JP3731108B2 - Resistor heat dissipation structure - Google Patents

Resistor heat dissipation structure Download PDF

Info

Publication number
JP3731108B2
JP3731108B2 JP2000053328A JP2000053328A JP3731108B2 JP 3731108 B2 JP3731108 B2 JP 3731108B2 JP 2000053328 A JP2000053328 A JP 2000053328A JP 2000053328 A JP2000053328 A JP 2000053328A JP 3731108 B2 JP3731108 B2 JP 3731108B2
Authority
JP
Japan
Prior art keywords
resistor
metal member
axis
heat dissipation
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000053328A
Other languages
Japanese (ja)
Other versions
JP2001244666A (en
Inventor
正博 窪田
靖彦 宮前
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2000053328A priority Critical patent/JP3731108B2/en
Publication of JP2001244666A publication Critical patent/JP2001244666A/en
Application granted granted Critical
Publication of JP3731108B2 publication Critical patent/JP3731108B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Details Of Resistors (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は放熱構造を有した抵抗器に関し、特にアキシャルリードタイプ抵抗器に放熱用の金属枠を設けた構造を有する高電圧用の抵抗器に関する。
【0002】
【従来の技術】
図6は従来の抵抗器の放熱構造を例示する構成図である。図6(a)は正面図、図6(b)はD−D断面図である。各図において、1はアキシャルリードタイプ(即ち、軸型)の抵抗器、2は中空孔を有した断面ロ字状の金属部材(以下、金属枠と称す)であり、抵抗器1は当該金属枠2の中空孔内に挿入される。3は抵抗器1と金属枠2との間に充填される絶縁樹脂、4a,4bは抵抗器1から突出する導線、5は金属枠2が当接される金属板などの放熱面である。抵抗器1が発生する熱は絶縁樹脂3を介して金属枠2に伝わり、さらに放熱面5に伝えられ放熱される。6a,6bはそれぞれ導線4a,4bの突出位置であり、ここでは6aが高電圧側,6bが低電圧側である。また、7aは、突出部6aから金属枠2までの距離(即ち、絶縁距離)、7bは抵抗器1の本体表面から金属枠2までの距離である。
【0003】
距離7bは放熱のために短くしなければならないが、絶縁のためには距離7aを長くしなければならない。この相反した要求を満足するために、通常は抵抗器1の導線突出部6aおよび6bを金属枠2の断面中心部に配置する。例えば、抵抗器1の軸(突出部6aと6bとを結んでなる軸)と金属枠2の中空孔中心軸(図6の仮想線N)とが一致するように配し、絶縁樹脂3を充填固化して抵抗器1を固定する。
【0004】
【発明が解決しようとする課題】
以上のように、従来は断面ロ字状の金属枠を採用し、抵抗器の導線突出部を当該金属枠の中空孔中心軸に配置することにより、絶縁距離を確保していた。しかしながら、このような厳密な位置合わせは製造コストを増加させるといった問題があった。また、位置合わせを厳密に行わない場合は、その分、絶縁距離に余裕を持たせて設計しなければならず、小型化できないといった問題があった。
【0005】
この発明は以上のような問題点を解消するためになされたもので、放熱構造を有した抵抗器であって、小型化可能な抵抗器を提供する。
【0006】
【課題を解決するための手段】
この発明に係る抵抗器の放熱構造においては、放熱面に当接し、長手方向に開口する溝状の空間部が形成された金属部材と、この金属部材の前記空間部に設けられ、その軸が前記金属部材の長手方向に沿って配置された抵抗器と、この抵抗器と前記金属部材との間の前記空間部に充填され、前記抵抗器を固定する絶縁体と、前記抵抗器の軸と電気的に接続され前記金属部材の外側に突出する導線部とを備え、前記抵抗器の軸は、前記金属部材に形成された前記空間部の断面中心よりも前記金属部材の開口部側に位置する。
0007
また、この発明に係る抵抗器の放熱構造においては、抵抗器と、前記抵抗器の軸周囲に所定の距離を隔てて設けられた金属部材と、前記抵抗器と前記金属部材との間に充填された絶縁体とを備え、前記金属部材は前記抵抗器の軸周囲に部分的な開口部を有し、前記抵抗器の軸は、前記金属部材の断面中心よりも前記開口部側に位置する。
0008
さらにまた、この発明に係る抵抗器の放熱構造においては、抵抗器と、前記抵抗器の軸周囲に所定の距離を隔てて設けられた金属部材と、前記抵抗器と前記金属部材との間に充填された絶縁体とを備え、前記金属部材は前記抵抗器の軸周囲に部分的な開口部を有し、前記金属部材は放熱用金属面に当接され、前記抵抗器の高電圧側の導線突出位置から前記放熱用金属面へ垂下する線分区間において、前記金属部材が存在しない。
0009
【発明の実施の形態】
実施の形態1.
従来は図6に示したように、断面ロ字状の金属枠を採用した。本実施の形態1では、断面コ字状の金属枠を採用する。図1,図2は本実施の形態1の抵抗器の放熱構造を例示する構成図である。図において従来と同一又は相当部分には同一符号を付して説明を省略する。図1(a)は構成斜視図、図1(b)は正面図、図1(c)はA−A断面図である。また、図2は図1(c)の別の形態を例示するA−A断面図である。図において、2は断面形状が略コ字状の金属枠であり、抵抗器1の周囲に所定の距離を隔てて配置されている。金属枠2と抵抗器1との間には絶縁樹脂3が充填される。
0010
詳しく説明する。金属枠2は抵抗器1の軸方向(図1(b)の矢印Pの方向)に対して垂直な断面形状がコ字状の金属枠であり、底板2aおよび側板2b,2cから構成される。抵抗器1の高圧側の導線突出部6aは、底板2aからの距離,側板2bからの距離,側板2cからの距離がそれぞれ等しい位置に配置される。
0011
以上のように、本実施の形態1においては金属枠2の断面形状をコ字状にしたので、製造誤差により抵抗器1の位置がその開口部方向(コ字状開口部側,図1(c)に示す矢印Mの方向)へずれても絶縁性を確保できる。たとえば、製造誤差などにより図2に示すような配置になっても、絶縁距離を確保できる。
0012
すなわち本実施の形態1の金属枠は、抵抗器1の軸方向に対して垂直な断面形状において開口部を有するので、この開口部方向に対してさほど厳密に抵抗器1の位置管理をする必要がない。よって、小型の金属枠2であっても抵抗器1の位置決めが比較的容易に行えるという効果を奏する。
0013
また、当該開口部を有することにより、抵抗器1と金属枠2との距離を直視確認しながら抵抗器1の位置決めを行うことが容易になる。また、金属枠の中に絶縁樹脂を充填する際、絶縁樹脂の充填状況を直視し易くなる。また、絶縁樹脂の充填後、当該絶縁樹脂内の気泡を脱泡する際に、絶縁樹脂3が大気に接する面積が大きくなるので、より気泡が抜けやすくなるという利点がある。
0014
なお、ここでは金属枠2を底面および両側面の三面で構成したが、これに限るものではなく、二面以下で構成してもよい。ただし、金属枠2の機能として、抵抗器1の発熱による熱量をなるべく広い面で集め、その熱を放熱面5へ伝えるという目的があり、このためにはなるべく広い面積とした方が好ましい。また、ここでは金属枠2の断面形状をコ字状としたが、これに限るものではなく、断面形状が開口部を有する金属枠であれば同様の効果を得ることができる。
0015
実施の形態2.
実施の形態2では、抵抗器1の高電圧側において、絶縁樹脂3と放熱面5との間に金属枠2が介在しない構造を採用する。特にここでは、高圧側の導線突出部6aとその直近の放熱面5との間に金属枠2が介在しない構造を採用する。以下、高電圧側において絶縁樹脂3の全周を露出させることにより、絶縁性を向上させた例について説明する。
0016
図3は本実施の形態2の抵抗器の放熱構造を例示する構成図である。図において図1と同一又は相当部分には同一符号を付して説明を省略する。図3(a)は正面図、図3(b)はB−B断面図、図3(c)はC−C断面図である。図において、2は断面形状が略コ字状の金属枠であり、抵抗器1の周囲に所定の距離を隔てて配置されている。ただし、この金属枠2は図1で示したものと異なり、高電圧側の導線突出部6aよりも低電圧側に設けられる。そして、高電圧側の導線突出部6aとその最も近くに位置する放熱面5部分(図3では、導線突出部6aの垂下である点Q)との間に金属枠2を介在させないようにする。
0017
これにより、図3に示す距離7cを絶縁距離として確保できるので、図1に示した構造に比べ絶縁距離を確保しやすくなる。すなわち、図1(a)においては、導線突出部6aの放熱面5方向への絶縁距離は、導線突出部6aから金属枠2に至る距離7aであった。一方、図3(a)では、導線突出部6aから放熱面5に至る距離7c(但し、7c>7a)であるので絶縁距離に余裕ができる。よって、この余裕分だけ距離7bを短くできるので、放熱性を高めながら抵抗構造の低背化を行うことができる。また、導線4aの突出位置Hから、金属枠2に至る沿面の絶縁距離10も同様に確保し易くなる。
0018
なお、ここでは、絶縁樹脂3の高電圧側のみを露出させる構造としたが、図4に示すように低電圧側において露出させるようにしてもよい。図4はこの低圧側を露出させた構造を例示する正面構成図であり、図において、図3と同一又は相当部分には同一符号を付して説明を省略する。
0019
実施の形態3.
図5は、図3に示した絶縁構造の製造方法を例示する説明図である。図において図3と同一又は相当部分には同一符号を付して説明を省略する。図5において、8はコ字状の金属枠2と勘合することにより、当該金属枠2の内面と協働して直方体形状の凹部を形成する枠体、9は抵抗器1から突出する導線を支持するために設けられた切り欠き部である。
0020
製造方法を説明する。まず、枠体8に金属枠2を勘合させる。この枠体8と金属枠2とは協働して直方体形状の凹部を形成する。次に、抵抗器1を当該凹部内に、導線4a,4bがそれぞれ切り欠き部9a,9bに支持されるように配置する。その後、当該凹部へ絶縁樹脂を流し込み、気泡を脱泡後、固化させる。最後に枠体8を金属枠2から取り外せば、図3に示した抵抗構造を得ることができる。
0021
【発明の効果】
この発明は以上説明したように構成されているので、以下に示すような効果を奏する。この発明に係る抵抗器の放熱構造においては、放熱面に当接し、長手方向に開口する溝状の空間部が形成された金属部材と、この金属部材の前記空間部に設けられ、その軸が前記金属部材の長手方向に沿って配置された抵抗器と、この抵抗器と前記金属部材との間の前記空間部に充填され、前記抵抗器を固定する絶縁体と、前記抵抗器の軸と電気的に接続され前記金属部材の外側に突出する導線部とを備え、前記抵抗器の軸は、前記金属部材に形成された前記空間部の断面中心よりも前記金属部材の開口部側に位置するので、小型化可能な抵抗器の放熱構造を得ることができる。
0022
また、この発明に係る抵抗器の放熱構造においては、抵抗器と、前記抵抗器の軸周囲に所定の距離を隔てて設けられた金属部材と、前記抵抗器と前記金属部材との間に充填された絶縁体とを備え、前記金属部材は前記抵抗器の軸周囲に部分的な開口部を有し、前記抵抗器の軸は、前記金属部材の断面中心よりも前記開口部側に位置するので小型化可能な抵抗器の放熱構造を得ることができる。
0023
さらにまた、この発明に係る抵抗器の放熱構造においては、抵抗器と、前記抵抗器の軸周囲に所定の距離を隔てて設けられた金属部材と、前記抵抗器と前記金属部材との間に充填された絶縁体とを備え、前記金属部材は前記抵抗器の軸周囲に部分的な開口部を有し、前記金属部材は放熱用金属面に当接され、前記抵抗器の高電圧側の導線突出位置から前記放熱用金属面へ垂下する線分区間において、前記金属部材が存在しないので小型化可能な抵抗器の放熱構造を得ることができる。
【図面の簡単な説明】
【図1】 本実施の形態1の抵抗器の放熱構造を例示する構成図である。
【図2】 本実施の形態1の抵抗器の別の放熱構造を例示する構成図である。
【図3】 本実施の形態2の抵抗器の放熱構造を例示する構成図である。
【図4】 本実施の形態2の別の放熱構造を例示する構成図である。
【図5】 図3に示した絶縁構造の製造方法を例示する説明図である。
【図6】 従来の抵抗器の放熱構造を例示する構成図である。
【符号の説明】
1 抵抗器、 2 側板、 2 金属枠、 2a 底板、 2b 側板、 2c 側板、 3 絶縁樹脂、 4a 導線、 4b 導線、 5 放熱面、 6a 突出部、 6b 突出部、 7a 距離、 7b 距離、 7c 距離、 8 枠体、 9 切り欠き部、 10 絶縁距離。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a resistor having a heat dissipation structure, and more particularly to a high voltage resistor having a structure in which an axial lead type resistor is provided with a heat dissipation metal frame.
[0002]
[Prior art]
FIG. 6 is a configuration diagram illustrating a conventional resistor heat dissipation structure. FIG. 6A is a front view, and FIG. 6B is a DD cross-sectional view. In each figure, 1 is an axial lead type (ie, shaft type) resistor, 2 is a metal member (hereinafter referred to as a metal frame) having a hollow shape with a hollow hole, and the resistor 1 is the metal. It is inserted into the hollow hole of the frame 2. 3 is an insulating resin filled between the resistor 1 and the metal frame 2, 4a and 4b are conductive wires protruding from the resistor 1, and 5 is a heat radiating surface such as a metal plate against which the metal frame 2 abuts. The heat generated by the resistor 1 is transmitted to the metal frame 2 through the insulating resin 3 and further transmitted to the heat radiating surface 5 to be radiated. 6a and 6b are projecting positions of the conducting wires 4a and 4b, respectively, where 6a is the high voltage side and 6b is the low voltage side. 7a is a distance from the protruding portion 6a to the metal frame 2 (that is, an insulation distance), and 7b is a distance from the main body surface of the resistor 1 to the metal frame 2.
[0003]
The distance 7b must be shortened for heat dissipation, but the distance 7a must be lengthened for insulation. In order to satisfy the contradictory requirements, the conductor protrusions 6 a and 6 b of the resistor 1 are usually arranged at the center of the cross section of the metal frame 2. For example, the resistor 1 is arranged so that the axis of the resistor 1 (the axis connecting the protrusions 6a and 6b) and the hollow hole central axis of the metal frame 2 (the imaginary line N in FIG. 6) coincide with each other, and the insulating resin 3 is provided. The resistor 1 is fixed by filling and solidifying.
[0004]
[Problems to be solved by the invention]
As described above, conventionally, a metal frame having a rectangular shape in cross section is employed, and the insulation distance is ensured by arranging the lead wire protruding portion of the resistor on the central axis of the hollow hole of the metal frame. However, such exact alignment has a problem of increasing the manufacturing cost. In addition, when the alignment is not strictly performed, there is a problem in that it is necessary to design the insulation distance with a margin, and the size cannot be reduced.
[0005]
The present invention has been made to solve the above-described problems, and provides a resistor having a heat dissipation structure that can be miniaturized.
[0006]
[Means for Solving the Problems]
In the heat dissipation structure of the resistor according to the present invention, a metal member formed with a groove-like space portion that contacts the heat dissipation surface and opens in the longitudinal direction, and the shaft of the metal member is provided in the space portion. A resistor arranged along a longitudinal direction of the metal member, an insulator filled in the space between the resistor and the metal member, and fixing the resistor; a shaft of the resistor; A conductive wire portion that is electrically connected and protrudes to the outside of the metal member, and the axis of the resistor is located closer to the opening side of the metal member than the center of the cross section of the space portion formed in the metal member To do.
[ 0007 ]
In the resistor heat dissipation structure according to the present invention, a resistor, a metal member provided at a predetermined distance around the axis of the resistor, and a space between the resistor and the metal member are filled. The metal member has a partial opening around the axis of the resistor, and the axis of the resistor is located closer to the opening than the center of the cross section of the metal member .
[ 0008 ]
Furthermore, in the heat dissipation structure for a resistor according to the present invention, the resistor, a metal member provided around the axis of the resistor at a predetermined distance, and between the resistor and the metal member. The metal member has a partial opening around the axis of the resistor, the metal member is in contact with a heat-dissipating metal surface, and is on the high voltage side of the resistor. The metal member does not exist in the line segment section that hangs down from the conductor protruding position to the heat radiating metal surface.
[ 0009 ]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
Conventionally, as shown in FIG. 6, a metal frame having a square cross section has been adopted. In the first embodiment, a metal frame having a U-shaped cross section is employed. 1 and 2 are configuration diagrams illustrating a resistor heat dissipation structure according to the first embodiment. In the figure, the same or corresponding parts as those in the prior art are denoted by the same reference numerals and description thereof is omitted. 1A is a structural perspective view, FIG. 1B is a front view, and FIG. 1C is a cross-sectional view taken along line AA. FIG. 2 is an AA cross-sectional view illustrating another form of FIG. In the figure, reference numeral 2 denotes a metal frame having a substantially U-shaped cross section, which is arranged around the resistor 1 at a predetermined distance. An insulating resin 3 is filled between the metal frame 2 and the resistor 1.
[ 0010 ]
explain in detail. The metal frame 2 is a metal frame having a U-shaped cross section perpendicular to the axial direction of the resistor 1 (the direction of the arrow P in FIG. 1B), and is composed of a bottom plate 2a and side plates 2b and 2c. . The lead wire protruding portion 6a on the high voltage side of the resistor 1 is disposed at a position where the distance from the bottom plate 2a, the distance from the side plate 2b, and the distance from the side plate 2c are equal.
[ 0011 ]
As described above, in the first embodiment, since the cross-sectional shape of the metal frame 2 is U-shaped, the position of the resistor 1 is in the opening direction (the U-shaped opening side, FIG. Insulation can be ensured even if the direction is shifted in the direction of the arrow M shown in c). For example, the insulation distance can be secured even if the arrangement shown in FIG.
[ 0012 ]
That is, since the metal frame of the first embodiment has an opening in a cross-sectional shape perpendicular to the axial direction of the resistor 1, it is necessary to manage the position of the resistor 1 more strictly in the opening direction. There is no. Therefore, even if it is the small metal frame 2, there exists an effect that positioning of the resistor 1 can be performed comparatively easily.
[ 0013 ]
Moreover, by having the said opening part, it becomes easy to position the resistor 1, confirming the distance of the resistor 1 and the metal frame 2 directly. In addition, when the insulating resin is filled in the metal frame, it becomes easy to look directly at the filling state of the insulating resin. Further, when the bubbles in the insulating resin are degassed after filling with the insulating resin, the area where the insulating resin 3 is in contact with the air is increased, so that there is an advantage that the bubbles are more easily removed.
[ 0014 ]
Here, the metal frame 2 is configured by three surfaces of the bottom surface and both side surfaces, but is not limited thereto, and may be configured by two or less surfaces. However, the function of the metal frame 2 is to collect heat generated by the heat generated by the resistor 1 on as wide a surface as possible, and to transfer the heat to the heat radiating surface 5. For this purpose, it is preferable to make the area as large as possible. In addition, although the cross-sectional shape of the metal frame 2 is U-shaped here, the present invention is not limited to this, and the same effect can be obtained if the cross-sectional shape is a metal frame having an opening.
[ 0015 ]
Embodiment 2. FIG.
In the second embodiment, a structure in which the metal frame 2 is not interposed between the insulating resin 3 and the heat radiating surface 5 on the high voltage side of the resistor 1 is employed. In particular, here, a structure in which the metal frame 2 is not interposed between the high-voltage-side conductive wire protruding portion 6a and the nearest heat radiating surface 5 is adopted. Hereinafter, an example in which the insulating property is improved by exposing the entire circumference of the insulating resin 3 on the high voltage side will be described.
[ 0016 ]
FIG. 3 is a configuration diagram illustrating a resistor heat dissipation structure according to the second embodiment. In the figure, the same or corresponding parts as in FIG. 3A is a front view, FIG. 3B is a BB sectional view, and FIG. 3C is a CC sectional view. In the figure, reference numeral 2 denotes a metal frame having a substantially U-shaped cross section, which is arranged around the resistor 1 at a predetermined distance. However, unlike the metal frame 2 shown in FIG. 1, the metal frame 2 is provided on the lower voltage side than the high voltage side conductor protrusion 6a. Then, the metal frame 2 is not interposed between the high-voltage-side conductive wire protrusion 6a and the heat radiation surface 5 portion located closest to the high-voltage-side conductive wire protrusion 6a (point Q which is a droop of the conductive wire protrusion 6a in FIG. 3). .
[ 0017 ]
Thereby, the distance 7c shown in FIG. 3 can be secured as the insulation distance, so that the insulation distance can be easily secured as compared with the structure shown in FIG. That is, in FIG. 1A, the insulation distance in the direction of the heat radiating surface 5 of the conductor protrusion 6a is a distance 7a from the conductor protrusion 6a to the metal frame 2. On the other hand, in FIG. 3A, since the distance 7c (7c> 7a) from the conductor protruding portion 6a to the heat radiating surface 5 is provided, there is a margin in the insulation distance. Therefore, since the distance 7b can be shortened by this margin, it is possible to reduce the height of the resistance structure while improving heat dissipation. Moreover, it becomes easy to ensure the insulation distance 10 of the creeping surface from the protrusion position H of the conducting wire 4a to the metal frame 2 similarly.
[ 0018 ]
Here, only the high voltage side of the insulating resin 3 is exposed, but it may be exposed on the low voltage side as shown in FIG. FIG. 4 is a front structural view illustrating the structure in which the low-pressure side is exposed. In FIG. 4, the same or corresponding parts as those in FIG.
[ 0019 ]
Embodiment 3 FIG.
FIG. 5 is an explanatory view illustrating a method of manufacturing the insulating structure shown in FIG. In the figure, the same or corresponding parts as in FIG. In FIG. 5, 8 is a frame body that forms a rectangular parallelepiped concave portion in cooperation with the inner surface of the metal frame 2 by fitting with the U-shaped metal frame 2, and 9 is a conductive wire protruding from the resistor 1. It is a notch part provided in order to support.
[ 0020 ]
A manufacturing method will be described. First, the metal frame 2 is fitted to the frame body 8. The frame body 8 and the metal frame 2 cooperate to form a rectangular parallelepiped recess. Next, the resistor 1 is disposed in the recess so that the conductive wires 4a and 4b are supported by the notches 9a and 9b, respectively. Thereafter, an insulating resin is poured into the recess, and the bubbles are defoamed and then solidified. Finally, if the frame 8 is removed from the metal frame 2, the resistance structure shown in FIG. 3 can be obtained.
[ 0021 ]
【The invention's effect】
Since the present invention is configured as described above, the following effects can be obtained. In the heat dissipation structure of the resistor according to the present invention, a metal member formed with a groove-like space portion that contacts the heat dissipation surface and opens in the longitudinal direction, and the shaft of the metal member is provided in the space portion. A resistor disposed along a longitudinal direction of the metal member, an insulator filled in the space between the resistor and the metal member, and fixing the resistor; a shaft of the resistor; A conductor portion that is electrically connected and protrudes to the outside of the metal member, and the axis of the resistor is located closer to the opening of the metal member than the center of the cross section of the space formed in the metal member As a result, it is possible to obtain a resistor heat dissipation structure that can be miniaturized.
[ 0022 ]
In the resistor heat dissipation structure according to the present invention, a resistor, a metal member provided at a predetermined distance around the axis of the resistor, and a space between the resistor and the metal member are filled. The metal member has a partial opening around the axis of the resistor, and the axis of the resistor is located closer to the opening than the center of the cross section of the metal member Therefore , a resistor heat dissipation structure that can be miniaturized can be obtained.
[ 0023 ]
Furthermore, in the heat dissipation structure for a resistor according to the present invention, the resistor, a metal member provided at a predetermined distance around the axis of the resistor, and between the resistor and the metal member The metal member has a partial opening around the axis of the resistor, the metal member is in contact with a heat-dissipating metal surface, and is on the high voltage side of the resistor. Since the metal member does not exist in the line segment that hangs down from the conductive wire protruding position to the heat-dissipating metal surface, a heat-dissipating structure of a resistor that can be reduced in size can be obtained.
[Brief description of the drawings]
FIG. 1 is a configuration diagram illustrating a resistor heat dissipation structure according to a first embodiment;
FIG. 2 is a configuration diagram illustrating another heat dissipation structure of the resistor according to the first embodiment;
FIG. 3 is a configuration diagram illustrating a resistor heat dissipation structure according to a second embodiment;
4 is a configuration diagram illustrating another heat dissipation structure of the second embodiment; FIG.
FIG. 5 is an explanatory diagram illustrating a method for manufacturing the insulating structure shown in FIG. 3;
FIG. 6 is a configuration diagram illustrating a conventional resistor heat dissipation structure;
[Explanation of symbols]
1 resistor, 2 side plate, 2 metal frame, 2a bottom plate, 2b side plate, 2c side plate, 3 insulating resin, 4a conducting wire, 4b conducting wire, 5 heat radiation surface, 6a projecting portion, 6b projecting portion, 7a distance, 7b distance, 7c distance , 8 Frame, 9 Notch, 10 Insulation distance.

Claims (3)

放熱面に当接し、長手方向に開口する溝状の空間部が形成された金属部材と、この金属部材の前記空間部に設けられ、その軸が前記金属部材の長手方向に沿って配置された抵抗器と、この抵抗器と前記金属部材との間の前記空間部に充填され、前記抵抗器を固定する絶縁体と、前記抵抗器の軸と電気的に接続され前記金属部材の外側に突出する導線部とを備え、
前記抵抗器の軸は、前記金属部材に形成された前記空間部の断面中心よりも前記金属部材の開口部側に位置することを特徴とする抵抗器の放熱構造。
A metal member formed with a groove-like space portion that is in contact with the heat dissipation surface and opens in the longitudinal direction, and the space portion of the metal member is provided, and the axis thereof is disposed along the longitudinal direction of the metal member. a resistor, is filled in the space between the metal member and the resistor, and an insulator for securing said resistor, being connected the resistor axis and electrically protrudes outside of said metal member A conducting wire part
The resistor heat-dissipating structure is characterized in that an axis of the resistor is located closer to an opening of the metal member than a center of a cross section of the space formed in the metal member.
抵抗器と、前記抵抗器の軸周囲に所定の距離を隔てて設けられた金属部材と、前記抵抗器と前記金属部材との間に充填された絶縁体とを備え、前記金属部材は前記抵抗器の軸周囲に部分的な開口部を有し、前記抵抗器の軸は、前記金属部材の断面中心よりも前記開口部側に位置することを特徴とする抵抗器の放熱構造。  A resistor, a metal member provided at a predetermined distance around an axis of the resistor, and an insulator filled between the resistor and the metal member, the metal member including the resistor A heat dissipation structure for a resistor, wherein the resistor has a partial opening around an axis of the resistor, and the resistor shaft is located closer to the opening than the center of the cross section of the metal member. 抵抗器と、前記抵抗器の軸周囲に所定の距離を隔てて設けられた金属部材と、前記抵抗器と前記金属部材との間に充填された絶縁体とを備え、前記金属部材は前記抵抗器の軸周囲に部分的な開口部を有し、前記金属部材は放熱用金属面に当接され、前記抵抗器の高電圧側の導線突出位置から前記放熱用金属面へ垂下する線分区間において、前記金属部材が存在しないことを特徴とする抵抗器の放熱構造。  A resistor, a metal member provided at a predetermined distance around an axis of the resistor, and an insulator filled between the resistor and the metal member, the metal member including the resistor A line segment section having a partial opening around the axis of the heater, the metal member being in contact with the heat radiating metal surface, and hanging from the high voltage side lead wire protruding position of the resistor to the heat radiating metal surface And a heat dissipation structure for a resistor, wherein the metal member is not present.
JP2000053328A 2000-02-29 2000-02-29 Resistor heat dissipation structure Expired - Fee Related JP3731108B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000053328A JP3731108B2 (en) 2000-02-29 2000-02-29 Resistor heat dissipation structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000053328A JP3731108B2 (en) 2000-02-29 2000-02-29 Resistor heat dissipation structure

Publications (2)

Publication Number Publication Date
JP2001244666A JP2001244666A (en) 2001-09-07
JP3731108B2 true JP3731108B2 (en) 2006-01-05

Family

ID=18574727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000053328A Expired - Fee Related JP3731108B2 (en) 2000-02-29 2000-02-29 Resistor heat dissipation structure

Country Status (1)

Country Link
JP (1) JP3731108B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4846434B2 (en) * 2006-05-09 2011-12-28 コーア株式会社 Cement resistor
JP5320612B2 (en) * 2007-06-29 2013-10-23 コーア株式会社 Resistor
JP4982894B2 (en) * 2007-08-03 2012-07-25 コーア株式会社 Cement resistor
JP6122613B2 (en) * 2012-11-02 2017-04-26 ミクロン電気株式会社 Method for manufacturing power resistor

Also Published As

Publication number Publication date
JP2001244666A (en) 2001-09-07

Similar Documents

Publication Publication Date Title
JP3731108B2 (en) Resistor heat dissipation structure
JPH11297544A (en) Noise filter for high current
JP3463260B2 (en) Coil parts and their mounting structure
US10446297B2 (en) Resistor
JP2019140241A (en) Capacitor
JPH09120857A (en) Connector for high voltage
JPH0564339A (en) Electric connection box
JP3809051B2 (en) Electronic component mounting structure
JPH0652649B2 (en) Deflection yoke
CN219085817U (en) High-heat-dissipation automobile capacitor
JPH064603Y2 (en) Printed wiring board
TW200418231A (en) Terminal module for electrical connector
JP2024058883A (en) Film capacitor
CN219227452U (en) Inverter and power system
JP2019067630A (en) Plug device and power distribution system
US11094453B2 (en) Electronic device and method for manufacturing electronic device
JPH0810204Y2 (en) Semiconductor component mounting structure
JPS5925105Y2 (en) pin jack
JP2529174Y2 (en) Noise filter
KR102397777B1 (en) Battery module for emergency telephone power supply without shrink tubing
JPH065158U (en) Thin coaxial connector
JP2519511Y2 (en) High voltage capacitors
JPS5943742Y2 (en) semiconductor rectifier
JP2001085240A (en) Transformer
JP2543788Y2 (en) Busbar for switchboard

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050526

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050818

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050926

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091021

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091021

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101021

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111021

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121021

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131021

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees