JP3755021B2 - Growth method of rare earth hexaboride single crystals - Google Patents

Growth method of rare earth hexaboride single crystals Download PDF

Info

Publication number
JP3755021B2
JP3755021B2 JP2000023262A JP2000023262A JP3755021B2 JP 3755021 B2 JP3755021 B2 JP 3755021B2 JP 2000023262 A JP2000023262 A JP 2000023262A JP 2000023262 A JP2000023262 A JP 2000023262A JP 3755021 B2 JP3755021 B2 JP 3755021B2
Authority
JP
Japan
Prior art keywords
rare earth
crystal
boron
earth hexaboride
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000023262A
Other languages
Japanese (ja)
Other versions
JP2001213690A (en
Inventor
茂樹 大谷
俊 相沢
祥行 矢島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2000023262A priority Critical patent/JP3755021B2/en
Publication of JP2001213690A publication Critical patent/JP2001213690A/en
Application granted granted Critical
Publication of JP3755021B2 publication Critical patent/JP3755021B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、フローティング・ゾーン(FZ)法による六ホウ化希土類単結晶の育成法に関する。
【0002】
【従来の技術およびその課題】
六ホウ化ランタンや六ホウ化セリウム単結晶は、現在、寿命の長い高輝度電子放射材料として、走査型電子顕微鏡や電子描画装置などに利用されている。この電子放射材料として用いる場合、純度の高い高品質単結晶が必要である。高純度な希土類六ホウ化物単結晶の育成法としては、育成温度が高く、不純物が蒸発により除去されるFZ法が適している。
【0003】
しかしながら、従来のFZ法による育成では、希土類六ホウ化物を溶融するとホウ素蒸発により希土類元素過剰な融帯組成(通常、B/RE原子比=約5.5)となる。その結果、育成速度を1cm/h以下に下げる必要があった(「A survey on the floating zone crystal growth of the monocarbidesof Iva, Va and Via transition metals 」T.Tanaka, S.OtaniProg. Crystal Growth and Charct. 16(1988)1-18 、16頁)。
【0004】
本発明は、上記従来技術の欠点を解消し、より高速での単結晶育成を可能にするとともに、欠陥の少ない良質な六ホウ化希土類単結晶を得る方法を提供することを目的とするものである。
【0005】
【課題を解決するための手段】
前記課題を解決するため、本発明者らは、従来のFZ法において、育成速度を決めている要因を調べた結果、次のことが判明した。すなわち、希土類六ホウ化物単結晶の育成の際、融帯組成が定比組成(B/RE原子比=6)より希土類元素過剰(通常、B/RE原子比=約5.5)となることが育成速度を決めていることが判明した。
【0006】
そこで、ホウ素を原料供給棒に添加することで、すなわち、REB6 とBよりなる原料供給棒を用いることで、育成中の融帯組成を希土類過剰(すなわち、ホウ素不足)にならないように融帯組成を制御し、ホウ化ランタン単結晶の育成をFZ法により試みた(特開平8−143395号公報、特開平9−169597号公報、「Preparation of LaB6 single crystals from a boron-rich molten zone by the floating zone method」S.Otani, S.Honma, Y.Yajima, Y.Ishizawa, J.Crystal Growth 126(1993)466-470.)。しかしながら、この方法では、融帯直上に半溶融部分が形成され、その上部にREB6 とBの共融組成をもつ傘状のものが形成され、突然溶融する問題が生じ、安定な育成が不可能であった。
【0007】
そこで、ホウ素の代わりにアルカリ土類六ホウ化物AEB6 (AEは、Ca,Sr,Ba、または(Ca,Sr)、(Ca,Ba)、(Sr,Ba)、(Ca,Sr,Ba)固溶体を示す)を添加することで、上記問題を解決した。AEB6は、希土類六ホウ化物と低い温度において共融体を形成せず、融液状態においてホウ素を残しアルカリ土類元素が蒸発するため、融帯中のホウ素成分が増加するためである。その結果、従来最大1cm/h程度であった育成速度が2〜3cm/hの速度においても育成が可能になった。得られた結晶は含有物(インクリュージョン)を含まず、また、亜粒界の少ない良質な単結晶が得られる様になった。これらの知見に基づき、本発明をなしたものである。
【0008】
すなわち、本発明は、フローティング・ゾーン法により、REB6 (REは、La,Ce、または(La,Ce)固溶体を示す)で表される六ホウ化希土類単結晶の育成に際し、AEB6 (AEは、Ca,Sr,Ba、または(Ca,Sr)、(Ca,Ba)、(Sr,Ba)、(Ca,Sr,Ba)固溶体を示す)で表されるアルカリ土類六ホウ化物を希土類六ホウ化物粉末からなる原料供給棒に添加する硼素添加剤として用いて、融液状態においてホウ素を残してアルカリ土類元素が蒸発することにより、融帯中のホウ素成分を増加させ、育成中、融帯中のホウ素含量(B/RE(AE),モル比)を5.9〜8に保持して六ホウ化希土類単結晶を育成することを特徴とする六ホウ化希土類単結晶の育成法である。
【0009】
さらに、本発明は、融帯組成を定比組成に近づけ、育成速度1〜3cm/hで結晶を育成して、結晶中の含有物や気泡を少なくすることを特徴とする上記の六ホウ化希土類単結晶の育成法である。
【0010】
以下に本発明を更に詳細に説明する。本発明において用いられる装置の一例を図1に示す。この装置は、数気圧の不活性ガス雰囲気において結晶育成が可能なようにデザインされた高周波誘導加熱FZ炉である。原料供給棒10の下端の加熱は、ワークコイル4に高周波電流を流すことにより、原料供給棒10に誘導電流を生じさせ、そのジュール熱により行う。このようにして、形成された融帯7に上方より原料供給棒10を送り込み、下方より単結晶6を育成する。
【0011】
本発明による単結晶育成の手順を示す。まず、原料の希土類六ホウ化物粉末(REB6 )とアルカリ土類六ホウ化物(AEB6)粉末をよく混合後、結合剤として少量の樟脳を加え、ラバープレス(2000kg/cm2 )により圧粉棒を作製する。この圧粉棒を真空中または不活性ガス中で千数百℃に加熱し、原料焼結棒を作製する。
【0012】
得られた焼結棒からなる原料供給棒10を上軸2にホルダー3を介してセットし、下軸2’には<100>種結晶(または初期融帯形成用の焼結棒)5をホルダー3’を介してセットする。つぎに、原料供給棒10の下端を加熱により溶融させ、融帯7を形成させ、上軸2と下軸2’をゆっくりと下方に移動させて単結晶6を育成する。 このとき、原料供給棒10の融帯7への供給速度は、原料供給棒の密度が低いので、それを補償して原料供給棒10とほぼ同じ直径をもつ単結晶が育成されるように設定する。雰囲気としては、数気圧のアルゴンまたはヘリウムなどの不活性ガスを用いる。これは、高周波ワークコイル4の部分で発生する放電を防止するためである。
【0013】
融帯組成が希土類元素過剰(B/RE原子比<6)となると、育成速度を下げなければ、結晶中に希土類元素過剰な相(即ち、LaB4 相やCeB4相)が含有物(一般に、数百μm以下の含有物)としてとりこまれ、電子放射材料として使用出来なくなる。従って、希土類六ホウ化物を原料供給棒に用いた従来法の場合、融帯組成はB/RE=5.5付近の組成をもち、育成速度が1cm/h以下に下げていた。
【0014】
また、上記問題の解決法として、ホウ素を過剰に含む原料供給棒を用いることで、融帯組成を定比組成(B/RE原子比=6)に近づけ、結晶を育成する方法が試みられているが、この場合、融帯7直上に半溶融部分8が形成され、その上部にREB6とBの共融組成をもつ傘状のもの9が形成する。これが、育成中ワークコイル4に接触し、それ以後の融帯移動を不可能にすることが起こったり、その傘状の部分は、融点が低いため融帯に溶け込む以前に突然溶融し原料供給棒に吸い込まれ、融液の体積が常に変動し、安定な結晶育成は不可能であった。
【0015】
本発明においては、ホウ素を原料供給棒に加えるのではなく、アルカリ土類六ホウ化物を添加することにより、希土類六ホウ化物と低い温度において共融とならず、しかも、アルカリ土類金属は融帯への溶融直後にホウ素を残し蒸発するため、アルカリ土類六ホウ化物がホウ素供給剤となり、融帯中のホウ素含量を増加させる働きがあることが判明した。
【0016】
アルカリ土類六ホウ化物の添加量と加熱電力の関係を調べた。LaB6 にCaB6 を添加し、育成速度2cm/hにおいて結晶を育成した結果を図2に示す。図中の○は、2cm/hの育成速度において、気泡も含有物も含まない結晶を示す。CaB6の添加により加熱電力が増加し、7〜10モル%添加した付近に加熱電力の極大が存在し、さらに添加量を増加させると加熱電力が減少した。
【0017】
加熱電力が最大になるまでの領域(5モル%以下のCaB6 を添加)において、育成後固化した融帯中にLaB4 相が確認できた。CaB6を5モル%添加した場合、結晶中に含有物が確認され、融帯組成はB/RE(AE)=5.7であった。CaB6 を7mol%添加した場合には、結晶中に含有物も気泡も確認されなかった。融帯組成はB/RE(AE)=5.9であった。
【0018】
さらに、CaB6 を30mol%添加した場合には、結晶中に含有物も気泡も確認されなかった。融帯組成はB/RE(AE)=7.9であった。ホウ素過剰の融帯であるが、ホウ素は原子量が希土類元素(LaやCe)に比較して1桁以上小さく、成長界面での拡散が容易なため、定比組成からのずれは問題とならず、2cm/hの高速育成も可能だったと推測される。40mol%CaB6を添加した場合には、結晶の表面部分に遊離したCaB6 相を確認した。融帯組成はB/RE(AE)=8.9であった。
【0019】
さらに、加熱電力が極大となる10モル%添加した原料供給棒を用い、育成速度と結晶品質の関係を調べた。1cm/h、2cm/h、3cm/hにおいてインクリュージョンや気泡を含有しない結晶が育成された。しかしながら、3cm/h以上の速度では結晶にクラックが生じはじめた。従って、好ましい育成速度としては、2〜3cm/hであった。得られる結晶中のCa含有量は180ppmであった。
【0020】
つぎに、CeB6 結晶の育成においても、CaB6 を添加し、同様の実験を行った。上記LaB6の場合同様、10モル%CaB6 を添加した際、加熱電力が最大になり、さらに添加量を増加させると加熱電力が減少した。また、加熱電力が最大となる組成において、育成速度は2cm/hの速度においても、インクリュージョンや気泡が含有しない良質単結晶を育成した。
【0021】
CaB6 以外の添加物として、SrB6 ,BaB6 を用いた場合について検討した。10原子%の添加により、加熱電力が最大となった。また、2cm/hの速度においても良質なLaB6結晶を得た。従って、ホウ素添加物として、CaB6 ,SrB6 ,BaB6 相互の間に差を見いだせなかった。
【0022】
以上の育成法は、高周波加熱以外の加熱法、例えば、赤外線集中加熱によるFZ法による単結晶の育成に適用することができる。また、アルカリ土類六ホウ化物のホウ素添加剤としての利用は、FZ法による結晶育成だけでなく、溶融法による試料作製に適用することができる。
【0023】
【実施例】
次に、本発明の実施例を示す。
実施例1市販のLaB6 粉末にCaB6 粉末を10モル%添加混合した後、結合剤として樟脳を少量加え、直径12mmのゴム袋に詰め円柱形とした。これに2000kg/cm2のラバープレスによる加圧を行い圧粉体を得た。この圧粉体を真空中、1800℃で加熱し、直径1cm、長さ12cm程度の焼結棒を得た。密度は約55%であった。
【0024】
この焼結棒を原料供給棒として、図1に示すFZ育成炉の上軸にホルダーを介し固定し、下軸にはLaB6焼結棒を固定した。育成炉に5気圧のアルゴンを充填した後、高周波誘導加熱により原料供給棒の下端部とLaB 6 焼結棒の端部を溶かして初期融帯を形成し、2cm/hの速度で3時間に下方に移動させ、全長6cm、直径0.9cmの単結晶を育成した。得られた結晶中のCa不純物量は、180ppmであった。融帯中のCa量は500ppmであり、融帯組成は、B/La=6.6であった。
【0025】
得られた結晶から(100)面を切り出し鏡面研磨の後、エッチングを行い表面観察を行った。その結果、気泡のないこと、また、他相の含有しないことを確認した。
【0026】
【発明の効果】
以上説明したように、本発明によれば、六ホウ化希土類単結晶が従来の育成速度に比較して、2〜3倍の速度において得られる。また、従来法における育成速度においては、より欠陥の少ない良質な結晶が育成される。
【図面の簡単な説明】
【図1】図1は、本発明に用いる単結晶育成装置の一例を示す概略断面図である。
【図2】図2は、Ca添加量と加熱電力の関係を示すグラフである。
【符号の説明】
1 上軸駆動部
1’下軸駆動部
2 上軸
2’下軸
3 ホルダー
3’ホルダー
4ワークコイル
5 種結晶または初期融帯形成用の焼結棒
6 単結晶
7 融帯
8 半溶融部分
9 傘状部分
10 原料供給
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for growing a rare earth hexaboride single crystal by a floating zone (FZ) method.
[0002]
[Prior art and problems]
Lanthanum hexaboride and cerium hexaboride single crystals are currently used in scanning electron microscopes and electron drawing devices as long-lived high-intensity electron-emitting materials. When used as this electron emission material, a high-quality single crystal with high purity is required. As a method for growing a high-purity rare earth hexaboride single crystal, an FZ method in which the growth temperature is high and impurities are removed by evaporation is suitable.
[0003]
However, in the conventional growth by the FZ method, when the rare earth hexaboride is melted, a rare earth element-excess zone composition (usually B / RE atomic ratio = about 5.5) is obtained due to boron evaporation. As a result, it was necessary to reduce the growth rate to 1 cm / h or less ("A survey on the floating zone crystal growth of the monocarbides of Iva, Va and Via transition metals" T. Tanaka, S. OtaniProg. Crystal Growth and Charct. 16 (1988) 1-18, page 16).
[0004]
An object of the present invention is to solve the above-mentioned drawbacks of the prior art and to provide a method for obtaining a high-quality rare-earth hexaboride single crystal with few defects while enabling single crystal growth at a higher speed. is there.
[0005]
[Means for Solving the Problems]
In order to solve the above problems, the present inventors have investigated the factors that determine the growth rate in the conventional FZ method, and as a result, the following has been found. That is, when the rare earth hexaboride single crystal is grown, the band gap composition is more rare earth element (usually B / RE atomic ratio = about 5.5) than the stoichiometric composition (B / RE atomic ratio = 6). Turned out to have decided the speed of breeding.
[0006]
Therefore, by adding boron to the raw material supply rod, that is, by using a raw material supply rod made of REB 6 and B, the band gap composition is kept so as not to cause the rare earth excess (that is, boron shortage) in the growing zone. An attempt was made to grow lanthanum boride single crystals by controlling the composition by the FZ method ( JP-A-8-143395 , JP-A-9-169597, “Peparation of LaB 6 single crystals from a boron-rich molten zone by the floating zone method "S. Otani, S. Honma, Y. Yajima, Y. Ishizawa, J. Crystal Growth 126 (1993) 466-470.). However, in this method, a semi-molten portion is formed immediately above the fusion zone, and an umbrella-like material having the eutectic composition of REB 6 and B is formed on the upper portion thereof, which causes a problem of sudden melting, and stable growth is not possible. It was possible.
[0007]
Therefore, alkaline earth hexaboride AEB 6 (AE is Ca, Sr, Ba, or (Ca, Sr), (Ca, Ba), (Sr, Ba), (Ca, Sr, Ba) instead of boron) The above problem was solved by adding a solid solution). This is because AEB 6 does not form a eutectic with a rare earth hexaboride at a low temperature, and the alkaline earth element evaporates while leaving boron in the melt state, so that the boron component in the melt zone increases. As a result, it was possible to grow even at a growth rate of 2 to 3 cm / h, which was about 1 cm / h at the maximum. The obtained crystals did not contain inclusions (inclusions), and good quality single crystals with few subgrain boundaries were obtained. The present invention has been made based on these findings.
[0008]
That is, according to the present invention, when a rare earth hexaboride single crystal represented by REB 6 (RE represents La, Ce, or (La, Ce) solid solution) is grown by the floating zone method, AEB 6 (AE Is an alkaline earth hexaboride represented by Ca, Sr, Ba or (Ca, Sr), (Ca, Ba), (Sr, Ba), (Ca, Sr, Ba) solid solution). Used as a boron additive to be added to the raw material supply rod made of hexaboride powder, the alkaline earth element evaporates leaving boron in the melt state, increasing the boron component in the melt zone , A method of growing a rare earth hexaboride single crystal characterized by growing a rare earth hexaboride single crystal while maintaining the boron content (B / RE (AE), molar ratio) in the bandage at 5.9-8 It is.
[0009]
Furthermore, the present invention provides the hexaboride described above, characterized in that the melt zone composition is brought close to the stoichiometric composition, the crystal is grown at a growth rate of 1 to 3 cm / h, and the content and bubbles in the crystal are reduced. This is a method for growing rare earth single crystals.
[0010]
The present invention is described in further detail below. An example of an apparatus used in the present invention is shown in FIG. This apparatus is a high frequency induction heating FZ furnace designed to allow crystal growth in an inert gas atmosphere of several atmospheres. The lower end of the raw material supply rod 10 is heated by causing Joule heat to generate an induction current in the raw material supply rod 10 by passing a high-frequency current through the work coil 4. In this way, the raw material supply rod 10 is fed into the formed melt zone 7 from above, and the single crystal 6 is grown from below.
[0011]
The procedure of the single crystal growth by this invention is shown. First, the raw material rare earth hexaboride powder (REB 6 ) and alkaline earth hexaboride (AEB 6 ) powder are mixed well, then a small amount of camphor is added as a binder, and compacted with a rubber press (2000 kg / cm 2 ). Make a stick. The green compact bar is heated to a few hundreds of degrees Celsius in vacuum or in an inert gas to produce a raw material sintered bar.
[0012]
The raw material supply rod 10 made of the obtained sintered rod is set on the upper shaft 2 via the holder 3, and the <100> seed crystal (or sintered rod for forming initial melt zone) 5 is placed on the lower shaft 2 ′. Set through holder 3 '. Next, the lower end of the raw material supply rod 10 is melted by heating to form the melt zone 7, and the upper shaft 2 and the lower shaft 2 'are moved slowly downward to grow the single crystal 6. At this time, the supply speed of the raw material supply rod 10 to the melt zone 7 is set so that a single crystal having substantially the same diameter as the raw material supply rod 10 is grown by compensating the density of the raw material supply rod 10 To do. As the atmosphere, an inert gas such as argon or helium at several atmospheric pressure is used. This is to prevent electric discharge generated in the portion of the high frequency work coil 4.
[0013]
If the band gap composition is rare earth element excess (B / RE atomic ratio <6), the rare earth element excess phase (ie, LaB 4 phase or CeB 4 phase) is contained in the crystal unless the growth rate is lowered Incorporated as a content of several hundred μm or less, and cannot be used as an electron emission material. Therefore, in the case of the conventional method using rare earth hexaboride as a raw material supply rod, the melt zone composition has a composition in the vicinity of B / RE = 5.5, and the growth rate has been lowered to 1 cm / h or less.
[0014]
In addition, as a solution to the above problem, a method of growing a crystal by using a raw material supply rod containing excessive boron to bring the band composition close to the stoichiometric composition (B / RE atomic ratio = 6) has been attempted. However, in this case, a semi-molten portion 8 is formed immediately above the melt zone 7, and an umbrella-shaped member 9 having a eutectic composition of REB 6 and B is formed thereon. This is in contact with the development in the work coil 4, or going to be impossible to subsequent melt zone moving, the umbrella-like portion is suddenly molten material supply rod prior to blend due to low melting point molten zone The volume of the melt constantly fluctuated, and stable crystal growth was impossible.
[0015]
In the present invention, by adding an alkaline earth hexaboride rather than adding boron to the raw material supply rod, the rare earth hexaboride is not eutectic at a low temperature, and the alkaline earth metal is not melted. It was found that alkaline earth hexaboride acts as a boron supplier and increases the boron content in the melt zone because it leaves and evaporates immediately after melting into the zone.
[0016]
The relationship between the amount of alkaline earth hexaboride added and the heating power was investigated. FIG. 2 shows the result of growing crystals at a growth rate of 2 cm / h by adding CaB 6 to LaB 6 . ○ in the figure indicates a crystal containing neither bubbles nor inclusions at a growth rate of 2 cm / h. The heating power was increased by the addition of CaB 6 , the maximum of the heating power was present in the vicinity where 7 to 10 mol% was added, and the heating power was reduced when the addition amount was further increased.
[0017]
In the region until the heating power is maximized (addition of 5 mol% or less of CaB 6 ), the LaB 4 phase was confirmed in the melted band after the growth. When 5 mol% of CaB 6 was added, inclusions were confirmed in the crystal, and the band composition was B / RE (AE) = 5.7. When 7 mol% of CaB 6 was added, neither inclusion nor bubbles were observed in the crystal. The band composition was B / RE (AE) = 5.9.
[0018]
Further, when 30 mol% of CaB 6 was added, neither inclusion nor bubbles were observed in the crystal. The band composition was B / RE (AE) = 7.9. Although it is a band with excess boron, the atomic weight of boron is an order of magnitude smaller than that of rare earth elements (La and Ce), and diffusion at the growth interface is easy, so deviation from the stoichiometric composition is not a problem. It is estimated that 2 cm / h high-speed growth was possible. When 40 mol% CaB 6 was added, a free CaB 6 phase was confirmed on the surface of the crystal. The band composition was B / RE (AE) = 8.9.
[0019]
Furthermore, the relationship between the growth rate and the crystal quality was examined using a raw material supply rod added with 10 mol% at which the heating power was maximized. Crystals containing no inclusions or bubbles were grown at 1 cm / h, 2 cm / h, and 3 cm / h. However, cracks began to occur in the crystal at a speed of 3 cm / h or more. Therefore, the preferable growth rate was 2 to 3 cm / h. The Ca content in the obtained crystal was 180 ppm.
[0020]
Next, in the growth of CeB 6 crystals, CaB 6 was added and the same experiment was performed. As in the case of LaB 6 , when 10 mol% CaB 6 was added, the heating power was maximized, and when the addition amount was further increased, the heating power decreased. In addition, a high-quality single crystal containing no inclusions or bubbles was grown even at a growth rate of 2 cm / h in a composition with the maximum heating power.
[0021]
As additives other than CaB 6, were investigated for the case of using the SrB 6, BaB 6. With the addition of 10 atomic%, the heating power was maximized. Also, a good-quality LaB 6 crystal was obtained at a speed of 2 cm / h. Accordingly, the boron additive, found no difference between the CaB 6, SrB 6, BaB 6 cross.
[0022]
The above growth method can be applied to the growth of a single crystal by a heating method other than high-frequency heating, for example, the FZ method by infrared concentrated heating. The use of alkaline earth hexaboride as a boron additive can be applied not only to crystal growth by the FZ method but also to sample preparation by the melting method.
[0023]
【Example】
Next, examples of the present invention will be described.
Example 1 10 mol% of CaB 6 powder was added to and mixed with commercially available LaB 6 powder, and a small amount of camphor was added as a binder, which was packed into a rubber bag having a diameter of 12 mm to form a cylinder. This was pressed with a rubber press at 2000 kg / cm 2 to obtain a green compact. The green compact was heated in vacuum at 1800 ° C. to obtain a sintered rod having a diameter of about 1 cm and a length of about 12 cm. The density was about 55%.
[0024]
This sintered rod was used as a raw material supply rod, and was fixed to the upper shaft of the FZ growth furnace shown in FIG. 1 via a holder, and a LaB 6 sintered rod was fixed to the lower shaft. After filling the argon growth furnace to 5 atm, melt the upper end portion of the lower end and LaB 6 sintered rod of material feed rod by high-frequency induction heating to form an initial melt zone, 3 hours at a rate of 2 cm / h The single crystal having a total length of 6 cm and a diameter of 0.9 cm was grown. The amount of Ca impurities in the obtained crystal was 180 ppm. The amount of Ca in the melt zone was 500 ppm, and the melt zone composition was B / La = 6.6.
[0025]
A (100) plane was cut out from the obtained crystal, and after mirror polishing, etching was performed to observe the surface. As a result, it was confirmed that there were no bubbles and that no other phase was contained.
[0026]
【The invention's effect】
As described above, according to the present invention, a rare earth hexaboride single crystal can be obtained at a rate 2 to 3 times higher than the conventional growth rate. In addition, high-quality crystals with fewer defects are grown at the growth rate in the conventional method.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing an example of a single crystal growth apparatus used in the present invention.
FIG. 2 is a graph showing the relationship between Ca addition amount and heating power.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Upper shaft drive part 1 'Lower shaft drive part 2 Upper shaft 2' Lower shaft 3 Holder 3 'Holder 4 Work coil 5 Seed crystal or sintered rod 6 for initial fusion formation 6 Single crystal 7 Fusion zone 8 Semi-melting part 9 Umbrella-shaped part 10 Raw material supply rod

Claims (2)

フローティング・ゾーン法により、REB6 (REは、La,Ce
、または(La,Ce)固溶体を示す)で表される六ホウ化希土類単結晶の育成に際し、AEB6 (AEは、Ca,Sr,Ba、または(Ca,Sr)、(Ca,Ba)、(Sr,Ba)、(Ca,Sr,Ba)固溶体を示す)で表されるアルカリ土類六ホウ化物を希土類六ホウ化物粉末からなる原料供給棒に添加する硼素添加剤として用いて、融液状態においてホウ素を残してアルカリ土類元素が蒸発することにより、融帯中のホウ素成分を増加させ、育成中、融帯中のホウ素含量(B/RE(AE),モル比)を5.9〜8に保持して六ホウ化希土類単結晶を育成することを特徴とする六ホウ化希土類単結晶の育成法。
According to the floating zone method, REB 6 (RE is La, Ce
Or AEB 6 (AE is Ca, Sr, Ba, or (Ca, Sr), (Ca, Ba), (Sr, Ba), with (Ca, Sr, Ba) and alkaline earth hexaboride expressed by indicating a solid solution) as the boron additive to be added to the raw material feed rod consisting of a rare earth hexaboride powder, melt The alkaline earth element evaporates leaving boron in the state, thereby increasing the boron component in the melt zone, and during the growth, the boron content (B / RE (AE), molar ratio) in the melt zone is 5.9. A method for growing a rare earth hexaboride single crystal, characterized in that the rare earth hexaboride single crystal is grown while being held at ~ 8.
融帯組成を定比組成に近づけ、育成速度1〜3cm/hで結晶を育成し、
結晶中の含有物や気泡を少なくすることを特徴とする請求項1記載の六ホウ化希土類単結晶の育成法。
Bring the bandage composition close to the stoichiometric composition, grow the crystal at a growth rate of 1 to 3 cm / h,
2. The method for growing a rare earth hexaboride single crystal according to claim 1, wherein contents and bubbles in the crystal are reduced.
JP2000023262A 2000-01-27 2000-01-27 Growth method of rare earth hexaboride single crystals Expired - Lifetime JP3755021B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000023262A JP3755021B2 (en) 2000-01-27 2000-01-27 Growth method of rare earth hexaboride single crystals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000023262A JP3755021B2 (en) 2000-01-27 2000-01-27 Growth method of rare earth hexaboride single crystals

Publications (2)

Publication Number Publication Date
JP2001213690A JP2001213690A (en) 2001-08-07
JP3755021B2 true JP3755021B2 (en) 2006-03-15

Family

ID=18549440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000023262A Expired - Lifetime JP3755021B2 (en) 2000-01-27 2000-01-27 Growth method of rare earth hexaboride single crystals

Country Status (1)

Country Link
JP (1) JP3755021B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4515674B2 (en) * 2001-09-11 2010-08-04 独立行政法人物質・材料研究機構 Boride single crystal and substrate for semiconductor formation
JP4538619B2 (en) * 2001-09-28 2010-09-08 独立行政法人物質・材料研究機構 Boride single crystal, semiconductor forming substrate and method for manufacturing the same
CN114985737A (en) * 2022-05-11 2022-09-02 合肥工业大学 Multi-element hexaboride [100] monocrystal and preparation method thereof

Also Published As

Publication number Publication date
JP2001213690A (en) 2001-08-07

Similar Documents

Publication Publication Date Title
JP4179331B2 (en) Method for producing SiC single crystal
US4303465A (en) Method of growing monocrystals of corundum from a melt
Otani et al. Preparation of ZrCx single crystals with constant compositions by floating zone technique
JP3755021B2 (en) Growth method of rare earth hexaboride single crystals
US3272591A (en) Production of single crystals from incongruently melting material
CN114985737A (en) Multi-element hexaboride [100] monocrystal and preparation method thereof
US5238527A (en) Lanthanum boride type single crystal and method for growing the same
JP2949212B2 (en) Growth method of lanthanum hexaboride single crystal
JPH1095699A (en) Growth of zirconium diboride single crystal
JP2730674B2 (en) Growth method of rare earth hexaboride single crystals
JP2642882B2 (en) Growth method of tungsten diboride single crystal
JP2997762B2 (en) Growth method of calcium hexaboride crystals
JP2580523B2 (en) Growth method of titanium diboride single crystal
JPH0524992A (en) Method for growing lanthanum hexaboride single crystal
Tsai et al. Growth of (FexMg1− x) 2SiO4 single crystals by the double pass floating zone method
JP2997761B2 (en) Method for producing rhenium diboride single crystal
JPH05319991A (en) Method for growing lanthanum hexaboride single crystal
JP6935738B2 (en) Method for manufacturing SiC single crystal
JPH0477397A (en) Lanthanum boride base single crystal and its growing method
JP4515674B2 (en) Boride single crystal and substrate for semiconductor formation
JPS5812240B2 (en) Method for producing hafnium carbide crystals
JPS58135200A (en) Preparation of single crystal from yttrium aluminum garnet (y3al5o12) or solid solution thereof
JP2009057237A (en) Method for producing compound semiconductor single crystal
JPH07115993B2 (en) Method for growing lanthanum boride single crystal
JPH0686358B2 (en) Cerium boride single crystal and its growth method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051129

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3755021

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term