JPH07115993B2 - Method for growing lanthanum boride single crystal - Google Patents

Method for growing lanthanum boride single crystal

Info

Publication number
JPH07115993B2
JPH07115993B2 JP4149828A JP14982892A JPH07115993B2 JP H07115993 B2 JPH07115993 B2 JP H07115993B2 JP 4149828 A JP4149828 A JP 4149828A JP 14982892 A JP14982892 A JP 14982892A JP H07115993 B2 JPH07115993 B2 JP H07115993B2
Authority
JP
Japan
Prior art keywords
single crystal
crystal
growth
zone
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4149828A
Other languages
Japanese (ja)
Other versions
JPH0733594A (en
Inventor
茂樹 大谷
茂 本間
高穂 田中
芳夫 石沢
Original Assignee
科学技術庁無機材質研究所長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 科学技術庁無機材質研究所長 filed Critical 科学技術庁無機材質研究所長
Priority to JP4149828A priority Critical patent/JPH07115993B2/en
Publication of JPH0733594A publication Critical patent/JPH0733594A/en
Publication of JPH07115993B2 publication Critical patent/JPH07115993B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、フローティング・ゾー
ン法により、六ホウ化ランタンを端成分とする組成式
The present invention relates to a composition formula using lanthanum hexaboride as an end component by the floating zone method.

【化2】La1−x (ここで、M=Ce、Pr、Nd、又はこれらの混合
物、0<x≦0.5)の固溶体単結晶の育成法に関す
る。
[Chemical formula 2] La1-xMxB6  (Where M = Ce, Pr, Nd, or a mixture thereof
Stuff,0 <x ≦ 0.5) Of solid solution single crystal
It

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】六ホウ
化ランタン単結晶は、現在、寿命の長い高輝度電子放射
材料として、走査型電子顕微鏡や電子描画装置などに利
用されている。この電子放射材料として用いる場合、純
度の高い高品質単結晶が必要である。
2. Description of the Related Art Lanthanum hexaboride single crystal is currently used as a high-brightness electron emitting material having a long life in scanning electron microscopes, electron drawing devices and the like. When used as this electron emitting material, a high quality single crystal with high purity is required.

【0003】高純度な六ホウ化ランタン単結晶の育成法
としては、育成温度が高く、不純物が蒸発により除去さ
れるFZ法が適している。しかしながら、従来のFZ法
により育成される単結晶中には多くの欠陥(例えば、粒
界密度で400cm/cm2)が存在する欠点があった。この
ため、高品質な部分を選び、電子放射材として使用せざ
るを得ないのが実情である。
As a method for growing a high-purity lanthanum hexaboride single crystal, the FZ method, which has a high growth temperature and removes impurities by evaporation, is suitable. However, there is a defect that many defects (for example, a grain boundary density of 400 cm / cm 2 ) exist in the single crystal grown by the conventional FZ method. Therefore, in reality, it is unavoidable to select a high quality portion and use it as an electron emitting material.

【0004】本発明は、上記従来技術の欠点を解消し、
欠陥の少ない良質なホウ化ランタン系単結晶を得る方法
を提供することを目的とするものである。
The present invention solves the above-mentioned drawbacks of the prior art,
It is an object of the present invention to provide a method for obtaining a good quality lanthanum boride single crystal with few defects.

【0005】[0005]

【課題を解決するための手段】前記課題を解決するた
め、本発明者らは、従来のFZ法において結晶中に粒界
を生じさせている要因を調べた結果、次のことが判明し
た。
In order to solve the above problems, the inventors of the present invention have investigated the factors causing the grain boundaries in the crystal in the conventional FZ method, and have found the following.

【0006】すなわち、ホウ化ランタン単結晶の育成温
度が約2700℃と高いため、結晶は非常に高い温度勾
配(約150℃/mm)の下を通過することになる。この成
長直後の冷却過程において発生する熱応力により、結晶
中に粒界を発生させ、結晶性の低下を招くことが判明し
た。
That is, since the growth temperature of the lanthanum boride single crystal is as high as about 2700 ° C., the crystal passes under a very high temperature gradient (about 150 ° C./mm). It has been found that the thermal stress generated in the cooling process immediately after the growth causes grain boundaries in the crystal, resulting in deterioration of crystallinity.

【0007】そこで、熱応力による結晶性の低下を小さ
くするため、固溶体効果により結晶自身の機械的強度を
上げた。更に、結晶が受ける熱応力そのものを小さくす
るため、自己フラックス法により育成温度を下げた。こ
の2つの対策を行い、ホウ化ランタン系単結晶の育成を
FZ法により試みた。
Therefore, in order to reduce the decrease in crystallinity due to thermal stress, the mechanical strength of the crystal itself is increased by the solid solution effect. Further, in order to reduce the thermal stress itself which the crystal receives, the growth temperature was lowered by the self-flux method. Taking these two measures, the growth of a lanthanum boride single crystal was tried by the FZ method.

【0008】すなわち、添加剤として、LaB6の熱電子
放射特性を損なわないように、50at%までCeB6、P
rB6、NdB6又はこれらの混合物を添加し、結晶の機械
的強度をあげた。更に、融帯組成を金属過剰にし、すな
わち、金属(LaとM)をフラックスに用い育成温度を下
げた。融液組成(B/(La+M)の原子比)は6〜2まで
の範囲(好ましくは4.5〜2.5)とした。その結果、
育成された単結晶は粒界を含まず残留歪みの少ない良質
単結晶が得られるようになった。融液組成が2未満では
融帯の安定な保持が難しく、安定な結晶育成が不可能と
なり、また6を超えるとホウ素の蒸発が激しくなること
及び原料棒の融液への染み込みが生じ安定な育成が不可
能となり、いずれも良質の単結晶が得られない。また、
添加量が50at%を超えると単結晶からの電子放射特性
がLaB6に比較して悪くなり好ましくない。
That is, as an additive, CeB 6 , P is added up to 50 at% so as not to impair the thermionic emission characteristics of LaB 6.
The mechanical strength of the crystal was increased by adding rB 6 , NdB 6 or a mixture thereof. Further, the zone composition was made excessively metal, that is, the metals (La and M) were used as the flux to lower the growth temperature. The melt composition (atomic ratio of B / (La + M)) was set in the range of 6 to 2 (preferably 4.5 to 2.5). as a result,
The grown single crystal does not contain grain boundaries and a good quality single crystal with less residual strain can be obtained. If the melt composition is less than 2, stable holding of the melt zone is difficult and stable crystal growth becomes impossible, and if it exceeds 6, the evaporation of boron becomes violent and the raw material rod is soaked into the melt, which is stable. It becomes impossible to grow the crystals, and neither of them produces a high quality single crystal. Also,
If the amount added exceeds 50 at%, the electron emission characteristics from the single crystal are worse than that of LaB 6 , which is not preferable.

【0009】これらの知見に基づき、本発明をなしたも
のである。
The present invention has been made based on these findings.

【0010】すなわち、本発明は、フローティング・ゾ
ーン法により、六ホウ化ランタンを端成分とする組成式
That is, according to the present invention, the composition formula using lanthanum hexaboride as an end component is determined by the floating zone method.

【化3】La1−x (ここで、M=Ce、Pr、Nd、又はこれらの混合
物、0<x≦0.5)の固溶体単結晶を育成するに際
し、融帯組成(B/(La+M)の原子比)を2〜6に
することを特徴とする良質六ホウ化ランタン系単結晶
の育成法を要旨とするものである。
[Chemical formula 3] La1-xMxB6  (Where M = Ce, Pr, Nd, or a mixture thereof
Stuff,0 <x ≦ 0.5) When growing a solid solution single crystal
The melting zone composition (atomic ratio of B / (La + M)) to 2 to 6
Good quality characterized byNaLanthanum hexaboride-based single crystal
The main point is the upbringing method.

【0011】以下に本発明を更に詳細に説明する。The present invention will be described in more detail below.

【0012】[0012]

【作用】[Action]

【0013】本発明において用いられる装置の一例を図
1に示す。図中、1と1′はそれぞれ上軸と下軸の駆動
部、2と2′はそれぞれ上軸と下軸、3と3′はホルダ
ー、4はワークコイル、5は種結晶又は初期融帯形成用
の焼結棒、6は単結晶、7は融帯、8は半溶融部分、9
は原料焼結棒、10は電源ライン、11は高周波発振
機、12と13はそれぞれ陽極電圧と高周波電流を測定
するためのデジボル、14はコンピュータ(パソコン)で
ある。
An example of the apparatus used in the present invention is shown in FIG. In the figure, 1 and 1'are upper and lower shaft driving parts, 2 and 2'are upper and lower shafts, respectively 3 and 3'is a holder, 4 is a work coil, 5 is a seed crystal or an initial melt zone. Forming sintered rod, 6 single crystal, 7 melt zone, 8 semi-molten part, 9
Is a raw material sintering rod, 10 is a power supply line, 11 is a high frequency oscillator, 12 and 13 are digibols for measuring anode voltage and high frequency current, respectively, and 14 is a computer (personal computer).

【0014】試料の加熱は、ワークコイル4に高周波電
流を流すことにより、試料に誘導電流を生じさせ、その
ジュール熱により行う。このようにして、形成された融
帯7に上方より原料棒を送り込み、下方より単結晶6を
育成する。
The heating of the sample is performed by applying a high-frequency current to the work coil 4 to generate an induced current in the sample and the Joule heat of the induced current. In this way, the raw material rod is fed from above into the formed melt zone 7 and the single crystal 6 is grown from below.

【0015】育成中の融帯7の形状は、融帯とワークコ
イル間の相互インピーダンス変化により検出することが
できる。すなわち、融帯が細くなれば、インピーダンス
が低くなり、高周波電流が増加する。逆に太くなれば、
高周波電流が減少する。この時、陽極電圧との比(高周
波電流/陽極電圧)をとれば、たとえ育成中加熱電力が
変化しても、融帯が細くなれば比の値が増加し、太くな
れば比の値が減少するので、融帯の形状が検出できる。
The shape of the melt zone 7 during growth can be detected by the change in mutual impedance between the melt zone and the work coil. That is, as the melt zone becomes thinner, the impedance becomes lower and the high frequency current increases. On the contrary, if it gets thicker,
High frequency current is reduced. At this time, if the ratio with the anode voltage (high-frequency current / anode voltage) is taken, even if the heating power changes during growth, the ratio value increases if the zone becomes thin, and the ratio value increases if it becomes thick. Since it decreases, the shape of the ligament can be detected.

【0016】したがって、高周波電流と陽極電圧を2台
のデジボル12、13により検出し、コンピュータ14
において、融帯形状を判断し、その結果に基づき融帯形
状を一定になるように、育成炉上軸2(原料棒9)の移動
速度を制御する。
Therefore, the high frequency current and the anode voltage are detected by the two digibols 12 and 13, and the computer 14
In step 1, the zone shape is determined, and based on the result, the moving speed of the growth furnace upper shaft 2 (raw material rod 9) is controlled so that the zone shape is constant.

【0017】この方法に従うと、育成中融帯形状が一定
に保持されるため、育成される結晶の直径がスムースに
なり、手動育成に比較して、再現性良く粒界の含まない
単結晶を育成するのに有効である。
According to this method, since the shape of the melted zone is kept constant during the growth, the diameter of the grown crystal becomes smooth, and a single crystal having no grain boundary is produced with good reproducibility as compared with the manual growth. It is effective for training.

【0018】本発明の育成法においては、原料棒組成制
御(MBの添加)と融帯組成制御の両方を行。前者
のみの制御によってもLaB結晶と同じ育成条件
成上問題なく育成できるが、X線トポグラフによる観察
反射に大きな模様の濃淡が観察され、結晶に歪み
残留ることが確認される。一方、後者のみ制御した
場合は、結晶に気泡が入り易く、育成速度を従来のL
aB結晶の育成に比較して半分以下に下げる必要があ
る。得られる結晶のX線トポグラフによる観察では、反
射に重なりや分離は見られないが、エッチングでは観察
されない方位のずれの小さな粒界が確認されるしかし
ながら、本発明のように両方を採用すると、得られる結
には粒界が観察されず、結晶中の残留歪みが明らかに
少なくな
[0018] In the growth method of the present invention, (the addition of MB 6) feed rod composition control intends row both melt zone composition control. Although education <br/> Naruue be grown successfully in the same growing conditions as well LaB 6 crystal under the control of the former only, shading of a large pattern on reflection is observed in the observation <br/> by X-ray topography, the crystal strain <br/> residual to Rukoto is confirmed. On the other hand, when only the latter is controlled, bubbles are likely to enter the crystal, and the growth rate is not
It is necessary to reduce the amount to half or less as compared with the growth of the aB 6 crystal. Observation of the obtained crystal by X-ray topography shows no overlapping or separation of reflection, but a grain boundary with small misalignment which is not observed by etching is confirmed . However
While, when employing the both as in the present invention, the crystal obtained was observed grain boundary, residual strain in the crystal that clearly less.

【0019】次に、本発明による単結晶育成の手順を示
す。
Next, the procedure for growing a single crystal according to the present invention will be described.

【0020】原料としては、LaB50at%を上
限としてMB(ここで、M=Ce、Pr、Nd、又は
これらの混合物)を添加したものを使用する。
As a raw material, LaB 6 is added at 50 at% or more.
MB 6 (where M = Ce, Pr, Nd, or a mixture thereof) is added as a limit .

【0021】まず、原料のホウ化ランタン粉末とMの
ウ化物粉末(或いは、Mの酸化物とホウ素)所定の比に
よく混合後、結合剤として少量の樟脳を加え、ラバープ
レス(2000kg/cm)により圧粉棒を作製す
る。この圧粉棒を真空中又は不活性ガス中で千数百℃に
加熱し、原料焼結棒を作製する。
First, the raw material lanthanum boride powder and the M fluoride powder (or M oxide and boron) were mixed well at a predetermined ratio, and then a small amount of camphor was added as a binder to add rubber. A dust bar is produced by a press (2000 kg / cm 2 ). This powder compact rod is heated to a few thousand and several hundred degrees Celsius in vacuum or in an inert gas to prepare a raw material sintered rod.

【0022】得られた焼結棒9を上軸2にホルダー3を
介してセットし、ト軸2′には<100>種結晶(又は
初期融帯形成用の焼結棒)5をホルダー3′を介してセ
ットする。両者9と5の間に、初期融帯の組成を制御す
るための所定量及び所定組成の金属塊(La、又はMを
含むLa)を挟む。次に金属塊とその周辺を加熱により
溶融させ、融帯7を形成させ、上軸2と下軸2′をゆっ
くりとト方に移動させて単結晶6を育成する。
The obtained sintered rod 9 is set on the upper shaft 2 via the holder 3, and a <100> seed crystal (or a sintered rod for forming the initial melt zone) 5 is mounted on the shaft 2 '. ’Set via Between both 9 and 5, a metal mass (La or M) of a predetermined amount and a predetermined composition for controlling the composition of the initial zone is
La) is included . Next, the metal ingot and its periphery are melted by heating to form a melt zone 7, and the upper shaft 2 and the lower shaft 2'are slowly moved to the T direction to grow the single crystal 6.

【0023】このとき、下軸2′の移動速度、すなわ
ち、結晶育成速度は育成中常に一定に保持する。その範
囲は0.2〜4cm/h、好ましくは、0.5cm/h以下であ
る。金属過剰の融帯を用いると結晶中に気泡が入り易い
ので、従来の育成法に比較して遅く設定する。上軸2の
移動速度、すなわち、原料棒の融帯への供給速度は、原
料棒の密度が低いので、それを補償するように下軸の移
動速度より通常30%程度速く設定する。この設定値を
基準にして、融帯形状の変化に伴い、上軸移動速度を速
くしたり又は遅くしたり、コンピュータ制御される。
At this time, the moving speed of the lower shaft 2 ', that is, the crystal growth speed is always kept constant during the growth. The range is 0.2 to 4 cm / h, preferably 0.5 cm / h or less. Since bubbles tend to enter into the crystal when the melted zone with excess metal is used, it is set later than the conventional growth method. The moving speed of the upper shaft 2, that is, the feeding speed of the raw material rod to the melt zone is set to be about 30% higher than the moving speed of the lower shaft so as to compensate for the low density of the raw material rod. Based on this set value, the upper shaft moving speed is increased or decreased according to the change of the zone shape, and is computer controlled.

【0024】雰囲気としては、数気圧のアルゴン又はヘ
リウムなどの不活性ガスを用いる。これは高周波ワーク
コイル部分で発生する放電を防止するためである。
As the atmosphere, an inert gas such as argon or helium having a pressure of several atmospheres is used. This is to prevent the discharge generated in the high frequency work coil portion.

【0025】これらの系における結晶育成では、初期融
帯にLa或いはCe金属を用いれば、それらの混合組成
を考慮しなくとも、2cm程度の融帯移動で定常状態に
至り、それ以降は組成均一な結晶が得られる。組成式
In the crystal growth in these systems, if La or Ce metal is used for the initial melt zone, a steady state is reached by moving the melt zone of about 2 cm without considering the mixed composition thereof, and thereafter the composition becomes uniform. Crystals are obtained. Composition formula

【化4】La1−x における0<x≦0.5の組成範囲においては、分配係
数(k)(すなわち、結晶と融帯におけるM/(La+
M)原子比の比)はほぼ一定で、CeBの場合はk=
0.75、PrBの場合はk=0.64、NdB
場合はk=0.55であ。蒸発による組成変化は、C
e、Pr、Ndと原子番号が増加するほ大きく、育成
温度が下がるほど小さ。原料棒と結晶の組成差は、上
組成式で表わしたxでせいぜい3%であ
[Chemical 4] La1-xMxB6  In0 <x ≦ 0.5In the composition range of
Number (k) (ie M / (La + in crystal and melt zone)
M) atomic ratio) is almost constant and CeB6Then k =
0.75, PrB6In case of, k = 0.64, NdB6of
If k = 0.55Ru. The composition change due to evaporation is C
e, Pr, Nd and atomic number increaseWhatBig and nurturing
Smaller as the temperature dropsI. The difference in composition between the raw material rod and the crystal is
RecordX represented by the composition formula is 3% at most.Ru.

【0026】以上の育成法は、高周波加熱以外の加熱
法、例えば、赤外線集中加熱によるFZ法によっても単
結晶の育成に適用することができる。
The above growth method can be applied to the growth of a single crystal by a heating method other than the high frequency heating, for example, the FZ method by the infrared concentrated heating.

【0027】次に本発明の実施例を示す。Next, examples of the present invention will be described.

【0028】[0028]

【実施例1】市販のLaB6粉末に30at%のCeB6粉末
をB/La=7.7になるように混合した後、結合剤とし
て樟脳を少量加え、直径12mmのゴム袋に詰め円柱形に
した。これを2000kg/cm2のラバープレスを行って
圧粉体を得た。この圧粉体を真空中、1800℃で加熱
し、直径11mm、長さ12cm程度の焼結棒を得た。密度
は約55%であった。
Example 1 Commercially available LaB 6 powder was mixed with 30 at% CeB 6 powder so that B / La = 7.7, a small amount of camphor was added as a binder, and the mixture was packed in a rubber bag having a diameter of 12 mm to form a cylinder. I chose This was subjected to a rubber press of 2000 kg / cm 2 to obtain a green compact. The green compact was heated at 1800 ° C. in vacuum to obtain a sintered rod having a diameter of 11 mm and a length of 12 cm. The density was about 55%.

【0029】この焼結棒を図1に示すFZ育成炉の上軸
にホルダーを介して固定し、下軸には<100>LaB6
単結晶を固定した。両者の間に0.8gのランタン金属塊
を挾み、融帯組成を制御した。育成炉に7気圧のアルゴ
ンを充填した後、高周波コイル(内径14mm、3巻2段)
によりランタン金属塊とその周辺部を溶かし初期融帯を
形成し、0.5cm/hの速度で12時間に下方に移動さ
せ、全長6cm、直径0.95cmの単結晶を育成した。育
成温度は2300℃で、従来の育成法に比較して400
℃低かった。育成した結晶棒の中央部以降は組成変化が
なく、一定な組成を持つ(La0.71Ce0.29)B6結晶を育
成した。融帯組成は(La0.6Ce0.4)B3.2であった。
This sintered rod was fixed to the upper shaft of the FZ growth furnace shown in FIG. 1 through a holder, and the lower shaft was made of <100> LaB 6.
The single crystal was fixed. A lanthanum metal block of 0.8 g was sandwiched between the two to control the zone composition. After filling the growth furnace with argon at 7 atm, high-frequency coil (internal diameter 14 mm, 3 rolls, 2 steps)
The lump of lanthanum metal and its peripheral portion were melted to form an initial melt zone, which was then moved downward at a rate of 0.5 cm / h for 12 hours to grow a single crystal with a total length of 6 cm and a diameter of 0.95 cm. The growing temperature is 2300 ° C, which is 400 compared to the conventional growing method.
℃ was low. Central subsequent growing crystal rod has no compositional change, with a constant composition (La 0. 71 Ce 0. 29) were grown B 6 crystals. Molten zone composition was (La 0. 6 Ce 0. 4) B 3. 2.

【0030】単結晶の粒界密度については、結晶棒終端
部から(100)面を切り出し、鏡面研磨の後、エッチン
グ(硝酸:水=1:2の液で30秒程度)して測定した。
線状に観察される亜粒界が、エッチング・パターン上で
みられず、X線トポグラフの観察において、反射強度が
結晶全体でほぼ一定で、残留歪みの少ない良質結晶であ
ることを確認した。
The grain boundary density of the single crystal was measured by cutting out the (100) plane from the end of the crystal rod, mirror-polishing, and then etching (for about 30 seconds with nitric acid: water = 1: 2).
No linear grain boundaries were observed on the etching pattern, and it was confirmed by X-ray topography that the reflection intensity was almost constant throughout the crystal and the crystal was a good quality with little residual strain.

【0031】[0031]

【実施例2】市販のLaB6粉末に21at%のPrB6及び
18at%のNdB6を含有するように、それぞれ酸化物と
ホウ素を所定量混合し、出発物質とした。次いで、実施
例1と同じ方法により、単結晶を育成した。但し、初期
融帯形成のための金属量については、PrB6とNdB6
加の場合、それぞれ0.98gと1.2gのLa金属を用い
た。
Example 2 A commercially available LaB 6 powder was mixed with a predetermined amount of oxide and boron so as to contain 21 at% of PrB 6 and 18 at% of NdB 6 , respectively, to obtain a starting material. Then, a single crystal was grown by the same method as in Example 1. However, regarding the amount of metal for forming the initial zone, 0.98 g and 1.2 g of La metal were used when PrB 6 and NdB 6 were added, respectively.

【0032】得られた結晶の組成はそれぞれ(La0.82
r0.18)B6、(La0.85Nd0.15)B6であった。その際、融
帯組成はそれぞれ(La0.72Pr0.28)B2.8、(La0.73Nd
0.27)B2.5であった。
[0032] The composition of the resulting crystal are (La 0. 82 P
r 0. 18) B 6, was (La 0. 85 Nd 0. 15) B 6. At that time, each melt zone composition (La 0. 72 Pr 0. 28) B 2. 8, (La 0. 73 Nd
0.27) it was B 2. 5.

【0033】これら単結晶の(100)面におけるエッチ
ング・パターンを観察した結果、共に粒界の存在が確認
できず、X線トポグラフの観察においても残留歪みの少
ない良質結晶であることを確認した。
As a result of observing the etching pattern on the (100) plane of these single crystals, the existence of grain boundaries could not be confirmed, and it was confirmed by X-ray topography observation that the crystals were of good quality with little residual strain.

【0034】[0034]

【発明の効果】以上説明したように、本発明によれば、
欠陥及び残留歪みの少ないホウ化ランタン系単結晶が得
られる。
As described above, according to the present invention,
A lanthanum boride-based single crystal with few defects and residual strain can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に用いられた単結晶育成装置の一例を示
す説明図である。
FIG. 1 is an explanatory view showing an example of a single crystal growth apparatus used in the present invention.

【符合の説明】[Explanation of sign]

1 上軸駆動部 1′ 下軸駆動部 2 上軸 2′ 下軸 3 ホルダー 3′ ホルダー 4 ワークコイル 5 種結晶又は初期融帯形成用の焼結棒 6 単結晶 7 融帯 8 半溶融部分 9 原料焼結棒 10 電源ライン 11 高周波発振機 12 デジボル 13 デジボル 14 コンピュータ 1 Upper shaft drive unit 1'Lower shaft drive unit 2 Upper shaft 2'Lower shaft 3 Holder 3'Holder 4 Work coil 5 Sintering rod for seed crystal or initial melt zone formation 6 Single crystal 7 Melt zone 8 Semi-molten portion 9 Raw material sintering rod 10 Power line 11 High frequency oscillator 12 Digibol 13 Digibol 14 Computer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 フローティング・ゾーン法により、六ホ
ウ化ランタンを端成分とする組成式 【化1】La1−x (ここで、M=Ce、Pr、Nd、又はこれらの混合
物、0<x≦0.5)の固溶体単結晶を育成するに際
し、融帯組成(B/(La+M)の原子比)を2〜6に
することを特徴とする良質六ホウ化ランタン系単結晶
の育成法。
1. A floating zone method
Compositional formula with lanthanum iodide as an end component:1-xMxB6  (Where M = Ce, Pr, Nd, or a mixture thereof
Stuff,0 <x ≦ 0.5) When growing a solid solution single crystal
The melting zone composition (atomic ratio of B / (La + M)) to 2 to 6
Good quality characterized byNaLanthanum hexaboride-based single crystal
Upbringing method.
JP4149828A 1992-05-18 1992-05-18 Method for growing lanthanum boride single crystal Expired - Lifetime JPH07115993B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4149828A JPH07115993B2 (en) 1992-05-18 1992-05-18 Method for growing lanthanum boride single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4149828A JPH07115993B2 (en) 1992-05-18 1992-05-18 Method for growing lanthanum boride single crystal

Publications (2)

Publication Number Publication Date
JPH0733594A JPH0733594A (en) 1995-02-03
JPH07115993B2 true JPH07115993B2 (en) 1995-12-13

Family

ID=15483570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4149828A Expired - Lifetime JPH07115993B2 (en) 1992-05-18 1992-05-18 Method for growing lanthanum boride single crystal

Country Status (1)

Country Link
JP (1) JPH07115993B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0751480B2 (en) * 1991-07-19 1995-06-05 科学技術庁無機材質研究所長 Method for growing lanthanum hexaboride single crystal

Also Published As

Publication number Publication date
JPH0733594A (en) 1995-02-03

Similar Documents

Publication Publication Date Title
US4303465A (en) Method of growing monocrystals of corundum from a melt
US4444728A (en) Iridium-rhenium crucible
JP2012041200A (en) Crystal growth method
JPH062635B2 (en) Giant magnetostrictive alloy rod manufacturing method
JP2010143782A (en) Melt composition control unidirectional solidification crystal growth apparatus and crystal growth method
JPH07115993B2 (en) Method for growing lanthanum boride single crystal
JP3755021B2 (en) Growth method of rare earth hexaboride single crystals
JPH0524992A (en) Method for growing lanthanum hexaboride single crystal
JPWO2004094705A1 (en) Fluoride crystal production equipment
JPH05319991A (en) Method for growing lanthanum hexaboride single crystal
JP2929007B1 (en) Method for growing single crystal of group Va diboride
JP2997762B2 (en) Growth method of calcium hexaboride crystals
JPH1095699A (en) Growth of zirconium diboride single crystal
JP2642882B2 (en) Growth method of tungsten diboride single crystal
JP2580523B2 (en) Growth method of titanium diboride single crystal
JP4916425B2 (en) Crystal growth method and apparatus
JP2730674B2 (en) Growth method of rare earth hexaboride single crystals
JPH08143395A (en) Method for growing lanthanum hexaboride single crystal
JP2997761B2 (en) Method for producing rhenium diboride single crystal
JPH04198093A (en) Method for growing lanthanum boride single crystal
JPS5812240B2 (en) Method for producing hafnium carbide crystals
JPS5812239B2 (en) Method for manufacturing zirconium carbide crystals
JPH0686357B2 (en) Lanthanum boride single crystal and its growth method
CN117230526A (en) Method for growing large-size rare earth ion doped garnet series crystals by wide seed crystal guided mode method
JPH0226899A (en) Method for growing fe-si-al based alloy single crystal

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term