JP4328924B2 - Manufacturing method of high-strength shaft parts - Google Patents

Manufacturing method of high-strength shaft parts Download PDF

Info

Publication number
JP4328924B2
JP4328924B2 JP2000005074A JP2000005074A JP4328924B2 JP 4328924 B2 JP4328924 B2 JP 4328924B2 JP 2000005074 A JP2000005074 A JP 2000005074A JP 2000005074 A JP2000005074 A JP 2000005074A JP 4328924 B2 JP4328924 B2 JP 4328924B2
Authority
JP
Japan
Prior art keywords
less
steel
content
cold
wire drawing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000005074A
Other languages
Japanese (ja)
Other versions
JP2001192731A (en
Inventor
法仁 訓谷
兵治 萩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Industries Ltd
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2000005074A priority Critical patent/JP4328924B2/en
Publication of JP2001192731A publication Critical patent/JP2001192731A/en
Application granted granted Critical
Publication of JP4328924B2 publication Critical patent/JP4328924B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高強度軸部品の製造方法に関し、詳しくは、シャフトなどの小物長尺高強度軸部品の製造方法に関する。
【0002】
【従来の技術】
機械構造用部品として用いられるシャフトなどの高強度軸部品は、従来、JISの機械構造用中炭素鋼鋼材(S45CやS48Cなど)を熱間圧延後に球状化焼鈍し、次いで、寸法精度を高めるために伸線加工した後冷間鍛造して所定の形状に成形加工し、その後、部品によっては、焼入れ・焼戻しの所謂「調質処理」を行い、更に、高周波焼入れと必要に応じて焼戻しを行うことによって所望の強度、靱性や軸部における表面硬さを確保させている。しかし、この従来法の場合には、熱間圧延後の球状化焼鈍や調質処理のための熱処理コストが嵩む。更に、調質処理時に歪みが発生することが多いので、歪みを矯正する必要も生ずる。このため産業界には、球状化焼鈍や調質処理を省略したり、歪み矯正作業の省略を行って高強度軸部品の製造コストを低減したいとする要望が大きい。
【0003】
こうした要望に対して、球状化焼鈍、冷間鍛造後の調質処理及び調質処理後の歪み矯正作業を省略できる技術が、例えば、特開平7−54041号公報に提案されている。
【0004】
すなわち、特開平7−54041号公報には、最終鋼部品の延性・靱性を高めるために、鋼のC含有量の上限を0.25重量%に抑え、これに特定の条件で熱間圧延とその後の冷却を施してから冷間引き抜き加工を行い、更に、冷間鍛造と機械加工を施して製造した最終部品に対して、焼入れ・焼戻しの調質処理を施したJIS規格のS45Cと同等の強度を付与する技術が開示されている。しかし、この公報で提案された鋼はC含有量が低いので、高周波焼入れを施す部品に対しては、所望の表面硬さ及び硬化層の深さを確保できない。
【0005】
したがって、高周波焼入れで所望の表面硬さと硬化層の深さとを確保させたい場合には、C含有量の高い中炭素鋼鋼材を用いる必要があるが、この場合、熱間圧延後に球状化焼鈍処理を行っても変形抵抗が高いので冷間鍛造の工具寿命が短く、又、変形能が低いので冷間鍛造された部品に割れが生ずる場合もあった。
【0006】
このような問題に対し、特公平1−38847号公報及び特公平2−47536号公報には、冷間鍛造性を向上させるためにSiとMnの含有量を低く抑え、C、B、Ti、更に、必要に応じてCrを含有させて高周波焼入れ性の確保もできる冷間鍛造用鋼が開示されている。しかし、上記の各公報で提案された鋼は、その実施例における記載からも明らかなように、従来球状化焼鈍されていた中炭素鋼と同等以上の冷間鍛造性を得るためには、冷間鍛造前に球状化焼鈍を施す必要があるし、最終部品の強度確保のためには調質処理を施す必要もあるので、コストが嵩んでしまう。
【0007】
【発明が解決しようとする課題】
本発明は、上記現状に鑑みなされたもので、熱間圧延後の球状化焼鈍、焼入れ・焼戻しの調質処理及び調質処理に起因する歪みの矯正作業を省略した高強度軸部品、なかでも軸部の硬さがロックウェルB硬さで95以上の高強度軸部品の製造方法を提供することを目的とする。具体的には、同等のC含有量のJIS機械構造用中炭素鋼を用いて従来法で軸部の硬さがロックウェルB硬さで95以上の高強度軸部品を製造する場合と同等の状況を、熱間圧延後の球状化焼鈍、焼入れ・焼戻しの調質処理及び調質処理に起因する歪みの矯正作業を省略した製造法で確保することを目的とする。
【0008】
【課題を解決するための手段】
本発明の要旨は、下記に示す高強度軸部品の製造方法にある。
【0009】
すなわち、「質量%で、C:0.40〜0.60%、Mn:0.10〜0.40%、Nb:0.005〜0.05%、Al:0.015〜0.10%、B:0.0005〜0.005%、Si:0〜0.40%、Ti:0.005〜0.05%を含有し、残部はFe及び不純物からなり、不純物中のPは0.015%以下、Sは0.015%以下、Cuは0.10%以下、Niは0.10%以下、Crは0.15%以下、Moは0.10%以下、Nは0.0050%以下、O(酸素)は0.005%以下の化学組成を有する鋼片を、1000〜1250℃に加熱して、圧延仕上げ温度が1000〜800℃となるように熱間圧延し、熱間圧延終了後は少なくとも500℃までを0.5〜5℃/秒の冷却速度で冷却し、次いで、総減面率が25〜50%となる伸線加工を施し、更に、冷間加工して所定の形状に成形し、その後高周波焼入れすることを特徴とする高強度軸部品の製造方法。」である。
【0010】
なお、本発明でいう「圧延仕上げ温度」とは、圧延が仕上がった際の被圧延材の温度を指す。又、伸線加工における総減面率とは、伸線加工前の断面積をA0、最終伸線加工後の断面積をA1として(A0−A1)/A0 で表されるものをいい、これを100倍すれば%表示になる。
【0011】
本発明者らは、前記した課題を解決するために高強度軸部品の製造方法について、種々の調査・検討を行った。その結果、下記の知見を得た。
【0012】
▲1▼Mnの含有量を低く抑えるとともにSiの含有量をも低く抑え、更に適正量のNb、Alを含んでいる中炭素鋼を冷間鍛造など冷間加工する際の変形抵抗は、熱間圧延のための加熱温度、熱間圧延の仕上げ温度、圧延終了後の冷却条件、その後の伸線加工における総減面率によって変化する。したがって、上記の各種条件を適正に管理すれば、前記の鋼を冷間加工する際の変形抵抗を低くすることができ、球状化焼鈍を省略しても、同等のC含有量のJIS機械構造用中炭素鋼を球状化焼鈍した場合と同等以上の変形能を確保することができる。
▲2▼上記▲1▼のMnの含有量を低く抑えるとともにSiの含有量をも低く抑え、更に適正量のNb、Alを含んでいる中炭素鋼は、伸線加工における総減面率を従来レベルの20%程度より大きくすることで、所望の硬さを確保することが可能である。なお、伸線加工における総減面率を大きくした場合でも、伸線加工前の硬さが低い場合には、伸線加工時に所謂「シェブロンクラック」などの欠陥が発生することはない。
【0013】
▲3▼中炭素鋼をベースに適正量のBを含有させた鋼の高周波焼入れ性は、同等C量のJIS機械構造用炭素鋼の高周波焼入れ性と同等以上である。
本発明は、上記の知見に基づいて完成されたものである。
【0014】
【発明の実施の形態】
以下、本発明の各要件について詳しく説明する。なお、各元素の含有量の「%」表示は「質量%」を意味する。
(A)鋼の化学組成
C:0.40〜0.60%
Cは、高周波焼入れ性に影響を及ぼす元素で、焼入れ硬化層の硬さ及び深さを確保してシャフトなど高強度軸部品に所望の機械的性質を付与するのに有効な元素である。しかし、その含有量が0.40%未満では添加効果に乏しい。一方、0.60%を超えて含有させると、圧延条件、冷却条件及び伸線加工条件を適正化しても充分に軟化せずに冷間加工性が劣化したり、靭性の劣化や焼割れの発生を招くことがある。したがって、Cの含有量を0.40〜0.60%とした。
【0015】
Mn:0.10〜0.40
Mnは、鋼中のSを固定して熱間加工性を高めるとともに強度(硬さ)を確保するために有効な元素で、0.10%以上含有させることが必要である。一方、Mnの含有量が高くなると、変形抵抗が大きくなって冷間加工性の劣化をきたす。したがって、Mnの含有量を0.10〜0.40%とした。
【0016】
Nb:0.005〜0.05%
Nbは、冷間加工性を大きく阻害することなく良好な高周波焼入れ性を確保するのに有効な元素である。更に、高周波焼入れ時の結晶粒の粗大化防止にも有効である。しかし、その含有量が0.005%未満では所望の効果が得られない。一方、0.05%を超えると、変形抵抗を増加させることが避けられず、又、粗大な未固溶炭窒化物が残留して冷間加工性の劣化を招くことがある。したがって、Nbの含有量を0.005〜0.05%とした。なお、Nb含有量の上限は0.03%とすることが好ましく、0.02%とすれば一層好ましい。更に好ましいNb含有量の上限は0.015%である。
【0017】
Al:0.015〜0.10%
Alは、脱酸作用を有する。更に、窒化物を生成して鋼中のNを固定するので、冷間鍛造など冷間加工時の加工硬化を抑制する作用がある。又、鋼中Nの固定によってBの高周波焼入れ性向上効果を確保するのにも有効である。しかし、その含有量が0.015%未満では上記の効果が確実には得られない。一方、0.10%を超えて含有させると、冷間加工時に鋼の変形能が低下する。したがって、Alの含有量を0.015〜0.10%とした。なお、Bの高周波焼入れ性向上効果の確保のために、Al含有量は0.03%以上とすることが好ましく、0.05%を超えて含有させれば一層好ましい。
【0018】
B:0.0005〜0.005%
Bは、冷間加工性を阻害することなく良好な高周波焼入れ性を確保するのに有効な元素である。しかし、その含有量が0.0005%未満では添加効果に乏しい。一方、0.005%を超えて含有させるとその効果が飽和するばかりか、粒界脆化を招く場合がある。したがって、Bの含有量を0.0005〜0.005%とした。
【0019】
Si:0〜0.40%
Siは添加しなくてもよい。添加すれば、鋼の脱酸の安定化及び強度(硬さ)を高める効果がある。この効果を確実に得るには、Siは0.05%以上の含有量とすることが好ましい。又、Siが添加された鋼は、熱間加工のための加熱中に低融点酸化物であるファイアライト(Fe2SiO4)を生成するので、その融点(1173℃)以上に加熱すれば、脱スケール性が極めて良好になる。この効果は、特に、Siの含有量が0.15%を超えた場合に大きい。しかし、その含有量が、0.40%を超えると冷間加工時の変形抵抗が大きくなって冷間加工性の低下を招く。したがって、Siの含有量を0〜0.40%とした。
【0020】
Ti:0.005〜0.05%
Tiは、窒化物や炭窒化物を生成して鋼中のNを固定する効果を有する。この効果を確実に得るために、Tiは0.005%以上の含有量とする。しかし、その含有量が0.05%を超えると、変形抵抗を増加させることが避けられず、又、粗大な窒化物や炭窒化物が残留して冷間加工性の劣化、疲労強度の劣化を招くことがある。したがって、Tiの含有量を0.005〜0.05%とした。なお、Ti含有量の上限は0.03%とすることが好ましく、0.02%とすれば一層好ましい。更に好ましいTi含有量の上限は0.015%である。
【0021】
本発明においては、不純物元素としてのP、S、Cu、Ni、Cr、Mo、N及びO(酸素)を下記のとおりに制限する。
【0022】
P:0.015%以下
Pは、冷間加工時の変形能を低下させてしまう。特に、Pの含有量が0.015%を超えると、冷間加工時の変形能の低下が著しくなる。したがって、不純物元素としてのPの含有量を0.015%以下とした。
【0023】
S:0.015%以下
Sも冷間加工時の変形能を低下させてしまう。特に、Sの含有量が0.015%を超えると、冷間加工時の変形能の低下が著しくなる。したがって、不純物元素としてのSの含有量を0.015%以下とした。
【0024】
Cu:0.10%以下
Cuは変形抵抗を高めて冷間加工性を劣化させてしまう。特に、Cuの含有量が0.10%を超えると、冷間加工性の劣化が著しくなる。したがって、不純物元素としてのCuの含有量を0.10%以下とした。なお、Cu含有量は0.05%以下に規制することが好ましい。
【0025】
Ni:0.10%以下
Niは変形抵抗を高めて冷間加工性を劣化させてしまう。特に、Niの含有量が0.10%を超えると、冷間加工性の低下が著しくなる。したがって、不純物元素としてのNi含有量を0.10%以下とした。なお、Ni含有量は0.05%以下に規制することが好ましい。
【0026】
Cr:0.15%以下
Crも変形抵抗を高めて冷間加工性を劣化させてしまう。特に、Crの含有量が0.15%を超えると、冷間加工性の低下が著しくなる。したがって、不純物元素としてのCr含有量を0.15%以下とした。なお、Cr含有量は0.10%以下に規制することが好ましい。
【0027】
Mo:0.10%以下
Moは変形抵抗を高めて冷間加工性を劣化させてしまう。特に、Moの含有量が0.10%を超えると、冷間加工性の低下が著しくなる。したがって、不純物元素としてのMo含有量を0.10%以下とした。なお、Mo含有量は0.05%以下に規制することが好ましい。
【0028】
N:0.0050%以下
Nは、変形抵抗を高めて冷間加工性を劣化させてしまう。更に、容易にBと結びついてBNを形成するので、Bの高周波焼入れ性向上効果が確保できなくなる。特に、Nの含有量が0.0050%を超えると、冷間加工性の低下が著しくなるとともにBの高周波焼入れ性向上効果が得難くなる。したがって、不純物元素としてのN含有量を0.0050%以下とした。なお、N含有量は0.0040%以下に規制することが好ましく、0.0030%以下とすれば一層好ましい。
【0029】
O(酸素):0.005%以下
Oは、酸化物を形成して冷間加工時の変形能を低下させてしまう。特に、Oの含有量が0.005%を超えると、冷間加工時の変形能の低下が著しくなる。したがって、不純物元素としてのOの含有量を0.005%以下とした。
(B)熱間圧延と冷却
(B−1)熱間圧延前の加熱温度
冷間鍛造など冷間加工する際の変形抵抗を下げるとともに、均質な組織を得るためには、加熱温度は1000℃以上にする必要がある。しかし、加熱温度が1250℃を超えると燃料コストが嵩む。更に、スケール発生も多くなって歩留りの低下が生じ、生産効率が低下する。したがって上記(A)に記載した化学組成を有する鋼片の熱間圧延前の加熱温度を1000〜1250℃とした。
【0030】
(B−2)圧延仕上げ温度
冷間鍛造など冷間加工する際の変形抵抗を下げるとともに、鋼材に良好な延性と靱性を確保させ、更に良好な伸線加工性を付与するためには、熱間圧延仕上げ温度を1000〜800℃にする必要がある。圧延仕上げ温度が1000℃を超えると、再結晶オーステナイト結晶粒が粗大となり、その後の冷却条件を制御しても微細なフェライト・パーライト組織になり難く、伸線加工時に断線が発生する場合があるし、冷間鍛造など冷間加工時の変形抵抗も大きくなってしまう。一方、圧延仕上げ温度が800℃を下回ると、延性と靱性の低下が大きくなるし、冷間鍛造など冷間加工時の変形抵抗も大きくなってしまう。したがって、熱間圧延仕上げ温度を1000〜800℃とした。
【0031】
(B−3)圧延後の冷却条件
冷間鍛造など冷間加工する際の変形抵抗を下げるためには、熱間圧延終了後、少なくとも500℃までを0.5〜5℃/秒の冷却速度で冷却する必要がある。
【0032】
これは、圧延仕上げ後、上記の条件で冷却することによって、微細なフェライト・パーライト組織が得られ、伸線加工性が高まるとともに冷間加工する際の変形抵抗が下がるためである。冷却速度が0.5℃/秒を下回ると、微細なフェライト、パーライト組織が得難く、伸線加工時に断線が発生する場合があるし、冷間鍛造など冷間加工時の変形抵抗も大きくなってしまう。更に、脱炭深さや生成するスケールの厚みも大きくなってしまう。一方、冷却速度が5℃/秒を超えると、マルテンサイトやベイナイトといった低温変態生成物が生成するので、強度が上昇し、冷間加工する際の変形抵抗が大きくなる。熱間圧延終了後、0.5〜5℃/秒の冷却速度で行う冷却の停止温度が500℃を超える場合には、微細なフェライト、パーライト組織が得難く、伸線加工時に断線が発生する場合があるし、冷間鍛造など冷間加工時の変形抵抗も大きくなってしまう。
【0033】
したがって、熱間圧延した後、少なくとも500℃までを0.5〜5℃/秒の冷却速度で冷却することとした。上記の0.5〜5℃/秒の冷却速度での冷却は常温まで行ってもよい。但し、生産性を高めるためには、500℃まで、望ましくは450℃までを0.5〜5℃/秒の冷却速度で冷却し、以後は急冷するのがよい。
(C)伸線加工
前記(A)項に記載の化学組成を有する鋼片に上記(B)項に記載の熱間圧延と冷却を行っただけでは強度(硬さ)が低い。このため、焼入れ・焼戻しの調質処理を省略すると、従来調質処理が施されていた高強度軸部品、なかでも軸部の硬さがロックウェルB硬さで95以上の高強度軸部品として用いることはできない。したがって、本発明においては、前記(A)項に記載の化学組成を有する鋼片に上記(B)項に記載の熱間圧延と冷却を行い、次いで、総減面率が25〜50%となる伸線加工を施して、所望のロックウェルB硬さで95以上の軸部硬さを確保させる。
【0034】
伸線加工の総減面率が25%を下回る場合には、伸線加工後の強度上昇は不十分で、所望のロックウェルB硬さで95以上の硬さが得られない場合がある。一方、伸線加工の総減面率が50%を超える場合には、被加工材の内部にクラックが生成することがある。したがって、総減面率が25〜50%となる伸線加工を施すこととした。この伸線加工の総減面率が35%を超える場合には、ロックウェルB硬さで95以上の硬さが極めて安定して得られる。なお、伸線加工における総減面率とは、伸線加工前の断面積をA0、最終伸線加工後の断面積をA1として(A0−A1)/A0 で表されるものをいい、これを100倍すれば%表示になることは既に述べたとおりである。この「伸線加工」は、通常行われるように冷間で行うのがよい。なお、500℃未満の温度であれば温間で行ってもよいが。温間で伸線加工する場合は、潤滑性能の面から200℃以下の温度で行うことが好ましい。
(D)冷間加工
(B)項に記載の熱間圧延と冷却を施され、次いで、(C)項に記載の伸線加工をうけた前記(A)項に記載の化学組成を有する鋼材は、更に冷間鍛造などの冷間加工を受けてシャフトなど所定の形状の高強度軸部品に成形される。本発明の場合、総減面率が25〜50%の伸線加工を施すため、伸線加工後の硬さは高いものの、圧縮加工での変形抵抗、変形能は伸線加工前の素材と同程度である。このため、冷間加工の方法は特に規定されるものではなく、通常の方法で行えばよい。
(E)高周波焼入れ
前記(A)に記載の化学組成を有し、熱間圧延、冷却、伸線加工を受け、冷間加工されて所定の形状に成形された鋼材は、その部品の仕様に応じて全面、もしくは局部的に高周波焼入れ、あるいは、必要に応じて高周波焼入れ後に焼戻しが施されて、所望の機械的性質を有する機械構造用部品に仕上げられる。この高周波焼入れの方法は特に規定されるものではなく、通常の方法で行えばよい。
【0035】
本発明の製造方法が対象とする(A)項に記載の化学組成を有する鋼材を通常の方法で高周波焼入れすれば、JIS機械構造用炭素鋼を高周波焼入れしていた従来の製造方法による場合と同等の硬化深さが得られる。
【0036】
以下、実施例により本発明を説明する。
【0037】
【実施例】
(実施例1)
表1、表2に示す化学組成を有する鋼を通常の方法によって試験炉を用いて溶製した。表1における鋼A及び鋼C〜Iは化学組成が本発明で規定する範囲内にある本発明例、表2における鋼a〜rは成分のいずれかが本発明で規定する含有量の範囲から外れた比較例である。比較例の鋼のうち鋼p、鋼q及び鋼rはそれぞれJIS規格のS40C、S50C及びS58Cに相当する鋼である。
【0038】
【表1】

Figure 0004328924
【0039】
【表2】
Figure 0004328924
【0040】
次いで、これらの鋼を通常の方法によって鋼片にした後、1200℃に加熱して直径18mmの丸棒に熱間圧延し、熱間圧延終了後は各種の条件で冷却した。冷却後、通常の方法で総減面率が27%と48%の伸線加工も行った。
【0041】
上記のようにして得られた直径18mmの圧延ままの丸棒、及び伸線加工した丸棒から、直径が10mmで長さが15mmの冷間加工用試験片を作製し、500t高速プレス機による通常の方法で冷間(室温)拘束型据え込み試験を行い、割れが発生する限界の据え込み率を測定した。なお、据え込み率が75%まで、各条件ごとに5回の据え込み試験を行い、5個の試験片のうち3個以上に割れが発生する最小の加工率(据え込み率)を限界据え込み率として評価した。据え込み率75%で3個以上割れを生じないものは、そこで試験を終了した。
【0042】
上記の直径が10mmで長さが15mmの冷間加工用試験片を用いてロックウェルB硬さの測定も行った。
【0043】
更に、すべての鋼種の限界据え込み率以下である60%の据え込み率(最も大きな加工が加わる試験片中心部における相当歪は1.5)の場合の変形抵抗を測定した。なお、相当歪みとはε1 、ε2 、ε3 を主方向の対数歪みとして下記の式で表されるものである。
ε={(ε1 2+ε2 2+ε3 2)×2/3}1/2
表3〜5に、圧延仕上げ温度、圧延終了後の冷却条件の詳細を示す。この表3〜5には上記の各試験結果も併せて示した。
【0044】
【表3】
Figure 0004328924
【0045】
【表4】
Figure 0004328924
【0046】
【表5】
Figure 0004328924
【0047】
更に、前記の直径18mmの圧延材から直径が17.5mmで長さ50mmの試験片を採取し、これに周波数20kHzで高周波焼入れを行った後、通常の方法によって表面硬さとHvで400となる硬化深さ(つまり、焼入れ硬化層の深さ)tを測定した。次いで、電気炉を用いて150℃で30分の焼戻しを行い、通常の方法によって高周波焼入れ後の硬化部を測定した。
【0048】
表6に上記の試験結果を示す。
【0049】
【表6】
Figure 0004328924
【0050】
表3及び表6から、化学組成が本発明で規定する範囲内にある本発明例の鋼A及び鋼C〜Iを素材鋼とする場合は、圧延のまま、つまり伸線加工の総減面率0%の状態で、硬さと圧縮加工(据え込み加工)での変形抵抗が低く、75%以上の大きな限界据え込み率を有していることがわかる。又、上記の圧延ままの丸棒を総減面率25%又は48%で伸線加工を行っても、圧縮加工での変形抵抗と限界据え込み率は圧延ままの場合と同程度であり、硬さのみ上昇して、ロックウェルB硬さで95以上の硬さを確保できることが明らかである。更に、同等のC含有量のJIS機械構造用炭素鋼(JIS規格のS40C、S50C及びS58C)に相当する鋼p、鋼q及び鋼rを素材鋼とする場合と同等の高周波焼入れ性を有している。
【0051】
これに対して比較例の鋼を素材鋼とする場合には、表4〜6から、(イ)圧延のままの状態で硬さと変形抵抗が高く、限界据え込み率も低いので、総減面率が25%の伸線加工を施すと、変形抵抗は高いままで、限界据え込み率も低いままである。更に、総減面率が48%の伸線加工を施すと断線が発生する。(ロ)高周波焼入れした時の硬化深さtが、同等のC含有量のJIS機械構造用炭素鋼(JIS規格のS40C、S50C及びS58C)に相当する鋼p、鋼q及び鋼rを素材鋼とする場合以下である、のいずれかに該当する。
(実施例2)
実施例1で得た鋼D及び鋼Fの総減面率27%で伸線加工した丸棒と、鋼p〜rの直径18mmの圧延ままの丸棒を用いて、実部品の製造を想定した試験を行い、最終形状における曲がり量の測定を実施した。
【0052】
すなわち、鋼D及び鋼Fの総減面率27%で伸線加工した丸棒については、伸線加工したままの状態で、通常の方法によって冷間加工としての前方押し出し加工を行い、直径15.4mmで長さが120mmの軸形状にし、その後ダイアルゲージで曲がり量を測定した。
比較例として、鋼p〜rの直径18mmの圧延ままの丸棒には、745℃で4時間保持した後、毎時15℃の冷却速度で冷却する球状化焼鈍を施し、次いで、通常の方法で総減面率が27%の伸線加工を行い、更に、冷間加工としての前方押し出し加工を行って上記と同じ直径15.4mmで長さが120mmの軸形状にし、この後、860℃に加熱してから油焼入れし、更に200℃で焼戻しを行ってからダイアルゲージで曲がり量を測定した。なお上記の製造方法は、JISの機械構造用中炭素鋼鋼材を素材とした高強度軸部品の従来の製造法である。
表7に、上記の試験結果を示す。
【0053】
【表7】
Figure 0004328924
【0054】
表7から、JIS規格のS40C、S50C及びS58Cに相当する鋼である鋼p、鋼q及び鋼rを用いて、比較例の方法によって製造した場合、つまり、従来の調質処理によって製造した場合には曲がり量が大きいのに対して、本発明の方法によれば、最終部品の曲がり量は小さく、したがって、歪みの矯正作業を省略して高強度軸部品を製造できることが明らかである。
【0055】
【発明の効果】
本発明の方法によれば、同等のC含有量のJIS機械構造用炭素鋼を用いて従来法で軸部の硬さがロックウェルB硬さで95以上の高強度軸部品を製造する場合と同等の状況を、熱間圧延後の球状化焼鈍、焼入れ・焼戻しの調質処理及び調質処理に起因する歪みの矯正作業を省略した製造法で確保することができ、実用価値はきわめて大きい。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a high-strength shaft component, and more particularly, to a method for manufacturing a small, long, high-strength shaft component such as a shaft.
[0002]
[Prior art]
High-strength shaft parts such as shafts used as machine structural parts are conventionally used for spheroidizing annealing of JIS medium structural carbon steel materials (S45C, S48C, etc.) after hot rolling, and then increasing dimensional accuracy. After wire drawing, cold forging and forming into a predetermined shape, and then depending on the part, so-called “tempering treatment” of quenching and tempering is performed, and further induction hardening and tempering as necessary This ensures the desired strength, toughness and surface hardness at the shaft. However, in the case of this conventional method, heat treatment costs for spheroidizing annealing and tempering after hot rolling increase. Further, since distortion often occurs during the tempering process, it becomes necessary to correct the distortion. For this reason, there is a great demand for the industry to reduce the manufacturing cost of high-strength shaft parts by omitting spheroidizing annealing and tempering treatment, or omitting distortion correction work.
[0003]
In response to such demands, for example, Japanese Patent Laid-Open No. 7-54041 proposes a technique that can omit spheroidizing annealing, tempering after cold forging, and distortion correction after tempering.
[0004]
That is, in JP-A-7-54041, in order to increase the ductility and toughness of the final steel part, the upper limit of the C content of steel is suppressed to 0.25% by weight. After the subsequent cooling, cold drawing is performed, and the final parts manufactured by cold forging and machining are tempered by quenching and tempering, equivalent to JIS standard S45C. A technique for imparting strength is disclosed. However, since the steel proposed in this publication has a low C content, the desired surface hardness and the depth of the hardened layer cannot be ensured for parts subjected to induction hardening.
[0005]
Therefore, when it is desired to ensure the desired surface hardness and the depth of the hardened layer by induction hardening, it is necessary to use a medium carbon steel material having a high C content. In this case, spheroidizing annealing treatment is performed after hot rolling. However, the deformation resistance is high, so that the tool life of cold forging is short, and the deformability is low, so that the cold forged parts sometimes crack.
[0006]
In order to improve the cold forgeability, JP-B-1-38847 and JP-B-2-47536 disclose a low content of Si and Mn, and C, B, Ti, Furthermore, a steel for cold forging is disclosed in which Cr is contained as necessary to ensure induction hardenability. However, as is clear from the description in the examples, the steel proposed in each of the above-mentioned publications requires a cold forgeability equal to or better than that of the medium carbon steel that has been conventionally spheroidized. Since it is necessary to perform spheroidizing annealing before the forging and to ensure the strength of the final part, it is necessary to perform a tempering treatment, which increases costs.
[0007]
[Problems to be solved by the invention]
The present invention has been made in view of the above-described situation, and is a high-strength shaft component that eliminates the spheroidizing annealing after hot rolling, the tempering treatment of quenching / tempering, and the correction work for distortion caused by the tempering treatment, An object of the present invention is to provide a method for manufacturing a high-strength shaft component having a shaft portion hardness of 95 or more in Rockwell B hardness. Specifically, it is equivalent to manufacturing a high-strength shaft component having a shaft portion hardness of 95 or more with Rockwell B hardness by a conventional method using JIS medium carbon steel for mechanical structure having an equivalent C content. The purpose is to secure the situation by a manufacturing method in which the spheroidizing annealing after hot rolling, the tempering treatment of quenching and tempering, and the correction work for distortion caused by the tempering treatment are omitted.
[0008]
[Means for Solving the Problems]
The gist of the present invention resides in a method for manufacturing a high-strength shaft part described below.
[0009]
That is, “mass%, C: 0.40 to 0.60%, Mn: 0.10 to 0.40 %, Nb: 0.005 to 0.05%, Al: 0.015 to 0.10% B: 0.0005 to 0.005%, Si: 0 to 0.40%, Ti: 0.005 to 0.05%, with the balance being Fe and impurities. 015% or less, S is 0.015% or less, Cu is 0.10% or less, Ni is 0.10% or less, Cr is 0.15% or less, Mo is 0.10% or less, and N is 0.0050%. Hereinafter, O (oxygen) is a steel slab having a chemical composition of 0.005% or less, heated to 1000 to 1250 ° C, hot-rolled to a rolling finish temperature of 1000 to 800 ° C, and hot-rolled. After the completion, it is cooled to at least 500 ° C. at a cooling rate of 0.5 to 5 ° C./second, and then the total area reduction rate is 2 A manufacturing method of a high-strength shaft part, characterized by performing 5-50% wire drawing, further cold-working into a predetermined shape, and then induction hardening. "
[0010]
The “rolling finishing temperature” in the present invention refers to the temperature of the material to be rolled when the rolling is finished. Further, the total area reduction rate of wire drawing, represented the cross-sectional area before drawing with A 0, the cross-sectional area after the final wire drawing as A 1 (A 0 -A 1) / A 0 The thing is good, and if this is multiplied by 100, it becomes% display.
[0011]
In order to solve the above-described problems, the present inventors have conducted various investigations and studies on a method for manufacturing a high-strength shaft part. As a result, the following knowledge was obtained.
[0012]
(1) Keeping the Mn content low and the Si content low, and the deformation resistance when cold working such as cold forging of medium carbon steel containing appropriate amounts of Nb and Al, It varies depending on the heating temperature for hot rolling, the finishing temperature of hot rolling, the cooling conditions after the end of rolling, and the total area reduction in the subsequent wire drawing. Therefore, if the above various conditions are properly managed, the deformation resistance when the steel is cold worked can be reduced, and even if the spheroidizing annealing is omitted, the JIS mechanical structure having the same C content. It is possible to ensure a deformability equal to or higher than that in the case of spheroidizing annealing of the medium carbon steel.
(2) In the above (1), the Mn content is kept low, the Si content is kept low, and the medium carbon steel containing appropriate amounts of Nb and Al has a total area reduction rate in the wire drawing process. It is possible to ensure a desired hardness by making it larger than about 20% of the conventional level. Even when the total area reduction in the wire drawing process is increased, if the hardness before the wire drawing process is low, defects such as so-called “chevron cracks” do not occur during the wire drawing process.
[0013]
(3) The induction hardenability of steel containing an appropriate amount of B based on medium carbon steel is equivalent to or higher than the induction hardenability of carbon steel for machine structural use with the same C content.
The present invention has been completed based on the above findings.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, each requirement of the present invention will be described in detail. In addition, "%" display of the content of each element means "mass%".
(A) Chemical composition C of steel: 0.40 to 0.60%
C is an element that affects induction hardenability, and is an element that is effective in securing the hardness and depth of a hardened hardened layer and imparting desired mechanical properties to a high-strength shaft component such as a shaft. However, if the content is less than 0.40%, the effect of addition is poor. On the other hand, if the content exceeds 0.60%, even if the rolling conditions, cooling conditions, and wire drawing conditions are optimized, cold workability is deteriorated without sufficiently softening, deterioration of toughness and cracking. It may cause an outbreak. Therefore, the content of C is set to 0.40 to 0.60%.
[0015]
Mn: 0.10 to 0.40 %
Mn is an element effective for fixing S in steel to enhance hot workability and ensuring strength (hardness), and it is necessary to contain 0.10% or more. On the other hand, when the Mn content increases , the deformation resistance increases and the cold workability deteriorates. Therefore, the content of Mn is set to 0.10 to 0.40 % .
[0016]
Nb: 0.005 to 0.05%
Nb is an element effective for ensuring good induction hardenability without greatly impairing the cold workability. Furthermore, it is also effective in preventing coarsening of crystal grains during induction hardening. However, if the content is less than 0.005%, the desired effect cannot be obtained. On the other hand, if it exceeds 0.05%, it is inevitable to increase the deformation resistance, and coarse undissolved carbonitride may remain and cause cold workability deterioration. Therefore, the Nb content is set to 0.005 to 0.05%. The upper limit of the Nb content is preferably 0.03%, and more preferably 0.02%. A more preferable upper limit of the Nb content is 0.015%.
[0017]
Al: 0.015-0.10%
Al has a deoxidizing action. Furthermore, since nitride is produced | generated and N in steel is fixed, there exists an effect | action which suppresses the work hardening at the time of cold processing, such as cold forging. It is also effective to secure the effect of improving the induction hardenability of B by fixing N in steel. However, if the content is less than 0.015%, the above effect cannot be obtained with certainty. On the other hand, if the content exceeds 0.10%, the deformability of the steel decreases during cold working. Therefore, the Al content is set to 0.015 to 0.10%. In order to secure the effect of improving the induction hardenability of B, the Al content is preferably 0.03% or more, and more preferably 0.05%.
[0018]
B: 0.0005 to 0.005%
B is an element effective for ensuring good induction hardenability without impairing cold workability. However, if the content is less than 0.0005%, the effect of addition is poor. On the other hand, if the content exceeds 0.005%, not only the effect is saturated, but also grain boundary embrittlement may be caused. Therefore, the content of B is set to 0.0005 to 0.005%.
[0019]
Si: 0 to 0.40%
Si may not be added. If added, there is an effect of stabilizing the deoxidation of steel and increasing the strength (hardness). In order to reliably obtain this effect, the Si content is preferably 0.05% or more. Moreover, since the steel to which Si is added generates firelite (Fe 2 SiO 4 ), which is a low melting point oxide, during heating for hot working, if heated above its melting point (1173 ° C.), The descalability is very good. This effect is particularly great when the Si content exceeds 0.15%. However, if its content exceeds 0.40%, the deformation resistance during cold working increases and cold workability decreases. Therefore, the Si content is set to 0 to 0.40%.
[0020]
Ti: 0.005 to 0.05%
Ti has an effect of fixing N in steel to produce a nitrogen product and carbonitrides. In order to obtain this effect reliably, Ti is shall be the amount of 0.005% or more. However, if its content exceeds 0.05%, it is inevitable to increase the deformation resistance, and coarse nitrides and carbonitrides remain, resulting in deterioration of cold workability and fatigue strength. May be invited. Therefore, the Ti content is set to 0.005 to 0.05 %. Note that the upper limit of the Ti content is preferably 0.03%, and more preferably 0.02%. A more preferable upper limit of the Ti content is 0.015%.
[0021]
In the present invention, P, S, Cu, Ni, Cr, Mo, N, and O (oxygen) as impurity elements are limited as follows.
[0022]
P: 0.015% or less P lowers the deformability during cold working. In particular, when the P content exceeds 0.015%, the deformability during cold working is significantly reduced. Therefore, the content of P as an impurity element is set to 0.015% or less.
[0023]
S: 0.015% or less S also reduces the deformability during cold working. In particular, when the S content exceeds 0.015%, the deformability during cold working is significantly reduced. Therefore, the content of S as an impurity element is set to 0.015% or less.
[0024]
Cu: 0.10% or less Cu increases deformation resistance and degrades cold workability. In particular, when the Cu content exceeds 0.10%, the cold workability is significantly deteriorated. Therefore, the content of Cu as an impurity element is set to 0.10% or less. The Cu content is preferably regulated to 0.05% or less.
[0025]
Ni: 0.10% or less Ni increases deformation resistance and deteriorates cold workability. In particular, when the Ni content exceeds 0.10%, the cold workability deteriorates remarkably. Therefore, the Ni content as an impurity element is set to 0.10% or less. The Ni content is preferably regulated to 0.05% or less.
[0026]
Cr: 0.15% or less Cr also increases deformation resistance and degrades cold workability. In particular, when the Cr content exceeds 0.15%, the cold workability deteriorates remarkably. Therefore, the Cr content as an impurity element is set to 0.15% or less. The Cr content is preferably regulated to 0.10% or less.
[0027]
Mo: 0.10% or less Mo increases deformation resistance and degrades cold workability. In particular, when the Mo content exceeds 0.10%, the cold workability deteriorates remarkably. Therefore, the Mo content as an impurity element is set to 0.10% or less. The Mo content is preferably regulated to 0.05% or less.
[0028]
N: 0.0050% or less N increases the deformation resistance and deteriorates the cold workability. Further, since BN is easily combined with B, the effect of improving the induction hardenability of B cannot be ensured. In particular, when the N content exceeds 0.0050%, the cold workability is significantly lowered and the effect of improving the induction hardenability of B is difficult to obtain. Therefore, the N content as an impurity element is set to 0.0050% or less. Note that the N content is preferably regulated to 0.0040% or less, and more preferably 0.0030% or less.
[0029]
O (oxygen): 0.005% or less O forms an oxide and reduces deformability during cold working. In particular, when the O content exceeds 0.005%, the deformability during cold working is significantly reduced. Therefore, the content of O as an impurity element is set to 0.005% or less.
(B) Hot rolling and cooling (B-1) Heating temperature before hot rolling The heating temperature is 1000 ° C. in order to reduce deformation resistance during cold working such as cold forging and obtain a homogeneous structure. It is necessary to do more. However, when the heating temperature exceeds 1250 ° C., the fuel cost increases. In addition, the generation of scale increases, yield decreases, and production efficiency decreases. Therefore, the heating temperature before hot rolling of the steel slab having the chemical composition described in (A) above was set to 1000 to 1250 ° C.
[0030]
(B-2) Rolling finish temperature In order to reduce deformation resistance during cold working such as cold forging, to secure good ductility and toughness to the steel, and to give better wire drawing workability, The hot rolling finishing temperature needs to be 1000 to 800 ° C. When the rolling finish temperature exceeds 1000 ° C, the recrystallized austenite grains become coarse, and even if the subsequent cooling conditions are controlled, it is difficult to form a fine ferrite / pearlite structure, and breakage may occur during wire drawing. In addition, deformation resistance during cold working such as cold forging is increased. On the other hand, when the rolling finishing temperature is below 800 ° C., the ductility and toughness are greatly reduced, and the deformation resistance during cold working such as cold forging is also increased. Therefore, the hot rolling finishing temperature was set to 1000 to 800 ° C.
[0031]
(B-3) Cooling conditions after rolling In order to reduce deformation resistance during cold working such as cold forging, a cooling rate of 0.5 to 5 ° C./sec. It is necessary to cool at.
[0032]
This is because, after the rolling finish, by cooling under the above conditions, a fine ferrite and pearlite structure is obtained, and the wire drawing workability is enhanced and the deformation resistance during cold working is lowered. If the cooling rate is less than 0.5 ° C / second, it is difficult to obtain fine ferrite and pearlite structures, wire breakage may occur during wire drawing, and deformation resistance during cold working such as cold forging also increases. End up. Furthermore, the decarburization depth and the thickness of the scale to be produced will also increase. On the other hand, when the cooling rate exceeds 5 ° C./second, low-temperature transformation products such as martensite and bainite are generated, so that the strength increases and the deformation resistance during cold working increases. When the stop temperature of cooling performed at a cooling rate of 0.5 to 5 ° C./second exceeds 500 ° C. after completion of hot rolling, it is difficult to obtain fine ferrite and pearlite structures, and disconnection occurs during wire drawing. In some cases, deformation resistance during cold working such as cold forging also increases.
[0033]
Therefore, after hot rolling, cooling to at least 500 ° C. is performed at a cooling rate of 0.5 to 5 ° C./second. The cooling at the cooling rate of 0.5 to 5 ° C./second may be performed up to room temperature. However, in order to increase productivity, it is preferable to cool to 500 ° C., preferably to 450 ° C., at a cooling rate of 0.5 to 5 ° C./second, and then rapidly cool.
(C) Wire drawing The strength (hardness) is low only by performing the hot rolling and cooling described in the item (B) on the steel slab having the chemical composition described in the item (A). For this reason, if the tempering treatment of quenching and tempering is omitted, the high-strength shaft component that has been subjected to the tempering treatment in the past, especially the high-strength shaft component with a shaft portion hardness of 95 or more in Rockwell B hardness Cannot be used. Therefore, in the present invention, the steel slab having the chemical composition described in the item (A) is subjected to hot rolling and cooling described in the item (B), and then the total area reduction rate is 25 to 50%. A wire drawing process is performed to secure a shaft hardness of 95 or more with a desired Rockwell B hardness.
[0034]
When the total area reduction rate of the wire drawing is less than 25%, the strength increase after the wire drawing is insufficient, and a desired Rockwell B hardness of 95 or more may not be obtained. On the other hand, when the total area reduction rate of the wire drawing process exceeds 50%, a crack may be generated inside the workpiece. Therefore, it was decided to perform a wire drawing process with a total area reduction rate of 25 to 50%. When the total area reduction ratio of the wire drawing process exceeds 35%, a Rockwell B hardness of 95 or more can be obtained extremely stably. Note that the whole cross sectional reduction ratio in drawing is represented a cross sectional area before drawing with A 0, the cross-sectional area after the final wire drawing as A 1 (A 0 -A 1) / A 0 As already mentioned, it means that if you multiply this by 100, you will get%. This “drawing” is preferably carried out cold as usual. In addition, if it is less than 500 degreeC, you may carry out warmly. In the case of warm drawing, it is preferably performed at a temperature of 200 ° C. or less from the viewpoint of lubrication performance.
(D) Cold working Steel material having the chemical composition described in the item (A), which has been subjected to hot rolling and cooling described in the item (B) and then subjected to wire drawing described in the item (C). Is further subjected to cold working such as cold forging and formed into a high-strength shaft part having a predetermined shape such as a shaft. In the case of the present invention, since the total area reduction ratio is 25 to 50%, the wire after the wire drawing is high, but the deformation resistance and the deformability in the compression processing are the same as the material before the wire drawing. It is about the same. For this reason, the method of cold working is not particularly defined, and may be performed by a normal method.
(E) Induction hardening A steel material having the chemical composition described in (A) above, subjected to hot rolling, cooling, and wire drawing, cold processed and formed into a predetermined shape, conforms to the specifications of its parts. Accordingly, induction hardening is performed on the entire surface or locally, or tempering is performed after induction hardening as necessary to finish a machine structural component having desired mechanical properties. The induction hardening method is not particularly defined and may be performed by a normal method.
[0035]
If the steel material having the chemical composition described in the item (A) targeted by the production method of the present invention is induction-hardened by a normal method, the case of the conventional production method in which JIS mechanical structural carbon steel has been induction-hardened and Equivalent curing depth is obtained.
[0036]
Hereinafter, the present invention will be described by way of examples.
[0037]
【Example】
Example 1
Steels having chemical compositions shown in Tables 1 and 2 were melted using a test furnace by a conventional method. Steel A and Steels C to I in Table 1 are examples of the present invention whose chemical composition is within the range defined by the present invention, and steels a to r in Table 2 are from the range of contents defined by any of the components according to the present invention. It is a comparative example that is out. Among the steels of the comparative examples, steel p, steel q, and steel r are steels corresponding to JIS standards S40C, S50C, and S58C, respectively.
[0038]
[Table 1]
Figure 0004328924
[0039]
[Table 2]
Figure 0004328924
[0040]
Next, these steels were made into steel pieces by a normal method, heated to 1200 ° C. and hot-rolled into a round bar having a diameter of 18 mm, and cooled under various conditions after the hot rolling was completed. After cooling, wire drawing with a total area reduction of 27% and 48% was also performed by a normal method.
[0041]
A cold-worked test piece having a diameter of 10 mm and a length of 15 mm was prepared from the round bar with a diameter of 18 mm obtained as described above and a drawn round bar, and a 500 t high-speed press was used. A cold (room temperature) constrained upsetting test was conducted by a normal method, and the limit upsetting rate at which cracking occurred was measured. The upsetting rate is 75%, and 5 upsetting tests are performed for each condition. The minimum processing rate (upsetting rate) at which 3 or more of the 5 test pieces are cracked is set as the limit. It was evaluated as the inclusion rate. The test was completed for those that did not crack more than 3 at an upsetting rate of 75%.
[0042]
The Rockwell B hardness was also measured using a cold-working test piece having a diameter of 10 mm and a length of 15 mm.
[0043]
Furthermore, the deformation resistance was measured when the upsetting ratio was 60%, which is less than the limit upsetting ratio of all steel types (equivalent strain at the center of the specimen to which the largest machining is applied is 1.5). The equivalent strain is expressed by the following equation with ε 1 , ε 2 , and ε 3 as logarithmic strains in the main direction.
ε = {(ε 1 2 + ε 2 2 + ε 3 2 ) × 2/3} 1/2
Tables 3 to 5 show the details of the rolling finishing temperature and the cooling conditions after the end of rolling. Tables 3 to 5 also show the above test results.
[0044]
[Table 3]
Figure 0004328924
[0045]
[Table 4]
Figure 0004328924
[0046]
[Table 5]
Figure 0004328924
[0047]
Further, a test piece having a diameter of 17.5 mm and a length of 50 mm is taken from the rolled material having a diameter of 18 mm and subjected to induction hardening at a frequency of 20 kHz, and then the surface hardness and Hv are set to 400 by a normal method. The curing depth (that is, the depth of the quenched and hardened layer) t was measured. Next, tempering was performed at 150 ° C. for 30 minutes using an electric furnace, and the cured portion after induction hardening was measured by a normal method.
[0048]
Table 6 shows the test results.
[0049]
[Table 6]
Figure 0004328924
[0050]
From Tables 3 and 6, when steel A and steels C to I of the examples of the present invention whose chemical compositions are within the range defined by the present invention are used as raw material steels, they are still rolled, that is, the total surface reduction of the wire drawing process It can be seen that in a state where the rate is 0%, the deformation resistance in hardness and compression processing (upsetting) is low, and it has a large limit upsetting rate of 75% or more. In addition, even if the above-described round bar is drawn at a total area reduction rate of 25% or 48%, the deformation resistance and the limit upsetting rate in compression processing are the same as those in the case of rolling. It is clear that only the hardness is increased, and the Rockwell B hardness of 95 or more can be secured. Furthermore, it has induction hardenability equivalent to the case where steel p, steel q, and steel r corresponding to JIS carbon steel for machine structural use (JIS standards S40C, S50C and S58C) with the same C content are used as the raw steel. ing.
[0051]
On the other hand, when the steel of the comparative example is the raw material steel, from Tables 4 to 6, (i) Since the hardness and deformation resistance are high in the rolled state and the limit upsetting rate is low, the total surface reduction When wire drawing at a rate of 25% is performed, the deformation resistance remains high and the limit upsetting rate remains low. Furthermore, disconnection occurs when wire drawing with a total area reduction of 48% is performed. (B) Steel p, steel q and steel r corresponding to JIS machine structural carbon steel (JIS standards S40C, S50C and S58C) having the same C content as the hardening depth t when induction hardening is used as the raw steel If any of the following is true:
(Example 2)
Assuming the production of actual parts using the round bars drawn at 27% of total reduction of steel D and steel F obtained in Example 1 and the round bars of steel p to r with a diameter of 18 mm. The bending amount in the final shape was measured.
[0052]
That is, for a round bar drawn with a total area reduction ratio of 27% of steel D and steel F, the forward extrusion as a cold work is performed by a normal method while the wire is drawn, and the diameter 15 The shaft shape was 4 mm and the length was 120 mm, and then the bending amount was measured with a dial gauge.
As a comparative example, a round bar of 18 mm in diameter of steel p to r is subjected to spheroidizing annealing that is held at 745 ° C. for 4 hours and then cooled at a cooling rate of 15 ° C. per hour, and then in a normal manner. Wire drawing with a total area reduction rate of 27% is performed, and further forward extrusion as cold working is performed to obtain the same shaft shape with a diameter of 15.4 mm and a length of 120 mm, and then to 860 ° C. After heating, oil quenching was performed, and after tempering at 200 ° C., the amount of bending was measured with a dial gauge. The above manufacturing method is a conventional manufacturing method for high-strength shaft parts made of JIS medium carbon steel for machine structures.
Table 7 shows the test results.
[0053]
[Table 7]
Figure 0004328924
[0054]
From Table 7, when steel p, steel q and steel r, which are steels corresponding to JIS standards S40C, S50C and S58C, are manufactured by the method of the comparative example, that is, when manufactured by conventional tempering treatment It is clear that the bending amount of the final part is small, whereas the bending amount of the final part is small, and therefore, the high-strength shaft part can be manufactured by omitting the distortion correction work.
[0055]
【The invention's effect】
According to the method of the present invention, a high-strength shaft part having a shaft portion hardness of 95 or more in Rockwell B hardness is manufactured by a conventional method using JIS carbon steel for mechanical structure having an equivalent C content. An equivalent situation can be ensured by a manufacturing method in which the spheroidizing annealing after hot rolling, the tempering treatment of quenching and tempering, and the correction of distortion caused by the tempering treatment are omitted, and the practical value is extremely high.

Claims (1)

質量%で、C:0.40〜0.60%、Mn:0.10〜0.40%、Nb:0.005〜0.05%、Al:0.015〜0.10%、B:0.0005〜0.005%、Si:0〜0.40%、Ti:0.005〜0.05%を含有し、残部はFe及び不純物からなり、不純物中のPは0.015%以下、Sは0.015%以下、Cuは0.10%以下、Niは0.10%以下、Crは0.15%以下、Moは0.10%以下、Nは0.0050%以下、O(酸素)は0.005%以下の化学組成を有する鋼片を、1000〜1250℃に加熱して、圧延仕上げ温度が1000〜800℃となるように熱間圧延し、熱間圧延終了後は少なくとも500℃までを0.5〜5℃/秒の冷却速度で冷却し、次いで、総減面率が25〜50%となる伸線加工を施し、更に、冷間加工して所定の形状に成形し、その後高周波焼入れすることを特徴とする高強度軸部品の製造方法。In mass%, C: 0.40 to 0.60%, Mn: 0.10 to 0.40 %, Nb: 0.005 to 0.05%, Al: 0.015 to 0.10%, B: 0.0005 to 0.005%, Si: 0 to 0.40%, Ti: 0.005 to 0.05%, the balance is made of Fe and impurities, and P in the impurities is 0.015% or less , S is 0.015% or less, Cu is 0.10% or less, Ni is 0.10% or less, Cr is 0.15% or less, Mo is 0.10% or less, N is 0.0050% or less, O (Oxygen) is a steel slab having a chemical composition of 0.005% or less, heated to 1000 to 1250 ° C, hot-rolled so that the rolling finish temperature is 1000 to 800 ° C, and after hot rolling is completed. Cool to at least 500 ° C. at a cooling rate of 0.5 to 5 ° C./second, and then the total area reduction is 25 to 50%. A method of manufacturing a high-strength shaft component, characterized by performing a wire drawing process, further cold-working to form a predetermined shape, and then induction-quenching.
JP2000005074A 2000-01-13 2000-01-13 Manufacturing method of high-strength shaft parts Expired - Fee Related JP4328924B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000005074A JP4328924B2 (en) 2000-01-13 2000-01-13 Manufacturing method of high-strength shaft parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000005074A JP4328924B2 (en) 2000-01-13 2000-01-13 Manufacturing method of high-strength shaft parts

Publications (2)

Publication Number Publication Date
JP2001192731A JP2001192731A (en) 2001-07-17
JP4328924B2 true JP4328924B2 (en) 2009-09-09

Family

ID=18533758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000005074A Expired - Fee Related JP4328924B2 (en) 2000-01-13 2000-01-13 Manufacturing method of high-strength shaft parts

Country Status (1)

Country Link
JP (1) JP4328924B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3888288B2 (en) * 2002-11-15 2007-02-28 住友金属工業株式会社 Steel material to be used after deformed drawing and induction hardening, and method of manufacturing steel member using the same
JP4375971B2 (en) * 2003-01-23 2009-12-02 大同特殊鋼株式会社 Steel for high-strength pinion shaft
JP4320589B2 (en) * 2003-12-03 2009-08-26 大同特殊鋼株式会社 Mechanical structure shaft parts and manufacturing method thereof
JP2006111911A (en) * 2004-10-13 2006-04-27 Kobe Steel Ltd High-strength intermediate shaft for constant velocity universal joint
JP4193998B1 (en) * 2007-06-28 2008-12-10 株式会社神戸製鋼所 Machine structural steel excellent in machinability and manufacturing method thereof
JP5368885B2 (en) * 2009-06-05 2013-12-18 株式会社神戸製鋼所 Machine structural steel with excellent hot workability and machinability
US9200357B2 (en) 2009-10-02 2015-12-01 Kobe Steel, Ltd. Steel for machine structural use, manufacturing method for same, case hardened steel component, and manufacturing method for same
JP5509869B2 (en) * 2010-01-21 2014-06-04 日本精工株式会社 Manufacturing method of rack and pinion type steering device
CN103643150B (en) * 2013-12-19 2016-01-20 马钢(集团)控股有限公司 Yield strength 650MPa level large gauge is containing niobium Steel Rod hot rolled circular steel and thermal treatment process thereof
KR102047403B1 (en) 2017-12-26 2019-11-22 주식회사 포스코 Steel wire rod for cold forging, processed good using the same, and methods for manufacturing thereof

Also Published As

Publication number Publication date
JP2001192731A (en) 2001-07-17

Similar Documents

Publication Publication Date Title
JP5332646B2 (en) Manufacturing method of carburizing steel with excellent cold forgeability
JP4385019B2 (en) Manufacturing method for steel nitrocarburized machine parts
WO2012073485A1 (en) Carburizing steel having excellent cold forgeability, and production method thereof
JP4464864B2 (en) Case-hardening steel with excellent grain coarsening resistance and cold workability that can be omitted for soft annealing.
JP4632931B2 (en) Induction hardening steel excellent in cold workability and its manufacturing method
JP5655366B2 (en) Bainite steel
JP4464862B2 (en) Case-hardening steel with excellent grain coarsening resistance and cold workability that can be omitted for soft annealing.
US8034199B2 (en) Case-hardening steel excellent in cold forgeability and low carburization distortion property
JP4328924B2 (en) Manufacturing method of high-strength shaft parts
JP2015166495A (en) Case hardening steel excellent in cold forgeability and crystal grain coarsening suppression performance
JP4448047B2 (en) A steel for skin hardening that has excellent grain coarsening resistance and cold workability, and can omit softening annealing.
JP3738003B2 (en) Steel for case hardening excellent in cold workability and properties of preventing coarse grains during carburizing and method for producing the same
JP2004027334A (en) Steel for induction tempering and method of producing the same
JP6477904B2 (en) Crankshaft rough profile, nitrided crankshaft, and method of manufacturing the same
JP3842888B2 (en) Method of manufacturing steel for induction hardening that combines cold workability and high strength properties
JP4464861B2 (en) Case hardening steel with excellent grain coarsening resistance and cold workability
JP3677972B2 (en) Method for producing steel material for cold forging containing boron
JP4488228B2 (en) Induction hardening steel
JP6390685B2 (en) Non-tempered steel and method for producing the same
JP2768062B2 (en) Manufacturing method of high strength tough steel
JP4450217B2 (en) Non-tempered steel for soft nitriding
JP3419333B2 (en) Cold work steel excellent in induction hardenability, component for machine structure, and method of manufacturing the same
JPH09202921A (en) Production of wire for cold forging
JP2006265703A (en) Steel for case hardening having excellent crystal grain coarsening resistance and cold workability and method for producing the same
JPH07316742A (en) Production of high strength martensitic stainless steel excellent in rusting resistance and cold formed product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060817

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080908

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081008

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090520

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090602

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130626

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130626

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130626

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees