JP3748865B2 - Deoxygenation method - Google Patents

Deoxygenation method Download PDF

Info

Publication number
JP3748865B2
JP3748865B2 JP2003174980A JP2003174980A JP3748865B2 JP 3748865 B2 JP3748865 B2 JP 3748865B2 JP 2003174980 A JP2003174980 A JP 2003174980A JP 2003174980 A JP2003174980 A JP 2003174980A JP 3748865 B2 JP3748865 B2 JP 3748865B2
Authority
JP
Japan
Prior art keywords
water
gas
pump
water tank
deoxygenation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003174980A
Other languages
Japanese (ja)
Other versions
JP2005007309A (en
Inventor
善一 西
大輔 飯塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohzai Chemical Industry Co Ltd
Original Assignee
Tohzai Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohzai Chemical Industry Co Ltd filed Critical Tohzai Chemical Industry Co Ltd
Priority to JP2003174980A priority Critical patent/JP3748865B2/en
Publication of JP2005007309A publication Critical patent/JP2005007309A/en
Application granted granted Critical
Publication of JP3748865B2 publication Critical patent/JP3748865B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、被処理水中に溶存する酸素を除去する脱酸素方法に関する。
【0002】
【従来の技術】
従来、被処理水中に溶存する酸素を除去するには、還元剤などの脱酸素剤を被処理水中に添加することが行われている。しかし、近年環境への配慮からノンケミカル処理に対する意識が高まってきたこと、並びに、用水中からの溶存酸素除去技術が発達したことから、このような薬品による脱酸素技術からの脱却が思考されており、ボイラの給水タンクに窒素ガスを投入し、給水中の脱酸素を行うことが、多くのメーカー等によって採用、検討されるに至っている。現在ではボイラ給水中の溶存酸素濃度は、0.1ppm以下に維持することも可能になっている。
【0003】
給水タンクに窒素ガスを投入する際に、ポンプにより給水するとともに、前記ポンプの水吐出口に、吸気管を設け、窒素ガス供給装置に接続するとともに、微細気泡形成用の分散板やノズルを設けて、水中に窒素の微細気泡を供給する(特許文献1参照)。これにより、気液接触による水中への窒素ガス溶解をはかり、逆に水中の酸素ガスを析出させて、水中の酸素濃度を低下させ、脱酸素水を得る。また、前記微細気泡形成用の分散板やノズルについては、種々の用途で種々の形態のものが用いられている(特許文献2参照)。
【0004】
また、脱酸素水は、ボイラ給水や密閉冷温水系統などの密閉配管系統の防錆のためのみならず、超純水に対して脱酸素して、LSIの洗浄水として用い、洗浄工程時の酸化膜の形成を防止するために用いられたりする。
【0005】
【特許文献1】
特開2001−321606号公報
【特許文献2】
特開2002−191949号公報
【0006】
【発明が解決しようとする課題】
しかし、このようにして気泡を形成する場合、気泡径を微細に形成するにも限界があり、さらに気液接触効率の向上をはかることは困難になってきている。そのため、水中の酸素濃度を十分に下げるには、ポンプによる水の供給を高速に、かつ、大量に行わねばならず装置の大型化、窒素ガスの大量消費に伴う運転費の増加を招来するものとなっていた。
【0007】
従って、本発明の目的は、上記実情に鑑み、装置の簡単な改良で、効率よく脱酸素可能な脱酸素方法を提供することにある。
【0008】
【課題を解決するための手段】
この目的を達成するための本発明の脱酸素方法の第1特徴構成は、
被処理水を貯留する水槽を設け、前記水槽中の被処理水を供給するポンプを設け、前記ポンプの吸い込み側に吸気自在なガス吸入部を設け、前記ガス吸入部に窒素ガスを供給するガス供給部を設けてある脱酸素装置を使用して、前記ポンプを出口圧が0.2MPa以上で0.6MPa未満になるように運転しながら、前記ガス吸入部に窒素ガスを供給する点にある。
尚、前記ポンプが、前記水槽内の被処理水を取り出して、再度前記水槽に供給する循環ポンプであるのが好ましく、前記水槽が、ボイラ用給水タンク、空調用給水タンクから選ばれることが好ましい。
【0009】
〔作用効果〕
つまり、被処理水を貯留する水槽を設け、前記水槽中の被処理水を供給するポンプを設けてあれば、ポンプからの供給水に窒素ガスの気泡を混合させることによって、水中で気液接触を図り、水中に溶解するガスを窒素に置換し、水中からの脱酸素が可能となる。
ここで、ポンプの吸い込み側に吸気自在なガス吸入部を設け、前記ガス吸入部に窒素ガスを供給するガス供給部を設けて、ポンプを出口圧が0.2MPa以上で0.6MPa未満になるように運転しながら、ガス吸入部に窒素ガスを供給すると、前記ガス供給部から供給される窒素ガスは、ポンプの内部を通って水槽に供給される。そのため、ポンプ内部で微細に撹拌混合された気泡は細かな気液混相流となって前記水槽内に吐出されることになる。そのため、水槽内において効率の良い気液接触をはかることができ、ポンプに対する配管径路を変更するだけの簡単な改良で、装置構成を大がかりにしたり、ポンプ能力を高める必要なく、脱酸素効率を向上させることができた。
尚、前記水槽が、ボイラ用給水タンク、空調用給水タンク等、密閉系の管路であれば、脱酸素状態の維持が容易であるとともに、脱酸素による防錆効果が、ボイラ、空調機器等の運転効率に大きく影響するため、本発明の脱酸素方法の利用価値が高いといえる。
【0010】
【発明の実施の形態】
以下に本発明の実施の形態を図面に基づいて説明する。
図1に示すように、本発明の脱酸素装置は、被処理水を貯留するボイラ用給水タンク(水槽)1を設け、前記水槽1中の被処理水を循環させる循環ポンプ2を設け、窒素ガスを供給するガス供給部3を設けて構成してある。
【0011】
前記ガス供給部3は、前記循環ポンプの吸い込み側のガス吸入部4に接続してあり、前記循環ポンプ2が前記ガス供給部3から窒素ガスを吸気自在に構成してある。
【0012】
前記循環ポンプ2の水循環容量が100L/分である場合、窒素ガスの供給割合は10L/分程度としておく事により、前記循環ポンプ2のエア詰まりが発生しないように定常運転することができる。
尚、前記循環ポンプに代えて、前記水槽に給水する給水路に設けた給水ポンプの吸い込み側にガス供給部を接続し、一過的にガスを供給する構成とすることもできる。また、種々の従来の脱気装置と本発明の脱酸素装置とを組み合わせて用いることもできる。
【0013】
窒素ガスを供給するガス供給部3としては、吸着分離式ガス供給装置PSA(Pressure Swing Absorption )が好適に利用でき、このような装置によると、小型のものでも、3L/分の窒素ガス安定供給が行える。
【0014】
【実施例】
以下に本発明の実施例を図面に基づいて説明する。
(1) 本発明の脱酸素装置を表1に記載の条件下で稼働させたところ、水槽中の溶存酸素濃度(DO)の経時変化を調べたところ、図2のようになった。
尚、比較として、微細気泡を形成するための分散板(管)を4経路に分け、前記水槽内全領域に気泡が行き渡るようにして水槽内に単にばっ気する構成とした脱気装置を用いた場合の経時変化を併せて示す。
【0015】
【表1】

Figure 0003748865
【0016】
図2によると脱酸素装置の稼働から約25分間で溶存酸素および残留塩素が1ppm以下の低濃度になり、以後漸減していることがわかる。これは、前記比較例において、非常に大量の窒素ガスを用いているのにかかわらず、気泡径が大きく脱酸素効率が向上しにくいのに対して、本発明では、非常に微細な気泡が生じているため、高い気液接触効率のために、溶存酸素が素早く窒素に置換されたものと考えられる。
【0017】
(2) 図3に示すように、給水タンク5から前記水槽1に給水する給水路に設けた給水ポンプ2の吸い込み側にガス供給部3を接続し、種々条件(1〜3)下で稼働させたところ、表2のようになった。尚、溶存酸素濃度は、水槽に供給された水100Lを、なるべく空気に触れないように貯水した後速やかに測定した。
【0018】
【表2】
Figure 0003748865
【0019】
表2より、一過的にガス供給するような場合であっても、通水量の10%程度の窒素ガス供給により、きわめて高い脱酸素効果が発揮されることがわかった。尚、ここで用いたポンプは渦流ポンプであるが、窒素ガス供給量が通水量の10%を超えると、ポンプ自体の稼働に支障をきたす場合があるので、ポンプの能力に応じてガス供給量を設定することが望ましい。
【0020】
尚、表2の1の条件で、ポンプ出口圧を種々変更した場合の脱酸素効果について調べたところ、表3のようになった。脱酸素効果は、ポンプから吐出される水中の溶存酸素濃度により評価した。
【0021】
【表3】
Figure 0003748865
【0022】
表3より、ポンプ出口圧を0.2MPa以上にすると微細気泡が発生し、脱酸素効果が得られ始めるとともに、出口圧の上昇に伴いその効果も向上する。しかし、出口圧を上げすぎると、気泡が集合して気泡が微細に形成されにくくなる傾向が見られ、脱酸素効果が向上しにくくなる。従って、ポンプの能力に応じてポンプ出口圧を好適に設定することが望ましいことが読みとれる。
【0023】
(3) 先の(1)における本発明の脱酸素装置と、従来の脱気装置とを併用した場合の脱酸素効果を調べたところ、表4のようになった。
【0024】
【表4】
Figure 0003748865
【0025】
表4より、種々の脱気装置、脱酸素装置と組み合わせることにより、さらに高い脱酸素効果が発揮されていることがわかった。
【図面の簡単な説明】
【図1】 本発明の脱酸素装置の概略図
【図2】 実施例(1)による脱酸素効率を示すグラフ
【図3】 実施例(2)による脱酸素装置の概略図
【符号の説明】
1 水槽
2 循環ポンプ
3 ガス供給部
4 ガス吸入部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a deoxygenation method for removing oxygen dissolved in water to be treated.
[0002]
[Prior art]
Conventionally, in order to remove oxygen dissolved in the water to be treated, an oxygen scavenger such as a reducing agent is added to the water to be treated. However, in recent years, awareness of non-chemical treatment has increased due to environmental considerations, and technology for removing dissolved oxygen from water has been developed. Many manufacturers, etc. have adopted and studied to introduce nitrogen gas into the water supply tank of a boiler and perform deoxygenation in the water supply. At present, the dissolved oxygen concentration in boiler feed water can be maintained at 0.1 ppm or less.
[0003]
When nitrogen gas is introduced into the water supply tank, water is supplied by a pump, an intake pipe is provided at the water discharge port of the pump, connected to a nitrogen gas supply device, and a dispersion plate and nozzle for forming fine bubbles are provided. Then, nitrogen fine bubbles are supplied into water (see Patent Document 1). Thereby, nitrogen gas dissolution in water by gas-liquid contact is measured, and conversely, oxygen gas in water is precipitated to reduce the oxygen concentration in water to obtain deoxygenated water. Moreover, about the dispersion | distribution board and nozzle for the said fine bubble formation, the thing of a various form is used for various uses (refer patent document 2).
[0004]
Also, deoxygenated water is used not only for rust prevention of sealed piping systems such as boiler feed water and sealed cold / hot water systems, but also deoxygenated for ultrapure water and used as LSI cleaning water for the cleaning process. It is used to prevent the formation of an oxide film.
[0005]
[Patent Document 1]
JP 2001-321606 A [Patent Document 2]
Japanese Patent Laid-Open No. 2002-191949
[Problems to be solved by the invention]
However, when bubbles are formed in this way, there is a limit to the formation of fine bubble diameters, and it has become difficult to further improve the gas-liquid contact efficiency. Therefore, in order to sufficiently reduce the oxygen concentration in the water, the water supply by the pump must be performed at high speed and in large quantities, which increases the size of the device and increases the operating cost due to the large consumption of nitrogen gas It was.
[0007]
Therefore, in view of the above circumstances, an object of the present invention is to provide a deoxygenation method capable of efficiently deoxygenating with a simple improvement of the apparatus.
[0008]
[Means for Solving the Problems]
In order to achieve this object, the first characteristic configuration of the deoxygenation method of the present invention is:
A gas tank for storing water to be treated, a pump for supplying the water to be treated in the water tank, a gas suction part that can be sucked in on the suction side of the pump, and a gas that supplies nitrogen gas to the gas suction part Using a deoxygenation apparatus provided with a supply unit, nitrogen gas is supplied to the gas suction unit while operating the pump so that the outlet pressure is 0.2 MPa or more and less than 0.6 MPa. .
In addition, it is preferable that the pump is a circulation pump that takes out water to be treated in the water tank and supplies the water tank again, and the water tank is preferably selected from a boiler water tank and an air conditioning water tank. .
[0009]
[Function and effect]
In other words, if a water tank for storing the water to be treated is provided and a pump for supplying the water to be treated in the water tank is provided, the gas-liquid contact is made in water by mixing the bubbles of nitrogen gas with the water supplied from the pump. By replacing the gas dissolved in water with nitrogen, deoxygenation from water becomes possible.
Here, an inhalable gas suction part is provided on the suction side of the pump, a gas supply part for supplying nitrogen gas is provided in the gas suction part, and the outlet pressure of the pump becomes 0.2 MPa or more and less than 0.6 MPa. When nitrogen gas is supplied to the gas suction part while operating as described above, the nitrogen gas supplied from the gas supply part is supplied to the water tank through the inside of the pump. Therefore, bubbles that are finely stirred and mixed inside the pump are discharged into the water tank as a fine gas-liquid mixed phase flow. As a result, efficient gas-liquid contact can be achieved in the water tank, and the deoxygenation efficiency can be improved by simply modifying the piping path to the pump without the need for a large equipment configuration or increased pump capacity. I was able to.
If the water tank is a closed pipeline such as a boiler water tank or an air conditioning water tank, it is easy to maintain a deoxygenated state, and the rust prevention effect due to deoxygenation can be achieved in boilers, air conditioners, etc. This greatly affects the operation efficiency of the present invention, and thus it can be said that the utility value of the deoxidation method of the present invention is high.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
As shown in FIG. 1, the deoxygenation apparatus of the present invention is provided with a boiler feed water tank (water tank) 1 for storing treated water, a circulation pump 2 for circulating the treated water in the water tank 1, and nitrogen A gas supply unit 3 for supplying gas is provided.
[0011]
The gas supply unit 3 is connected to a gas suction unit 4 on the suction side of the circulation pump, and the circulation pump 2 is configured to be able to suck in nitrogen gas from the gas supply unit 3.
[0012]
When the water circulation capacity of the circulation pump 2 is 100 L / min, the nitrogen gas can be supplied at a rate of about 10 L / min so that the circulation pump 2 can be operated in a steady manner so as not to cause air clogging.
In addition, it can replace with the said circulation pump and can also be set as the structure which connects a gas supply part to the suction side of the water supply pump provided in the water supply path which supplies the said water tank, and supplies gas temporarily. Further, various conventional degassing apparatuses and the deoxygenating apparatus of the present invention can be used in combination.
[0013]
As the gas supply unit 3 for supplying nitrogen gas, an adsorption separation type gas supply device PSA (Pressure Swing Absorption) can be suitably used. According to such a device, nitrogen gas can be stably supplied even at a small size of 3 L / min. Can be done.
[0014]
【Example】
Embodiments of the present invention will be described below with reference to the drawings.
(1) When the deoxygenation apparatus of the present invention was operated under the conditions shown in Table 1, the time-dependent change in dissolved oxygen concentration (DO) in the water tank was examined, and the result was as shown in FIG.
For comparison, a deaeration device is used in which a dispersion plate (tube) for forming fine bubbles is divided into four paths, and bubbles are distributed to all areas in the water tank so that the air is simply aerated in the water tank. The change with time is also shown.
[0015]
[Table 1]
Figure 0003748865
[0016]
According to FIG. 2, it can be seen that dissolved oxygen and residual chlorine become a low concentration of 1 ppm or less in about 25 minutes from the operation of the deoxygenation device and gradually decrease thereafter. This is because, in the comparative example, despite the use of a very large amount of nitrogen gas, the bubble diameter is large and the deoxidation efficiency is difficult to improve, whereas in the present invention, very fine bubbles are generated. Therefore, it is considered that dissolved oxygen was quickly replaced with nitrogen for high gas-liquid contact efficiency.
[0017]
(2) As shown in FIG. 3, the gas supply part 3 is connected to the suction side of the water supply pump 2 provided in the water supply path for supplying water from the water supply tank 5 to the water tank 1, and operates under various conditions (1 to 3). As a result, it was as shown in Table 2. The dissolved oxygen concentration was measured immediately after storing 100 L of water supplied to the water tank so as not to touch the air as much as possible.
[0018]
[Table 2]
Figure 0003748865
[0019]
From Table 2, it was found that even when the gas was supplied temporarily, a very high deoxidation effect was exhibited by supplying nitrogen gas of about 10% of the water flow rate. The pump used here is a vortex pump, but if the nitrogen gas supply amount exceeds 10% of the water flow rate, it may interfere with the operation of the pump itself, so the gas supply amount depends on the capacity of the pump. It is desirable to set
[0020]
In addition, when the deoxygenation effect when the pump outlet pressure was variously changed under the condition 1 in Table 2, it was as shown in Table 3. The deoxygenation effect was evaluated by the dissolved oxygen concentration in the water discharged from the pump.
[0021]
[Table 3]
Figure 0003748865
[0022]
From Table 3, when the pump outlet pressure is set to 0.2 MPa or more, fine bubbles are generated, and the deoxygenation effect starts to be obtained, and the effect is improved as the outlet pressure increases. However, if the outlet pressure is increased too much, bubbles tend to gather and bubbles are less likely to be formed, making it difficult to improve the deoxygenation effect. Therefore, it can be read that it is desirable to appropriately set the pump outlet pressure according to the capacity of the pump.
[0023]
(3) Table 4 shows the results of deoxidation when the deoxygenation device of the present invention in the previous (1) and the conventional degassing device are used in combination.
[0024]
[Table 4]
Figure 0003748865
[0025]
From Table 4, it was found that a higher deoxygenation effect was exhibited by combining with various deaeration devices and deoxygenation devices.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a deoxygenation apparatus of the present invention. FIG. 2 is a graph showing the deoxygenation efficiency according to Example (1). FIG. 3 is a schematic diagram of a deoxygenation apparatus according to Example (2).
1 Water tank 2 Circulation pump 3 Gas supply part 4 Gas suction part

Claims (3)

被処理水を貯留する水槽を設け、前記水槽中に被処理水を供給するポンプを設け、前記ポンプの吸い込み側に吸気自在なガス吸入部を設け、前記ガス吸入部に窒素ガスを供給するガス供給部を設けてある脱酸素装置を使用して、
前記ポンプを出口圧が0.2MPa以上で0.6MPa未満になるように運転しながら、前記ガス吸入部に窒素ガスを供給する脱酸素方法。
A gas tank for storing water to be treated, a pump for supplying the water to be treated in the water tank, a gas suction part that can be sucked in on the suction side of the pump, and a gas for supplying nitrogen gas to the gas suction part Using a deoxygenation device with a supply section,
A deoxygenation method in which nitrogen gas is supplied to the gas suction part while operating the pump so that the outlet pressure is 0.2 MPa or more and less than 0.6 MPa .
前記ポンプが、前記水槽内の被処理水を取り出して、再度前記水槽に供給する循環ポンプである請求項1記載の脱酸素方法。  The deoxygenation method according to claim 1, wherein the pump is a circulation pump that takes out water to be treated in the water tank and supplies the water to the water tank again. 前記水槽が、ボイラ用給水タンク、空調用給水タンクから選ばれるものである請求項1に記載の脱酸素方法。  The deoxygenation method according to claim 1, wherein the water tank is selected from a boiler water tank and an air conditioning water tank.
JP2003174980A 2003-06-19 2003-06-19 Deoxygenation method Expired - Fee Related JP3748865B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003174980A JP3748865B2 (en) 2003-06-19 2003-06-19 Deoxygenation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003174980A JP3748865B2 (en) 2003-06-19 2003-06-19 Deoxygenation method

Publications (2)

Publication Number Publication Date
JP2005007309A JP2005007309A (en) 2005-01-13
JP3748865B2 true JP3748865B2 (en) 2006-02-22

Family

ID=34098312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003174980A Expired - Fee Related JP3748865B2 (en) 2003-06-19 2003-06-19 Deoxygenation method

Country Status (1)

Country Link
JP (1) JP3748865B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9118077B2 (en) * 2011-08-31 2015-08-25 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of composite oxide and manufacturing method of power storage device
JP6391524B2 (en) 2015-03-31 2018-09-19 株式会社Screenホールディングス Deoxygenation apparatus and substrate processing apparatus
JP6866148B2 (en) 2016-12-20 2021-04-28 株式会社Screenホールディングス Substrate processing equipment and substrate processing method

Also Published As

Publication number Publication date
JP2005007309A (en) 2005-01-13

Similar Documents

Publication Publication Date Title
CN109304108B (en) Micro-nano bubble generation device and method and application of micro-nano bubble generation device and method in dye wastewater treatment
CN103736409A (en) Production method of ozone micro air bubbles
JP2010078239A (en) Water heater and method of preventing scale deposition
JP3748865B2 (en) Deoxygenation method
JP2010247121A (en) Gas-liquid dissolving tank
CN214715752U (en) Water treatment system and water purifier
JP5412135B2 (en) Ozone water supply device
JP2011218266A (en) Microbubble sewage regenerating apparatus having scum mechanism
JP2005000882A (en) Apparatus for generating micro bubble
US20090321370A1 (en) Apparatus for treating a liquid with a gas
JP2011078858A (en) Method for generating microbubble and microbubble generator
JP3859430B2 (en) Degassing method and degassing device
JP2010155754A (en) Apparatus and method of manufacturing ozone water
JP2005218955A (en) Gas/liquid contactor
JP7204211B2 (en) Batch-type microbubble liquid generator and generation method
JP4019245B2 (en) Ozone water production equipment
JP2019048274A (en) Oxygen water manufacturing apparatus and oxygen water manufacturing method
CN114931870A (en) Water purifier and water outlet control system and method thereof
JP2011092868A (en) Sludge treatment apparatus and sludge treatment method
JP3181523B2 (en) Sewage purification equipment
JP7018403B2 (en) How to degas foam and foam
KR200359199Y1 (en) Apparatus for manufacturing Ozone sterilized water
CN216513104U (en) Ultra-micro bubble generating device
JP3081983B2 (en) Fine bubble generator
KR102122662B1 (en) Gas dissolving system with double mixers

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051129

R150 Certificate of patent or registration of utility model

Ref document number: 3748865

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081209

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091209

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101209

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111209

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121209

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131209

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees