JP3733734B2 - Cylindrical anti-vibration mount - Google Patents

Cylindrical anti-vibration mount Download PDF

Info

Publication number
JP3733734B2
JP3733734B2 JP05644798A JP5644798A JP3733734B2 JP 3733734 B2 JP3733734 B2 JP 3733734B2 JP 05644798 A JP05644798 A JP 05644798A JP 5644798 A JP5644798 A JP 5644798A JP 3733734 B2 JP3733734 B2 JP 3733734B2
Authority
JP
Japan
Prior art keywords
inclined plate
inner shaft
shaft member
cylindrical
circumferential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05644798A
Other languages
Japanese (ja)
Other versions
JPH11257396A (en
Inventor
幸男 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Riko Co Ltd
Original Assignee
Sumitomo Riko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Riko Co Ltd filed Critical Sumitomo Riko Co Ltd
Priority to JP05644798A priority Critical patent/JP3733734B2/en
Publication of JPH11257396A publication Critical patent/JPH11257396A/en
Application granted granted Critical
Publication of JP3733734B2 publication Critical patent/JP3733734B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Springs (AREA)

Description

【0001】
【技術分野】
本発明は、自動車のサスペンションブッシュやサスペンションメンバマウント等として好適に用いられる筒型防振マウントに係り、特に、マウント軸方向および軸直角方向の何れか一方向への荷重が入力された際に、マウント軸方向および軸直角方向の何れか他方向への分力を生ぜしめることによって、例えば自動車の横力コンプライアンスステアの抑制等に有利に利用され得る筒型防振マウントに関するものである。
【0002】
【背景技術】
径方向に互いに離間配置されたインナ軸金具とアウタ筒金具が、それらの間に介装された本体ゴム弾性体で連結されてなる構造を有し、振動伝達系を構成する部材間に介装される筒型防振マウントの一種として、従来から、特開平9−104212号公報等に開示されているように、インナ軸金具の軸方向一方の端部において、軸方向外方に傾いて径方向一方向で斜め外方に向かって突出する傾斜板を設ける一方、アウタ筒金具の軸方向一方の端部において、軸方向外方に傾いて径方向一方向で斜め外方に向かって突出し、インナ軸金具に設けられた傾斜板に対して略平行な対向面で離間して対向位置する傾斜板対向部を形成し、更に傾斜板と傾斜板対向部の対向面間に介装されてそれらを弾性的に連結するコンプレッションゴムを、本体ゴム弾性体と一体的に形成してなる構造の筒型防振マウントが、知られている。かくの如き構造の筒型防振マウントでは、インナ軸金具とアウタ筒金具の間に軸方向および軸直角方向の何れか一方向への荷重が入力された際、傾斜板と傾斜板対向部の間でコンプレッションゴムに及ぼされる分力作用によって、インナ軸金具とアウタ筒金具に対して、軸方向および軸直角方向の何れか他方への力が及ぼされる。従って、例えば、このような筒型防振マウントを、自動車におけるトレーリングアームのサスペンションメンバへの取付部位等に介装されるサスペンションブッシュや、サスペンションメンバの車体側への取付部位に介装されるサスペンションメンバマウント等に利用することにより、車両旋回時における後輪トー角変化を調節して横力コンプライアンスステアを抑制したり適度なアンダステアを実現すること、或いは車両旋回時におけるロール変位を抑制したりすることが出来るのである。
【0003】
ところが、このような筒型防振マウントについて、本発明者が実験や数値解析を行って検討を加えたところ、荷重入力条件によっては、コンプレッションゴムにおける傾斜板の基部への固着部近くに亀裂が発生し易いことが見い出された。例えば、前記特開平9−104212号公報に記載されているように自動車のトレーリングアーム式のサスペンションメンバの車体側取付部等に介装され、インナ軸金具とアウタ筒金具に対して、軸方向や軸直角方向の荷重だけでなく、周方向のねじり荷重が及ぼされる場合には、コンプレッションゴムの内周部分に亀裂が発生し易く、それが次第に成長することによって、比較的早期に、目的とする特性が得られ難くなるおそれのあることが、明らかとなった。特に、コンプレッションゴムに対して引張変形を生ぜしめる軸直角方向の荷重とねじり荷重が同時に入力される場合には、傾斜板の基部における周方向両側縁部への固着部近くにおいて、コンプレッションゴムに亀裂が発生するおそれが、より高いことが明らかとなった。
【0004】
しかも、筒型防振マウントでは、要求されるばね特性を実現するために、本体ゴム弾性体の軸方向一方の端面から軸方向に延びるすぐり部が、必要に応じて採用されるが、上述の如き傾斜板を備えた筒型防振マウントにおいて、このようなすぐり部を設けると、傾斜板の基部に固着されたコンプレッションゴムに対する応力の集中化等によって亀裂等が一層発生し易くなるために、耐久性が確保され難いという問題があったのである。
【0005】
【解決課題】
ここにおいて、本発明は、上述の如き事情を背景として為されたものであって、その解決課題とするところは、本体ゴム弾性体に対して軸方向に延びるすぐり部が設けられてばね特性の調節等が容易であり、且つコンプレッションゴムにおける亀裂の発生が抑えられて、耐久性の向上された筒型防振マウントを提供することにある。
【0006】
【解決手段】
そして、このような課題を解決するために、本発明の特徴とするところは、インナ軸部材と、その外方に離間配置されたアウタ筒部材を、それらの間に介装された筒状の本体ゴム弾性体で連結すると共に、該インナ軸部材の軸方向一方の端部において、軸方向外方に傾いて径方向一方向で斜め外方に向かって突出する傾斜板を設ける一方、アウタ筒部材の軸方向一方の端部において、軸方向外方に傾いて径方向一方向で斜め外方に向かって突出して、傾斜板に対して略平行な対向面で離間して対向位置する傾斜板対向部を形成し、更に該傾斜板と該傾斜板対向部の対向面間に介装されてそれらを弾性的に連結するコンプレッションゴムを、本体ゴム弾性体と一体的に形成した筒型防振マウントにおいて、傾斜板が円環状の嵌着部を有し、この嵌着部において前記インナ軸部材の外周面に固着されていると共に、前記本体ゴム弾性体から一体的に延び出し、該嵌着部に至る接続ゴムが該インナ軸部材の外周面を覆うように設けられている一方、該傾斜板の突出方向に直交する径方向でインナ軸部材を挟んだ両側に位置し、それぞれ本体ゴム弾性体におけるコンプレッションゴムと反対側の軸方向端面から、該インナ軸部材の外周面に実質的に沿って、軸方向に貫通しないで傾斜板に達しない長さで延びる一対の第一のすぐり部を、車両の上下方向において該インナ軸部材を挟むようにして、その軸方向底部が前記アウタ筒部材における前記傾斜板対向部の突出基部よりも軸方向外方に位置するように、且つ前記本体ゴム弾性体の最内周部に位置するように、設けたことにある。
【0007】
要するに、前述の如き分力作用を得るための傾斜板と傾斜板対向部を設けてなる筒型防振マウントについて、本発明者が検討を加えたところ、上述の如き特定形状を有する第一のすぐり部を特定位置に設けることによって、ばね特性の調節等を有利に行えることは勿論、傾斜板の基部における周方向両側縁部への固着部近くにおけるコンプレッションゴムへの亀裂発生も、有効に防止できることを、見い出し得たのであり、このような知見に基づいて、本発明が完成されたのである。即ち、本発明に従う構造とされた筒型防振マウントにおいては、第一のすぐり部が、インナ軸部材の外周面に沿って形成されていることにより、第一のすぐり部の外周側においてゴム弾性体の肉厚寸法を有利に確保することが出来るのであり、たとえ傾斜板の近くまで第一のすぐり部を軸方向に延ばして形成した場合でも、コンプレッションゴムに応力が集中し易い、傾斜板の基部の周方向両側縁部への固着部近くにおいて、コンプレッションゴムの表面から第一のすぐりが径方向に離間位置せしめられて、コンプレッションゴムの肉厚を有利に確保することが出来、応力の集中が軽減されるのである。
【0008】
それ故、インナ軸部材とアウタ筒部材の間への荷重入力、特に周方向の相対的なねじり荷重の入力に際して、コンプレッションゴムにおける応力集中が軽減されることから、コンプレッションゴムひいては筒型防振マウントの耐久性が向上されると共に、耐入力荷重強度の向上等も図られ得るのである。しかも、本発明に係る筒型防振マウントでは、コンプレッションゴムにおける亀裂等の発生を防止し、良好なる耐久性を確保しつつ、第一のすぐり部の大きさや形状等ひいてはマウントばね特性やばね比等の設計自由度の向上が達成され得るのである。
【0009】
なお、本発明において、第一のすぐり部は、インナ軸部材の外周面に実質的に沿って形成されていれば良く、第一のすぐり部の内周面を構成するインナ軸部材の外周面には、例えば本体ゴム弾性体の成形型のインナ軸部材への接触を回避する成形上の理由等から、薄肉の被覆ゴム層等を形成することが出来る。また、傾斜板は、インナ軸部材に対して固定的に設けられていれば良く、例えば、鋳造等によって傾斜板をインナ軸部材と一体形成する他、プレス成形等によって別途形成した傾斜板を溶接等でインナ軸部材に後固着したり、或いは環状の取付部を傾斜板に設けてインナ軸部材に外嵌固定すること等も可能である。更に、インナ軸部材やアウタ筒部材,傾斜板,傾斜板対向部の材質は、要求される耐荷重強度を実現し得る剛性材であれば良いが、一般に、鉄系やアルミニウム合金等の金属が好適に採用される。
【0010】
また、本発明に従う構造とされた筒型防振マウントにおいて、好適には、第一のすぐり部の軸方向底部が、アウタ筒部材における傾斜板対向部の突出基部よりも軸方向外方に位置せしめられる。即ち、本発明に係る筒型防振マウントでは、上述の如く、第一のすぐり部を傾斜板の近くまで延ばした場合でも、コンプレッションゴムの亀裂が有利に防止されることから、十分な耐久性を確保しつつ、第一のすぐり部を、アウタ筒部材を軸方向に実質的に貫通して形成することが出来るのであり、それによって、マウントばね特性を、かかる第一のすぐり部によって、より大幅に変化させて調節することが可能となるのである。
【0011】
更にまた、本発明に従う構造とされた筒型防振マウントにおいて、好ましくは、第一のすぐり部が、軸方向の投影で、傾斜板に重ならないように、第一のすぐり部の傾斜板側の周方向端部が、傾斜板の周方向端縁部から周方向に離間して位置せしめられる。これにより、傾斜板と第一のすぐり部の間に介在せしめられるコンプレッションゴムの厚さ寸法も有利に確保されることとなり、変形応力の集中化と、それに起因する耐久性の低下が軽減されて、コンプレッションゴムにおける亀裂の発生防止と耐久性の向上がより効果的に図られ得るのである。
【0012】
また、本発明に従う構造とされた筒型防振マウントにおいては、例えば、第一のすぐり部を、インナ軸部材の外周面に実質的に沿って周方向に広がる周方向空間と、該周方向空間の周方向両端部において、それぞれ、インナ軸部材からアウタ筒部材に向かって略径方向に広がる一対の径方向空間とからなる断面形状をもって形成することが、望ましい。第一のすぐり部において、このような断面形状を採用すれば、第一のすぐり部によるマウントばね剛性の低減効果が極めて有利に実現されて、マウントばね特性のチューニング自由度がより大きく確保されると共に、第一のすぐり部が対向位置する径方向に大きな荷重が入力された際、第一のすぐり部における周方向空間が潰れることにより、非線形的なばね特性が有利に発揮されるのである。なお、より好ましくは、各径方向空間は、その径方向外方端部においてアウタ筒部材にまで実質的に達する径方向長さで形成される。
【0013】
さらに、本発明に従う構造とされた筒型防振マウントにおいては、例えば、傾斜板が突出する径方向でインナ軸部材を挟んだ両側に位置し、それぞれ本体ゴム弾性体におけるコンプレッションゴムと反対側の軸方向端面から軸方向に延びる一対の第二のすぐり部を設けると共に、かかる一対の第二のすぐり部を、一対の第一のすぐり部よりも、該インナ軸部材から径方向外方に離間して位置せしめてなる構成が、好適に採用され得る。なお、より好ましくは、傾斜板側に位置する第二のすぐり部は、軸方向の投影において傾斜板と重なる周方向長さで形成されることとなり、それによって、傾斜板の周縁部に固着されたコンプレッションゴムの耐久性への悪影響等が回避される。また、第二のすぐり部は、本体ゴム弾性体を軸方向に貫通して形成することも可能である。
【0014】
そして、このような一対の第二のすぐり部を形成することにより、マウントばね特性のチューニング自由度が一層有利に確保されるのであり、第二のすぐり部が対向位置する径方向においても、非線形的なばね特性が有利に付与され得る。しかも、第二のすぐり部は、第一のすぐり部よりも径方向外方に位置せしめられていることから、第一のすぐり部と第二のすぐり部の周方向間に位置する本体ゴム弾性体の周方向厚さを有利に確保することが出来ると共に、該第二のすぐり部を、軸方向の投影で傾斜板と重なる範囲で、周方向の大きさを有利に確保することも可能となり、それによって、第二のすぐり部が対向位置する径方向荷重の入力時にストッパ機能を発揮する第二のすぐり部の当接面の面積を有利に確保することが出来る等といった利点もある。
【0015】
また、本発明に従う構造とされた筒型防振マウントにおいては、例えば、各一対の第一のすぐり部と第二のすぐり部が、何れも、インナ軸部材の周方向に広がる周方向空間と、該周方向空間の周方向両端部において、それぞれ、インナ軸部材からアウタ筒部材に向かって略径方向に広がる一対の径方向空間とからなる断面形状を有しており、本体ゴム弾性体において、周方向に隣接する第一のすぐり部と第二のすぐり部の各径方向空間の間に、それぞれ、インナ軸部材とアウタ筒部材を径方向に連結する合計四本の連結ゴム部が形成されてなる構成が、好適に採用される。このような構造を採用すれば、四本の連結ゴム部によって、マウント軸方向のばね特性を有効に確保しつつ、第一及び第二のすぐり部によって、互いに直交する二つの径方向でのばね特性をより効率的に調節することが出来るのである。
【0016】
更にまた、本発明に従う構造とされた筒型防振マウントにおいては、例えば、傾斜板を、インナ軸部材から径方向外方に行くに従って幅広となる略扇形状とすると共に、傾斜板の基部側の幅寸法を、インナ軸部材の外径寸法以下とし、且つ傾斜板の先端部側の幅寸法を、インナ軸部材の外径寸法よりも大きくすることが、望ましい。このような傾斜板の構造を採用すれば、傾斜板の基部側の幅方向両側の位置が、インナ軸部材に対して有利に近づけられるから、インナ軸部材とアウタ筒部材の間に周方向の相対的なねじり荷重が入力された際にも、コンプレッションゴムに最も亀裂が発生し易い傾斜板の基部の幅方向両側部分において、コンプレッションゴムに生ぜしめられる変形量ひいては応力が軽減されるのであり、その結果、コンプレッションゴムひいてはマウントの耐久性および耐荷重性の更なる向上が図られ得るのである。なお、傾斜板において最も幅寸法が小さくされる基部は、一般に、傾斜板のインナ軸部材への固着性を確保しつつ、基部の周方向両側の位置がインナ軸部材に対して有利に近づけられるように、インナ軸部材における傾斜板の突出する径方向での外周先端面を幅方向に挟んだ両側付近に位置せしめることが好ましい。
【0017】
さらに、本発明に従う構造とされた筒型防振マウントにおいては、アウタ筒部材に形成された傾斜板対向部が、インナ軸部材に設けられた傾斜板よりも、径方向外方に突出位置せしめられており、且つ周方向両側に幅広とされていることが、望ましい。このような傾斜板対向部の構成を採用すれば、傾斜板と傾斜板対向部の対向面積、ひいてはコンプレッションゴムの容積を有利に確保して、軸方向および軸直角方向の荷重に対する有効な分力作用を実現することが出来ると共に、軸方向および軸直角方向における耐入力荷重強度の向上を図ることが出来る。また、インナ軸部材とアウタ筒部材が周方向に相対的にねじり変位せしめられた際にも、傾斜板と傾斜板対向部の対向面積が安定して確保されることから、目的とする防振性能が安定して発揮され得ることとなる。
【0018】
また、本発明に従う構造とされた筒型防振マウントにおいては、例えば、インナ軸部材の軸方向一方の端部において、傾斜板とは径方向反対側に突出するストッパ板を設ける一方、アウタ筒部材の軸方向一方の端部において、傾斜板対向部とは径方向反対側に突出して、ストッパ板に対して略平行な対向面で離間して対向位置するストッパ板対向部を形成し、更にそれらストッパ板とストッパ板対向部の少なくとも一方の対向面から他方の対向面に向かって突出するストッパゴムを突設せしめてなる構成が、好適に採用される。このような構成を採用すれば、ストッパ板とストッパ板対向部がストッパゴムを介して当接することにより、インナ軸部材とアウタ筒部材の軸方向での相対的変位量が制限されることから、軸方向の大荷重入力時における本体ゴム弾性体やコンプレッションゴムの過大な変形が防止され得、それによって耐久性の更なる向上が図られ得る。
【0019】
なお、より好適には、ストッパ板の幅寸法が、傾斜板の基部側の幅寸法よりも大きくされる。それによって、傾斜板の基部の幅方向両側部分においてコンプレッションゴムに発生し易い亀裂をより効果的に防止することが出来ると共に、ストッパ板の強度ひいてはストッパ機構の耐荷重強度を有利に確保することが可能となる。また、ストッパ板は、それをインナ軸部材と一体的に鋳造形成したり、別体形成されたストッパ板を溶接等で固着することも可能であるが、その他、インナ軸部材に対して外嵌固定される固定プレートを採用し、この固定プレートによって、傾斜板とストッパ板を一体的に形成することも可能であり、それによって、部品点数の減少と構造の簡略化が図られ得る。更に、本発明において上述の如きストッパ板対向部を形成する場合には、例えば、アウタ筒部材の軸方向一方の開口周縁部において、径方向外方に突出して周方向全周に連続して延びるフランジ状部を一体形成し、このフランジ状部によって、ストッパ板対向部と傾斜板対向部を形成することが望ましい。このようなフランジ状部を採用すれば、アウタ筒部材に対して、ストッパ板対向部と傾斜板対向部を、容易に且つ優れた強度をもって形成することが出来るのである。
【0020】
【発明の実施の形態】
以下、本発明を更に具体的に明らかにするために、本発明の実施形態について、図面を参照しつつ、詳細に説明する。
【0021】
先ず、図1〜5には、本発明の一実施形態としてのサスペンションメンバマウント10が、示されている。このサスペンションメンバマウント10は、インナ軸部材としての内筒金具12とアウタ筒部材としての外筒金具14が、互いに径方向に離間して配されていると共に、それら内外筒金具12,14間に本体ゴム弾性体15が介装されて、両金具12,14が弾性的に連結された構造を有している。
【0022】
より詳細には、内筒金具12は、小径の円筒形状を有しており、軸方向一方(図1中の左方)の端部近くには、略平板形状の固定プレート16が固着されている。この固定プレート16は、プレス金具等の剛性部材で構成されており、図6にも示されているように、中心孔18を有する円環状の嵌着部20と、該嵌着部20を径方向一方向(図2及び図6中の上下方向)に挟んだ両側外方に突出するストッパ板部22および傾斜板部24とを、一体的に有している。そして、嵌着部20の中心孔18に内筒金具12が挿通され、嵌着部20が内筒金具12に溶着されることによって、固定プレート16が内筒金具12に固着されている。
【0023】
そこにおいて、ストッパ板部22は、内筒金具12の外径寸法:Aよりも大きな一定の幅寸法:Bを有しており、内筒金具12の中心軸に直交する平面上において、径方向一方(図2及び図6中の下方)の側に向かって突出せしめられている。なお、ストッパ板部22の幅方向の両側縁部には、軸方向外方(図1中の左方)に屈曲した補強リブ26,26が一体形成されている。また、ストッパ板部22の突出先端面28は、内筒金具12の中心軸を略中心とする円弧形状とされている。
【0024】
また、傾斜板部24は、内筒金具12から離れるに従って幅広となる略扇形状を有しており、内筒金具12の中心軸に対して外方に傾斜した平面上において、径方向一方(図2及び図6中の上方)の側に向かって斜めに突出せしめられている。更に、傾斜板部24は、その基部(内筒金具12に最も近い、嵌着部20との境界部)の最も小さな幅寸法:Cが、内筒金具12の外径寸法:Aよりも僅かに小さくされていると共に、その突出先端部の最も大きな幅寸法:Dが、内筒金具12の外径寸法:Aよりも大きくされている。即ち、固定プレート16には、傾斜板部24の基部が位置する部分において、幅方向のくびれ部30,30が設けられており、固定プレート16の幅寸法が最も小さくされている。なお、傾斜板部24の突出先端面32は、内筒金具12の中心軸を略中心とする円弧形状とされている。
【0025】
また一方、外筒金具14は、大径の円筒形状を有しており、内筒金具12に外挿されることにより、内筒金具12の径方向外方に離間して同軸的に配設されている。なお、外筒金具14の軸方向長さは、内筒金具12よりも短くされており、内筒金具12の軸方向略中央部分に外筒金具14が位置せしめられている。また、外筒金具14の軸方向一方(図1中の左方)の開口部分は、絞り加工等によって縮径されて、内外径の小さな小径部34とされている。更に、この小径部34側の開口周縁部には、径方向外方に突出して周方向に連続して延びるフランジ状部36が一体形成されている。そして、このフランジ状部36の周上の一部分(図2中の下側部分)によって、内筒金具12に突設されたストッパ板部22に対して軸方向に離間し、該ストッパ板部22に対して平行な対向面をもって対向位置するストッパ板対向部38が形成されている。また、フランジ状部36の周上の別の一部分(図2中の上側部分)は、径方向外方に延長されていると共に、軸方向外方に傾斜せしめられており、それによって、内筒金具12に突設された傾斜板部24に対して斜め軸方向に離間し、該傾斜板部24に対して略平行な対向面をもって対向位置する傾斜板対向部40が形成されている。なお、この傾斜板対向部40は、その突出先端面41が、傾斜板部24よりも大径の円弧状面とされていると共に、その周方向長さが、傾斜板部24よりも十分に大きくされており、傾斜板部24の周方向両側に張り出して位置せしめられている。
【0026】
さらに、本体ゴム弾性体15は、全体として略厚肉の円筒形状を有しており、内筒金具12と外筒金具14の径方向対向面間の略全体に亘って介在せしめられている。そして、本体ゴム弾性体15の内外周面が、内筒金具12の外周面と外筒金具14の内周面にそれぞれ加硫接着されることにより、本体ゴム弾性体15が、それら内外筒金具12,14を有する一体加硫成形品として形成されている。また、本体ゴム弾性体15は、傾斜板部24と傾斜板対向部40の対向面間にも延び出しており、以て、それら傾斜板部24と傾斜板対向部40の対向面間の全体に亘って充填されたコンプレッションゴム42が、本体ゴム弾性体15と一体的に形成されている。更に、本体ゴム弾性体15は、コンプレッションゴム42が位置しない部分でも、固定プレート16まで軸方向に延び出しており、以て、内筒金具12の外周面を、本体ゴム弾性体15の軸方向端部と固定プレート16の間に亘って、固定プレート16の嵌着部20の外径寸法と略同じ外径寸法をもって覆う接続ゴム43が、本体ゴム弾性体15と一体的に形成されている。また、接続ゴム43と本体ゴム弾性体15は、ストッパ板部22とストッパ板対向部38の各対向面にも延び出しており、以て、それら各対向面において他方の側に向かって突出し、所定の間隙48を隔てて軸方向で相互に対向位置せしめられるストッパゴム44,46が形成されている。更に、接続ゴム43は、固定プレート16の表面を全体に亘って覆って固定プレート16の外面にまで延び出しており、以て、ストッパ板部22および傾斜板部24の外面上で軸方向に突出する緩衝ゴム50が形成されていると共に、固定プレート16の外周面を被覆して、緩衝ゴム50をコンプレッションゴム42や接続ゴム43につなげる被覆ゴム52が形成されている。ここにおいて、被覆ゴム52は、実質的に固定プレート16の外周面に沿った外周面形状を有しており、特に、傾斜板部24の基部の幅方向両側の外周面は、くびれ部30,30に沿って内方に入り込んだくびれ面54,54とされている。要するに、コンプレッションゴム42,接続ゴム43,緩衝ゴム50,ストッパゴム44,46,被覆ゴム52は、何れも、本体ゴム弾性体15と一体的に形成されているのである。
【0027】
また、本体ゴム弾性体15には、ストッパ板部22と傾斜板部24の対向方向に直交する径方向で内筒金具12を挟んだ両側において、コンプレッションゴム42とは反対側(図4中の右側)の軸方向端面に開口して、軸方向に延びる一対の第一のすぐり部56,56が形成されている。これら第一のすぐり部56,56は、何れも、その断面形状において、内筒金具12の外周面に沿って周方向に延びる円弧形状の周方向空間58と、該周方向空間58の周方向両端部から略径方向外方に向かって延びる直線形状の一対の径方向空間60,60を有している。また、両径方向空間60,60は、実質的に外筒金具14まで至る径方向長さで延びており、それによって、それら両径方向空間60,60間には、外筒金具14から内筒金具12に向かって径方向に突出する第一の径方向ストッパ62が、本体ゴム弾性体15によって形成されている。そして、内外筒金具12,14間に、第一のすぐり部56,56が対向する径方向で大きな荷重が入力された際、第一のすぐり部56が潰れて第一の径方向ストッパ62の突出先端面が内筒金具12に当接することにより、内外筒金具12,14の径方向における相対的変位量が緩衝的に制限されるようになっている。なお、第一のすぐり部56,56の周方向空間58,58は、何れも、実質的に内筒金具12の外周面上に形成されており、周方向空間58が形成された部分の内筒金具12の外周面には、本体ゴム弾性体15の成形時における型開閉性等の理由で形成された薄肉ゴム層64だけが存在しているに過ぎない。
【0028】
また一方、本体ゴム弾性体15には、第一のすぐり部56,56の対向方向に直交する径方向で内筒金具12を挟んだ両側において、第一のすぐり部56と略同様に、軸方向一方の側(図1中の右側)の軸方向端面に開口して、軸方向に延びる一対の第二のすぐり部66,66が形成されている。これら第二のすぐり部66,66は、何れも、その断面形状において、内筒金具12から径方向外方に所定距離だけ離間した、本体ゴム弾性体15の径方向中間部分を周方向に延びる円弧形状の周方向空間68と、該周方向空間68の周方向両端部から略径方向外方に向かって延びる直線形状の一対の径方向空間70,70を有している。また、周方向空間68の内周側には、内筒金具12の外周面を被覆する所定厚さのゴム層74が形成されている一方、両径方向空間70,70は、実質的に外筒金具14まで至る径方向長さで延びており、それら両径方向空間70,70間において、外筒金具14から内筒金具12に向かって径方向に突出する第二の径方向ストッパ72が、本体ゴム弾性体15によって形成されている。そして、内外筒金具12,14間に、第二のすぐり部66,66が対向する径方向で大きな荷重が入力された際、第二のすぐり部66が潰れて第二の径方向ストッパ72の突出先端面が、内筒金具12の外周面に形成されたゴム層74を介して、内筒金具12に当接することにより、内外筒金具12,14の径方向における相対的変位量が緩衝的に制限されるようになっている。
【0029】
要するに、本体ゴム弾性体15に各一対の第一のすぐり部56,56と第二のすぐり部66,66が設けられることにより、本体ゴム弾性体15には、互いに周方向に隣接する第一のすぐり部56と第二のすぐり部66の間を径方向に延びて内筒金具12と外筒金具14を連結する四本の径方向連結部76が形成されているのである。
【0030】
ここにおいて、第一のすぐり部56,56および第二のすぐり部66,66は、何れも、固定プレート16までは達しない軸方向深さで形成されており、その軸方向底部が、外筒金具14の小径部34の軸方向開口部(フランジ状部36の突出基部)よりも僅かに固定プレート16側に位置せしめられている。これによって、第一及び第二のすぐり部56,56及び66,66が対向位置する径方向のばね特性が十分に軟らかく、且つ変形量が一定値を越えた際に非線形的に立ち上がって硬くなるばね特性が付与されている。特に、本実施形態では、何れのすぐり部56,66も、本体ゴム弾性体15を軸方向に貫通することなく形成されている。
【0031】
しかも、内筒金具12に対して傾斜板部24の突出方向側に位置して形成された第二のすぐり部66は、軸方向の投影において、その全体が傾斜板部24に重なる大きさで形成されており、且つ傾斜板部24まで達しない軸方向深さで形成されている。更に、第一のすぐり部56,56は、図3に示されているように、何れも、軸方向投影で傾斜板部24に重ならないように、傾斜板部24側の径方向空間70が、傾斜板部24の周方向端縁部から周方向に外れた位置に設定されている。
【0032】
そして、特に、第一のすぐり部56,56は、本体ゴム弾性体15の最内周部に位置して、内筒金具12の外周面に沿って形成されていることから、該第一のすぐり部56,56と本体ゴム弾性体15やコンプレッションゴム42,接続ゴム43の各外周面との間の離間距離が有利に確保されるようになっている。それによって、図4に示されているように、第一のすぐり部56,56を軸方向に延長し、第一のすぐり部56,56の軸方向底部を、外筒金具14におけるフランジ状部36の突出基部よりも、距離:Lだけ傾斜板部24側に位置せしめた場合でも、第一のすぐり部56,56よりも傾斜板部24側に位置する部分のゴム厚:Tを有利に確保することが可能とされているのである。
【0033】
上述の如き構造とされたサスペンションメンバマウント10においては、内筒金具12と外筒金具14に対して、傾斜板部24と傾斜板対向部40が突出する径方向で、それら傾斜板部24と傾斜板対向部40を接近させる方向の外的荷重が入力されてコンプレッションゴム42が圧縮変形せしめられると、それら傾斜板部24と傾斜板対向部40の対向面による分力作用によって、内外筒金具12,14に対して、それら傾斜板部24と傾斜板対向部40を軸方向で離間させる方向に、軸方向の相対的変位力が及ぼされる。また、内筒金具12と外筒金具14に対して、傾斜板部24と傾斜板対向部40を接近させる軸方向の外的荷重が入力されてコンプレッションゴム42が圧縮変形せしめられると、それら傾斜板部24と傾斜板対向部40の対向面による分力作用によって、内外筒金具12,14に対して、それら傾斜板部24と傾斜板対向部40を径方向で離間させる方向に、径方向の相対的変位力が及ぼされる。
【0034】
そして、かかるサスペンションメンバマウント10は、例えば、セミトレーリングアーム式サスペンション機構を構成するサスペンションメンバに形成された装着孔に外筒金具14を圧入固定する一方、内筒金具12をロッド等を介してボデーに固定することにより、図1において、その左方が車両外方で右方向が車両内方となって、図中の左右方向が車両左右方向となり、且つ図中の上下方向が車両前後方向となる状態で装着される。それによって、前記特開平9−104212号公報等に記載されているように、上述の分力作用に基づいて、車両旋回時における車体のロール変位等が有利に抑えられるのである。なお、そのような装着状態下では、内筒金具12に固着された固定プレート16の軸方向外面が、外筒金具14が取り付けられるサスペンションメンバ側の当接部材(図示せず)に対して、軸方向に離間して対向位置せしめられることにより、該当接部材への緩衝ゴム50を介しての当接によって、内外筒金具12,14間における、傾斜板部24が傾斜板対向部40から離間する軸方向の相対変位量が制限され得る。また、本実施形態では、外筒金具14におけるフランジ状部36の屈曲基部(内周縁部)が、小径部34によって、外筒金具14の装着孔への嵌着面となる外周面よりも径方向内方に位置せしめられていることから、サスペンションメンバにおける装着孔の開口端面が、フランジ状部36の屈曲基部に設定されたアール等に邪魔されることなく、フランジ状部36の背面に密接して有利に当接され得るのであり、それによって、外筒金具14の位置決め精度の向上やフランジ状部36の強度の向上等が有利に図られ得るのである。
【0035】
そこにおいて、サスペンションメンバマウント10には、車両の段差乗り越えやコーナリング等に際してのサスペンションメンバのボデーに対する変位や揺動に伴い、内外筒金具12,14間に径方向荷重や軸方向荷重および中心軸周りのねじり荷重が入力されることとなるが、特に乗り心地に大きな影響を及ぼす車両上下方向では、第一のすぐり部56,56によって、十分に軟らかいばね特性が付与され得、それによって、優れた乗り心地が容易に実現されるのである。
【0036】
しかも、これら第一のすぐり部56,56が内筒金具12の外周面に沿って形成されていることから、ねじり荷重によって最も大きな応力が発生し易い部位、即ち、傾斜板部24の基部における幅方向両側部分の位置においても、軸方向寸法の大きな第一のすぐり部56,56を設けたことに起因する大幅なゴム厚の減少が回避されるのであり、それ故、ゴム弾性体15,42,43,52における変形応力の局部的な集中化と、耐久性の大幅な低下が効果的に軽減乃至は防止されることとなる。
【0037】
従って、上述の如き構造のサスペンションメンバマウント10においては、ゴム弾性体15,42,43,52等における亀裂の発生を防止して優れた耐久性を確保しつつ、第一のすぐり部56,56により、径方向のばね定数を十分に低く設定することが可能となるのであり、ばね特性やばね比等の防振特性のチューニング自由度が有利に確保され得るのである。
【0038】
また、本実施形態のサスペンションメンバマウント10においては、ねじり荷重等によって最も大きな応力が発生し易い部位、即ち、傾斜板部24の基部における幅方向両側部分の位置が、くびれ部30,30によって、内筒金具12側に近づけられていることから、内外筒金具12,14が相対的にねじり変位せしめられた際にも、傾斜板部24の基部における幅方向両側部分の外筒金具14に対する周方向の相対的変位量が抑えられるのであり、その結果、該傾斜板部24の基部における幅方向両側部分(くびれ部30,30)に固着されたゴム弾性体15,42,43,52等における発生応力乃至は変形が、より効果的に軽減されて、より一層優れた耐久性および耐荷重強度が発揮されるのである。特に、本実施形態では、傾斜板部24が、径方向外方に行くに従って幅広となる扇形状とされており、その突出先端側で内筒金具12の外径寸法より大きな幅寸法とされていることから、傾斜板部24の基部の幅寸法を小さくしてゴム弾性体の耐久性を確保しつつ、傾斜板部24と傾斜板対向部40の対向面積を十分に確保して、上述の如き、分力作用を有効に発揮させることが出来るのである。しかも、本実施形態では、傾斜板対向部40が、傾斜板部24に対して十分に大きな周方向幅をもって形成されており、内外筒金具12,14が捩り方向に相対変位した際にも、傾斜板部24が、その略全面で傾斜板対向部40に対して対向位置せしめられるようになっていることから、ねじり荷重と径方向乃至は軸方向荷重が同時に作用した場合でも、分力作用に基づく所期の効果が有効に発揮され得る。
【0039】
因みに、上述の如き本実施形態に従う構造とされた実施例としてのメンバマウント10について、内外筒金具12,14間に、傾斜板部24と傾斜板対向部40が離隔する径方向(コンプレッションゴム42に引張変形が生ぜしめられる径方向)に、5000Nの静的な径方向荷重を及ぼした状態下で、周方向に±16度の相対的なねじり変位を繰り返して及ぼすことによって耐久性の実験を行った。併せて、同様な構造とされたメンバマウントであって、第一のすぐり部56,56を、第二のすぐり部66,66と同様、内筒金具12の外周面から径方向外方に離間させて内外筒金具12,14の径方向中間部分に形成せしめたものを比較例として用い、かかる比較例のメンバマウントについても、同様な耐久性の実験を行った。
【0040】
その結果、比較例のメンバマウントでは、ねじり方向の繰り返し荷重を10万回及ぼした時点で確認したところ、傾斜板部の基部の幅方向両側部分に位置するゴム弾性体に亀裂の発生が認められたのに対して、実施例のメンバマウントでは、ねじり方向の繰り返し荷重を60万回及ぼした時点でも、ゴム弾性体に亀裂等の不具合の発生は認められなかった。このことからも、本発明に従う構造とされた筒型防振マウントにおける優れた耐久性が容易に理解されるところである。
【0041】
以上、本発明の実施形態と実施例について詳述してきたが、これらはあくまでも例示であって、本発明は、上述の実施形態および実施例における具体的な記載によって、何等、限定的に解釈されるものでない。
【0042】
例えば、本体ゴム弾性体15における第二のすぐり部66,66は、マウント要求特性等に応じて、適当な位置に適当な大きさで設けられるものであり、本発明において必須のものでなく、また、それらを軸方向に貫通して形成するようにしても良い。
【0043】
また、傾斜板部24の基部側の幅寸法は、必ずしも内筒金具12の外径寸法より小さくする必要がなく、また、ストッパ板部22と傾斜板部24を一枚の固定プレート16で形成する場合にも、くびれ部30,30は、必ずしも設ける必要ない。
【0044】
更にまた、傾斜板部24やストッパ板部22の外面上に突出する緩衝ゴム50は、必ずしも必要なものでない。
【0045】
また、外筒金具14におけるストッパ板対向部38と傾斜板対向部40は、必ずしもフランジ状部36によって一体形成する必要はなく、それらを周方向に独立して形成したり、別形成して外筒金具14に後固着すること等も可能である。更にまた、外筒金具14における小径部34も、本発明において必須のものでない。
【0046】
加えて、本発明は、ロール変位を抑えるためのサスペンションメンバマウントの他、適度なアンダステア傾向を実現するためのサスペンションメンバマウント,横力コンプライアンスステアを抑制するためのサスペンションブッシュ等、各種のサスペンションメンバマウントやサスペンションブッシュ、或いは自動車のサブフレームとボデーの間に介装されるサブフレームマウントなど、インナ軸部材とアウタ筒部材における傾斜板と傾斜板対向部の間に介在せしめられたコンプレッションゴムを備え、それら傾斜板と傾斜板対向部の間での分力作用を利用するようにした各種の筒型防振マウントに対して、何れも、有利に適用され得るものである。
【0047】
【発明の効果】
上述の説明から明らかなように、本発明に従い、傾斜板の突出方向に直交する径方向でインナ軸部材を挟んで対向位置する一対のすぐり部を、インナ軸部材の外周面に沿って軸方向に形成してなる筒型防振マウントにおいては、ゴム弾性体における応力集中による耐久性の低下を回避しつつ、十分に大きなすぐり部を設定することが出来るのであり、それ故、良好なる耐久性を確保しつつ、ばね特性やばね比等に関して大きなチューニング自由度が与えられるのである。
【図面の簡単な説明】
【図1】本発明の一実施形態としてのサスペンションメンバマウントを示す縦断面図であって、図2におけるI−I断面に相当する図である。
【図2】図1における左側面図である。
【図3】図1における右側面図である。
【図4】図2におけるIV−IV断面図である。
【図5】図3におけるV−V断面図である。
【図6】図1に示されたサスペンションメンバマウントを構成するインナ軸部材と固定プレートの組付体を示す正面図である。
【符号の説明】
10 サスペンションメンバマウント
12 内筒金具
14 外筒金具
15 本体ゴム弾性体
24 傾斜板部
40 傾斜板対向部
42 コンプレッションゴム
56 第一のすぐり部
[0001]
【Technical field】
The present invention relates to a cylindrical anti-vibration mount suitably used as a suspension bush or a suspension member mount of an automobile, and in particular, when a load in one direction of the mount axis direction and the axis perpendicular direction is input. The present invention relates to a cylindrical vibration-proof mount that can be advantageously used for suppressing, for example, lateral force compliance steer of an automobile by generating a component force in either the mount axis direction or the direction perpendicular to the axis.
[0002]
[Background]
The inner shaft bracket and the outer cylinder bracket, which are spaced apart from each other in the radial direction, are connected by a main rubber elastic body interposed between them, and are interposed between members constituting the vibration transmission system. As one kind of cylindrical vibration-proof mount, as disclosed in Japanese Patent Application Laid-Open No. 9-104212, etc., the diameter of the inner shaft bracket is inclined outward in the axial direction at one end in the axial direction. While providing an inclined plate that protrudes obliquely outward in one direction, at one end in the axial direction of the outer tube bracket, it protrudes obliquely outward in one radial direction, tilting outward in the axial direction, An inclined plate facing portion that is spaced apart and opposed by an opposing surface that is substantially parallel to the inclined plate provided on the inner shaft metal fitting is formed, and further interposed between the opposing surfaces of the inclined plate and the inclined plate facing portion. The compression rubber that elastically connects the Cylindrical elastic mount of the elastic member and integrally formed with composed structures are known. In the cylindrical vibration-proof mount having such a structure, when a load is applied between the inner shaft bracket and the outer tube bracket in one of the axial direction and the direction perpendicular to the axis, the inclined plate and the inclined plate facing portion are The force acting on the other of the axial direction and the direction perpendicular to the axial direction is exerted on the inner shaft member and the outer tube member by the component action exerted on the compression rubber. Therefore, for example, such a cylindrical vibration-proof mount is interposed in a suspension bush interposed in a suspension arm attachment portion of a trailing arm in an automobile, or a suspension member attachment portion on the vehicle body side. By using the suspension member mount, etc., it is possible to suppress the lateral force compliance steer by adjusting the change in the rear wheel toe angle when turning the vehicle, to realize an appropriate understeer, or to suppress the roll displacement when turning the vehicle. It can be done.
[0003]
However, when the present inventor conducted an experiment and numerical analysis on such a cylindrical vibration-proof mount, depending on the load input condition, a crack was found near the fixed portion of the compression rubber to the base of the inclined plate. It has been found that it is likely to occur. For example, as described in Japanese Patent Application Laid-Open No. 9-104212, it is interposed in a vehicle body side mounting portion of a trailing arm type suspension member of an automobile, and the axial direction with respect to the inner shaft bracket and the outer cylinder bracket When not only the load perpendicular to the axis and the torsional load in the circumferential direction is applied, cracks are likely to occur in the inner peripheral portion of the compression rubber. It has become clear that it is difficult to obtain the desired characteristics. In particular, when a load in the direction perpendicular to the axis that causes tensile deformation to the compression rubber and a torsional load are input simultaneously, the compression rubber cracks in the vicinity of the fixing part to both side edges in the circumferential direction at the base of the inclined plate. It has become clear that the risk of occurrence is higher.
[0004]
Moreover, in the cylindrical vibration-proof mount, in order to realize the required spring characteristics, a straight portion extending in the axial direction from one end surface in the axial direction of the main rubber elastic body is adopted as necessary. In such a cylindrical anti-vibration mount having an inclined plate, when such a straight portion is provided, cracks and the like are more likely to occur due to concentration of stress on the compression rubber fixed to the base of the inclined plate. There was a problem that it was difficult to ensure durability.
[0005]
[Solution]
Here, the present invention has been made in the background as described above, and the problem to be solved is that a straight portion extending in the axial direction is provided with respect to the main rubber elastic body to provide a spring characteristic. An object of the present invention is to provide a cylindrical vibration-proof mount that is easy to adjust and that suppresses the occurrence of cracks in the compression rubber and has improved durability.
[0006]
[Solution]
And in order to solve such a subject, the place made into the feature of the present invention is that the inner shaft member and the outer cylindrical member spaced apart from the inner shaft member are arranged in a cylindrical shape interposed therebetween. While being connected by the main rubber elastic body, an outer cylinder is provided with an inclined plate that is inclined outward in the axial direction and protrudes obliquely outward in one radial direction at one axial end of the inner shaft member. An inclined plate that is inclined axially outward and protrudes obliquely outward in one radial direction at one end in the axial direction of the member, and is opposed and spaced apart by an opposing surface substantially parallel to the inclined plate. A cylindrical anti-vibration in which a compression rubber is formed integrally with the main rubber elastic body so as to form an opposing portion and further interposed between the inclined plate and an opposing surface of the inclined plate opposing portion to elastically connect them. In mounting, inclined plate Has an annular fitting portion, which is fixed to the outer peripheral surface of the inner shaft member at the fitting portion, and that extends integrally from the main rubber elastic body and reaches the fitting portion. Is provided so as to cover the outer peripheral surface of the inner shaft member. Are located on both sides of the inner shaft member in the radial direction perpendicular to the protruding direction of the inner rubber member, and substantially along the outer peripheral surface of the inner shaft member from the axial end surface opposite to the compression rubber in the main rubber elastic body. A pair of first straight portions extending in a length not reaching the inclined plate without penetrating in the axial direction The main rubber elastic body so that the inner shaft member is sandwiched in the vertical direction of the vehicle so that the bottom portion in the axial direction is positioned outwardly in the axial direction from the protruding base portion of the inclined plate facing portion of the outer cylinder member To be located in the innermost circumference of It is in providing.
[0007]
In short, the present inventors have examined a cylindrical vibration-proof mount provided with an inclined plate and an inclined plate facing portion for obtaining a component force action as described above, and as a result, the first having the specific shape as described above. By providing a straight part at a specific position, it is possible to advantageously adjust the spring characteristics, etc., as well as effectively preventing cracks from occurring in the compression rubber near the fixed part of the base part of the inclined plate at both circumferential edges. We have found what we can do, and the present invention has been completed based on these findings. That is, in the cylindrical vibration-proof mount having the structure according to the present invention, the first curb portion is formed along the outer peripheral surface of the inner shaft member, so that the rubber is formed on the outer peripheral side of the first curb portion. An inclined plate that can advantageously ensure the thickness of the elastic body, and even if the first straight part is extended in the axial direction to the vicinity of the inclined plate, stress tends to concentrate on the compression rubber. In the vicinity of the adhering portion of the base portion of the base portion on both sides in the circumferential direction, the first curb is positioned radially away from the surface of the compression rubber, and the thickness of the compression rubber can be advantageously ensured. Concentration is reduced.
[0008]
Therefore, the stress concentration in the compression rubber is reduced when the load is input between the inner shaft member and the outer cylindrical member, particularly when the relative torsional load in the circumferential direction is input. In addition to improving the durability, the input load strength can be improved. Moreover, in the cylindrical vibration-proof mount according to the present invention, the occurrence of cracks and the like in the compression rubber is prevented, and while ensuring good durability, the size and shape of the first curb portion, as well as the mount spring characteristics and spring ratio Thus, an improvement in design freedom can be achieved.
[0009]
In the present invention, the first curb portion only needs to be formed substantially along the outer peripheral surface of the inner shaft member, and the outer peripheral surface of the inner shaft member constituting the inner peripheral surface of the first curb portion. For example, a thin coating rubber layer or the like can be formed for reasons of molding to avoid contact of the main rubber elastic body with the inner shaft member of the molding die. Further, the inclined plate only needs to be fixed to the inner shaft member. For example, the inclined plate is integrally formed with the inner shaft member by casting or the like, or the inclined plate separately formed by press molding or the like is welded. It is also possible to fix the inner shaft member to the inner shaft member later or to provide an annular mounting portion on the inclined plate and to fix the outer shaft member to the inner shaft member. Further, the material of the inner shaft member, the outer cylinder member, the inclined plate, and the inclined plate facing portion may be any rigid material that can realize the required load-bearing strength, but generally, a metal such as iron or aluminum alloy is used. Preferably employed.
[0010]
Further, in the cylindrical vibration-proof mount having a structure according to the present invention, preferably, the axial bottom portion of the first straight portion is positioned outward in the axial direction from the protruding base portion of the inclined plate facing portion of the outer cylindrical member. I'm damned. That is, in the cylindrical vibration-proof mount according to the present invention, as described above, even when the first straight portion is extended to the vicinity of the inclined plate, cracking of the compression rubber is advantageously prevented, so that sufficient durability is achieved. The first curb portion can be formed so as to substantially penetrate the outer cylindrical member in the axial direction while securing the mount spring characteristic by the first curb portion. It is possible to make adjustments by changing greatly.
[0011]
Furthermore, in the cylindrical anti-vibration mount having the structure according to the present invention, preferably, the first curving portion side of the first curving portion is not overlapped with the sloping plate in the axial projection. The circumferential end of the inclined plate is positioned away from the circumferential end edge of the inclined plate in the circumferential direction. As a result, the thickness dimension of the compression rubber interposed between the inclined plate and the first curb portion is advantageously ensured, and the concentration of deformation stress and the resulting decrease in durability are reduced. Further, the occurrence of cracks in the compression rubber and the improvement in durability can be achieved more effectively.
[0012]
Further, in the cylindrical vibration-proof mount having the structure according to the present invention, for example, the first curb portion has a circumferential space extending in the circumferential direction substantially along the outer circumferential surface of the inner shaft member, and the circumferential direction. It is desirable to form the cross-sectional shape which consists of a pair of radial space which spreads in a substantially radial direction from the inner shaft member toward the outer cylinder member at both ends in the circumferential direction of the space. If such a cross-sectional shape is employed in the first curb portion, the effect of reducing the rigidity of the mount spring by the first curb portion is realized extremely advantageously, and a greater degree of tuning flexibility in mount spring characteristics is ensured. At the same time, when a large load is input in the radial direction where the first curb portion is opposed, the circumferential space in the first curb portion is crushed, thereby exhibiting a non-linear spring characteristic. More preferably, each radial space is formed with a radial length that substantially reaches the outer cylindrical member at its radially outer end.
[0013]
Furthermore, in the cylindrical vibration-proof mount having the structure according to the present invention, for example, it is located on both sides of the inner shaft member in the radial direction from which the inclined plate protrudes, and is opposite to the compression rubber in the main rubber elastic body. A pair of second straight portions extending in the axial direction from the axial end face are provided, and the pair of second straight portions are spaced radially outward from the inner shaft member rather than the pair of first straight portions. Thus, a configuration that is positioned can be suitably employed. More preferably, the second curb portion located on the inclined plate side is formed with a circumferential length that overlaps the inclined plate in the axial projection, and is thereby fixed to the peripheral portion of the inclined plate. The adverse effects on the durability of the compression rubber are avoided. Further, the second curb portion can be formed by penetrating the main rubber elastic body in the axial direction.
[0014]
By forming such a pair of second curving portions, the degree of freedom of tuning of the mount spring characteristics is further advantageously ensured, and even in the radial direction where the second curving portions are opposed to each other, it is non-linear. Spring characteristics can be advantageously provided. In addition, since the second curb portion is positioned radially outward from the first curb portion, the main rubber elasticity located between the first curb portion and the second curb portion is in the circumferential direction. The circumferential thickness of the body can be advantageously ensured, and the size of the circumferential direction can be advantageously ensured in a range where the second straight portion overlaps the inclined plate in the axial projection. Thereby, there is also an advantage that the area of the contact surface of the second straight portion that exhibits the stopper function can be advantageously ensured when a radial load is input so that the second straight portion faces the opposite position.
[0015]
Further, in the cylindrical vibration-proof mount having a structure according to the present invention, for example, each of the pair of first and second straight portions includes a circumferential space extending in the circumferential direction of the inner shaft member. Each of the circumferential end portions of the circumferential space has a cross-sectional shape composed of a pair of radial spaces extending in a substantially radial direction from the inner shaft member toward the outer cylindrical member. A total of four connecting rubber portions for connecting the inner shaft member and the outer cylindrical member in the radial direction are formed between the respective radial spaces of the first and second straight portions adjacent to each other in the circumferential direction. The structure formed is preferably employed. If such a structure is adopted, the springs in the two radial directions orthogonal to each other can be obtained by the first and second straight portions while the spring characteristics in the mount axis direction are effectively secured by the four connecting rubber portions. The characteristics can be adjusted more efficiently.
[0016]
Furthermore, in the cylindrical vibration-proof mount having the structure according to the present invention, for example, the inclined plate has a substantially fan shape that becomes wider radially outward from the inner shaft member, and the base side of the inclined plate. It is desirable that the width dimension of the inner shaft member be equal to or smaller than the outer diameter dimension of the inner shaft member, and that the width dimension on the tip end side of the inclined plate be larger than the outer diameter dimension of the inner shaft member. If such a structure of the inclined plate is adopted, the positions on both sides in the width direction on the base side of the inclined plate can be advantageously brought closer to the inner shaft member, so that the circumferential direction between the inner shaft member and the outer cylinder member can be reduced. Even when a relative torsional load is input, the amount of deformation and the stress generated in the compression rubber is reduced at both sides in the width direction of the base of the inclined plate where the compression rubber is most likely to crack. As a result, it is possible to further improve the durability and load resistance of the compression rubber and thus the mount. In addition, the base portion having the smallest width dimension in the inclined plate generally allows the positions of both sides of the base portion in the circumferential direction to be advantageously brought closer to the inner shaft member while ensuring the fixing property of the inclined plate to the inner shaft member. Thus, it is preferable to locate the outer peripheral front end surface in the radial direction from which the inclined plate protrudes in the inner shaft member in the vicinity of both sides sandwiched in the width direction.
[0017]
Further, in the cylindrical vibration isolating mount having the structure according to the present invention, the inclined plate facing portion formed on the outer cylindrical member is positioned so as to protrude outward in the radial direction from the inclined plate provided on the inner shaft member. It is desirable that the width is wide on both sides in the circumferential direction. By adopting such a configuration of the inclined plate facing portion, it is possible to advantageously secure the facing area between the inclined plate and the inclined plate facing portion, and thus the volume of the compression rubber, so that the effective component force against the load in the axial direction and the axis perpendicular direction In addition to realizing the action, it is possible to improve the resistance to input load in the axial direction and the direction perpendicular to the axial direction. Further, even when the inner shaft member and the outer cylinder member are relatively twisted and displaced in the circumferential direction, the facing area between the inclined plate and the inclined plate facing portion is stably secured, so that the intended vibration isolation is achieved. The performance can be exhibited stably.
[0018]
Further, in the cylindrical vibration-proof mount constructed according to the present invention, for example, an outer cylinder is provided with a stopper plate that protrudes radially opposite to the inclined plate at one axial end of the inner shaft member. At one end in the axial direction of the member, a stopper plate facing portion that protrudes radially opposite to the inclined plate facing portion and is spaced apart and opposed by a substantially parallel facing surface to the stopper plate is formed. A configuration in which a stopper rubber protruding from at least one facing surface of the stopper plate and the stopper plate facing portion toward the other facing surface is preferably employed. If such a configuration is adopted, the amount of relative displacement in the axial direction of the inner shaft member and the outer cylinder member is limited by contacting the stopper plate and the stopper plate facing portion via the stopper rubber. Excessive deformation of the main rubber elastic body and compression rubber when a heavy load is applied in the axial direction can be prevented, thereby further improving durability.
[0019]
More preferably, the width dimension of the stopper plate is made larger than the width dimension on the base side of the inclined plate. As a result, it is possible to more effectively prevent cracks that are likely to occur in the compression rubber at both sides in the width direction of the base portion of the inclined plate, and to advantageously ensure the strength of the stopper plate and thus the load bearing strength of the stopper mechanism. It becomes possible. In addition, the stopper plate can be cast integrally with the inner shaft member or the stopper plate formed separately can be fixed by welding or the like. It is also possible to employ a fixed plate that is fixed, and with this fixed plate, it is possible to integrally form the inclined plate and the stopper plate, thereby reducing the number of parts and simplifying the structure. Furthermore, when the stopper plate facing portion as described above is formed in the present invention, for example, at one opening peripheral edge portion of the outer cylinder member in the axial direction, it projects radially outward and continuously extends in the entire circumferential direction. It is desirable to integrally form a flange-shaped portion and to form a stopper plate facing portion and an inclined plate facing portion by this flange-shaped portion. If such a flange-shaped part is employ | adopted, a stopper board opposing part and an inclination board opposing part can be easily formed with the outstanding intensity | strength with respect to an outer cylinder member.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, in order to clarify the present invention more specifically, embodiments of the present invention will be described in detail with reference to the drawings.
[0021]
1 to 5 show a suspension member mount 10 as an embodiment of the present invention. In the suspension member mount 10, an inner cylinder member 12 as an inner shaft member and an outer cylinder member 14 as an outer cylinder member are arranged to be spaced apart from each other in the radial direction, and between the inner and outer cylinder members 12, 14. A main rubber elastic body 15 is interposed, and both metal fittings 12 and 14 are elastically connected.
[0022]
More specifically, the inner cylinder fitting 12 has a small-diameter cylindrical shape, and a substantially flat plate-like fixing plate 16 is fixed near one end in the axial direction (left side in FIG. 1). Yes. The fixing plate 16 is composed of a rigid member such as a press fitting, and as shown in FIG. 6, an annular fitting portion 20 having a center hole 18 and a diameter of the fitting portion 20. A stopper plate portion 22 and an inclined plate portion 24 projecting outward on both sides sandwiched in one direction (vertical direction in FIGS. 2 and 6) are integrally provided. Then, the inner cylinder fitting 12 is inserted into the center hole 18 of the fitting portion 20, and the fitting portion 20 is welded to the inner cylinder fitting 12, whereby the fixing plate 16 is fixed to the inner cylinder fitting 12.
[0023]
Here, the stopper plate portion 22 has a constant width dimension B larger than the outer diameter dimension A of the inner cylinder fitting 12, and is radial on a plane orthogonal to the central axis of the inner cylinder fitting 12. It protrudes toward one side (downward in FIGS. 2 and 6). Reinforcing ribs 26, 26 that are bent outward in the axial direction (leftward in FIG. 1) are integrally formed on both side edges of the stopper plate 22 in the width direction. Further, the protruding front end surface 28 of the stopper plate portion 22 has an arc shape with the central axis of the inner cylinder fitting 12 being substantially the center.
[0024]
In addition, the inclined plate portion 24 has a substantially fan shape that becomes wider as the distance from the inner cylinder fitting 12 increases, and one side in the radial direction on the plane inclined outward with respect to the central axis of the inner cylinder fitting 12 ( It protrudes diagonally toward the upper side in FIGS. Further, the inclined plate portion 24 has the smallest width dimension C of the base portion (the boundary portion with the fitting portion 20 closest to the inner cylinder fitting 12) slightly smaller than the outer diameter dimension A of the inner cylinder fitting 12. In addition, the largest width dimension D of the projecting tip portion is made larger than the outer diameter dimension A of the inner cylinder fitting 12. That is, the fixed plate 16 is provided with the narrowed portions 30 in the width direction in the portion where the base portion of the inclined plate portion 24 is located, and the width dimension of the fixed plate 16 is minimized. In addition, the protrusion front end surface 32 of the inclined plate portion 24 has an arc shape with the central axis of the inner cylinder fitting 12 being substantially the center.
[0025]
On the other hand, the outer cylinder fitting 14 has a large-diameter cylindrical shape, and is coaxially disposed so as to be spaced radially outward of the inner cylinder fitting 12 by being externally inserted into the inner cylinder fitting 12. ing. The axial length of the outer cylinder fitting 14 is shorter than that of the inner cylinder fitting 12, and the outer cylinder fitting 14 is positioned at a substantially central portion of the inner cylinder fitting 12 in the axial direction. In addition, an opening portion on one axial direction (left side in FIG. 1) of the outer cylindrical metal fitting 14 is reduced in diameter by drawing or the like to be a small diameter portion 34 having a small inner and outer diameter. Further, a flange-like portion 36 that protrudes outward in the radial direction and continuously extends in the circumferential direction is integrally formed on the opening peripheral edge portion on the small diameter portion 34 side. Then, a portion on the circumference of the flange-shaped portion 36 (the lower portion in FIG. 2) is spaced apart in the axial direction from the stopper plate portion 22 projecting from the inner tube fitting 12, and the stopper plate portion 22 A stopper plate facing portion 38 is formed that is opposed to the surface with a parallel facing surface. Further, another portion (upper portion in FIG. 2) on the circumference of the flange-shaped portion 36 is extended radially outward and inclined axially outward, whereby the inner cylinder An inclined plate facing portion 40 is formed that is spaced apart in the oblique axis direction with respect to the inclined plate portion 24 protruding from the metal fitting 12 and is opposed to the inclined plate portion 24 with a substantially parallel facing surface. The inclined plate facing portion 40 has a protruding tip surface 41 having an arcuate surface having a diameter larger than that of the inclined plate portion 24, and the circumferential length thereof is sufficiently larger than that of the inclined plate portion 24. It is enlarged, and is projected and positioned on both sides in the circumferential direction of the inclined plate portion 24.
[0026]
Further, the main rubber elastic body 15 has a substantially thick cylindrical shape as a whole, and is interposed over substantially the entire area between the radially opposed surfaces of the inner cylinder fitting 12 and the outer cylinder fitting 14. Then, the inner and outer peripheral surfaces of the main rubber elastic body 15 are vulcanized and bonded to the outer peripheral surface of the inner cylindrical metal fitting 12 and the inner peripheral surface of the outer cylindrical metal fitting 14, respectively. It is formed as an integrally vulcanized molded product having 12 and 14. Further, the main rubber elastic body 15 also extends between the opposed surfaces of the inclined plate portion 24 and the inclined plate facing portion 40, and therefore, the entire surface between the opposed surfaces of the inclined plate portion 24 and the inclined plate facing portion 40. The compression rubber 42 filled over the entire length is formed integrally with the main rubber elastic body 15. Further, the main rubber elastic body 15 extends in the axial direction to the fixing plate 16 even in a portion where the compression rubber 42 is not located. 15 A connecting rubber 43 is formed integrally with the main rubber elastic body 15 so as to cover between the axial end of the fixing plate 16 and the fixing plate 16 with an outer diameter that is substantially the same as the outer diameter of the fitting portion 20 of the fixing plate 16. Has been. Further, the connecting rubber 43 and the main rubber elastic body 15 also extend to the respective opposing surfaces of the stopper plate portion 22 and the stopper plate opposing portion 38, and thus project toward the other side at each of the opposing surfaces, Stopper rubbers 44 and 46 are formed which are opposed to each other in the axial direction with a predetermined gap 48 therebetween. Further, the connection rubber 43 covers the entire surface of the fixed plate 16 and extends to the outer surface of the fixed plate 16, and thus, in the axial direction on the outer surfaces of the stopper plate portion 22 and the inclined plate portion 24. A protruding rubber rubber 50 is formed, and a covering rubber 52 that covers the outer peripheral surface of the fixed plate 16 and connects the buffer rubber 50 to the compression rubber 42 and the connection rubber 43 is formed. Here, the covering rubber 52 has an outer peripheral surface shape substantially along the outer peripheral surface of the fixed plate 16, and in particular, the outer peripheral surfaces on both sides in the width direction of the base portion of the inclined plate portion 24 are constricted portions 30, The constricted surfaces 54 and 54 enter inward along the line 30. In short, the compression rubber 42, the connection rubber 43, the buffer rubber 50, the stopper rubbers 44 and 46, and the covering rubber 52 are all rubber elastic bodies. 15 It is formed integrally with.
[0027]
Further, the main rubber elastic body 15 is opposite to the compression rubber 42 on both sides of the inner cylindrical metal fitting 12 in the radial direction perpendicular to the opposing direction of the stopper plate portion 22 and the inclined plate portion 24 (in FIG. 4). A pair of first straight portions 56, 56 are formed in the axial end face on the right side) and extending in the axial direction. Each of these first straight portions 56, 56 has an arc-shaped circumferential space 58 extending in the circumferential direction along the outer peripheral surface of the inner cylindrical metal member 12 in the cross-sectional shape, and the circumferential direction of the circumferential space 58. It has a pair of linear space 60, 60 of the linear shape extended toward both ends from the substantially radial direction outward. In addition, the two radial spaces 60, 60 extend in a radial direction substantially reaching the outer cylindrical fitting 14, so that the gap between the two radial spaces 60, 60 from the outer cylindrical fitting 14 to the inner cylindrical fitting 14 is increased. The main rubber elastic body 15 is formed with a first radial stopper 62 that protrudes in the radial direction toward the tubular fitting 12. When a large load is input between the inner and outer cylindrical metal members 12 and 14 in the radial direction in which the first straight portions 56 and 56 face each other, the first straight portion 56 is crushed and the first radial stopper 62 When the protruding front end surface comes into contact with the inner cylinder fitting 12, the amount of relative displacement in the radial direction of the inner and outer cylinder fittings 12 and 14 is limited in a buffering manner. The circumferential spaces 58 and 58 of the first straight portions 56 and 56 are substantially formed on the outer circumferential surface of the inner cylindrical metal member 12, and the inner portion of the portion where the circumferential space 58 is formed. Only the thin rubber layer 64 formed on the outer peripheral surface of the tubular metal member 12 for reasons such as mold opening / closing properties at the time of molding the main rubber elastic body 15 is present.
[0028]
On the other hand, the main rubber elastic body 15 has a shaft substantially the same as the first straight portion 56 on both sides of the inner tubular metal fitting 12 in the radial direction perpendicular to the opposing direction of the first straight portions 56, 56. A pair of second straight portions 66 and 66 extending in the axial direction are formed in the axial end surface on one side in the direction (right side in FIG. 1). Each of these second straight portions 66, 66 extends in the circumferential direction at a radial intermediate portion of the main rubber elastic body 15 that is spaced apart from the inner cylindrical metal member 12 by a predetermined distance in the cross-sectional shape. It has an arc-shaped circumferential space 68 and a pair of linear radial spaces 70, 70 extending from both circumferential ends of the circumferential space 68 substantially outward in the radial direction. In addition, a rubber layer 74 having a predetermined thickness is formed on the inner peripheral side of the circumferential space 68 to cover the outer peripheral surface of the inner cylindrical fitting 12, while the two radial spaces 70 and 70 are substantially outside. A second radial stopper 72 that extends in the radial direction to the cylindrical fitting 14 and projects radially from the outer cylindrical fitting 14 toward the inner cylindrical fitting 12 between the radial spaces 70 and 70. The main rubber elastic body 15 is formed. When a large load is input between the inner and outer cylindrical metal members 12 and 14 in the radial direction where the second straight portions 66 and 66 face each other, the second straight portion 66 is crushed and the second radial stopper 72 The protruding distal end surface comes into contact with the inner cylinder fitting 12 via the rubber layer 74 formed on the outer peripheral surface of the inner cylinder fitting 12, so that the relative displacement in the radial direction of the inner and outer cylinder fittings 12 and 14 is buffered. It is supposed to be limited to.
[0029]
In short, the main rubber elastic body 15 is provided with the pair of first straight portions 56 and 56 and the second straight portions 66 and 66, so that the main rubber elastic body 15 is adjacent to each other in the circumferential direction. Four radial connecting portions 76 that extend in the radial direction between the straight portion 56 and the second straight portion 66 and connect the inner cylinder fitting 12 and the outer cylinder fitting 14 are formed.
[0030]
Here, each of the first straight portions 56 and 56 and the second straight portions 66 and 66 is formed with an axial depth that does not reach the fixed plate 16, and the axial bottom portion of the first straight portions 56 and 56 and the second straight portions 66 and 66 is the outer cylinder. The metal fitting 14 is positioned slightly closer to the fixed plate 16 than the axial opening of the small diameter portion 34 (the protruding base of the flange-like portion 36). As a result, the radial spring characteristics where the first and second straight portions 56, 56 and 66, 66 are opposed to each other are sufficiently soft, and when the deformation exceeds a certain value, they rise non-linearly and become hard. Spring characteristics are given. In particular, in the present embodiment, any of the straight portions 56 and 66 are formed without penetrating the main rubber elastic body 15 in the axial direction.
[0031]
In addition, the second straight portion 66 formed on the protruding direction side of the inclined plate portion 24 with respect to the inner cylindrical metal fitting 12 has a size that entirely overlaps the inclined plate portion 24 in the axial projection. It is formed and has an axial depth that does not reach the inclined plate portion 24. Further, as shown in FIG. 3, the first straight portions 56, 56 have a radial space 70 on the inclined plate portion 24 side so that they do not overlap with the inclined plate portion 24 in the axial projection. The inclined plate portion 24 is set at a position away from the circumferential edge of the inclined plate portion 24 in the circumferential direction.
[0032]
In particular, the first straight portions 56, 56 are located on the innermost peripheral portion of the main rubber elastic body 15 and are formed along the outer peripheral surface of the inner cylindrical metal member 12. Spacing distances between the straight portions 56, 56 and the outer peripheral surfaces of the main rubber elastic body 15, the compression rubber 42 and the connection rubber 43 are advantageously ensured. Thereby, as shown in FIG. 4, the first straight portions 56, 56 are extended in the axial direction, and the bottom portions in the axial direction of the first straight portions 56, 56 are connected to the flange-shaped portion in the outer cylinder fitting 14. Even when the distance is set to the inclined plate portion 24 side by a distance L from the protruding base portion 36, the rubber thickness T of the portion positioned closer to the inclined plate portion 24 than the first straight portions 56, 56 is advantageously used. It is possible to secure it.
[0033]
In the suspension member mount 10 having the above-described structure, the inclined plate portion 24 and the outer tube fitting 14 are arranged in the radial direction in which the inclined plate portion 24 and the inclined plate facing portion 40 protrude from the When an external load in a direction in which the inclined plate facing portion 40 is approached is input and the compression rubber 42 is compressed and deformed, the inner and outer cylindrical metal fittings are caused by a component force action by the facing surfaces of the inclined plate portion 24 and the inclined plate facing portion 40. 12 and 14, an axial relative displacement force is exerted in a direction in which the inclined plate portion 24 and the inclined plate facing portion 40 are separated in the axial direction. In addition, when an external load in the axial direction that causes the inclined plate portion 24 and the inclined plate facing portion 40 to approach the inner tube fitting 12 and the outer tube fitting 14 is input and the compression rubber 42 is compressed and deformed, the inclination is reduced. In the direction of separating the inclined plate portion 24 and the inclined plate facing portion 40 in the radial direction with respect to the inner and outer cylindrical metal fittings 12 and 14 by the component action by the opposing surfaces of the plate portion 24 and the inclined plate facing portion 40, the radial direction The relative displacement force is exerted.
[0034]
The suspension member mount 10 is configured such that, for example, the outer cylinder fitting 14 is press-fitted and fixed to a mounting hole formed in a suspension member constituting a semi-trailing arm type suspension mechanism, while the inner cylinder fitting 12 is inserted via a rod or the like. By fixing to the body, in FIG. 1, the left side is the outside of the vehicle and the right direction is the inside of the vehicle, the left and right direction in the figure is the left and right direction of the vehicle, and the up and down direction in the figure is the front and rear direction of the vehicle. It will be installed in the state. Accordingly, the above-mentioned JP-A-9-104212 Gazette As described in the above, the roll displacement of the vehicle body during turning of the vehicle is advantageously suppressed based on the above-described component force action. Note that, in such a mounted state, the axially outer surface of the fixing plate 16 fixed to the inner cylinder fitting 12 is against a suspension member side contact member (not shown) to which the outer cylinder fitting 14 is attached. The inclined plate portion 24 is separated from the inclined plate facing portion 40 between the inner and outer cylindrical metal fittings 12 and 14 due to contact with the corresponding contact member via the buffer rubber 50 by being opposed to each other in the axial direction. The relative axial displacement can be limited. Further, in the present embodiment, the bent base portion (inner peripheral edge portion) of the flange-shaped portion 36 in the outer cylinder fitting 14 has a smaller diameter than the outer circumferential surface serving as a fitting surface to the mounting hole of the outer cylinder fitting 14 by the small diameter portion 34. Since the opening end surface of the mounting hole in the suspension member is not obstructed by the radius set on the bent base portion of the flange-like portion 36, it is in close contact with the back surface of the flange-like portion 36. Therefore, it is possible to advantageously make contact with each other, and thereby it is possible to advantageously improve the positioning accuracy of the outer cylindrical metal member 14 and the strength of the flange-like portion 36.
[0035]
Accordingly, the suspension member mount 10 has a radial load, an axial load, and a central axis around the inner and outer cylindrical fittings 12 and 14 as the suspension member is displaced or swung with respect to the body when stepping over a vehicle or cornering. However, in the vehicle vertical direction, which has a great influence on the ride comfort, a sufficiently soft spring characteristic can be imparted by the first straight portions 56, 56, thereby providing excellent Riding comfort is easily realized.
[0036]
In addition, since these first straight portions 56 and 56 are formed along the outer peripheral surface of the inner cylindrical metal member 12, the portion where the greatest stress is likely to be generated by the torsional load, that is, the base portion of the inclined plate portion 24. Even at the positions on both side portions in the width direction, a significant decrease in the rubber thickness due to the provision of the first straight portions 56, 56 having a large axial dimension is avoided, so that the rubber elastic body 15, The local concentration of the deformation stress in 42, 43, and 52 and the significant decrease in durability are effectively reduced or prevented.
[0037]
Therefore, in the suspension member mount 10 having the above-described structure, the first straight portions 56 and 56 are secured while preventing the occurrence of cracks in the rubber elastic bodies 15, 42, 43, 52 and the like and ensuring excellent durability. Thus, the radial spring constant can be set sufficiently low, and the degree of freedom of tuning of the vibration proof characteristics such as the spring characteristics and the spring ratio can be advantageously ensured.
[0038]
Further, in the suspension member mount 10 of the present embodiment, the position where the greatest stress is likely to occur due to the torsional load or the like, that is, the positions of both side portions in the width direction at the base portion of the inclined plate portion 24 are Since the inner and outer cylindrical fittings 12 and 14 are relatively torsionally displaced because they are close to the inner cylindrical fitting 12 side, the peripheral portions of the base portion of the inclined plate portion 24 with respect to the outer cylindrical fitting 14 at both sides in the width direction are also provided. As a result, the amount of relative displacement in the direction can be suppressed. The generated stress or deformation is more effectively reduced, and much more excellent durability and load bearing strength are exhibited. In particular, in the present embodiment, the inclined plate portion 24 has a fan shape that becomes wider outward in the radial direction, and has a width dimension that is larger than the outer diameter dimension of the inner cylindrical fitting 12 on the protruding tip side. Therefore, while ensuring the durability of the rubber elastic body by reducing the width dimension of the base portion of the inclined plate portion 24, sufficiently ensuring the facing area of the inclined plate portion 24 and the inclined plate facing portion 40, the above-mentioned Thus, the component action can be effectively exhibited. Moreover, in the present embodiment, the inclined plate facing portion 40 is formed with a sufficiently large circumferential width with respect to the inclined plate portion 24, and even when the inner and outer cylindrical metal members 12 and 14 are relatively displaced in the torsional direction, Since the inclined plate portion 24 is opposed to the inclined plate facing portion 40 over substantially the entire surface, even if a torsional load and a radial or axial load are applied simultaneously, a component force action is possible. The expected effect based on can be effectively exhibited.
[0039]
Incidentally, with respect to the member mount 10 as an example having the structure according to the present embodiment as described above, the inclined plate portion 24 and the inclined plate facing portion 40 are spaced apart from each other between the inner and outer cylindrical metal fittings 12 and 14 (compression rubber 42 The durability experiment was conducted by repeatedly applying a relative torsional displacement of ± 16 degrees in the circumferential direction under a state where a static radial load of 5000 N was applied in the radial direction in which tensile deformation was generated in went. At the same time, the member mount has the same structure, and the first straight portions 56 and 56 are spaced radially outward from the outer peripheral surface of the inner cylindrical metal member 12 in the same manner as the second straight portions 66 and 66. What was formed in the radial direction intermediate part of the inner and outer cylinder metal fittings 12 and 14 was used as a comparative example, and the same durability experiment was conducted also about the member mount of this comparative example.
[0040]
As a result, in the member mount of the comparative example, when the repeated load in the torsional direction was applied 100,000 times, cracks were observed in the rubber elastic bodies located on both sides in the width direction of the base portion of the inclined plate portion. On the other hand, in the member mount of the example, even when a repeated load in the torsional direction was applied 600,000 times, the rubber elastic body was not found to have a defect such as a crack. This also makes it easy to understand the excellent durability of the cylindrical vibration-proof mount having the structure according to the present invention.
[0041]
The embodiments and examples of the present invention have been described in detail above. However, these are merely examples, and the present invention is interpreted in a limited manner by the specific descriptions in the above-described embodiments and examples. It is not something.
[0042]
For example, the second straight portions 66, 66 in the main rubber elastic body 15 are provided in an appropriate size and in an appropriate size according to the mount required characteristics and the like, and are not essential in the present invention. Further, they may be formed so as to penetrate in the axial direction.
[0043]
Further, the width dimension on the base side of the inclined plate portion 24 does not necessarily need to be smaller than the outer diameter size of the inner cylinder fitting 12, and the stopper plate portion 22 and the inclined plate portion 24 are formed by a single fixed plate 16. The constricted portions 30, 30 are necessarily provided even when Is Absent.
[0044]
Furthermore, the buffer rubber 50 protruding on the outer surfaces of the inclined plate portion 24 and the stopper plate portion 22 is not always necessary.
[0045]
Further, the stopper plate facing portion 38 and the inclined plate facing portion 40 in the outer cylinder fitting 14 do not necessarily have to be integrally formed by the flange-shaped portion 36, and they may be formed independently in the circumferential direction or separately formed. It is also possible to adhere to the tube fitting 14 later. Furthermore, the small diameter part 34 in the outer cylinder fitting 14 is not essential in the present invention.
[0046]
In addition, the present invention provides various suspension member mounts such as a suspension member mount for suppressing roll displacement, a suspension member mount for realizing an appropriate understeer tendency, and a suspension bushing for suppressing lateral force compliance steer. A compression rubber interposed between the inclined plate and the inclined plate facing portion of the inner shaft member and the outer cylinder member, such as a suspension frame, a suspension bush, or a subframe mount interposed between the subframe and the body of the automobile, Any of the various types of cylindrical anti-vibration mounts that utilize the component force action between the inclined plate and the inclined plate facing portion can be advantageously applied.
[0047]
【The invention's effect】
As is clear from the above description, in accordance with the present invention, the pair of straight portions positioned opposite each other with the inner shaft member sandwiched in the radial direction perpendicular to the protruding direction of the inclined plate are axially aligned along the outer peripheral surface of the inner shaft member. In the cylindrical anti-vibration mount formed on the rubber elastic body, it is possible to set a sufficiently large tick portion while avoiding a decrease in durability due to stress concentration in the rubber elastic body. A large degree of freedom in tuning is provided with respect to the spring characteristics, the spring ratio, and the like.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing a suspension member mount as one embodiment of the present invention, and corresponds to a cross section taken along line II in FIG.
FIG. 2 is a left side view in FIG.
FIG. 3 is a right side view in FIG. 1;
4 is a cross-sectional view taken along line IV-IV in FIG.
FIG. 5 is a cross-sectional view taken along the line VV in FIG.
6 is a front view showing an assembly of an inner shaft member and a fixing plate constituting the suspension member mount shown in FIG. 1. FIG.
[Explanation of symbols]
10 Suspension member mount
12 Inner tube bracket
14 Outer tube bracket
15 Body rubber elastic body
24 Inclined plate
40 Inclined plate facing part
42 Compression rubber
56 First curb

Claims (8)

インナ軸部材と、その外方に離間配置されたアウタ筒部材を、それらの間に介装された筒状の本体ゴム弾性体で連結すると共に、該インナ軸部材の軸方向一方の端部において、軸方向外方に傾いて径方向一方向で斜め外方に向かって突出する傾斜板を設ける一方、前記アウタ筒部材の軸方向一方の端部において、軸方向外方に傾いて径方向一方向で斜め外方に向かって突出して、前記傾斜板に対して平行な対向面で離間して対向位置する傾斜板対向部を形成し、更に該傾斜板と該傾斜板対向部の対向面間に介装されてそれらを弾性的に連結するコンプレッションゴムを、前記本体ゴム弾性体と一体的に形成した筒型防振マウントにおいて、
前記傾斜板が円環状の嵌着部を有し、この嵌着部において前記インナ軸部材の外周面に固着されていると共に、前記本体ゴム弾性体から一体的に延び出し、該嵌着部に至る接続ゴムが該インナ軸部材の外周面を覆うように設けられている一方、該傾斜板の突出方向に直交する径方向で前記インナ軸部材を挟んだ両側に位置し、それぞれ前記本体ゴム弾性体における前記コンプレッションゴムと反対側の軸方向端面から、該インナ軸部材の外周面に沿って、軸方向に貫通しないで前記傾斜板に達しない長さで延びる一対の第一のすぐり部を、車両の上下方向において該インナ軸部材を挟むようにして、その軸方向底部が前記アウタ筒部材における前記傾斜板対向部の突出基部よりも軸方向外方に位置するように、且つ前記本体ゴム弾性体の最内周部に位置するように、設けたことを特徴とする筒型防振マウント。
The inner shaft member and the outer cylindrical member spaced apart from each other are connected by a cylindrical main rubber elastic body interposed therebetween, and at one end of the inner shaft member in the axial direction. In addition, an inclined plate that is inclined outward in the axial direction and protrudes obliquely outward in one radial direction is provided, while one end in the axial direction of the outer cylindrical member is inclined outward in the axial direction. projecting obliquely outwards direction, opposing surfaces of said relative inclined plate spaced flat line facing surfaces to form an inclined plate facing portions facing position, further the inclined plate and the inclined plate facing portion In the cylindrical vibration-proof mount in which the compression rubber that is interposed between them and elastically connects them is formed integrally with the main rubber elastic body,
The inclined plate has an annular fitting portion, and is fixed to the outer peripheral surface of the inner shaft member at the fitting portion, and extends integrally from the main rubber elastic body, and is attached to the fitting portion. The connecting rubber is provided so as to cover the outer peripheral surface of the inner shaft member, and is located on both sides of the inner shaft member in the radial direction perpendicular to the protruding direction of the inclined plate, from the axial end surface of the compression rubber opposite the body, I along the outer peripheral surface of the inner shaft member, the first hollow portion of the pair extending in a length that does not reach the inclined plate without penetrating in the axial direction The main rubber elastic body so that the inner shaft member is sandwiched in the vertical direction of the vehicle so that the bottom portion in the axial direction is positioned outwardly in the axial direction from the protruding base portion of the inclined plate facing portion of the outer cylinder member Innermost So as to be positioned in part, cylindrical and characterized by providing vibration-damping mount.
前記第一のすぐり部が、軸方向の投影で、前記傾斜板に重ならないように、該第一のすぐり部の該傾斜板側の周方向端部が、該傾斜板の周方向端縁部から周方向に離間して位置せしめられている請求項1に記載の筒型防振マウント。  The circumferential edge on the inclined plate side of the first raised portion is the circumferential edge of the inclined plate so that the first raised portion does not overlap the inclined plate in an axial projection. The cylindrical vibration-proof mount according to claim 1, wherein the cylindrical vibration-proof mount is positioned so as to be spaced apart from the circumferential direction. 前記第一のすぐり部が、前記インナ軸部材の外周面に沿って周方向に広がる周方向空間と、該周方向空間の周方向両端部において、それぞれ、該インナ軸部材から前記アウタ筒部材に向かって径方向に広がる一対の径方向空間とからなる断面形状を有している請求項1又は2に記載の筒型防振マウント。Said first hollow portion is, the a circumferential space extending in the circumferential direction I along the outer peripheral surface of the inner shaft member, the circumferential ends of the circumferential direction space, respectively, the outer cylindrical member from the inner shaft member cylindrical elastic mount according to claim 1 or 2 has a cross sectional shape comprising a pair of radial space extending radially towards the. 前記傾斜板が突出する径方向で前記インナ軸部材を挟んだ両側に位置し、それぞれ前記本体ゴム弾性体における前記コンプレッションゴムと反対側の軸方向端面から軸方向に延びる一対の第二のすぐり部を設け、該一対の第二のすぐり部及び前記一対の第一のすぐり部が、何れも、該インナ軸部材の周方向に広がる周方向空間を有する構成とすると共に、かかる一対の第二のすぐり部の周方向空間を、該一対の第一のすぐり部の周方向空間よりも、該インナ軸部材から径方向外方に離間して位置せしめた請求項1乃至3の何れかに記載の筒型防振マウント。  A pair of second straight portions that are positioned on both sides of the inner shaft member in the radial direction from which the inclined plate protrudes and extend in the axial direction from the axial end surface opposite to the compression rubber in the main rubber elastic body, respectively. And the pair of second straight portions and the pair of first straight portions each have a circumferential space extending in the circumferential direction of the inner shaft member, and the pair of second straight portions. 4. The circumferential space of the straight portion is positioned more radially outward from the inner shaft member than the circumferential space of the pair of first straight portions. 5. Cylindrical anti-vibration mount. 各一対の前記第一のすぐり部と前記第二のすぐり部が、何れも、前記インナ軸部材の周方向に広がる周方向空間と、該周方向空間の周方向両端部において、それぞれ、該インナ軸部材から前記アウタ筒部材に向かって径方向に広がる一対の径方向空間とからなる断面形状を有しており、前記本体ゴム弾性体において、周方向に隣接する第一のすぐり部と第二のすぐり部の各径方向空間の間に、それぞれ、該インナ軸部材と該アウタ筒部材を径方向に連結する合計四本の連結ゴム部が形成されている請求項4に記載の筒型防振マウント。Each of the pair of the first straight portion and the second straight portion includes a circumferential space that extends in the circumferential direction of the inner shaft member and a circumferential end of the circumferential space, respectively. The main body rubber elastic body has a cross-sectional shape composed of a pair of radial spaces extending in a radial direction from the shaft member toward the outer cylinder member. 5. The cylindrical anti-mold member according to claim 4, wherein a total of four connecting rubber portions for connecting the inner shaft member and the outer cylindrical member in the radial direction are formed between the radial spaces of the straight portion. Shaking mount. 前記傾斜板を、前記インナ軸部材から径方向外方に行くに従って幅広となる扇形状とすると共に、該傾斜板の基部側の幅寸法を、前記インナ軸部材の外径寸法以下とし、且つ該傾斜板の先端部側の幅寸法を、該インナ軸部材の外径寸法よりも大きくした請求項1乃至5の何れかに記載の筒型防振マウント。Said inclined plate, with a wide and Do that fan shape as they go radially outward from said inner shaft member, the width of the base portion side of the inclined plate, not more than the outer diameter of the inner shaft member, and The cylindrical vibration-proof mount according to any one of claims 1 to 5, wherein a width dimension on a tip end side of the inclined plate is larger than an outer diameter dimension of the inner shaft member. 前記アウタ筒部材に形成された前記傾斜板対向部が、前記インナ軸部材に設けられた前記傾斜板よりも、径方向外方に突出位置せしめられており、且つ周方向両側に幅広とされている請求項1乃至6の何れかに記載の筒型防振マウント。  The inclined plate facing portion formed on the outer cylinder member is positioned to protrude radially outward from the inclined plate provided on the inner shaft member, and is widened on both sides in the circumferential direction. The cylindrical vibration-proof mount according to any one of claims 1 to 6. 前記インナ軸部材の軸方向一方の端部において、前記傾斜板とは径方向反対側に突出するストッパ板を設ける一方、前記アウタ筒部材の軸方向一方の端部において、前記傾斜板対向部とは径方向反対側に突出して、前記ストッパ板に対して平行な対向面で離間して対向位置するストッパ板対向部を形成し、更にそれらストッパ板とストッパ板対向部の少なくとも一方の対向面から他方の対向面に向かって突出するストッパゴムを突設した請求項1乃至7の何れかに記載の筒型防振マウント。A stopper plate is provided at one end in the axial direction of the inner shaft member to protrude radially opposite to the inclined plate, and at one end in the axial direction of the outer cylindrical member, the inclined plate facing portion is provided. projects in the diametrically opposed, the relative stopper plate spaced flat line facing surfaces forming a stopper plate facing portions facing position, further at least one of the opposing surfaces thereof the stopper plate and the stopper plate facing portion The cylindrical vibration-proof mount according to any one of claims 1 to 7, wherein a stopper rubber is provided so as to protrude from the other side toward the other facing surface.
JP05644798A 1998-03-09 1998-03-09 Cylindrical anti-vibration mount Expired - Fee Related JP3733734B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05644798A JP3733734B2 (en) 1998-03-09 1998-03-09 Cylindrical anti-vibration mount

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05644798A JP3733734B2 (en) 1998-03-09 1998-03-09 Cylindrical anti-vibration mount

Publications (2)

Publication Number Publication Date
JPH11257396A JPH11257396A (en) 1999-09-21
JP3733734B2 true JP3733734B2 (en) 2006-01-11

Family

ID=13027361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05644798A Expired - Fee Related JP3733734B2 (en) 1998-03-09 1998-03-09 Cylindrical anti-vibration mount

Country Status (1)

Country Link
JP (1) JP3733734B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015031375A (en) * 2013-08-06 2015-02-16 Nok株式会社 Side view mirror vibration-proof support structure in motorcycle
JP6442211B2 (en) * 2014-09-30 2018-12-19 株式会社Subaru Suspension device

Also Published As

Publication number Publication date
JPH11257396A (en) 1999-09-21

Similar Documents

Publication Publication Date Title
US20060091595A1 (en) Stabilizer bushing
JP4740818B2 (en) Link member with anti-vibration bush
JP3858908B2 (en) Engine mount
JP3680575B2 (en) Rubber bush and manufacturing method thereof
JP2000161434A (en) Vibration proof bush
JP3733734B2 (en) Cylindrical anti-vibration mount
JP3627406B2 (en) Cylindrical anti-vibration support
JP4283853B2 (en) Link device
JP2004028267A (en) Vibration isolating bush
JPH08156551A (en) Suspension arm mounting structure in suspension device
JPH08128483A (en) Cylindrical vibration control mount
JP3757803B2 (en) Toe collect bush and suspension mechanism using it
JPH11247914A (en) Cylindrical vibration control mount
JP3823688B2 (en) Suspension member mount with to collect action
JP2014066297A (en) Cylindrical type vibration control device
JP3823020B2 (en) Manufacturing method of to collect bush
JP2008155874A (en) Toe correct bush and its manufacturing method
JP2001003987A (en) Engine mount
JP2019052725A (en) Torque rod
JP7263647B2 (en) Vehicle anti-vibration device
JP3456286B2 (en) Cylindrical anti-vibration mount
JP3716632B2 (en) Cylindrical anti-vibration mount
JPH0789356A (en) Supporting structure for vibration isolating mount for vehicle
JP3823021B2 (en) Toe collect bush and suspension mechanism using it
JPWO2006070440A1 (en) Link device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051010

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081028

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101028

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111028

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111028

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121028

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131028

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees