析出物が残り、直径:5〜50nmのTi析出物の全Ti析出物に対する個数比率が50%未満となってしまう。そのため、冷却速度を5℃/分以上とし、Ti析出物を微細化する必要がある。より好ましくは、8℃/分以上とする。
Hereinafter, the reason why each processing condition is limited as described above will be described.
Cooling rate from the start to the end of solidification during continuous casting: 5 ° C / min or more When the cooling rate from the start to the end of solidification during continuous casting is slow, Ti precipitates that precipitate during cooling increase, and the slab During the soaking process, precipitates cannot be sufficiently dissolved. As a result, coarse Ti precipitates finally remain, and the number ratio of Ti precipitates having a diameter of 5 to 50 nm to all Ti precipitates is less than 50%. Therefore, it is necessary to set the cooling rate to 5 ° C./min or more and to refine the Ti precipitate. More preferably, it is 8 ° C./min or more.

鋳片加熱温度(均熱処理温度):1200℃以上
本発明では、鋼片圧延に際し、鋳片を均熱処理し析出物を十分に固溶させ、熱間加工時およびその後の冷却過程で微細に分散析出させる。その際、加熱温度が1200℃未満では、析出物を十分に固溶させることができない。このため、熱間加工後に粗大な析出物が生成し、浸炭時にγ粒の粗大化を抑制することができない。そのため、鋳片加熱温度は1200℃以上に規定した。例えば、鋳造後の鋼片圧延前の均熱条件を1200〜1300℃の温度域で30分以上程度とすることで、析出物が固溶し、熱間圧延後に微細に析出しやすくなるためγ粒粗大化抑制に有効である。
なお、均熱処理は鋼片圧延直前の加熱処理時に行っても良いし、均熱処理を鋼片圧延直前の加熱に先立って別途行っても良い。別途均熱処理を行う場合、鋼片圧延直前の加熱温度は1200℃以上に限定するものではない。
Slab heating temperature (soaking heat treatment temperature): 1200 ° C or higher In the present invention, the steel slab is soaked in the steel slab to sufficiently dissolve the precipitates, and finely dispersed during hot working and the subsequent cooling process. Precipitate. At that time, if the heating temperature is less than 1200 ° C., the precipitate cannot be sufficiently dissolved. For this reason, coarse precipitates are generated after hot working, and coarsening of γ grains cannot be suppressed during carburizing. Therefore, the slab heating temperature was set to 1200 ° C or higher. For example, by setting the soaking condition before steel slab rolling after casting to about 30 minutes or more in the temperature range of 1200 to 1300 ° C., precipitates are dissolved in a solid solution, and it becomes easy to precipitate finely after hot rolling. It is effective for suppressing grain coarsening.
The soaking process may be performed at the time of the heat treatment immediately before the slab rolling, or the soaking process may be performed separately prior to the heating just before the slab rolling. When separately soaking, the heating temperature immediately before rolling the steel slab is not limited to 1200 ° C or higher.

上記の鋳片加熱後、鋼片圧延を行うが、この圧延については特に制限は無く、従来どおりの方法で行えば良い。   Steel slab rolling is performed after the above slab heating, but this rolling is not particularly limited and may be performed by a conventional method.

棒鋼圧延時の加熱温度:900〜1050℃
熱間加工前の加熱時に析出物を十分に固溶させ、熱間加工時およびその後の冷却過程で析出物を微細分散させる。その際、一旦、鋳片加熱で析出物を固溶させた後、鋼片圧延を実施し、その後の棒鋼圧延時の加熱において、加熱温度が1050℃を超えると、冷却過程で微細な析出物が得られず、一方900℃未満ではフェライトや粗大な炭化物が残留し、圧延後に均一な組織が得られない。
なお、棒鋼圧延時に、圧延後の冷却過程で、直径:5〜50nmの微細なTi析出物を確保する観点から、圧延後600〜850℃の温度範囲の冷却速度を2℃/s以下とすることが好ましい。
Heating temperature during steel bar rolling: 900-1050 ° C
The precipitate is sufficiently dissolved during heating before hot working, and the precipitate is finely dispersed during hot working and in the subsequent cooling process. At that time, once the precipitate is dissolved by heating the slab, the steel slab rolling is performed, and in the heating during the subsequent rolling of the steel bar, if the heating temperature exceeds 1050 ° C., fine precipitates in the cooling process On the other hand, if it is less than 900 ° C., ferrite and coarse carbides remain, and a uniform structure cannot be obtained after rolling.
From the viewpoint of securing a fine Ti precipitate having a diameter of 5 to 50 nm in the cooling process after rolling during the bar rolling, the cooling rate in the temperature range of 600 to 850 ° C. after rolling is set to 2 ° C./s or less. It is preferable.

本発明では、上記の棒鋼圧延後、さらに、球状化熱処理を施すことができるが、この熱処理については特に制限は無く、従来どおりの方法で行えば良い。この時の処理温度も特に制限はないが、冷間鍛造性確保の観点から740〜800℃の温度範囲が好ましい。というのは、740℃未満で球状化熱処理をおこなった場合、冷間鍛造性の向上が望めず、800℃超で球状化熱処理をおこなった場合、その効果が飽和するからである。   In the present invention, spheroidizing heat treatment can be further performed after the above steel bar rolling, but this heat treatment is not particularly limited and may be performed by a conventional method. The treatment temperature at this time is not particularly limited, but a temperature range of 740 to 800 ° C. is preferable from the viewpoint of securing cold forgeability. This is because when the spheroidizing heat treatment is performed at less than 740 ° C., the improvement of cold forgeability cannot be expected, and when the spheroidizing heat treatment is performed at over 800 ° C., the effect is saturated.

以下、実施例を示し、本発明の構成および作用効果をより具体的に説明する。しかし、本発明は下記の実施例によって制限を受けるものではなく、本発明の趣旨に適合し得る範囲で適宜変更することも可能で、これらは何れも本発明の技術的範囲に含まれる。   EXAMPLES Hereinafter, an Example is shown and the structure and effect of this invention are demonstrated more concretely. However, the present invention is not limited by the following examples, and can be appropriately changed within a range that can be adapted to the gist of the present invention, and these are all included in the technical scope of the present invention.

表1に示す成分組成になる鋳片を連続鋳造により製造した。その際、凝固開始から終了までの冷却速度を表2に示すとおりとした。得られた鋳片を表2に示す温度にて60分間の均熱処理を行い、150mm角に鋼片圧延後、表2に示す棒鋼圧延時加熱温度条件下で、直径:50mmの棒鋼を製造した。ここで、圧延後は600〜850℃の温度範囲を1.5℃/sで冷却した。その後、740℃にて球状化熱処理を施した棒鋼あるいは圧延ままの棒鋼の断面における直径方向の1/4位置からφ8mm×12mmの冷間鍛造性試験片を作製した。   Slabs having the composition shown in Table 1 were produced by continuous casting. At that time, the cooling rate from the start to the end of solidification was as shown in Table 2. The obtained slab was soaked at a temperature shown in Table 2 for 60 minutes, rolled into a 150 mm square, and a steel bar having a diameter of 50 mm was manufactured under the heating temperature conditions shown in Table 2. . Here, after rolling, the temperature range of 600 to 850 ° C. was cooled at 1.5 ° C./s. Thereafter, a cold forgeability test piece of φ8 mm × 12 mm was produced from a ¼ position in the diameter direction in the cross section of the steel bar subjected to spheroidizing heat treatment at 740 ° C. or as-rolled steel bar.

上記の試験片を用い、プレス機で据込圧縮試験を行い、圧下率:75%の圧縮時における割れの有無を観察することによって冷間鍛造性を評価した。なお、いずれの試験も工具は端面拘束金型を用いて5回の試験を行い、その際、一つでも割れが観察されたものは不良(×)、一方観察されなかったものは良好(○)とした。   Using the above test piece, an upsetting compression test was performed with a press, and the cold forgeability was evaluated by observing the presence or absence of cracks during compression at a reduction ratio of 75%. In all tests, the tool was tested five times using an end face constraining die. At that time, even if one crack was observed, it was defective (x), while one that was not observed was good (○ ).

γ粒粗大化試験は、上記試験片を端面拘束条件で加工率:70%の圧縮加工を行った後、真空浸炭炉で1000℃にて均熱時間が80分、浸炭および拡散時間が80分の浸炭処理を、アセチレン雰囲気中で行った。その後、860℃で30分保持してから80℃まで油冷した後、オーステナイト結晶粒度をJIS G 0551オーステナイト結晶粒度試験方法に従って測定し、結晶粒度番号で5番以下の粗大粒の有無によって結晶粒度特性を評価した。その際、粗大粒が観察されたものは不良(×)、観察されなかったものは良好(○)とした。   In the γ grain coarsening test, after compressing the above-mentioned test piece with a processing rate of 70% under the end face restraint condition, the soaking time is 80 minutes at 1000 ° C in a vacuum carburizing furnace, and the carburizing and diffusion times are 80 minutes. The carburizing treatment was performed in an acetylene atmosphere. After holding at 860 ° C. for 30 minutes and oil cooling to 80 ° C., the austenite grain size is measured according to the JIS G 0551 austenite grain size test method. Characteristics were evaluated. At that time, those in which coarse grains were observed were judged as poor (x), and those in which coarse grains were not observed were judged as good (◯).

さらに、上記棒鋼について、圧延方向と平行に、10mm角×55mm長さ、10R2mm Uノッチ衝撃試験片を作製した。この試験片について、浸炭炉でCP:0.9%のガス雰囲気中にて930℃で均熱時間が80分、浸炭および拡散時間が80分の浸炭処理を行った。その後、860℃で30分加熱してから70℃まで油冷し、180℃で2時間の焼き戻し処理後、JIS Z 2242で規定されるシャルピー衝撃試験を行い、吸収エネルギーを測定した。   Furthermore, a 10 mm square x 55 mm long, 10R 2 mm U-notch impact test piece was produced in parallel to the rolling direction for the above bar steel. The test piece was subjected to a carburizing treatment in a carburizing furnace in a gas atmosphere of CP: 0.9% at 930 ° C. for a soaking time of 80 minutes and carburizing and diffusion times of 80 minutes. Then, after heating at 860 ° C. for 30 minutes, oil-cooled to 70 ° C., tempered at 180 ° C. for 2 hours, and then subjected to a Charpy impact test specified in JIS Z 2242 to measure absorbed energy.

また、その後、740℃にて、球状化熱処理を施した棒鋼、あるいは圧延ままの棒鋼の中心部から、圧延方向に平行にローラーピッチング疲労試験片を採取した。この試験片について、ガス浸炭炉でCP:1.0%の雰囲気で950℃、均熱時間が90分、浸炭および拡散時間が90分の浸炭処理を行った。その後、860℃で30分均熱処理し、60℃まで油冷した後、180℃で2時間の焼戻し処理後、試験に供して転動疲労寿命を求めた。
この時の試験条件は、すべり率:40%、負荷応力:4000MPaおよび回転数:2000rpmとした。また、B10寿命(累計破損確率が10%での剥離発生までの総負荷回数)を、得られた結果がワイブル分布に従うものとして、ワイブル確率紙上にプロットして求めた。求めたB10寿命を、鋼記号S(JIS SCM420H相当鋼)の寿命を1とした場合の指数で、各鋼の特性の良否を評価した。
これらの試験結果を、棒鋼圧延後の粒径:30nm以下のTi含有析出物の個数(数密度(個/μm2 ))および直径:5〜50nmのTi析出物の全Ti析出物に対する個数比率(度数分布(% ))について調査した結果と共に、表2に示す。
Thereafter, at 740 ° C., roller pitting fatigue test specimens were collected in parallel to the rolling direction from the center part of the steel bar subjected to spheroidizing heat treatment or as-rolled steel bar. This test piece was subjected to a carburizing process in a gas carburizing furnace in an atmosphere of CP: 1.0% at 950 ° C., a soaking time of 90 minutes, and a carburizing and diffusion time of 90 minutes. Then, after soaking at 860 ° C. for 30 minutes, oil-cooled to 60 ° C., tempered at 180 ° C. for 2 hours, and then subjected to a test to determine the rolling fatigue life.
The test conditions at this time were slip rate: 40%, load stress: 4000 MPa, and rotation speed: 2000 rpm. In addition, the B10 life (total number of loads until the occurrence of peeling when the cumulative failure probability is 10%) was obtained by plotting on the Weibull probability paper, assuming that the obtained results follow the Weibull distribution. The obtained B10 life was evaluated by the index when the life of steel symbol S (JIS SCM420H equivalent steel) was 1, and the quality of each steel was evaluated.
These test results are shown in the following table. The number of Ti-containing precipitates (number density (pieces / μm 2 )) with a particle size after rolling the steel bar of 30 nm or less and the number ratio of Ti precipitates with a diameter of 5-50 nm to the total Ti precipitates. It shows in Table 2 with the result investigated about (frequency distribution (%)).

ここに、Ti析出物の観察は、球状化焼鈍後の棒鋼あるいはこの焼鈍を行っていないものは圧延したままの棒鋼からサンプル採取し、透過型電子顕微鏡(TEM)およびEDXによって行った。直径:30nm以下のTi含有析出物の数密度は、抽出レプリカ法により試料を作製し、10万倍の倍率で、各鋼毎に20視野観察し、EDXにてTi含有析出物と検出されたものについて画像処理により円相当径ならびにその密度を算出することで求めた。この際、直径が5nm未満の析出物は正確に計測するのが困難であるため、5〜30nm径の析出物を計測した。
また、直径:5〜50nmのTi析出物の個数分布は抽出レプリカ法により試料を作製し、10万倍の倍率で、各鋼についてそれぞれ20視野観察し、EDXにてTi析出物と検出されたものについて、画像処理により個数分布を求めた。この際、直径が5nm未満の析出物は正確に計測するのが困難であるため、5〜50nm径の析出物を計測した。
Here, the Ti precipitate was observed from a steel bar after spheroidizing annealing or a steel bar that had not been annealed as-rolled, and was observed with a transmission electron microscope (TEM) and EDX. For the number density of Ti-containing precipitates with a diameter of 30 nm or less, samples were prepared by the extraction replica method, observed at 20 fields for each steel at a magnification of 100,000, and detected as Ti-containing precipitates by EDX The circle equivalent diameter and its density were calculated by image processing. At this time, since it is difficult to accurately measure a precipitate having a diameter of less than 5 nm, a precipitate having a diameter of 5 to 30 nm was measured.
In addition, the number distribution of Ti precipitates with a diameter of 5 to 50 nm was prepared by extraction replica method, and each steel was observed with 20 fields at a magnification of 100,000, and detected as Ti precipitates by EDX. The number distribution was obtained by image processing. At this time, since it is difficult to accurately measure a precipitate having a diameter of less than 5 nm, a precipitate having a diameter of 5 to 50 nm was measured.

Figure 0005649838
Figure 0005649838

Figure 0005649838
Figure 0005649838

表2から明らかなように、No.1〜9およびNo.24〜32の発明例はいずれも、結晶粒度特性についてはいうまでもなく、冷間鍛造性、シャルピー衝撃値および転動疲労寿命のいずれも良好であることが分かる。
これに対し、No.10〜23の比較例は、結晶粒度特性、冷間鍛造性、シャルピー衝撃値および転動疲労寿命のうち、いずれかの特性に劣っており、発明の目的が達成されていない。
As is apparent from Table 2, the invention examples Nos. 1 to 9 and Nos. 24 to 32 are not limited to the crystal grain size characteristics, but have cold forgeability, Charpy impact value, and rolling fatigue life. It turns out that all are favorable.
On the other hand, the comparative examples of No. 10 to 23 are inferior to any of the grain size characteristics, cold forgeability, Charpy impact value and rolling fatigue life, and the object of the invention is achieved. Absent.

Claims (7)

質量%で、C:0.05%以上0.40%以下、Si:1.0%以下、Mn:1.0%以下、P:0.03%以下、S:0.03%以下、Cr:2.0%以下、Al:0.1%以下、Ti:0.05%以上0.30%以下、Mo:0.05%以上1.0%以下、N:0.0060%以下およびO:0.0020%以下を含み、残部はFeおよび不可避的不純物の組成になり、Tiを含む析出物で直径:5nm以上30nm以下のものが30個/μm2以上存在し、直径:5nm以上50nm以下のTi析出物の5nm以上の全Ti析出物に対する個数比率が50%以上であることを特徴とする、冷間鍛造性、靭性および結晶粒度特性に優れた肌焼鋼。 In mass%, C: 0.05% or more and 0.40% or less, Si: 1.0% or less, Mn: 1.0% or less, P: 0.03% or less, S: 0.03% or less, Cr: 2.0% or less, Al: 0.1% or less, Ti : 0.05% or more and 0.30% or less, Mo: 0.05% or more and 1.0% or less, N: 0.0060% or less, and O: 0.0020% or less. The balance is the composition of Fe and inevitable impurities. : there those 5nm or 30nm or less 30 / [mu] m 2 or more, the diameter: the number ratio of total Ti precipitates 5nm or more of 5nm or 50nm or less of Ti precipitates, characterized in that 50% or more, Case-hardened steel with excellent cold forgeability, toughness and grain size characteristics. 質量%でさらに、Ni:3.0%以下を含有することを特徴とする請求項1に記載の肌焼鋼。   The case-hardened steel according to claim 1, further comprising Ni: 3.0% or less in terms of mass%. 質量%でさらに、B:0.0010%超0.0030%以下を含有することを特徴とする請求項1または2に記載の肌焼鋼。   The case hardening steel according to claim 1 or 2, further comprising B: more than 0.0010% and 0.0030% or less by mass%. 質量%でさらに、Ca:0.010%以下を含有することを特徴とする請求項1乃至3のいずれかに記載の肌焼鋼。   The case hardening steel according to any one of claims 1 to 3, further comprising Ca: 0.010% or less in terms of mass%. 質量%でさらに、Pb:0.1%以下およびBi:0.1%以下のうちから選んだ一種または二種を含有することを特徴とする請求項1乃至4のいずれかに記載の肌焼鋼。   The case hardening steel according to any one of claims 1 to 4, further comprising one or two kinds selected from Pb: 0.1% or less and Bi: 0.1% or less in terms of mass%. 質量%でさらに、Nb:0.5%以下、V:0.5%以下、Zr:0.5%以下およびW:0.5%以下のうちから選んだ一種または二種以上を含有することを特徴とする請求項1乃至5のいずれかに記載の肌焼鋼。   The composition further comprises one or more selected from Nb: 0.5% or less, V: 0.5% or less, Zr: 0.5% or less, and W: 0.5% or less in mass%. The case-hardened steel according to any one of 5 above. 請求項1乃至6のいずれかに記載の肌焼鋼を製造するに当たり、請求項1乃至6のいずれかに記載の成分組成になる溶鋼を、連続鋳造時の凝固開始から終了までの冷却速度を5℃/分以上として鋳片とし、該鋳片を1200℃以上の温度に加熱後、鋼片圧延し、次いで900〜1050℃に加熱後、棒鋼圧延を施すことを特徴とする、冷間鍛造性、靭性および結晶粒度特性に優れた肌焼鋼の製造方法。 In producing a hardened steel according to any one of claims 1 to 6, the molten steel to become component composition according to any one of claims 1 to 6, the cooling rate until the end from the solidification start of the continuous casting Cold forging, characterized in that a slab is formed at 5 ° C./min or more, the slab is heated to a temperature of 1200 ° C. or more, rolled into a steel slab, and then heated to 900 to 1050 ° C. and then rolled into a steel bar. Method of case-hardened steel with excellent properties, toughness and grain size characteristics.
JP2010073685A 2009-03-27 2010-03-26 Case-hardened steel and method for producing the same Active JP5649838B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010073685A JP5649838B2 (en) 2009-03-27 2010-03-26 Case-hardened steel and method for producing the same

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2009080116 2009-03-27
JP2009080116 2009-03-27
JP2009080475 2009-03-27
JP2009080475 2009-03-27
JP2010073685A JP5649838B2 (en) 2009-03-27 2010-03-26 Case-hardened steel and method for producing the same

Publications (2)

Publication Number Publication Date
JP2010248630A JP2010248630A (en) 2010-11-04
JP5649838B2 true JP5649838B2 (en) 2015-01-07

Family

ID=43311272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010073685A Active JP5649838B2 (en) 2009-03-27 2010-03-26 Case-hardened steel and method for producing the same

Country Status (1)

Country Link
JP (1) JP5649838B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6085210B2 (en) * 2013-03-28 2017-02-22 株式会社神戸製鋼所 Case-hardened steel with excellent rolling fatigue characteristics and method for producing the same
KR101886030B1 (en) * 2013-06-27 2018-08-07 닛신 세이코 가부시키가이샤 Abrasion-resistant steel material excellent in fatigue characteristics and method for manufacturing same
EP3399063A4 (en) * 2015-12-28 2019-05-29 Nippon Steel & Sumitomo Metal Corporation Case-hardened steel, carburized component, and process for producing case-hardened steel
JP6705344B2 (en) * 2016-09-01 2020-06-03 日本製鉄株式会社 Case-hardening steel excellent in coarse grain prevention characteristics and fatigue characteristics during carburization and its manufacturing method
JP6468402B2 (en) * 2016-09-09 2019-02-13 Jfeスチール株式会社 Case-hardened steel, method for producing the same, and method for producing gear parts

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4266341B2 (en) * 2003-10-30 2009-05-20 株式会社神戸製鋼所 Steel for omitting spheroidizing annealing with excellent cold forgeability and anti-roughening properties during case hardening, and method for producing the same
JP4073860B2 (en) * 2003-11-11 2008-04-09 山陽特殊製鋼株式会社 Manufacturing method of carburized steel with excellent coarsening resistance after high-temperature carburizing
JP4556770B2 (en) * 2004-05-28 2010-10-06 Jfeスチール株式会社 Carburizing steel and method for producing the same
JP4956146B2 (en) * 2005-11-15 2012-06-20 株式会社神戸製鋼所 Case-hardened steel excellent in forgeability and prevention of grain coarsening, its manufacturing method, and carburized parts
JP4964063B2 (en) * 2006-08-28 2012-06-27 株式会社神戸製鋼所 Case-hardened steel with excellent cold forgeability and grain coarsening prevention properties and machine parts obtained therefrom

Also Published As

Publication number Publication date
JP2010248630A (en) 2010-11-04

Similar Documents

Publication Publication Date Title
JP4956146B2 (en) Case-hardened steel excellent in forgeability and prevention of grain coarsening, its manufacturing method, and carburized parts
JP4725401B2 (en) Steel parts and manufacturing method thereof
KR101520208B1 (en) Case hardening steel, method for producing same, and mechanical structural part using case hardening steel
JP5332646B2 (en) Manufacturing method of carburizing steel with excellent cold forgeability
CN110036129B (en) Steel for soft nitriding and member
WO2012043074A1 (en) Case hardened steel and method for producing same
JP5350181B2 (en) Case-hardened steel with excellent grain coarsening prevention properties
JP5385656B2 (en) Case-hardened steel with excellent maximum grain reduction characteristics
JP5649886B2 (en) Case-hardened steel and method for producing the same
JP4964063B2 (en) Case-hardened steel with excellent cold forgeability and grain coarsening prevention properties and machine parts obtained therefrom
JP4464862B2 (en) Case-hardening steel with excellent grain coarsening resistance and cold workability that can be omitted for soft annealing.
KR20170118879A (en) A bolt wire rod excellent in pickling resistance and resistance to delamination after tempering tempering,
JP3562192B2 (en) Component for induction hardening and method of manufacturing the same
JP4451808B2 (en) Rolled steel bar for case hardening with excellent fatigue characteristics and grain coarsening resistance and its manufacturing method
JP5649838B2 (en) Case-hardened steel and method for producing the same
JP6177754B2 (en) Carburized steel plate and machine structural parts with excellent punchability and grain coarsening prevention properties
WO2016152167A1 (en) Steel for soft nitriding, components, and method for manufacturing same
JP5649887B2 (en) Case-hardened steel and method for producing the same
JP5503170B2 (en) Case-hardened steel with excellent maximum grain reduction characteristics
JP5871085B2 (en) Case-hardened steel with excellent cold forgeability and ability to suppress grain coarsening
JP4073860B2 (en) Manufacturing method of carburized steel with excellent coarsening resistance after high-temperature carburizing
JP6182489B2 (en) Case-hardened steel that has excellent cold forgeability and can suppress abnormal grain generation during carburizing.
JP4464861B2 (en) Case hardening steel with excellent grain coarsening resistance and cold workability
JP4369250B2 (en) High temperature carburizing steel and method for producing the same
JP3550886B2 (en) Manufacturing method of gear steel for induction hardening excellent in machinability and fatigue strength

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140320

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141028

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141112

R150 Certificate of patent or registration of utility model

Ref document number: 5649838

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250