JP4803649B2 - Operation method of electric deionized water production apparatus and electric deionized water production apparatus - Google Patents

Operation method of electric deionized water production apparatus and electric deionized water production apparatus Download PDF

Info

Publication number
JP4803649B2
JP4803649B2 JP2005318210A JP2005318210A JP4803649B2 JP 4803649 B2 JP4803649 B2 JP 4803649B2 JP 2005318210 A JP2005318210 A JP 2005318210A JP 2005318210 A JP2005318210 A JP 2005318210A JP 4803649 B2 JP4803649 B2 JP 4803649B2
Authority
JP
Japan
Prior art keywords
chamber
small
deionized water
production apparatus
desalting chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005318210A
Other languages
Japanese (ja)
Other versions
JP2007125455A (en
Inventor
康孝 新明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP2005318210A priority Critical patent/JP4803649B2/en
Publication of JP2007125455A publication Critical patent/JP2007125455A/en
Application granted granted Critical
Publication of JP4803649B2 publication Critical patent/JP4803649B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Description

本発明は、硬度成分を比較的高濃度で含む被処理水の脱イオン処理に好適な電気式脱イオン水製造装置の運転方法及び電気式脱イオン水製造装置に関するものである。   The present invention relates to an operation method of an electric deionized water production apparatus suitable for deionization treatment of water to be treated containing a hardness component at a relatively high concentration, and an electric deionized water production apparatus.

近年、薬剤による再生が不要な電気式脱イオン法による脱イオン水製造方法が確立され、実用化に至っている。従来、Ca2+やMg2+の硬度成分を比較的高濃度で含有する被処理水を電気式脱イオン水製造装置の脱塩室に通水して処理する場合、該脱塩室にはカチオン交換体が充填されていた。このような電気式脱イオン水製造装置に、硬度成分を比較的高濃度で含有する被処理水を通水処理すると、カチオン交換体の一部がCa形やMg形となる。Ca形やMg形のカチオン交換体は、二価のカチオンであるCa2+やMg2+のイオン選択性が一価のカチオン等と比べて高いため、通常の運転条件下では他のカチオンと置換され難く、脱塩室内において徐々に増加していく傾向となる。カチオン交換体はCa形やMg形になると、再生形やNa形と比較して通電抵抗が高くなるため、カチオン交換体に占めるCa形やMg形の割合が多くなると、装置全体の通電抵抗が増加し、消費電力が増加するという問題が発生する。また、これに付随して、より選択性の低いNa1+やK1+の一価のカチオンの除去が不十分となって、処理水の水質が低下するという問題も発生する。また、脱塩室内に硬度成分が蓄積すると、スケールが発生し、更に通電抵抗を上昇させるという問題がある。 In recent years, a method for producing deionized water by an electric deionization method that does not require regeneration by a drug has been established and has been put into practical use. Conventionally, when water to be treated containing Ca 2+ and Mg 2+ hardness components at a relatively high concentration is passed through a demineralization chamber of an electrical deionized water production apparatus, the cation exchange is performed in the demineralization chamber. The body was filled. When the water to be treated containing a hardness component at a relatively high concentration is passed through such an electrical deionized water production apparatus, a part of the cation exchanger becomes Ca type or Mg type. Ca-type and Mg-type cation exchangers have higher ion selectivity of divalent cations Ca 2+ and Mg 2+ compared to monovalent cations, etc., and are thus replaced with other cations under normal operating conditions. It is difficult to increase gradually in the desalination chamber. When the cation exchanger becomes Ca type or Mg type, the energization resistance becomes higher than that of the regenerated type or Na type. Therefore, when the proportion of the Ca type or Mg type in the cation exchanger increases, the energization resistance of the entire apparatus decreases. This increases the power consumption. Along with this, the removal of monovalent cations with lower selectivity of Na 1+ and K 1+ becomes insufficient, resulting in a problem that the quality of the treated water is lowered. Moreover, when a hardness component accumulates in the desalting chamber, there is a problem that scale is generated and the energization resistance is further increased.

上記問題を解決する方法として、逆浸透膜や軟化器などを前段に設置して電気式脱イオン水製造装置の被処理水の硬度負荷を減じる方法、低架橋度のカチオン交換体を用いてCa2+やMg2+のイオン選択性を下げる方法などが提案されている。しかし、これらは、電気式脱イオン水製造装置の前段に新たな装置を設置するため、設置コストを上昇させる、あるいは硬度成分を含めた不純物イオンの除去が十分ではないなどの新たな問題を惹起させる。 As a method for solving the above problem, a reverse osmosis membrane, a softener, etc. are installed in the previous stage to reduce the hardness load of the water to be treated in the electric deionized water production apparatus, and a cation exchanger having a low degree of crosslinking is used. A method for reducing ion selectivity of 2+ and Mg 2+ has been proposed. However, these devices cause new problems such as increasing the installation cost or insufficient removal of impurity ions including hardness components because a new device is installed in front of the electric deionized water production device. Let

一方、特開2001−239270号公報には、一側のカチオン交換膜、他側のアニオン交換膜及び該カチオン交換膜と該アニオン交換膜の間に位置する中間イオン交換膜で区画される2つの小脱塩室にイオン交換体を充填して脱塩室を構成し、該カチオン交換膜、アニオン交換膜を介して脱塩室の両側に濃縮室を設け、これらの脱塩室の両側に濃縮室を設け、これらの脱塩室及び濃縮室を陽極と陰極の間に配置して形成される、いわゆる複脱塩室式EDIにおいて、一方の小脱塩室に被処理水を流入し、該小脱塩室の流出水を他方の小脱塩室に流入して脱イオン水を得る方法が開示されている。しかしながら、特開2001−239270号公報の複脱塩室式EDIにおいても、2つの小脱塩室にはイオン交換体が充填されるものであり、複脱塩室式EDIの被処理水の硬度負荷を低減させるためには、やはり逆浸透膜や軟化器などを前段に設置する必要があり、この場合、前記同様の問題が発生するものであった。
特開2001−239270号公報(請求項1、6)
On the other hand, in JP 2001-239270 A, a cation exchange membrane on one side, an anion exchange membrane on the other side, and two intermediate ion exchange membranes positioned between the cation exchange membrane and the anion exchange membrane are disclosed. A small desalting chamber is filled with an ion exchanger to form a desalting chamber. Concentration chambers are provided on both sides of the desalting chamber via the cation exchange membrane and anion exchange membrane, and the desalination chamber is concentrated on both sides. In a so-called double-desalting chamber type EDI formed by arranging a desalting chamber and a concentrating chamber between an anode and a cathode, water to be treated flows into one small desalting chamber, A method for obtaining deionized water by flowing the effluent water of a small desalting chamber into the other small desalting chamber is disclosed. However, also in the double desalination chamber type EDI of JP 2001-239270 A, two small desalination chambers are filled with ion exchangers, and the hardness of the water to be treated in the double desalination chamber type EDI In order to reduce the load, it is necessary to install a reverse osmosis membrane, a softener, etc. in the previous stage. In this case, the same problem as described above occurs.
JP 2001-239270 A (Claims 1 and 6)

従って、本発明の目的は、逆浸透膜や軟化器などを前段に設置せずとも、脱塩室内の硬度成分のスケールの析出を防止する省電力型の電気式脱イオン水製造装置の運転方法及び電気式脱イオン水製造装置を提供することにある。   Accordingly, an object of the present invention is to operate a power-saving electric deionized water production apparatus that prevents the precipitation of scales of hardness components in the demineralization chamber without installing a reverse osmosis membrane or a softener in the previous stage. And providing an electric deionized water production apparatus.

かかる実状において、本発明者は鋭意検討を行った結果、複脱塩室式EDIにおいて、中間イオン交換膜にカチオン交換膜を使用し、最初に被処理水が流入する小脱塩室をカチオン交換膜で区画される室とすると共に、該小脱塩室にはイオン交換体を充填しない構造とすれば、逆浸透膜や軟化器などを前段に設置せずとも、脱塩室内の硬度成分のスケールの析出を防止できること、被処理水が最初に流入する小脱塩室からの流出水を脱炭酸処理又は逆浸透膜処理した処理水を次ぎのアニオン交換体が充填された小脱塩室に流入させると、炭酸やシリカ等の弱酸を含むアニオン成分が除去されるため、より小さな電流で不純物イオンが十分に除去された高度の水質の脱イオン水が得られること等を見出し、本発明を完成させるに至った。   In this situation, the present inventor has intensively studied. As a result, in the multiple desalination chamber type EDI, a cation exchange membrane is used as the intermediate ion exchange membrane, and the small desalination chamber into which the water to be treated flows first is subjected to cation exchange. If the chamber is partitioned with a membrane and the small desalting chamber is not filled with an ion exchanger, the hardness component in the desalting chamber can be reduced without installing a reverse osmosis membrane or a softener in the previous stage. It is possible to prevent the precipitation of scale, and the treated water that has been treated by decarboxylation or reverse osmosis membrane treatment of the effluent from the small desalination chamber where the treated water first flows into the small desalination chamber filled with the next anion exchanger. When flowing in, anion components containing weak acids such as carbonic acid and silica are removed, so that it is possible to obtain high-quality deionized water from which impurity ions are sufficiently removed with a smaller current. It came to complete.

すなわち、本発明は、陽極室及び陰極室が両端に配置され、陽極側がアニオン交換膜で区画され陰極側がカチオン交換膜で区画され且つ当該アニオン交換膜と当該カチオン交換膜の間に位置する中間のカチオン交換膜で区画されるイオン交換体無充填の第1小脱塩室とイオン交換体が充填される第2小脱塩室を内包する1つ又は複数の脱塩室と、該脱塩室と該脱塩室の間に配置された1つ又は複数の濃縮室を備える電気式脱イオン水製造装置を用い、硬度成分を含有する被処理水を該第1小脱塩室と該第2小脱塩室にこの順序で直列に通水させる電気式脱イオン水製造装置の運転方法を提供するものである。   That is, in the present invention, an anode chamber and a cathode chamber are arranged at both ends, the anode side is partitioned by an anion exchange membrane, the cathode side is partitioned by a cation exchange membrane, and an intermediate position located between the anion exchange membrane and the cation exchange membrane. One or a plurality of desalting chambers including a first small desalting chamber filled with an ion exchanger and a second small desalting chamber filled with an ion exchanger, partitioned by a cation exchange membrane, and the desalting chamber And an electric deionized water production apparatus including one or a plurality of concentration chambers disposed between the desalting chamber and the first small desalting chamber and the second demineralized water. An operation method of an electric deionized water production apparatus for passing water in series in this order through a small desalting chamber is provided.

また、陽極室及び陰極室が両端に配置され、陽極側がアニオン交換膜で区画され陰極側がカチオン交換膜で区画され且つ当該アニオン交換膜と当該カチオン交換膜の間に位置する中間のカチオン交換膜で区画されるイオン交換体無充填の第1小脱塩室とイオン交換体が充填される第2小脱塩室を内包し、硬度成分を含有する被処理水が該第1小脱塩室と該第2小脱塩室にこの順序で直列に通水される1つ又は複数の脱塩室と、該脱塩室と該脱塩室の間に配置された1つ又は複数の濃縮室を備える電気式脱イオン水製造装置を提供するものである。   Further, an anode chamber and a cathode chamber are arranged at both ends, an anode side is defined by an anion exchange membrane, a cathode side is defined by a cation exchange membrane, and an intermediate cation exchange membrane located between the anion exchange membrane and the cation exchange membrane. The first small desalting chamber filled with the ion exchanger without filling and the second small desalting chamber filled with the ion exchanger are included, and the water to be treated containing a hardness component is contained in the first small desalting chamber. One or a plurality of desalting chambers that are passed through the second small desalting chamber in series in this order; and one or a plurality of concentrating chambers disposed between the desalting chamber and the desalting chamber. An electric deionized water production apparatus is provided.

本発明によれば、第1小脱塩室にはカチオン交換体が充填されていないため、カルシウムやマグネシウムが蓄積することがない。従って、第1小脱塩室内には硬度成分のスケールは発生しない。また、第1小脱塩室はカチオン交換体が充填されていないものの、電気透析の形態を採るため、被処理水中のカチオン成分の30〜50%は除去され、残りのカチオンは第2小脱塩室で除去することができる。また、第2小脱塩室で処理する被処理水は硬度成分が低減されたものであるため、硬度スケールの析出はほとんど起こらない。また、第1小脱塩室の流出水はカチオンのみが選択的に除去されるものの、アニオンはほぼ全量が残留するため、pHが概ね3〜5となっている。このため、当該第1小脱塩室流出水を濃縮室にも濃縮水として流入させると、濃縮室内の硬度成分の溶解性が高まり、濃縮室内における硬度スケールの析出を防止できる。また、第1小脱塩室の流出水は一部のカチオンのみが除去されたものであるため、導電率が高いままであり、これを濃縮室に流入させても通電抵抗を高めることはない。また、メッシュが装填された第1小脱塩室の流出水を第2小脱塩室と濃縮室の双方に流入させる場合、第1小脱塩室の被処理水の流速を高めることができるため、メッシュが装填された小脱塩室内における低流速に起因する部分的なイオンの偏在を防止することができる。また、第1脱塩室の流出水はpHが低く、炭酸は遊離炭酸となっているため、脱炭酸処理を行えば、第2小脱塩室におけるアニオンの負荷を大きく低減できる。また、第1脱塩室の流出水を逆浸透膜処理すると、逆浸透膜によって、もうひとつの弱酸成分であるシリカが除去されるため、同様に第2小脱塩室におけるアニオンの負荷を大きく低減できる。   According to the present invention, since the first small desalting chamber is not filled with the cation exchanger, calcium and magnesium do not accumulate. Therefore, no scale of hardness component is generated in the first small desalting chamber. In addition, although the first small desalting chamber is not filled with a cation exchanger, it takes the form of electrodialysis, so that 30 to 50% of the cation component in the water to be treated is removed, and the remaining cations are removed from the second small desalting chamber. It can be removed in a salt chamber. Moreover, since the to-be-processed water processed in a 2nd small desalination chamber is what the hardness component was reduced, precipitation of a hardness scale hardly arises. Moreover, although only the cation is selectively removed from the effluent water of the first small desalting chamber, almost all the anion remains, so the pH is approximately 3 to 5. For this reason, when the first small desalting chamber effluent is also flowed into the concentrating chamber as concentrated water, the solubility of hardness components in the concentrating chamber is increased, and precipitation of hardness scales in the concentrating chamber can be prevented. In addition, since the effluent from the first small desalting chamber has only a part of the cations removed, the conductivity remains high, and even if it flows into the concentrating chamber, the energization resistance is not increased. . Moreover, when the effluent of the 1st small desalination chamber loaded with the mesh is made to flow into both the 2nd small desalination chamber and the concentration chamber, the flow rate of the water to be treated in the 1st small desalination chamber can be increased. Therefore, partial ion uneven distribution due to the low flow rate in the small desalting chamber loaded with the mesh can be prevented. In addition, since the effluent of the first demineralization chamber has a low pH and the carbonic acid is free carbonic acid, an anion load in the second small demineralization chamber can be greatly reduced by performing the decarbonation treatment. In addition, when the effluent from the first desalting chamber is treated with a reverse osmosis membrane, silica, which is another weak acid component, is removed by the reverse osmosis membrane. Similarly, the anion load in the second small desalting chamber is increased. Can be reduced.

次に、本発明の実施の形態における電気式脱イオン水製造装置を図1を参照して説明する。図1は、本例の電気式脱イオン水製造装置の模式図である。電気式脱イオン水製造装置10は、陽極室5及び陰極室4が両端に配置され、陽極側がアニオン交換膜8で区画され陰極側がカチオン交換膜9で区画され且つアニオン交換膜8とカチオン交換膜9の間に位置する中間のカチオン交換膜9で区画される不活性なメッシュ状スペーサ11が装填された第1小脱塩室1とイオン交換体21が充填される第2小脱塩室2を内包し、硬度成分を含有する被処理水12が第1小脱塩室1と第2小脱塩室2にこの順序で直列に通水される1つ又は複数の脱塩室Dと、脱塩室Dと脱塩室Dの間に配置された1つ又は複数の濃縮室3を備える。符号6は陰極、7は陽極である。   Next, an electric deionized water production apparatus according to an embodiment of the present invention will be described with reference to FIG. FIG. 1 is a schematic view of the electric deionized water production apparatus of this example. An electric deionized water production apparatus 10 has an anode chamber 5 and a cathode chamber 4 disposed at both ends, an anode side partitioned by an anion exchange membrane 8 and a cathode side partitioned by a cation exchange membrane 9, and an anion exchange membrane 8 and a cation exchange membrane. A first small desalting chamber 1 filled with an inactive mesh spacer 11 partitioned by an intermediate cation exchange membrane 9 located between 9 and a second small desalting chamber 2 filled with an ion exchanger 21. And one or a plurality of desalting chambers D in which the water to be treated 12 containing a hardness component is passed through the first small desalting chamber 1 and the second small desalting chamber 2 in this order in series, One or a plurality of concentration chambers 3 disposed between the desalting chamber D and the desalting chamber D are provided. Reference numeral 6 is a cathode, and 7 is an anode.

電気式脱イオン水製造装置10において、第1脱塩室流出配管13と第2脱塩室流入配管22および第1脱塩室流出配管13と濃縮室流入配管32がそれぞれ接続され、第1脱塩室1の流出水が、第2脱塩室2と濃縮室3に流入するようになっている。また、電極室4、5には電極水が流れている。   In the electrical deionized water production apparatus 10, the first demineralization chamber outflow pipe 13, the second demineralization chamber inflow pipe 22, the first demineralization chamber outflow pipe 13, and the concentrating chamber inflow pipe 32 are connected to each other. The outflow water of the salt chamber 1 flows into the second desalting chamber 2 and the concentration chamber 3. Electrode water flows through the electrode chambers 4 and 5.

本発明の電気式脱イオン水製造装置において、第1小脱塩室内はイオン交換体無充填であればよく、上記不活性なメッシュ状スペーサ11の他、例えばイオン交換能を有さないイナート樹脂ビーズ、ポリプロピレン不織布などが装填できる。第1小脱塩室の厚みは通常0.5〜4mmである。第1小脱塩室の厚みが4mmを超えると、通電抵抗が過大となって好ましくなく、0.5mm未満となると、流路の断面積が過小となって好ましくない。   In the electric deionized water production apparatus of the present invention, the first small desalting chamber need only be filled with no ion exchanger, and in addition to the inert mesh spacer 11, for example, an inert resin having no ion exchange capacity Beads, polypropylene nonwoven fabric, etc. can be loaded. The thickness of the first small desalting chamber is usually 0.5 to 4 mm. When the thickness of the first small desalting chamber exceeds 4 mm, the energization resistance is excessively undesirable, and when it is less than 0.5 mm, the cross-sectional area of the flow path is excessively undesirable.

第2小脱塩室2に充填されるイオン交換体21としては、特に制限されないが、アニオン交換体単床、アニオン交換体とカチオン交換体の混合イオン交換体、又はアニオン交換体とカチオン交換体を通水方向に交互に並べた積層体が挙げられる。このうち、アニオン交換体とカチオン交換体の混合イオン交換体、又はアニオン交換体とカチオン交換体を通水方向に交互に並べた積層体を用いれば、被処理水中のイオン性不純物のほとんどを除去でき、高度な水質の脱イオン水を得ることができる。イオン交換体としては、イオン交換樹脂、イオン交換繊維などイオン交換機能を有する物質であればいずれでもよく、またそれらを組み合わせたものであってもよい。   The ion exchanger 21 filled in the second small desalting chamber 2 is not particularly limited, but includes an anion exchanger single bed, a mixed ion exchanger of an anion exchanger and a cation exchanger, or an anion exchanger and a cation exchanger. A laminated body arranged alternately in the water flow direction can be mentioned. Of these, mixed ion exchangers of anion exchangers and cation exchangers, or laminates in which anion exchangers and cation exchangers are alternately arranged in the water direction, remove most of ionic impurities in the water to be treated. And deionized water with high water quality can be obtained. The ion exchanger may be any substance having an ion exchange function, such as an ion exchange resin or ion exchange fiber, or may be a combination thereof.

電気式脱イオン水製造装置10において、濃縮室3内は、イオン交換体無充填又はイオン交換体充填のいずれであってもよい。濃縮室3内にイオン交換体が充填されていれば、電気式脱イオン水製造装置10の通電抵抗を低減できる。濃縮室3内にイオン交換体が充填されている場合、極性を反転する運転をすることができる。特に、濃縮室3に充填されるイオン交換体が第2小脱塩室2に充填されるイオン交換体と同じ場合、極性を反転する運転をすることで、第2小脱塩室が濃縮室となり、濃縮室が第2小脱塩室となり、カチオン及びアニオンの流れ方向が逆となる。極性を反転すると、アニオン交換膜面及び電極表面に析出した硬度スケールを溶解する効果があるため、スケーリングの危険性を更に低下させた運転が可能となる。   In the electric deionized water production apparatus 10, the concentration chamber 3 may be either filled with no ion exchanger or filled with an ion exchanger. If the ion exchanger is filled in the concentrating chamber 3, the energization resistance of the electric deionized water production apparatus 10 can be reduced. When the concentration chamber 3 is filled with an ion exchanger, the polarity can be reversed. In particular, when the ion exchanger filled in the concentrating chamber 3 is the same as the ion exchanger filled in the second small desalting chamber 2, the second small desalting chamber is made to operate by reversing the polarity so that the second small desalting chamber is Thus, the concentration chamber becomes the second small desalting chamber, and the flow directions of the cation and the anion are reversed. Reversing the polarity has the effect of dissolving the hardness scale deposited on the anion exchange membrane surface and the electrode surface, so that operation with further reduced risk of scaling becomes possible.

本発明の電気式脱イオン水製造装置において、第1脱塩室1の流出配管13と濃縮室流入配管32は接続されていなくともよい。すなわち、濃縮水は、図1に示すような、第1小脱塩室の流出水に限定されず、例えば、被処理水であってもよい。この場合、また、第1脱塩室流入配管12と濃縮室流入配管13が接続される。また、電極水は、特に限定されず、同様に、例えば、被処理水であってもよい。この場合、また、第1脱塩室流入配管12と電極室4、5の流入配管が接続される。   In the electric deionized water production apparatus of the present invention, the outflow pipe 13 and the concentrating room inflow pipe 32 of the first demineralization chamber 1 may not be connected. That is, the concentrated water is not limited to the outflow water of the first small desalting chamber as shown in FIG. 1 and may be, for example, water to be treated. In this case, the first desalting chamber inflow piping 12 and the concentration chamber inflow piping 13 are also connected. Moreover, electrode water is not specifically limited, For example, to-be-processed water may be sufficient, for example. In this case, the first desalination chamber inflow piping 12 and the inflow piping of the electrode chambers 4 and 5 are connected.

電気式脱イオン水製造装置10において、第1小脱塩室1の流出水を脱炭酸処理し、該脱炭酸処理水を第2小脱塩室2に流入させる不図示の脱炭酸手段を配してもよい。脱炭酸手段としては、特に制限されず、例えば、脱炭酸塔、脱気膜装置、真空脱気装置などが挙げられる。第1脱塩室の流出水はpHが低く、炭酸は遊離炭酸となっているため、脱炭酸処理を行えば、第2小脱塩室におけるアニオンの負荷を大きく低減できる。   In the electric deionized water production apparatus 10, decarbonation means (not shown) is provided for decarboxylating the effluent water from the first small demineralization chamber 1 and flowing the decarboxylated water into the second small demineralization chamber 2. May be. The decarboxylation means is not particularly limited, and examples thereof include a decarboxylation tower, a degassing membrane device, and a vacuum degassing device. Since the effluent water in the first desalting chamber has a low pH and the carbonic acid is free carbonic acid, the anion load in the second small desalting chamber can be greatly reduced by performing the decarboxylation treatment.

また、電気式脱イオン水製造装置10において、第1小脱塩室1の流出水を逆浸透膜に透過させて、該透過水を第2小脱塩室2に流入させる不図示の逆浸透膜装置を配してもよい。第1脱塩室の流出水を逆浸透膜処理すると、逆浸透膜によって、弱酸成分であるシリカが除去されるため、同様に第2小脱塩室におけるアニオンの負荷を大きく低減できる。また、本発明において、第1小脱塩室1の流出水は、脱炭酸手段及び逆浸透膜装置で共に処理され、当該処理水を第2小脱塩室2に流入させてもよい。これにより、第2小脱塩室には、炭酸、シリカなどの弱酸を含むアニオン成分の大部分が除去された被処理水が流入するため、より小さな電流値で不純物イオンが高度に除去された脱イオン水を得ることができる。脱炭酸手段及び逆浸透膜装置で共に処理する場合、処理順序は特に限定されず、どちらが先であってもよい。   In addition, in the electric deionized water production apparatus 10, reverse osmosis (not shown) that allows the outflow water from the first small demineralization chamber 1 to permeate the reverse osmosis membrane and allows the permeate to flow into the second small demineralization chamber 2. A membrane device may be provided. When the effluent from the first desalting chamber is treated with a reverse osmosis membrane, silica, which is a weak acid component, is removed by the reverse osmosis membrane, so that the anion load in the second small desalting chamber can be greatly reduced. In the present invention, the effluent from the first small desalting chamber 1 may be treated together by the decarboxylation means and the reverse osmosis membrane device, and the treated water may flow into the second small desalting chamber 2. As a result, the treated water from which most of the anion components including weak acids such as carbonic acid and silica flowed into the second small desalting chamber, so that impurity ions were highly removed with a smaller current value. Deionized water can be obtained. In the case where the treatment is performed together with the decarboxylation means and the reverse osmosis membrane device, the treatment order is not particularly limited, and either may be first.

次に、電気式脱イオン水製造装置10の運転方法を図1を参照して説明する。先ず、電気式脱イオン水製造装置10に電圧を印加しつつ、硬度成分を含有する被処理水を該第1小脱塩室に通水させる。硬度成分を含有する被処理水としては、特に制限されず、水道水と同様の水質を有する水、逆浸透膜処理や軟化処理を経ない水などが挙げられる。また、被処理水中、硬度成分の含有量としては、特に制限されず、例えば、5〜30mgCa/l、1〜10mgMg/lのものが挙げられる。このような硬度成分を含有する被処理水は、従来、単独で電気式脱イオン水製造装置に通水すると、脱塩室や濃縮室において硬度スケールが発生する問題があり、逆浸透膜処理や軟化処理等の前処理を行い、その処理水を電気式脱イオン水製造装置に通水していたものである。本発明の電気式脱イオン水製造装置の運転方法によれば、逆浸透膜装置や軟化器などの設置を省略することができる。   Next, an operation method of the electric deionized water production apparatus 10 will be described with reference to FIG. First, while applying a voltage to the electric deionized water production apparatus 10, water to be treated containing a hardness component is passed through the first small desalting chamber. The water to be treated containing the hardness component is not particularly limited, and examples thereof include water having the same water quality as tap water, and water that does not undergo reverse osmosis membrane treatment or softening treatment. Moreover, it does not restrict | limit especially as content of the hardness component in to-be-processed water, For example, the thing of 5-30 mgCa / l, 1-10 mgMg / l is mentioned. Conventionally, water to be treated containing such a hardness component has a problem that a hardness scale is generated in a desalination chamber or a concentration chamber when it is passed through an electric deionized water production apparatus alone. A pretreatment such as a softening treatment is performed, and the treated water is passed through an electric deionized water production apparatus. According to the operation method of the electric deionized water production apparatus of the present invention, the installation of a reverse osmosis membrane apparatus, a softener, and the like can be omitted.

第1小脱塩室1においては、カチオン交換体が充填されていないため、カルシウムやマグネシウムが蓄積することがない。また、第1小脱塩室1はカチオン交換体が充填されていないものの、電気透析の形態を採るため、被処理水中のカチオン成分の30〜50%は除去される。残りのカチオンは、これを除去したい場合、第2小脱塩室2にカチオン交換体を充填し、該第2小脱塩室2で除去すればよい。この場合、第2小脱塩室2で処理する被処理水は硬度成分が概ね半分程度低減されたものであるため、硬度スケールの析出はほとんど起こらない。また、第1小脱塩室1の流出水はカチオンのみが除去されたものであるため、pHが3〜5となっている。このため、第1小脱塩室1の流出水を濃縮室3にも濃縮水として流入させると、濃縮室3内の硬度成分の溶解性が高まり、濃縮室3内における硬度スケールの析出を防止できる。また、第1小脱塩室1の流出水は一部のカチオンのみが除去されたものであるため、導電率が高いままであり、これを濃縮室3に流入させても通電抵抗を高めることはない。また、メッシュ状のスペーサー11が装填された第1小脱塩室1の流出水を第2小脱塩室2と濃縮室3の双方に流入させる場合、第1小脱塩室1の被処理水の流速を高めることができるため、メッシュ状のスペーサー11が装填された小脱塩室1内における低流速に起因する部分的なイオンの偏在を防止することができる。   In the first small desalting chamber 1, since the cation exchanger is not filled, calcium and magnesium do not accumulate. Moreover, although the 1st small desalination chamber 1 is not filled with the cation exchanger, since it takes the form of electrodialysis, 30 to 50% of the cation component in to-be-processed water is removed. When it is desired to remove the remaining cations, the second small desalting chamber 2 may be filled with a cation exchanger and removed in the second small desalting chamber 2. In this case, the water to be treated to be treated in the second small desalting chamber 2 has a hardness component reduced by about half, so that the hardness scale hardly precipitates. Moreover, since the outflow water of the 1st small desalination chamber 1 is a thing from which only the cation was removed, pH is set to 3-5. For this reason, when the effluent from the first small desalting chamber 1 is also flowed into the concentrating chamber 3 as concentrated water, the solubility of the hardness components in the concentrating chamber 3 is increased, and precipitation of hardness scales in the concentrating chamber 3 is prevented. it can. In addition, since the effluent from the first small desalting chamber 1 has only a part of the cations removed, the conductivity remains high, and the energization resistance is increased even if it flows into the concentrating chamber 3. There is no. Further, when the effluent of the first small desalination chamber 1 loaded with the mesh-shaped spacer 11 is introduced into both the second small desalination chamber 2 and the concentration chamber 3, the first small desalination chamber 1 is treated. Since the flow rate of water can be increased, partial ion uneven distribution due to the low flow rate in the small desalting chamber 1 in which the mesh spacer 11 is loaded can be prevented.

第1小脱塩室の流出水は、上記の如く、カチオンのみが概ね30〜50%除去されたpH3〜5の水であり、これが第2小脱塩室2に流入し、残りの不純物性のイオンが除去される。第2小脱塩室がアニオン交換体単床である場合、カチオン成分を一部残したまま、アニオン成分のほとんどが除去される。また、第2小脱塩室がアニオン交換体とカチオン交換体の混合イオン交換体やアニオン交換体とカチオン交換体が被処理水の流れ方向において交互に配される積層体である場合、残りのカチオン成分とアニオン成分のほとんどが除去される。   As described above, the effluent water of the first small desalting chamber is water having a pH of 3 to 5 from which only cations have been removed by approximately 30 to 50%, and this flows into the second small desalting chamber 2 and the remaining impurities. Ions are removed. When the second small desalting chamber is an anion exchanger single bed, most of the anion component is removed while leaving a part of the cation component. When the second small desalting chamber is a mixed ion exchanger of anion exchanger and cation exchanger or a laminate in which the anion exchanger and cation exchanger are alternately arranged in the flow direction of the water to be treated, Most of the cationic and anionic components are removed.

また、第1小脱塩室1の流出水を脱炭酸処理し、脱炭酸処理水を第2小脱塩室2に流入させることができる。第1脱塩室の流出水はpHが低く、炭酸は遊離炭酸となっているため、脱炭酸処理を行えば、第1脱塩室の流出水中の全炭酸の約50%程度は除去できる。これにより、第2小脱塩室には既にカチオン成分及び炭酸成分の大部分が除去された被処理水が流入するため、残ったアニオン成分濃度に対して適当な電流値を設定することで十分に不純物除去された脱イオン水を得ることができる。   Further, the outflow water of the first small demineralization chamber 1 can be decarboxylated and the decarboxylated water can be flowed into the second small demineralization chamber 2. Since the effluent water in the first desalting chamber has a low pH and the carbonic acid is free carbonic acid, about 50% of the total carbonic acid in the effluent water in the first desalting chamber can be removed by decarboxylation. As a result, the water to be treated from which most of the cation component and the carbonic acid component have already been removed flows into the second small desalting chamber, so it is sufficient to set an appropriate current value for the remaining anion component concentration. It is possible to obtain deionized water from which impurities have been removed.

また、第1小脱塩室1の流出水を逆浸透膜に透過させて、該透過水を第2小脱塩室2に流入させることができる。第1脱塩室の流出水を逆浸透膜処理すると、逆浸透膜によって、弱酸成分であるシリカが除去されるため、同様に、第2小脱塩室におけるアニオンの負荷を大きく低減できる。また、第1小脱塩室1の流出水を、脱炭酸処理と逆浸透膜処理を共に行えば、第2小脱塩室には、すでにカチオン成分及び炭酸、シリカなどの弱酸を含むアニオン成分の大部分が除去された被処理水が流入するため、より小さな電流値で不純物イオンが高度に除去された脱イオン水を得ることができる。   Moreover, the outflow water of the first small desalting chamber 1 can be permeated through the reverse osmosis membrane, and the permeated water can flow into the second small desalting chamber 2. When the effluent from the first desalting chamber is treated with the reverse osmosis membrane, the reverse osmosis membrane removes silica, which is a weak acid component, so that the anion load in the second small desalting chamber can be greatly reduced. Further, if the effluent from the first small desalting chamber 1 is subjected to both the decarboxylation treatment and the reverse osmosis membrane treatment, the second small desalination chamber already contains a cation component and an anionic component containing a weak acid such as carbonic acid or silica. Since treated water from which most of the water has been removed flows, deionized water from which impurity ions are highly removed can be obtained with a smaller current value.

本発明は、硬度成分を比較的高濃度で含有する被処理水を脱イオン処理する際に好適な電気式脱イオン水製造装置及びその運転方法であり、半導体製造分野、医薬製造分野、原子力や火力等の発電分野、食品工業などの各種の産業又は研究所施設において広く適用できる。また、より小さな電流値で十分に不純物除去された脱イオン水が得られるため、省エネルギーに貢献できる。   The present invention is an electric deionized water production apparatus suitable for deionizing water to be treated containing a hardness component at a relatively high concentration, and an operation method thereof. It can be widely applied in various power generation fields such as thermal power generation, food industry, and laboratory facilities. Further, deionized water from which impurities have been sufficiently removed can be obtained with a smaller current value, which can contribute to energy saving.

次に、実施例を挙げて本発明を更に具体的に説明するが、これは単に例示であって、本発明を制限するものではない。   EXAMPLES Next, although an Example is given and this invention is demonstrated more concretely, this is only an illustration and does not restrict | limit this invention.

被処理水を図1に示す電気式脱イオン水製造装置に、下記運転条件下、連続1200時間通水し、脱イオン水を得た。連続1200時間の運転後、脱イオン水の水質を分析すると共に、装置を停止し分解して、脱塩室及び濃縮室における硬度スケールの発生状況を目視観察した。なお、被処理水は、逆浸透膜装置及び軟化器を通さないものをそのまま電気式脱イオン水製造装置に通水した。その結果、脱イオン水の水質は、処理水の抵抗率2.5MΩ-cm、カルシウム濃度14μgCa/l、マグネシウム濃度6μgMg/lであり、第1小脱塩室、第2小脱塩室及び濃縮室には硬度スケールは観察されなかった。   The treated water was passed through the electric deionized water production apparatus shown in FIG. 1 continuously for 1200 hours under the following operating conditions to obtain deionized water. After continuous 1200 hours of operation, the water quality of the deionized water was analyzed, the apparatus was stopped and decomposed, and the occurrence of hardness scales in the demineralization chamber and the concentration chamber was visually observed. In addition, the to-be-processed water passed the reverse osmosis membrane apparatus and the softening device through the electric deionized water production apparatus as it is. As a result, the water quality of the deionized water has a resistivity of treated water of 2.5 MΩ-cm, a calcium concentration of 14 μg Ca / l, and a magnesium concentration of 6 μg Mg / l, and the first small desalting chamber, the second small desalting chamber, and the concentration. No hardness scale was observed in the chamber.

・被処理水;導電率198μS/cm、カルシウム濃度14.5mgCa/l、マグネシウム濃度3.0mgMg/lの水道水
・第1小脱塩室の厚み;0.85mm
・第1小脱塩室に装填されるスペーサー;目開き8.6メッシュの網目状
・第2小脱塩室の厚み;4mm
・第1小脱塩室の被処理水の流速(LV);135m/時間
・ 第2小脱塩室に充填されるイオン交換体;アニオン交換樹脂とカチオン交換樹脂の混合イオン交換樹脂(混合比は交換容量比率で1:1)
・ 濃縮室に充填されるイオン交換体;アニオン交換樹脂
・ 平均印加電圧;120V
・ 平均電流値;0.4A
Water to be treated: tap water with electrical conductivity of 198 μS / cm, calcium concentration of 14.5 mg Ca / l, magnesium concentration of 3.0 mg Mg / l, thickness of the first small desalting chamber; 0.85 mm
-Spacer loaded in the first small desalting chamber; mesh size 8.6 mesh-thickness of the second small desalting chamber: 4 mm
・ Flow rate (LV) of water to be treated in the first small desalting chamber: 135 m / hour ・ Ion exchanger filled in the second small desalting chamber; mixed ion exchange resin of anion exchange resin and cation exchange resin (mixing ratio) Is the exchange capacity ratio 1: 1)
・ Ion exchanger filled in the concentration chamber; Anion exchange resin ・ Average applied voltage: 120V
・ Average current value: 0.4A

比較例1
メッシュ状のスペーサーに代えて、カチオン交換樹脂を充填したこと、第1小脱塩室厚み0.85mmに代えて、厚み4mmとしたこと、実施例1と同様の電気式脱イオン水製造装置を使用し下記運転条件で行ったこと以外は、実施例1と同様の方法及び評価方法で行った。その結果、脱イオン水の水質は、処理水の抵抗率0.75MΩ-cm、カルシウム濃度131μgCa/l、マグネシウム濃度40μgMg/lであり、実施例1と比較して、著しく通電抵抗の上昇が認められた。その結果、イオン除去に必要な電流値が維持できずに処理水質が悪化した。硬度スケールはアニオン交換膜の濃縮室側に少量ながら認められた。
Comparative Example 1
An electric deionized water production apparatus similar to that of Example 1 was used instead of the mesh spacer, filled with a cation exchange resin, the thickness of 4 mm instead of the first small desalting chamber thickness of 0.85 mm, and The same method and evaluation method as in Example 1 were used except that the following operating conditions were used. As a result, the water quality of the deionized water was a resistivity of treated water of 0.75 MΩ-cm, a calcium concentration of 131 μg Ca / l, and a magnesium concentration of 40 μg Mg / l. It was. As a result, the current value required for ion removal could not be maintained and the quality of the treated water deteriorated. A small hardness scale was observed on the concentration chamber side of the anion exchange membrane.

・ 平均印加電圧;300V
・ 平均電流値;0.20A
・ Average applied voltage: 300V
・ Average current value: 0.20A

比較例2
図1の電気式脱イオン水製造装置に代えて、図2の電気式脱イオン水製造装置を使用し、下記運転条件で行った以外は、実施例1と同様の方法及び評価方法で行った。図2中、図1と同一構成要素には同一符号を付して、その説明を省略し、異なる点について主に説明する。図2中、電気式脱イオン水製造装置20は、従前の電気式脱イオン水製造装置であり、カチオン交換膜9及びアニオン交換膜8を離間して交互に配置し、カチオン交換膜9とアニオン交換膜8で形成される空間内に一つおきにイオン交換体15を充填して脱塩室Dとしたものである。濃縮室はイオン交換樹脂無充填とした。その結果、脱イオン水の水質は、処理水の抵抗率0.15MΩ-cm、カルシウム濃度347μgCa/l、マグネシウム濃度74μgMg/lであり、比較例1と同様に、通電抵抗の上昇が認められた。アニオン交換膜の濃縮室側に著しい硬度スケールの析出が認められた。
Comparative Example 2
The electric deionized water production apparatus in FIG. 1 was used instead of the electric deionized water production apparatus in FIG. 1, and the same method and evaluation method as in Example 1 were performed except that the operation was performed under the following operating conditions. . In FIG. 2, the same components as those in FIG. 1 are denoted by the same reference numerals, description thereof is omitted, and different points will be mainly described. In FIG. 2, the electrical deionized water production apparatus 20 is a conventional electrical deionized water production apparatus, in which the cation exchange membrane 9 and the anion exchange membrane 8 are alternately arranged so as to be separated from each other. Every other space in the exchange membrane 8 is filled with ion exchangers 15 to form a desalting chamber D. The concentration chamber was not filled with ion exchange resin. As a result, the water quality of the deionized water was a resistivity of treated water of 0.15 MΩ-cm, a calcium concentration of 347 μg Ca / l, and a magnesium concentration of 74 μg Mg / l. . A remarkable hardness scale precipitation was observed on the concentration chamber side of the anion exchange membrane.

・脱塩室の厚み;4mm
・脱塩室に充填されるイオン交換体;アニオン交換樹脂とカチオン交換樹脂の混合イオン交換樹脂(混合比は交換容量比率で1:1)
・ 平均印加電圧;300V
・ 平均電流値;0.25A
・ Desalination chamber thickness: 4 mm
・ Ion exchanger filled in the desalting chamber; mixed ion exchange resin of anion exchange resin and cation exchange resin (mixing ratio is 1: 1 in exchange capacity ratio)
・ Average applied voltage: 300V
・ Average current value: 0.25A

本実施の形態における電気式脱イオン水製造装置の簡略図である。It is a simplified diagram of the electric deionized water production apparatus in the present embodiment. 比較例2で使用した電気式脱イオン水製造装置の簡略図である。6 is a simplified diagram of an electrical deionized water production apparatus used in Comparative Example 2. FIG.

符号の説明Explanation of symbols

1 第1小脱塩室
2 第2小脱塩室
3 濃縮室
4 陰極室
5 陽極室
6 陰極
7 陽極
8 アニオン交換膜
9 カチオン交換膜
10、20 電気式脱イオン水製造装置
11 メッシュ状のスペーサー
12 被処理水流入配管
13 第1小脱塩室流出配管
15、21 イオン交換体
22 第2小脱塩室流入配管
23 第2小脱塩室流出配管
23a 脱塩室流出配管
32 濃縮室流入配管
33 濃縮室流出配管
D 脱塩室
DESCRIPTION OF SYMBOLS 1 1st small desalination chamber 2 2nd small desalination chamber 3 Concentration chamber 4 Cathode chamber 5 Anode chamber 6 Cathode 7 Anode 8 Anion exchange membrane 9 Cation exchange membrane 10, 20 Electric deionized water production apparatus 11 Mesh-like spacer 12 Processed Water Inflow Pipe 13 First Small Desalination Chamber Outflow Pipe 15, 21 Ion Exchanger 22 Second Small Desalination Room Inflow Pipe 23 Second Small Desalination Room Outlet Pipe 23a Desalination Room Outlet Pipe
32 Concentration chamber inflow piping 33 Concentration chamber outflow piping
D Desalination room

Claims (13)

陽極室及び陰極室が両端に配置され、陽極側がアニオン交換膜で区画され陰極側がカチオン交換膜で区画され且つ当該アニオン交換膜と当該カチオン交換膜の間に位置する中間のカチオン交換膜で区画されるイオン交換体無充填の第1小脱塩室とイオン交換体が充填される第2小脱塩室を内包する1つ又は複数の脱塩室と、該脱塩室と該脱塩室の間に配置された1つ又は複数の濃縮室を備える電気式脱イオン水製造装置を用い、硬度成分を含有する被処理水を該第1小脱塩室と該第2小脱塩室にこの順序で直列に通水させることを特徴とする電気式脱イオン水製造装置の運転方法。   The anode chamber and the cathode chamber are arranged at both ends, the anode side is partitioned by an anion exchange membrane, the cathode side is partitioned by a cation exchange membrane, and is partitioned by an intermediate cation exchange membrane positioned between the anion exchange membrane and the cation exchange membrane. One or a plurality of desalting chambers including a first small desalting chamber without filling with an ion exchanger and a second small desalting chamber filled with an ion exchanger, and the desalting chamber and the desalting chamber. Using an electric deionized water production apparatus equipped with one or a plurality of concentrating chambers disposed in between, water to be treated containing hardness components is supplied to the first small desalting chamber and the second small desalting chamber. An operation method of an electric deionized water production apparatus, wherein water is passed in series in order. 前記第1小脱塩室の流出水の一部を該濃縮室に流入させることを特徴とする請求項1記載の電気式脱イオン水製造装置の運転方法。   The operation method of the electric deionized water production apparatus according to claim 1, wherein a part of the effluent of the first small desalting chamber is allowed to flow into the concentrating chamber. 前記第1小脱塩室に、スペーサーが装填されることを特徴とする請求項1又は2記載の電気式脱イオン水製造装置の運転方法。   The operation method of the electric deionized water production apparatus according to claim 1 or 2, wherein a spacer is loaded in the first small desalting chamber. 前記第2小脱塩室のイオン交換体が、アニオン交換体単床、アニオン交換体とカチオン交換体の混合イオン交換体、又はアニオン交換体とカチオン交換体を通水方向に交互に並べた積層体であることを特徴とする請求項1〜3のいずれか1項記載の電気式脱イオン水製造装置の運転方法。   The ion exchanger in the second small desalting chamber is an anion exchanger single bed, a mixed ion exchanger of anion exchanger and cation exchanger, or a stack in which anion exchanger and cation exchanger are alternately arranged in the water direction. The operation method of the electrical deionized water production apparatus according to any one of claims 1 to 3, wherein the body is a body. 前記第1小脱塩室の流出水のpHが、3.0〜5.0であることを特徴とする請求項1〜4のいずれか1項記載の電気式脱イオン水製造装置の運転方法。   The operating method of the electric deionized water production apparatus according to any one of claims 1 to 4, wherein the pH of the effluent of the first small desalting chamber is 3.0 to 5.0. . 前記第1小脱塩室の流出水を脱炭酸処理し、該脱炭酸処理水を前記第2小脱塩室に流入させることを特徴とする請求項1〜5のいずれか1項記載の電気式脱イオン水製造装置の運転方法。   The electricity according to any one of claims 1 to 5, wherein the outflow water of the first small demineralization chamber is decarboxylated, and the decarboxylated water is allowed to flow into the second small demineralization chamber. Of operating a deionized water production system. 前記第1小脱塩室の流出水を逆浸透膜に透過させて、該透過水を前記第2小脱塩室に流入させることを特徴とする請求項1〜6のいずれか1項記載の電気式脱イオン水製造装置の運転方法。   The effluent from the first small desalting chamber is permeated through a reverse osmosis membrane, and the permeated water is allowed to flow into the second small desalting chamber. An operation method of the electric deionized water production apparatus. 陽極室及び陰極室が両端に配置され、陽極側がアニオン交換膜で区画され陰極側がカチオン交換膜で区画され且つ当該アニオン交換膜と当該カチオン交換膜の間に位置する中間のカチオン交換膜で区画されるイオン交換体無充填の第1小脱塩室とイオン交換体が充填される第2小脱塩室を内包し、硬度成分を含有する被処理水が該第1小脱塩室と該第2小脱塩室にこの順序で直列に通水される1つ又は複数の脱塩室と、該脱塩室と該脱塩室の間に配置された1つ又は複数の濃縮室を備えることを特徴とする電気式脱イオン水製造装置。   The anode chamber and the cathode chamber are arranged at both ends, the anode side is partitioned by an anion exchange membrane, the cathode side is partitioned by a cation exchange membrane, and is partitioned by an intermediate cation exchange membrane positioned between the anion exchange membrane and the cation exchange membrane. A first small desalting chamber not filled with an ion exchanger and a second small desalting chamber filled with an ion exchanger, and water to be treated containing a hardness component is contained in the first small desalting chamber and the first small desalting chamber. One or a plurality of desalting chambers that are passed in series in this order to two small desalting chambers, and one or a plurality of concentrating chambers disposed between the desalting chambers and the desalting chambers An electrical deionized water production apparatus. 該第1小脱塩室の流出水の一部を該濃縮室に流す配管を配したことを特徴とする請求項8記載の電気式脱イオン水製造装置。   9. The electric deionized water production apparatus according to claim 8, wherein a pipe for flowing a part of the effluent of the first small demineralization chamber to the concentration chamber is disposed. 前記第1小脱塩室に、スペーサーが装填されることを特徴とする請求項8又は9記載の電気式脱イオン水製造装置。   The electric deionized water production apparatus according to claim 8 or 9, wherein a spacer is loaded in the first small desalting chamber. 前記第2小脱塩室のイオン交換体が、アニオン交換体単床、アニオン交換体とカチオン交換体の混合イオン交換体、又はアニオン交換体とカチオン交換体を通水方向に交互に並べた積層体であることを特徴とする請求項8〜10のいずれか1項記載の電気式脱イオン水製造装置。   The ion exchanger in the second small desalting chamber is an anion exchanger single bed, a mixed ion exchanger of anion exchanger and cation exchanger, or a stack in which anion exchanger and cation exchanger are alternately arranged in the water direction. It is a body, The electrical deionized water manufacturing apparatus of any one of Claims 8-10 characterized by the above-mentioned. 前記第1小脱塩室の流出水を脱炭酸処理し、該脱炭酸処理水を前記第2小脱塩室に流入させる脱炭酸手段を配したことを特徴とする請求項8〜11のいずれか1項記載の電気式脱イオン水製造装置。   12. The decarbonation means for decarboxylating the effluent of the first small demineralization chamber and flowing the decarboxylated water into the second small demineralization chamber is provided. The electric deionized water production apparatus according to claim 1. 前記第1小脱塩室の流出水を逆浸透膜に透過させて、該透過水を前記第2小脱塩室に流入させる逆浸透膜装置を配したことを特徴とする請求項8〜12のいずれか1項記載の電気式脱イオン水製造装置。
13. A reverse osmosis membrane device is provided that allows effluent water from the first small desalination chamber to permeate through a reverse osmosis membrane and allows the permeate to flow into the second small desalination chamber. The electric deionized water production apparatus according to any one of the above.
JP2005318210A 2005-11-01 2005-11-01 Operation method of electric deionized water production apparatus and electric deionized water production apparatus Expired - Fee Related JP4803649B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005318210A JP4803649B2 (en) 2005-11-01 2005-11-01 Operation method of electric deionized water production apparatus and electric deionized water production apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005318210A JP4803649B2 (en) 2005-11-01 2005-11-01 Operation method of electric deionized water production apparatus and electric deionized water production apparatus

Publications (2)

Publication Number Publication Date
JP2007125455A JP2007125455A (en) 2007-05-24
JP4803649B2 true JP4803649B2 (en) 2011-10-26

Family

ID=38148567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005318210A Expired - Fee Related JP4803649B2 (en) 2005-11-01 2005-11-01 Operation method of electric deionized water production apparatus and electric deionized water production apparatus

Country Status (1)

Country Link
JP (1) JP4803649B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100901857B1 (en) 2008-11-06 2009-06-09 주식회사 덕영엔지니어링 Electrodialysis water softner
JP5058217B2 (en) * 2009-06-22 2012-10-24 オルガノ株式会社 Electric deionized water production apparatus and deionized water production method
JP5415966B2 (en) * 2010-01-06 2014-02-12 オルガノ株式会社 Electric deionized water production apparatus and deionized water production method
JP5866163B2 (en) * 2011-09-05 2016-02-17 オルガノ株式会社 Electric deionized water production equipment
JP5186605B2 (en) * 2012-03-22 2013-04-17 オルガノ株式会社 Electric deionized water production apparatus and deionized water production method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3385553B2 (en) * 1999-03-25 2003-03-10 オルガノ株式会社 Electric deionized water production apparatus and deionized water production method
JP4439674B2 (en) * 2000-04-14 2010-03-24 オルガノ株式会社 Deionized water production equipment
JP4597388B2 (en) * 2001-01-10 2010-12-15 オルガノ株式会社 Electric deionized water production apparatus and deionized water production method
JP3729347B2 (en) * 2002-05-13 2005-12-21 株式会社荏原製作所 Electric regenerative desalination equipment

Also Published As

Publication number Publication date
JP2007125455A (en) 2007-05-24

Similar Documents

Publication Publication Date Title
JP3794268B2 (en) Electrodeionization apparatus and operation method thereof
AU2014212394B2 (en) Rechargeable electrochemical cells
JP2001113281A (en) Electro-deionizing apparatus and pure water making apparatus
KR20170002047A (en) Purification system for potable water and ultra pure water
JP4803649B2 (en) Operation method of electric deionized water production apparatus and electric deionized water production apparatus
JP4748318B2 (en) Electrodeionization equipment
JP7275536B2 (en) Electrodeionization apparatus and method for producing deionized water using the same
JP5114307B2 (en) Electric deionized water production equipment
US11577202B2 (en) Electrodialysis process and bipolar membrane electrodialysis devices for silica removal
JP3788318B2 (en) Electrodeionization apparatus and electrodeionization method
JP4597388B2 (en) Electric deionized water production apparatus and deionized water production method
JP6571312B2 (en) Pure water production method
JPH10323673A (en) Deionized water-producing method
JP4505965B2 (en) Pure water production method
JP5940387B2 (en) Electric deionized water production apparatus and deionized water production method
JP4552273B2 (en) Electrodeionization equipment
JP3570350B2 (en) Electrodeionization equipment and pure water production equipment
JP3729347B2 (en) Electric regenerative desalination equipment
JP3480661B2 (en) Water treatment method for electric deionized water production equipment
JP4915843B2 (en) Electric softening device, softening device and soft water production method
JP2006255684A (en) Pure water making machine
JP2003266077A (en) Electrical deionizing device
JP6034736B2 (en) Electric deionized water production equipment
JP4660890B2 (en) Operation method of electrodeionization equipment
JP6873735B2 (en) Electric deionized water production equipment and water treatment equipment and water treatment method using this

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090814

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110804

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees