JP3758228B2 - クラス分類適応処理における学習方法および学習装置 - Google Patents

クラス分類適応処理における学習方法および学習装置 Download PDF

Info

Publication number
JP3758228B2
JP3758228B2 JP06912696A JP6912696A JP3758228B2 JP 3758228 B2 JP3758228 B2 JP 3758228B2 JP 06912696 A JP06912696 A JP 06912696A JP 6912696 A JP6912696 A JP 6912696A JP 3758228 B2 JP3758228 B2 JP 3758228B2
Authority
JP
Japan
Prior art keywords
image signal
class classification
learning
class
luminance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06912696A
Other languages
English (en)
Other versions
JPH09237345A (ja
Inventor
哲二郎 近藤
秀雄 中屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP06912696A priority Critical patent/JP3758228B2/ja
Publication of JPH09237345A publication Critical patent/JPH09237345A/ja
Application granted granted Critical
Publication of JP3758228B2 publication Critical patent/JP3758228B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Image Analysis (AREA)
  • Picture Signal Circuits (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、画像信号の輝度値をクラス分類適応処理を用いて補正するようにした輝度補正装置に記憶される最適な係数データを獲得するためのクラス分類適応処理における学習方法および学習装置に関する。
【0002】
【従来の技術】
通常、輝度補正装置において、輝度補正は、画面内の輝度値の積分値(全受光量に相当する)を求め、これに応じてアンプのゲインを変化させることで輝度補正を行っていた。従って、空間内で見るとどの画素にも一定のゲインが掛かっており、暗い部分のみを明るくしたり、明るい部分のみを暗くしたり、という細かい補正を行うことができなかった。
【0003】
【発明が解決しようとする課題】
そこで、クラス分類適応処理を導入して輝度補正の改善を図ることを提案した(特願平7−328358号参照)。しかしながら、輝度補正のための係数学習において、種々の明るさの画像、種々の被写体の画像等を用いているため、膨大なデータ量を扱う必要があった。その結果、係数データの習が非常に繁雑でしかも時間がかかるという問題があった。また、輝度補正においてノイズ等の影響でクラスの連続性が補償できないために、輝度補正に不連続が生じたりすることがあった。
【0004】
従って、この発明の目的は、輝度分布のパターン分類に応じた輝度補正と、空間内のパターン分類および輝度値の平均値に応じた部分的な輝度補正とを行うことによりきめの細かい輝度補正を行うことができる輝度補正装置に記憶される最適な係数データを獲得するためのクラス分類適応処理における学習方法および学習装置を提供することにある。
【0005】
【課題を解決するための手段】
請求項1に記載の発明は、入力画像信号の複数の画素と演算されることによって、入力画像信号の輝度を補正するために使用される係数を予め学習によりクラス毎に求めるようにしたクラス分類適応処理における学習方法において、入力画像信号を適当な領域に分割して領域内の輝度値に基づくパターンを用いて、領域毎の第1のクラス分類情報を生成し、入力画像信号の注目画素に関するクラス分類情報として、少なくとも、注目画素が含まれる領域第1のクラス分類情報を縮退させた第2のクラス分類情報を生成し、照明を暗から明または明から暗に徐々に変化させて撮影した複数の画像を学習用の画像信号として使用し、照明を徐々に変化させて撮影された複数の画像の中から中央付近で撮影された画像信号を教師用の画像信号として選択し、教師用の画像信号以外の画像信号を補正対象用の画像信号として使用し、教師用の画像信号と複数の補正対象用の画像信号とを第2のクラス分類情報に基づきクラス毎に分類し、クラス毎に輝度を補正するための係数を学習することを特徴とするクラス分類適応処理における学習方法である。
そして、請求項11に記載の発明は、入力画像信号の複数の画素と演算されることによって、入力画像信号の輝度を補正するために使用される係数を予め学習によりクラス毎に求めるようにしたクラス分類適応処理における学習装置において、入力画像信号を適当な領域に分割して領域内の輝度値に基づくパターンを用いて、領域毎の第1のクラス分類情報を生成する第1のクラス分類情報生成手段と、入力画像信号の注目画素に関するクラス分類情報として、少なくとも、注目画素が含まれる領域第1のクラス分類情報を縮退させた第2のクラス分類情報を生成する第2のクラス分類情報生成手段と、照明を暗から明または明から暗に徐々に変化させて撮影した複数の画像を学習用の画像信号として使用し、照明を徐々に変化させて撮影された複数の画像の中から中央付近で撮影された画像信号を教師用の画像信号として選択する選択手段と、教師用の画像信号以外の画像信号を補正対象用の画像信号として使用し教師用の画像信号と複数の補正対象用の画像信号とを第2のクラス分類情報に基づきクラス毎に分類するクラス分類手段と、クラス毎に輝度を補正するための係数を学習する学習手段とを有することを特徴とするクラス分類適応処理における学習装置である。
【0006】
1フィールドまた1フレーム内の輝度値の平均値および標準偏差に対して量子化を行うことにより、nビットのコードが発生し、注目画素の周辺の空間内の複数の画素、すなわちブロック化された画素に対してADRC符号化(適応的ダイナミックレンジ符号化)を行うことにより、mビットのコードが発生し、ブロック化された画素の輝度値の平均値をシフトすることによって、p(<8)ビットのコードが発生し、縮退ROMによって、(n+m+p)ビットからqビットに減少させたクラスコードが発生し、このクラスコードに応じた係数データが読み出され、その係数データを用いた線形1次結合式によって、補正された輝度値が生成される。この係数データを獲得する学習において、教師用の画像信号として照明の強度のみ変化させた60フレーム程度のフレームの中から最適と思われるフレームを使用し、この教師用の画像信号以外の画像信号を補正対象の画像信号とすることにより学習を行い、最適な係数データを獲得することができる。
【0007】
【発明の実施の形態】
以下、この発明の一実施例について図面を参照して説明する。この発明の理解を容易とするため、先に本願発明者の提案にかかる輝度補正装置のいくつかの例について説明する。この発明が適用できる輝度補正装置の第1の例を図1に示す。1で示す入力端子から供給される画像信号の内、輝度信号YがA/D変換器2によってアナログ信号からディジタル信号に変換される。このA/D変換器2では、例えば13.5MHzのクロックでサンプリングが行われた場合、画像のサイズは、1フレームあたり、横720画素×縦480ライン程度となる。ディジタル信号に変換された輝度信号は、A/D変換器2から平均値/標準偏差回路3および遅延回路5へ供給される。
【0008】
平均値/標準偏差回路3では、後述するように供給された輝度値の例えば1フィールドまたは1フレーム当りの平均値および標準偏差が求められる。平均値/標準偏差回路3において、輝度値毎の度数分布を求めるためのテーブルを持ち、1フィールド期間または1フレーム期間に乗算した度数分布から、図2に示すように輝度の平均値が算出されると共に、標準偏差も算出される。また、式(1)には、輝度の平均値を算出する計算式を示し、式(2)には、標準偏差を算出する計算式を示す。
【0009】
平均値=Σ(輝度値×度数)/全度数 (1)
標準偏差=√(Σ(輝度値−平均値)2 ×度数)/全度数) (2)
ただし、√( )は、( )内の演算結果を平方根とする。
【0010】
量子化回路4では、算出された平均値および標準偏差がそれぞれaビット、bビットで量子化されて、トータルnビット(n=a+b)のコードが発生される。このnビットのコードが量子化回路4から縮退ROM8へ供給される。さらに、このnビットのコードは、いわゆる輝度分布をパターン化したもので、これを見ることで輝度分布が暗い方か、明るい方かに偏っているかどうか、また、輝度分布が平坦か急峻かを判定することができる。
【0011】
一方、遅延回路5では、nビットのコードが生成されるまでの時間(1フィールドまたは1フレーム+α)だけ、遅延が行われ、その出力は、ブロック化回路6および遅延回路9へ供給される。ブロック化回路6では、注目画素の周辺の空間内の複数の画素が選択され、ブロック化される。そのブロック化された画素は、平均化回路7へ供給される。平均化回路7では、注目画素付近の輝度の平均値が算出され、算出された平均値は、シフトされ、p(<8)ビットに量子化され、縮退ROM8へ供給される。
【0012】
このように、ブロック化された各画素の輝度の平均値が算出され、すなわち輝度レベルをクラス分類の1つとすることで、レベル方向での補正の仕方に変化を持たせることができる。例えば、明るい部分や暗い部分のみを補正したり、γ特性を考慮した補正を行うことが可能となる。また、輝度レベルの平均化による作用は、輝度補正が過敏に利くのを防止する役割も果たす。
【0013】
以上の説明で、2種類のクラス分類コードが生成されたが、これを単純に組み合わると分類数が膨大になり、後述する係数ROMの容量が膨大になる。そこで量子化回路4からのnビットおよび平均化回路7からのpビットは、縮退ROM8へ供給され、縮退ROM8において、供給された各ビット数を縮退させる。具体的には、縮退ROM8では、クラスを縮退させるために、(n+p)ビットからqビットに減少させたクラスコード(インデックス)が発生される。
【0014】
なお、縮退の方法について、ここでは詳細を述べないが、(n+p)ビットで学習した全クラスに対応する係数組から、ベクトル量子化的手法として、係数間ノルムの小さいものをまとめて縮退させる方法などを使用するものとする。すなわち、2つの係数組の間で、対応する係数の距離(係数間ノルム)を求め、これに基づいて、係数の組をまとめる。
【0015】
このように、縮退ROM8から最終的にqビットのクラスコードが発生し、そのqビットのクラスコードは、係数ROM111 〜11N へ供給される。係数ROM111 〜11N では、供給されたクラスコードでアドレッシングされ、係数データが読み出される。読み出された係数データは、それぞれ乗算器121 〜12N へ供給される。
【0016】
遅延合わせが行われる遅延回路9の出力がブロック化回路10へ供給され、そのブロック化回路10では、注目画素の周辺の複数の画素がブロック化される。ブロック化された各画素値は、乗算器111 〜11N へ供給される。乗算器121 〜12N では、係数ROM111 〜11N からの係数データと、ブロック化された各画素値が乗算され、その乗算出力は、加算器13へ供給される。加算器13では、乗算器121 〜12N からの乗算出力が加算される。
【0017】
すなわち、乗算器121 〜12N および加算器13によって、積和演算することで、輝度補正値の予測が行われる。この予測値は、D/A変換回路14において、D/A変換され、補正後の輝度値Y´として出力端子15から取り出される。
【0018】
ここで、平均値/標準偏差回路3の一例を図3に示し説明する。入力端子21から輝度値が供給される。供給された輝度値は、輝度度数分布テーブル22へ供給され、輝度度数分布テーブル22において、例えば1フィールドまたは1フレーム内の輝度レベルの度数分布のテーブルが生成される。生成されたテーブルに基づいて、平均値算出回路23では、平均値が式(1)により算出され、算出された平均値は、標準偏差算出回路24へ供給されると共に、出力端子25から取り出される。標準偏差算出回路24では、度数分布のテーブルと平均値から標準偏差が式(2)により算出され、算出された標準偏差は、出力端子26から取り出される。取り出された標準偏差が小さいときは、度数分布の幅は狭く、標準偏差が大きいときは、度数分布の幅は広くなる。
【0019】
次に、この発明が適用できる輝度補正装置の第2の例を図4に示す。入力端子1から供給される画像信号の内、輝度信号YがA/D変換器2によってアナログ信号からディジタル信号に変換される。ディジタル信号に変換された輝度信号は、A/D変換器2から平均値/標準偏差回路3および遅延回路5へ供給される。平均値/標準偏差回路3では、供給された輝度値の例えば1フィールドまたは1フレーム当りの平均値および標準偏差が式(1)および式(2)を用いて求められる。求められた平均値および標準偏差は、平均値/標準偏差回路3から量子化回路4へ供給される。量子化回路4では、算出された平均値および標準偏差がそれぞれaビット、bビットで量子化されて、トータルnビット(n=a+b)のコードが発生される。このnビットのコードが量子化回路4から縮退ROM8へ供給される。
【0020】
一方、遅延回路5では、nビットのコードが生成されるまでの時間(1フィールドまたは1フレーム+α)だけ、遅延が行われ、その出力は、ブロック化回路6および31、さらに遅延回路9へ供給される。ブロック化回路31では、注目画素の周辺の空間内の複数の画素が選択され、ブロック化される。そのブロック化された画素は、ADRC回路32へ供給される。ADRC回路32では、後述するようにブロック化された画素から最大値および最小値が選択され、各画素が再量子化されmビットのコードが発生され、縮退ROM8へ供給される。このコードは、いわゆる空間の輝度の変化の様子をパターン化したものである。このコードによるクラス分類は、輝度補正そのものより、S/N比の改善、解像度の改善等に効果をもたらす。
【0021】
ブロック化回路6において、補正しようとする注目画素の周辺の空間内の複数の画素が選択され、ブロック化される。このブロック化回路6において実行されるブロック化と、ブロック化回路31において実行されるブロック化とは、異なっても良い。すなわち、ブロック化回路31において選択される画素と、ブロック化回路6において選択される画素とは異なっても良い。ブロック化された画素は、ブロック化回路6から平均化回路7へ供給される。平均化回路7では、注目画素付近の輝度の平均値が算出され、算出された平均値は、シフトされ、p(<8)ビットに量子化され、縮退ROM8へ供給される。
【0022】
以上の説明で、3種類のクラス分類コードが生成されたが、上述したように、これを単純に組み合わると分類数が膨大になり、後述する係数ROMの容量が膨大になる。そこで量子化回路4からのnビット、ADRC回路32からのmビットおよび平均化回路7からのpビットは、縮退ROM8へ供給され、縮退ROM8において、供給された各ビット数を縮退させる。具体的には、縮退ROM8では、クラスを縮退させるために、(n+m+p)ビットからqビットに減少させたクラスコード(インデックス)が発生される。
【0023】
以後、上述した図1に示される輝度補正装置と同様に、クラスコードに対応した係数データが係数ROM111 〜11N から読み出される。読み出された係数データは、乗算器121 〜12N および加算器13によって、ブロック化された各画素値との積和演算がなされ、輝度補正値の予測が行われる。この予測値は、D/A変換回路14において、D/A変換され、補正後の輝度値Y´として、出力端子15から取り出される。
【0024】
ここで、ADRC回路32の構成の一例を図5に示し説明する。入力端子41からブロック化されたデータが供給される。供給されたデータは、最大値検出回路42、最小値検出回路43および遅延回路45へ供給される。最大値検出回路42において、ブロック内の画素値の最大となる値が検出され、最小値検出回路43において、ブロック内の画素値の最小となる値が検出される。減算器44では、最大値から最小値が減算され、そのブロックのダイナミックレンジDRが算出される。算出されたダイナミックレンジDRは、適応再量子化回路47へ供給される。
【0025】
遅延回路45では、最大値検出回路42および最小値検出回路43がそれぞれ検出にかかる時間遅延が行われ、1画素ずつ出力される。減算器46では、ブロック化された各画素から最小値が減算され、その減算値は、適応再量子化回路47へ供給される。適応再量子化回路47では、ダイナミックレンジDRに応じた所定の量子化ステップ幅を用いて、減算値の量子化を画素毎に行う。並列化回路48では、量子化された画素がブロック単位で並列化され、出力端子49からコード化データとして出力される。
【0026】
次に、この発明が適用できる輝度補正装置の第3の例を図6に示す。入力端子1からの画像信号の内、輝度信号YがA/D変換器2によってアナログ信号からディジタル信号に変換される。ディジタル信号に変換された輝度信号は、A/D変換器2から変換ROM34および遅延回路5へ供給される。変換ROM34では、供給された輝度値と領域の対応付けが行われる。具体的には、8ビット(0〜255)からなる輝度値が入力され、この輝度値をある複数の領域、例えばs個の領域に分ける働きが変換ROM34では行われる。また、この変換ROM34によって分けられた複数の領域毎に、領域別輝度分布回路35では、例えば1フィールドまたは1フレーム内の度数の積算が行われる。その積算値は、ADRC回路36へ供給される。ADRC回路36では、上述したように領域毎に、例えばaビットの量子化が行われ、トータルnビット(n=s×a)のコードが発生する。このnビットのコードは、ADRC回路36から縮退ROM8へ供給される。
【0027】
ここで、変換ROM34、領域別輝度分布回路35およびADRC回路36の動作を図7を用いて説明する。図7Aに示すように、例えば1フィールドまたは1フレーム内の輝度値の度数分布を計数しようとする場合、本来ならば256レベル毎の度数分布を計数する。しかしながら、図7Bに示すように、輝度レベルを、例えば適当なしきい値でもってs個の領域に分割し、その領域番号と入力輝度値を対応付けるROMを挿入することで任意の領域分けを行う。この領域分けは、単純に均等分割するか、不均等分割するか、間引くかあるいは領域のオーバーラップを認めるか等、種々のバリエーションを試すことができる。
【0028】
図7Cは、ADRC回路36が1ビットのADRCを行い、このADRC回路36が6ビットのコードを出力する一例である。このコードは、いわゆる輝度の度数分布をパターン化したもので、これを見ることで輝度分布が暗い方か、明るい方かに偏っているかどうかを判定することができる。以後、上述の図4と同様にADRC回路32からのmビットおよび平均値回路7からのpビットが縮退ROM8に供給される。
【0029】
以上の説明のように、ADRC回路36からのnビット、ADRC回路32からのmビットおよび平均値回路7からのpビットが発生する。この3種類のクラス分類コードが生成されたが、上述したように、これを単純に組み合わると分類数が膨大になり、後述する係数ROMの容量が膨大になる。そこで縮退ROM8において、供給された各ビット数を縮退させる。具体的には、縮退ROM8では、クラスを縮退させるために、(n+m+p)ビットからqビットに減少させたクラスコード(インデックス)が発生される。
【0030】
上述した図1の輝度補正装置と同様に、クラスコードに対応した係数データが係数ROM111 〜11N から読み出される。読み出された係数データは、乗算器121 〜12N および加算器13によって、ブロック化された各画素値との積和演算がなされ、輝度補正値の予測が行われる。この予測値は、D/A変換回路14において、D/A変換され、補正後の輝度値Y´として、出力端子15から取り出される。
【0031】
次に、図1に示す輝度補正装置の第1の例に適用される係数データの学習について図8を用いて説明する。入力端子1から供給された輝度信号Yは、A/D変換回路2へ供給され、A/D変換回路2では、例えば13.5MHzでサンプリングされ、平均値/標準偏差算出回路3および遅延回路5へ出力される。平均値/標準偏差算出回路3では、上述したように供給された輝度値の例えば1フィールドまたは1フレーム当りの平均値および標準偏差が式(1)および式(2)を用いて求められる。
【0032】
量子化回路4では、算出された平均値および標準偏差に対してそれぞれaビット、bビットで量子化されて、トータルnビット(n=a+b)のコードを発生する。このnビットのコードは、量子化回路4から縮退ROM8へ供給される。遅延回路5では、nビットのコードが生成されるまでの時間(1フィールドまたは1フレーム+α)だけ、遅延が行われ、その出力は、ブロック化回路6および遅延回路9へ供給される。ブロック化回路6では、注目画素の周辺の空間内の複数の画素が選択され、ブロック化される。そのブロック化された画素は、平均化回路7へ供給される。平均化回路9では、注目画素付近の輝度の平均値が算出され、算出された平均値は、シフトされ、p(<8)ビットに量子化され、縮退ROM8へ供給される。
【0033】
縮退ROM8では、上述するように、クラスを縮退させるために、(n+p)ビットからqビットに減少させたクラスコード(インデックス)が発生される。このように、縮退ROM8から最終的にqビットのクラスコードが発生し、そのqビットのクラスコードは、学習回路53へ供給される。
【0034】
遅延合わせが行われる遅延回路9の出力がブロック化回路10へ供給され、そのブロック化回路10では、注目画素の周辺の複数の画素がブロック化される。ブロック化された各画素値は、学習回路53へ供給される。
【0035】
そして、入力端子51から教師用の画像信号の対応する画素の輝度信号Yが入力される。入力された教師用の輝度信号Yは、A/D変換回路52において、アナログ信号からディジタル信号へ変換され、学習回路53に供給される。学習回路53では、nタップの線形一時結合モデルを形成し、その各係数データを学習回路53で算出する。算出された各係数データは、出力端子54から取り出され、係数ROMへ格納される。また、学習回路53は、後述する最小自乗法にてクラス毎に係数データを学習するものである。学習により得られた係数データは、出力端子54を介して出力され、ROMなどの記憶媒体にクラス毎に格納される。また、学習回路53は、以下に述べる最小自乗法にてクラス毎に係数データ学習するものである。
【0036】
学習の方法として、多数の補正対象用の入力信号の画素の値と教師用の画像信号の画素の値との関係を求める最小自乗法を採用した。まず、上述した値の間に線形1次結合の関係があると仮定し、以下に線形一次結合モデルを示す。
【0037】
線形一次結合モデル:(観測方程式)
XW=Y (3)
【数1】
Figure 0003758228
【0038】
最小自乗法による解法:(残差方程式)
【数2】
Figure 0003758228
【0039】
式(5)から、各wi の最確値を見いだすには、
【数3】
Figure 0003758228
を最小にする条件、すなわち
【0040】
【数4】
Figure 0003758228
なる、N個の条件を入れてこれを満足するw1 、w2 、・・・、wN を見いだせばよい。式(5)より、
【0041】
【数5】
Figure 0003758228
となり、式(6)条件をi=1,2,・・・,Nについて立てればそれぞれ、
【0042】
【数6】
Figure 0003758228
が得られる。ここで、式(5)および式(8)から次式の正規方程式が得られる。
【0043】
【数7】
Figure 0003758228
これは、ちょうど未知数の数N個だけある連立方程式であるから、これより最確値たる各wi を求めることができる。
【0044】
正確には、式(9)でwi にかかる
【数8】
Figure 0003758228
のマトリクスが正則であれば解くことができる。(ただし、k=1,2,・・・,N、l=1,2,・・・,N)実際には、Gauss-Jordanの消去法(掃き出し法)を用いて連立方程式を解くことになる。
【0045】
次に、最小自乗法の演算を行うハードウェアのブロック図を図9に示す。図8の学習のブロック図において、補正対象の画素を中心とするブロックの画素値x1 〜xN と、その画素に対応する教師用の画素値δyが入力されると共に、クラスコード(インデックス)が入力される。最小自乗法の回路は、大きく分けて正規方程式生成回路61とCPU62からなり、その正規方程式生成回路61は、乗算器アレイ63、加算メモリ64およびデコード部65からなる。CPU62は、係数データを求めるため、例えば掃き出し法の演算を行うCPUからなる。乗算器アレイ63には、注目画素位置に対して1組のメモリ(またはレジスタ)が存在し、加算メモリ64には、クラスの数だけ組のメモリ(またはレジスタ)が存在する。また、デコード部65では、供給されるクラスコード(インデックス)がデコードされる。
【0046】
ここで、乗算器アレイ63について、図10を用いて説明する。補正対象の画素を中心としてブロックの画素値と対応する教師用の画素値δyは、正規方程式回路61の乗算器アレイ63において、図10に示すように各要素どうしの乗算が行われ、その結果が加算メモリ64へ供給される。
【0047】
そして、加算メモリ64は、図11に示すように加算器アレイ71およびメモリ(またはレジスタ)アレイ721 〜72N から構成される。加算器アレイ71には、乗算器アレイ63からの結果とメモリ(またはレジスタ)アレイ721 〜72N からの出力が供給される。その加算結果は、加算器アレイ71からメモリ(またはレジスタ)アレイ721 〜72N に出力される。このとき、どのメモリ(またはレジスタ)アレイ721 〜72N が選択されるかは、デコード部65に供給されたクラスコード(インデックス)がデコードされることで一意に決定される。つまり、インデックスによって決定されるクラス毎にメモリ(またはレジスタ)アレイ72が選択される。この選択されたメモリ(またはレジスタ)アレイ72には、積和演算の結果が更新され、記憶される。
【0048】
なお、各々のアレイの位置は、正規方程式(9)のwi にかかる
【数9】
Figure 0003758228
の位置に対応する。正規方程式(9)を見てわかるように右上の項を反転すれば左下と同じものになるため、各アレイは三角形の形状をしている。
【0049】
以上のようにして、ある一定期間の間にクラス毎に積和演算が行われて画素位置毎のさらにクラス毎の正規方程式が生成される。クラス毎の正規方程式の各項の結果は、それぞれのクラスに対応するメモリ(またはレジスタ)アレイに記憶されており、次にそれらのクラス毎の正規方程式の各項が掃き出し法の計算回路に供給される。この計算はCPU62によって行われる。計算された係数データの組は、係数ROMで構成される係数テーブルに書き込まれて使用される。
【0050】
次に、図4に示す輝度補正装置の第2の例に適用される係数データの学習について図12を用いて説明する。入力端子1から供給された輝度信号Yは、A/D変換回路2へ供給され、A/D変換回路2では、例えば13.5MHzでサンプリングされ、平均値/標準偏差算出回路3および遅延回路5へ出力される。平均値/標準偏差算出回路3では、上述したように供給された輝度値の例えば1フィールドまたは1フレーム当りの平均値および標準偏差が式(1)および式(2)を用いて求められる。
【0051】
量子化回路4では、算出された平均値および標準偏差に対してそれぞれaビット、bビットで量子化されて、トータルnビット(n=a+b)のコードを発生する。このnビットのコードは、量子化回路4から縮退ROM8へ供給される。遅延回路5では、nビットのコードが生成されるまでの時間(1フィールドまたは1フレーム+α)だけ、遅延が行われ、その出力は、ブロック化回路6および31、さらに遅延回路5へ供給される。ブロック化回路31では、注目画素の周辺の空間内の複数の画素が選択され、ブロック化される。そのブロック化された画素は、ADRC回路32へ供給される。ADRC回路32では、ブロック化された画素からmビットのコードが発生され、縮退ROM8へ供給される。
【0052】
ブロック化回路6では、注目画素の周辺の空間内の複数の画素が選択され、ブロック化される。上述したように、ブロック化回路31とブロック化回路6とのブロック化とは異なっても良い。平均化回路7では、注目画素付近の輝度の平均値が算出され、算出された平均値は、シフトされ、p(<8)ビットに量子化され、縮退ROM8へ供給される。
【0053】
縮退ROM8では、上述するように、クラスを縮退させるために、(n+m+p)ビットからqビットに減少させたクラスコード(インデックス)が発生される。このように、縮退ROM8から最終的にqビットのクラスコードが発生し、そのqビットのクラスコードは、学習回路53へ供給される。
【0054】
以後、上述した図8に示される輝度補正装置の学習回路と同様に、入力端子51からの教師用の輝度信号Yは、A/D変換回路52において、A/D変換され、学習回路53に供給される。学習回路53では、縮退ROM8からのクラスコード、ブロック化回路10からの注目画素周辺の複数の画素およびA/D変換回路52からの教師用の輝度信号Yから上述した最小自乗法にて、クラス毎の係数データが学習される。学習により獲得された係数データは、出力端子54を介して、ROMなどの記憶媒体にクラス毎に格納される。
【0055】
次に、図6に示す輝度補正装置の第3の例に適用される係数データの学習について図13を用いて説明する。入力端子1から供給された輝度信号Yは、A/D変換回路2へ供給され、A/D変換回路2では、例えば13.5MHzでサンプリングされ、変換ROM34および遅延回路5へ出力される。変換ROM34では、上述したように供給された輝度値がある複数の領域、例えばs個の領域に分けられる。そして、領域別輝度分布回路35では、分けられたs個の領域毎に、例えば1フィールドまたは1フレーム内の度数の乗算が行われる。ADRC回路36では、例えばaビットの量子化が行われ、トータルnビット(n=s×a)のコードが発生する。このnビットのコードは、ADRC回路36から縮退ROM8へ供給される。
【0056】
縮退ROM8では、ADRC回路36からのnビット、さらに上述の図12と同様にADRC回路32からのmビットおよび平均化回路7からのpビットが供給され、上述したように、クラスを縮退させるために、(n+m+p)ビットからqビットに減少させたクラスコード(インデックス)が発生される。このように、縮退ROM8から最終的にqビットのクラスコードが発生し、そのqビットのクラスコードは、学習回路53へ供給される。
【0057】
以後、上述した図8および図12に示される輝度補正装置の学習回路と同様に、入力端子51からの教師用の輝度信号Yは、A/D変換回路52において、A/D変換され、学習回路53に供給される。学習回路53では、縮退ROM8からのクラスコード、ブロック化回路10からの注目画素周辺の複数の画素およびA/D変換回路52からの教師用の輝度信号Yから上述した最小自乗法にて、クラス毎の係数データが学習される。学習により獲得された係数データは、出力端子54を介して、ROMなどの記憶媒体にクラス毎に格納される。
【0058】
そして、この発明は、上述した学習時の処理において、最適な教師用の画像信号と、この教師用の画像信号に対応する補正対象入力信号の画素の値とを用いて最適な係数データを獲得するものである。この学習方法の第1の実施例をより詳細に説明すると、図14に示すように被写体81にあてる照明を、暗から明(または、明から暗)へ手動または自動で連続的に変化させる。具体的には、学習回路の制御に用いられているCUP82によって、電子ボリューム83をコントロールすることにより、ライト84が制御される。このように制御された照明により得られた画像信号がカメラ85によって、撮影される。
【0059】
例えば、暗から明へ自動で連続的に照明を変化させ、あるカットで60フレーム程度の撮影を行った場合、図15に示すように、撮影画像の輝度値が最適であると思われる中央付近のフレーム、すなわち60フレームのほぼ中ほどのフレームを教師用の画像信号として用いる。この教師用の画像信号は、学習対象および補正対象として不感帯を設定する。この最適であると思われるフレームに対して、始めの方のフレームは、ライトレベルが低いため、輝度値が最適と思われるフレームより暗く、後の方のフレームは、ライトレベルが高いため、輝度値が最適と思われるフレームより明るくなっている。この最適と思われるフレーム以外の画像信号を補正対象の画像信号とし、上述した学習回路53により最適な係数データを獲得することができる。
【0060】
また、図16を参照して、この発明による学習方法の第2の実施例を説明する。輝度値が最適であると思われる中央付近のフレームの第1の教師用の画像信号と補正対象の画像信号として注目されるフレームとの間に位置するフレームを第2の教師用の画像信号として設定する。そして、第1の教師用の画像信号は、輝度補正を施す必要がないため、第1の教師用の画像信号を中心として所定幅の不感帯を設定する。この不感帯とは、上述したように、学習対象および補正対象としない画像信号である。しかしながら、第2の教師用の画像信号は、輝度補正が必要な画像信号であるので、不感帯を設定しない。
【0061】
そして、補正対象の画像信号と第2の教師用の画像信号を使用して上述したように学習を行って係数データが獲得される。この獲得された係数データを用いて輝度補正を行い、補正対象の輝度値から第2教師用の画像信号へ補正され、さらに第2教師用の画像信号から第1教師用の画像信号へ補正される。こうして、第1の実施例により獲得された係数データを用いて補正された画像信号と、第2の実施例により獲得された係数データを用いて補正された画像信号とを比較すると、第1の実施例では、学習時の画像信号間の輝度値のゲインが大きいため、ノイズ等の影響によって生じる明るさのふらつきが第2の実施例では、学習時の画像信号間の輝度値のゲインが過大とならないので抑えることができる。
【0062】
次に、係数ROMに記憶される係数データを生成する学習回路の他の実施例を図17に示す。入力端子1から供給された輝度信号Yは、A/D変換回路2へ供給され、A/D変換回路2では、例えば13.5MHzでサンプリングされ、LPF(ローパスフィルタ)56へ供給される。LPF56では、ディジタル化された画像信号に対してフィルタ処理が施される。LPF56の出力信号は、平均値/標準偏差算出回路3および遅延回路5へ出力される。このように、A/D変換回路2の出力信号に対してフィルタ処理を施して、学習対象の画像信号の解像度を教師用の画像信号の解像度に比して意識的に低くすることによって、輝度補正時に輝度補正のみでなく、解像度を上げることができる。
【0063】
以後、上述した図12に示される輝度補正装置の学習回路と同様に量子化回路4からのnビット、ADRC回路32からのmビットおよび平均化回路7からのpビットが縮退ROM8へ供給される。縮退ROM8では、クラスを縮退させるために、(n+m+p)ビットからqビットに減少させたクラスコードが発生される。このクラスコードは、学習回路53へ供給される。
【0064】
そして、入力端子51からの教師用の輝度信号Yは、A/D変換回路52において、A/D変換され、学習回路53に供給される。学習回路53では、縮退ROM8からのクラスコード、ブロック化回路10からの注目画素周辺の複数の画素およびA/D変換回路52からの教師用の輝度信号Yから上述した最小自乗法にて、クラス毎の係数データが学習される。学習により獲得された係数データは、出力端子54を介して、ROMなどの記憶媒体にクラス毎に格納される。
【0065】
この発明は、上述した以外のクラス分類適応処理を使用した構成に使用することも可能である。
【0066】
この実施例では、すべてハードウェアで実現する方法を記載したが、ディジタル化されたデータを計算機に取り込むことでソフトウェアで計算しても良い。
【0067】
また、この実施例では、教師用の画像信号に静止画を使用したが、プロのカメラマンが撮影した画像信号、または照明条件の良い画像信号を使用することも可能である。
【0068】
【発明の効果】
この発明に依れば、輝度分布のパターン分類から全体の輝度補正を行う効果と、空間内のパターン分類および輝度値の平均値から部分的な輝度補正を行う効果を待ち合わせており、よりきめの細かい輝度補正を行うことが可能となる。
【0069】
さらに、この発明に依れば、係数データの学習において、簡単でしかも効率よく学習を行うことができる。また、補正対象となる画像信号に対してフィルタ処理を施した後に学習を行うことで、輝度補正時に輝度補正のみでなく、解像度を上げることも可能となる。
【図面の簡単な説明】
【図1】この発明が適用できる輝度補正装置の第1の例である。
【図2】この発明が適用できる第1の例の説明に用いる一例の度数分布図である。
【図3】この発明が適用された輝度補正装置に用いられている平均値/標準偏差回路の一例である。
【図4】この発明が適用できる輝度補正装置の第2の例である。
【図5】この発明が適用された輝度補正装置に用いられているADRC回路の一例である。
【図6】この発明が適用できる輝度補正装置の第3の例である。
【図7】この発明が適用された輝度補正装置に用いられている領域別輝度分布回路の一例である。
【図8】この発明が適用できる輝度補正装置の第1の例に対応する学習回路の一例である。
【図9】この発明に係る学習回路の一例を説明するためのブロック図である。
【図10】この発明に係る乗算器アレイの説明に用いる一例の略線図である。
【図11】この発明に係る加算メモリの説明に用いる一例の略線図である。
【図12】この発明が適用できる輝度補正装置の第2の例に対応する学習回路の一例である。
【図13】この発明が適用できる輝度補正装置の第3の例に対応する学習回路の一例である。
【図14】この発明を説明するための略線図である。
【図15】この発明の学習方法の第1の実施例を説明するための略線図である。
【図16】この発明の学習方法の第2の実施例を説明するための略線図である。
【図17】この発明の学習回路の他の実施例を示すブロック図である。
【符号の説明】
2、52・・・A/D変換回路、3・・・平均値/標準偏差回路、4・・・量子化回路、5、9・・・遅延回路、6、10・・・ブロック化回路、7・・・平均化回路、8・・・縮退ROM、53・・・学習回路

Claims (20)

  1. 入力画像信号の複数の画素と演算されることによって、上記入力画像信号の輝度を補正するために使用される係数を予め学習によりクラス毎に求めるようにしたクラス分類適応処理における学習方法において、
    上記入力画像信号を適当な領域に分割して上記領域内の輝度値に基づくパターンを用いて、上記領域毎の第1のクラス分類情報を生成し、
    上記入力画像信号の注目画素に関するクラス分類情報として、少なくとも、上記注目画素が含まれる上記領域上記第1のクラス分類情報を縮退させた第2のクラス分類情報を生成し、
    照明を暗から明または明から暗に徐々に変化させて撮影した複数の画像を学習用の画像信号として使用し、
    上記照明を徐々に変化させて撮影された複数の画像の中から中央付近で撮影された画像信号を教師用の画像信号として選択し、
    上記教師用の画像信号以外の画像信号を補正対象用の画像信号として使用し、
    上記教師用の画像信号と上記複数の補正対象用の画像信号とを上記第2のクラス分類情報に基づきクラス毎に分類し、
    上記クラス毎に輝度を補正するための係数を学習することを特徴とするクラス分類適応処理における学習方法。
  2. 入力画像信号の複数の画素と演算されることによって、上記入力画像信号の輝度を補正するために使用される係数を予め学習によりクラス毎に求めるようにしたクラス分類適応処理における学習方法において、
    上記入力画像信号を適当な領域に分割して上記領域内の輝度値を平均化して、上記領域毎の第1のクラス分類情報を生成し、
    上記入力画像信号の注目画素に関するクラス分類情報として、少なくとも、上記注目画素が含まれる上記領域の上記第1のクラス分類情報を縮退させた第2のクラス分類情報を生成し、
    照明を暗から明または明から暗に徐々に変化させて撮影した複数の画像を学習用の画像信号として使用し、
    上記照明を徐々に変化させて撮影された複数の画像の中から中央付近で撮影された画像信号を教師用の画像信号として選択し、
    上記教師用の画像信号以外の画像信号を補正対象用の画像信号として使用し、
    上記教師用の画像信号と上記複数の補正対象用の画像信号とを上記第2のクラス分類情報に基づきクラス毎に分類し、
    上記クラス毎に輝度を補正するための係数を学習することを特徴とするクラス分類適応処理における学習方法。
  3. 入力画像信号の複数の画素と演算されることによって、上記入力画像信号の輝度を補正するために使用される係数を予め学習によりクラス毎に求めるようにしたクラス分類適応処理における学習方法において、
    上記入力画像信号を適当な領域に分割して上記領域内の輝度値に基づくパターンを用いて、上記領域毎の第1のクラス分類情報を生成し、
    上記入力画像信号の輝度分布をパターン化して、第2のクラス分類情報を生成し、
    照明を暗から明または明から暗に徐々に変化させて撮影した複数の画像を学習用の画像信号として使用し、
    上記照明を徐々に変化させて撮影された複数の画像の中から中央付近で撮影された画像信号を教師用の画像信号として選択し、
    上記教師用の画像信号以外の画像信号を補正対象用の画像信号として使用し、
    上記教師用の画像信号と上記複数の補正対象用の画像信号とを少なくとも上記第1および第2のクラス分類情報に基づきクラス毎に分類し、
    上記クラス毎に輝度を補正するための係数を学習することを特徴とするクラス分類適応処理における学習方法。
  4. 請求項1、請求項2または請求項3に記載のクラス分類適応処理における学習方法において、
    上記教師用の画像信号と補正対象用の画像信号との間に位置する画像信号を第2の教師用の画像信号として設定することを特徴とするクラス分類適応処理における学習方法。
  5. 請求項1、請求項2または請求項3に記載のクラス分類適応処理における学習方法において、
    上記教師用の画像信号に近い輝度値の画像信号を学習するための対象並びに輝度を補正するための対象から除外することを特徴とするクラス分類適応処理における学習方法。
  6. 請求項1、請求項2または請求項3に記載のクラス分類適応処理における学習方法において、
    上記入力画像信号に対して低域通過フィルタを施した信号を補正対象用の画像信号として、学習を行うことを特徴とするクラス分類適応処理における学習方法。
  7. 上記領域は、上記注目画素の周辺画素を含む複数個の画素を第1のブロックにブロック化したものであり、
    上記第1のクラス分類情報は、上記第1のブロック毎に空間の輝度変化のパターンで分類を行うことで生成され、
    さらに、上記注目画素の周辺画素を含む複数個の画素を第2のブロックにブロック化し、上記ブロック内の輝度値の平均値に基づき分類を行うことで、上記注目画素に関する第3のクラス分類情報を生成し、
    上記第1及び第3のクラス分類情報を縮退させて、上記第2のクラス分類情報を生成することを特徴とする請求項1に記載のクラス分類適応処理における学習方法。
  8. さらに、上記入力画像信号の輝度分布をパターン化して、上記領域毎の第4のクラス分類情報を生成し、
    上記第1及び第4のクラス分類情報を縮退させて、上記第2のクラス分類情報を生成することを特徴とする請求項1又は請求項2に記載のクラス分類適応処理における学習方法。
  9. さらに、上記注目画素の周辺画素を含む複数個の画素にブロック化し、上記ブロック内の輝度値の平均値に基づき分類を行うことで、第3のクラス分類情報を生成し、
    上記教師用の画像信号と上記複数の補正対象用の画像信号とを上記第1、第2および第3のクラス分類情報に基づきクラス毎に分類することを特徴とする請求項3に記載の学習方法。
  10. 上記輝度分布のパターンとは、上記入力画像信号の1フィールドまたは1フレームの輝度に基づき得られることを特徴とする請求項3または請求項8に記載の学習方法。
  11. 入力画像信号の複数の画素と演算されることによって、上記入力画像信号の輝度を補正するために使用される係数を予め学習によりクラス毎に求めるようにしたクラス分類適応処理における学習装置において、
    上記入力画像信号を適当な領域に分割して上記領域内の輝度値に基づくパターンを用いて、上記領域毎の第1のクラス分類情報を生成する第1のクラス分類情報生成手段と、
    上記入力画像信号の注目画素に関するクラス分類情報として、少なくとも、上記注目画素が含まれる上記領域上記第1のクラス分類情報を縮退させた第2のクラス分類情報を生成する第2のクラス分類情報生成手段と、
    照明を暗から明または明から暗に徐々に変化させて撮影した複数の画像を学習用の画像信号として使用し上記照明を徐々に変化させて撮影された複数の画像の中から中央付近で撮影された画像信号を教師用の画像信号として選択する選択手段と、
    上記教師用の画像信号以外の画像信号を補正対象用の画像信号として使用し上記教師用の画像信号と上記複数の補正対象用の画像信号とを上記第2のクラス分類情報に基づきクラス毎に分類するクラス分類手段と、
    上記クラス毎に輝度を補正するための係数を学習する学習手段とを有することを特徴とするクラス分類適応処理における学習装置。
  12. 入力画像信号の複数の画素と演算されることによって、上記入力画像信号の輝度を補正するために使用される係数を予め学習によりクラス毎に求めるようにしたクラス分類適応処理における学習装置において、
    上記入力画像信号を適当な領域に分割して上記領域内の輝度値を平均化して、上記領域毎の第1のクラス分類情報を生成する第1のクラス分類情報生成手段と、
    上記入力画像信号の注目画素に関するクラス分類情報として、少なくとも、上記注目画素が含まれる上記領域の上記第1のクラス分類情報を縮退させた第2のクラス分類情報を生成する第2のクラス分類情報生成手段と、
    照明を暗から明または明から暗に徐々に変化させて撮影した複数の画像を学習用の画像信号として使用し、上記照明を徐々に変化させて撮影された複数の画像の中から中央付近で撮影された画像信号を教師用の画像信号として選択する選択手段と、
    上記教師用の画像信号以外の画像信号を補正対象用の画像信号として使用し、上記教師用の画像信号と上記複数の補正対象用の画像信号とを上記第2のクラス分類情報に基づきクラス毎に分類するクラス分類手段と、
    上記クラス毎に輝度を補正するための係数を学習する学習手段とを有することを特徴とするクラス分類適応処理における学習装置。
  13. 入力画像信号の複数の画素と演算されることによって、上記入力画像信号の輝度を補正するために使用される係数を予め学習によりクラス毎に求めるようにしたクラス分類適応処理における学習装置において、
    上記入力画像信号を適当な領域に分割して上記領域内の輝度値に基づくパターンを用いて、上記領域毎の第1のクラス分類情報を生成する第1のクラス分類情報生成手段と、
    上記入力画像信号の輝度分布をパターン化して、第2のクラス分類情報を生成する第2のクラス分類情報生成手段と、
    照明を暗から明または明から暗に徐々に変化させて撮影した複数の画像を学習用の画像信号として使用し、
    上記照明を徐々に変化させて撮影された複数の画像の中から中央付近で撮影された画像信号を教師用の画像信号として選択する選択手段と、
    上記教師用の画像信号以外の画像信号を補正対象用の画像信号として使用し、
    上記教師用の画像信号と上記複数の補正対象用の画像信号とを少なくとも上記第1および第2のクラス分類情報に基づきクラス毎に分類するクラス分類手段と、
    上記クラス毎に輝度を補正するための係数を学習する学習手段とを特徴とするクラス分類適応処理における学習装置。
  14. 請求項11、請求項12、または請求項13に記載のクラス分類適応処理における学習装置において、
    上記教師用の画像信号と補正対象用の画像信号との間に位置する画像信号を第2の教師用の画像信号として設定することを特徴とするクラス分類適応処理における学習装置。
  15. 請求項11、請求項12、または請求項13に記載のクラス分類適応処理における学習装置において、
    上記教師用の画像信号に近い輝度値の画像信号を学習するための対象並びに輝度を補正するための対象から除外することを特徴とするクラス分類適応処理における学習装置。
  16. 請求項11、請求項12、または請求項13に記載のクラス分類適応処理における学習装置において、
    上記入力画像信号に対して低域通過フィルタを施した信号を補正対象用の画像信号として、学習を行うことを特徴とするクラス分類適応処理における学習装置。
  17. 上記領域は、上記注目画素の周辺画素を含む複数個の画素を第1のブロックにブロック化したものであり、
    上記第1のクラス分類情報は、上記第1のブロック毎に空間の輝度変化のパターンで分類を行うことで生成され、
    さらに、上記注目画素の周辺画素を含む複数個の画素を第2のブロックにブロック化し、上記ブロック内の輝度値の平均値に基づき分類を行うことで、上記注目画素に関する第3のクラス分類情報を生成する第3のクラス分類手段を備え、
    上記第2のクラス分類手段では、上記第1及び第3のクラス分類情報を縮退させて、上記第2のクラス分類情報を生成することを特徴とする請求項11に記載のクラス分類適応処理における学習装置。
  18. さらに、上記入力画像信号の輝度分布をパターン化して、上記領域毎の第4のクラス分類情報を生成する第4のクラス分類手段を備え、
    上記第2のクラス分類手段では、上記第1及び第4のクラス分類情報を縮退させて、上記第2のクラス分類情報を生成することを特徴とする請求項11又は請求項12に記載のクラス分類適応処理における学習装置。
  19. さらに、上記注目画素の周辺画素を含む複数個の画素にブロック化し、上記ブロック内の輝度値の平均値に基づき分類を行うことで、第3のクラス分類情報を生成する第3のクラス分類手段を備え、
    上記教師用の画像信号と上記複数の補正対象用の画像信号とを上記第1、第2および第3のクラス分類情報に基づきクラス毎に分類することを特徴とする請求項13に記載の学習装置。
  20. 上記輝度分布のパターンとは、上記入力画像信号の1フィールドまたは1フレームの輝度に基づき得られることを特徴とする請求項13または請求項18に記載の学習装置。
JP06912696A 1996-02-29 1996-02-29 クラス分類適応処理における学習方法および学習装置 Expired - Fee Related JP3758228B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06912696A JP3758228B2 (ja) 1996-02-29 1996-02-29 クラス分類適応処理における学習方法および学習装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06912696A JP3758228B2 (ja) 1996-02-29 1996-02-29 クラス分類適応処理における学習方法および学習装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005318069A Division JP4062329B2 (ja) 2005-11-01 2005-11-01 信号処理装置および方法

Publications (2)

Publication Number Publication Date
JPH09237345A JPH09237345A (ja) 1997-09-09
JP3758228B2 true JP3758228B2 (ja) 2006-03-22

Family

ID=13393644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06912696A Expired - Fee Related JP3758228B2 (ja) 1996-02-29 1996-02-29 クラス分類適応処理における学習方法および学習装置

Country Status (1)

Country Link
JP (1) JP3758228B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6678405B1 (en) * 1999-06-08 2004-01-13 Sony Corporation Data processing apparatus, data processing method, learning apparatus, learning method, and medium
EP3454557A1 (en) * 2016-05-02 2019-03-13 Sony Corporation Image processing device, and image processing method
CN110115024B (zh) * 2017-02-20 2021-12-07 索尼公司 图像处理装置、图像处理方法和程序
US11985424B2 (en) 2020-03-16 2024-05-14 Sony Semiconductor Solutions Corporation Signal processing device and signal processing method for correcting input signal from sensor

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04271669A (ja) * 1991-02-27 1992-09-28 Matsushita Electric Ind Co Ltd 階調補正装置
EP0529635B1 (en) * 1991-08-30 1998-11-04 Matsushita Electric Industrial Co., Ltd. An image processing apparatus
JPH05122550A (ja) * 1991-10-25 1993-05-18 Matsushita Electric Ind Co Ltd 信号処理装置
US5376962A (en) * 1993-03-31 1994-12-27 Panasonic Technologies, Inc. Neural network video image processor
JPH06348840A (ja) * 1993-06-03 1994-12-22 Konica Corp 画像復元方法
JP3557626B2 (ja) * 1993-08-27 2004-08-25 ソニー株式会社 画像復元装置及び方法
JP3486975B2 (ja) * 1993-08-27 2004-01-13 ソニー株式会社 ノイズ低減装置及び方法
JP3632993B2 (ja) * 1993-08-30 2005-03-30 ソニー株式会社 電子ズーム装置及び電子ズーム方法

Also Published As

Publication number Publication date
JPH09237345A (ja) 1997-09-09

Similar Documents

Publication Publication Date Title
US7570390B2 (en) Image processing device and method
US8654221B2 (en) Image processing device and method, and program
US7551794B2 (en) Method apparatus, and recording medium for smoothing luminance of an image
US6842543B2 (en) Method of improving a digital image having white zones
CN100366052C (zh) 图像处理设备和方法
US8085316B2 (en) Image-processing unit, imaging apparatus, and computer program product
US20080253681A1 (en) Image Processing Method and Computer Software for Image Processing
JPH05225332A (ja) 空間的可変濾波の方法及び装置
US6137541A (en) Image processing method and image processing apparatus
JPH11505357A (ja) ピクセルレベルの明度調整のための装置および方法
JP2014194706A (ja) 画像処理装置、画像処理方法、及び、プログラム
US7595819B2 (en) Signal processing device and signal processing method, program, and recording medium
CN101686321B (zh) 用于减少图像数据中的噪声的方法和***
JPH10214339A (ja) 画像の濾波方法
US7239758B2 (en) Signal processing device for reducing noise of image signal, signal processing program, and signal processing method
US7760264B2 (en) Method of obtaining an image
JP3758228B2 (ja) クラス分類適応処理における学習方法および学習装置
US20120257074A1 (en) Data processing apparatuses, data processing method, program, and camera system
JP3378601B2 (ja) 画像処理装置
JP3360695B2 (ja) 画像データの量子化回路
JP3791029B2 (ja) 画像信号処理装置および方法
JP4062329B2 (ja) 信号処理装置および方法
US7362910B2 (en) Color image characterization, enhancement and balancing process
JP4353294B2 (ja) 情報信号変換装置および方法
JP2004260835A (ja) 画像処理装置、画像処理方法、画像処理制御プログラムを記録した媒体

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051226

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100113

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100113

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110113

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120113

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130113

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees