JP3726336B2 - Lubricating oil composition - Google Patents

Lubricating oil composition Download PDF

Info

Publication number
JP3726336B2
JP3726336B2 JP06446496A JP6446496A JP3726336B2 JP 3726336 B2 JP3726336 B2 JP 3726336B2 JP 06446496 A JP06446496 A JP 06446496A JP 6446496 A JP6446496 A JP 6446496A JP 3726336 B2 JP3726336 B2 JP 3726336B2
Authority
JP
Japan
Prior art keywords
lubricating oil
iodide
refrigerant
seizure
iodine compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06446496A
Other languages
Japanese (ja)
Other versions
JPH09255981A (en
Inventor
崇行 加藤
健史 山田
覚 藏本
正人 高松
益彦 川村
俊英 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP06446496A priority Critical patent/JP3726336B2/en
Publication of JPH09255981A publication Critical patent/JPH09255981A/en
Application granted granted Critical
Publication of JP3726336B2 publication Critical patent/JP3726336B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Lubricants (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば冷凍サイクルに使用される冷凍機油として使用され、摺動部の焼き付きを起こしにくくすることのできる潤滑油組成物に関するものである。
【0002】
【従来の技術】
従来、冷凍サイクルの冷媒としては、塩素系冷媒、例えばフロンガスR12が広く使われていた。ところが、前記のような塩素系冷媒は、オゾン層破壊の問題から、塩素を含まない非塩素系冷媒、例えばフロンガスR134aに置換されてきている。この非塩素系冷媒用の冷凍機油としては、非塩素系冷媒と相溶性のよい合成油が用いられている。
【0003】
【発明が解決しようとする課題】
ところで、非塩素系冷媒は塩素を含まないため、その合成油との組み合わせにおいて、従来の塩素系冷媒と鉱油系冷凍機油との組み合わせに比べて、潤滑油が希薄な状態での潤滑性が劣るとされている。このため、例えば冷凍サイクルの一部を構成する圧縮機の摺動部において、潤滑油の圧縮機内への戻り量が少ない場合には、焼き付き等の不具合が発生するおそれがあった。この問題を解決するために、例えば従来から使用されてきた種々の潤滑性向上用添加剤(リン系、モリブデン系、イオウ系、塩素系、無灰系等)を合成油に添加して、焼き付き防止効果を向上させることが考えられる。しかし、いずれの添加剤も若干の焼き付き防止効果の向上は認められるものの、従来の塩素系冷媒と鉱油系冷凍機油との組み合わせにおける焼き付き防止効果には及ばないものであるという問題があった。
【0004】
この発明は、このような従来の技術に存在する問題点に着目してなされたものである。その目的としては、非塩素系冷媒用の冷凍機油に適用できて、焼き付き防止効果の大きい潤滑油組成物を提供することにある。
【0005】
【課題を解決するための手段】
上記目的を達成するために、請求項1に記載の非塩素系冷媒用潤滑油組成物の発明では、ポリアルキレングリコール系合成油及びエステル系合成油から選ばれる少なくとも一種からなる潤滑油と炭素数1〜8の直鎖脂肪族炭化水素のヨウ素化合物、分岐脂肪族炭化水素のヨウ素化合物及び脂環族炭化水素のヨウ素化合物から選ばれる少なくとも一種のヨウ素化合物とエポキシ化合物とから組成される非塩素系冷媒用潤滑油組成物であって、該ヨウ素化合物は0.1〜10重量%含有されることを特徴とするものである。
【0006】
請求項2に記載の発明では、請求項1に記載の非塩素系冷媒用潤滑油組成物において、前記エポキシ系化合物は0.5〜10重量%含有されることを特徴とするものである。
請求項3に記載の発明では、請求項1または2に記載の非塩素系冷媒用潤滑油組成物において、前記ヨウ素化合物は、ヨウ化メチル、ヨウ化エチル、ヨウ化n−プロピル、ヨウ化iso−プロピル、ヨウ化n−ブチル、ヨウ化iso−ブチル、ヨウ化tert−ブチル、ヨウ化n−ペンチル、ヨウ化2−メチル−ブチル、ヨウ化2,2−ジメチル−プロピル、ヨウ化n−ヘキシル、ヨウ化n−ヘプチル、ヨウ化n−オクチル及びヨウ化シクロヘキシルから選ばれる少なくとも一種である。
【0007】
請求項4に記載の発明では、請求項1〜請求項3のいずれか一項に記載の非塩素系冷媒用潤滑油組成物において、前記エポキシ系化合物は、エポキシ化炭化水素及びエポキシ化脂肪酸エステルから選ばれる少なくとも一種である
【0008】
【発明の実施の形態】
以下に、この発明の実施の形態について、順次詳細に説明する。
この発明の潤滑油組成物は、合成油によりなる冷凍機油に、ヨウ素化合物を0.1〜10重量%、エポキシ系化合物を0.5〜10重量%含有させてなる。そして、この潤滑油組成物は、例えばフロンガス134a等の非塩素系冷媒を冷媒とする冷凍サイクルに使用される。
【0009】
前記合成油としては、例えばポリアルキレングリコール系合成油、エステル系合成油等が挙げられる。この合成油は非塩素系冷媒との相溶性がよいため、液冷媒に均一溶解されると共に、冷媒ガスに対してミスト状で安定分散される。このため、冷凍サイクル内の冷媒ガスの流れにのせて、例えば圧縮機の摺動部等潤滑の必要な部分に安定して潤滑油組成物を供給することができる。
【0010】
前記ヨウ素化合物としては、例えば炭素数1〜8の直鎖脂肪族炭化水素、分岐脂肪族炭化水素、脂環族炭化水素、あるいは、芳香族炭化水素のヨウ化物が挙げられる。具体的には、ヨウ化メチル、ヨウ化エチル、ヨウ化n−プロピル、ヨウ化iso−プロピル、ヨウ化n−ブチル、ヨウ化iso−ブチル、ヨウ化tert−ブチル、ヨウ化n−ペンチル、ヨウ化2−メチル−ブチル、ヨウ化2,2−ジメチル−プロピル、ヨウ化n−ヘキシル、ヨウ化n−ヘプチル、ヨウ化n−オクチル、ヨウ化シクロヘキシル、ヨウ化フェニル等が挙げられる。
【0011】
このように、ヨウ素化合物が添加された合成油が、冷媒ガスの流れにのって、冷凍サイクル内を循環することによって、ヨウ素化合物が圧縮機の摺動表面に接触する。そして、摺動表面の金属原子とヨウ素化合物中のヨウ素とが反応して、摺動表面に金属ヨウ化物の皮膜が形成される。そして、摺動表面の潤滑特性が向上されて、摺動表面上の潤滑油が希薄になった場合においても焼き付き等の不具合が起こりにくいものとなる。
【0012】
ここで、ヨウ素化合物の合成油に対する含有量が0.1重量%未満では、焼き付き防止効果の向上がほとんど認められない。一方、含有量が10重量%を越えると、焼き付き防止効果のさらなる向上は認められないばかりか、製造コストが高いものとなって好ましくない。つまり、ヨウ素化合物の含有量は0.1〜10重量%の範囲内が好適であり、十分な焼き付き防止効果を得るためには1〜10重量%の範囲が特に好ましい。
【0013】
ところで、合成油にヨウ素化合物を数重量%以上加えると、合成油の高温下での化学安定性が低下する。ヨウ素化合物を含む合成油に対して、所定の条件でシールドチューブ試験を行うと、合成油の劣化、つまり合成油の全酸価の上昇が観察される。このような酸化された潤滑油が冷凍サイクル内を循環されると、金属部品の腐食、プラスチック及びゴム部品の劣化等の不具合を生じるおそれがある。
【0014】
これに対して、この実施形態の潤滑油組成物では、エポキシ系化合物が添加されている。このため、高温条件下で酸化された合成油分子及びヨウ素化合物から遊離されたヨウ素が、エポキシ系化合物に捕捉されて、金属部品の腐食、プラスチック及びゴム部品の劣化等の不具合の発生が防止される。このエポキシ系化合物としては、例えばエポキシ化炭化水素、エポキシ化脂肪酸エステル等が挙げられる。
【0015】
ここで、エポキシ系化合物の含有量が0.5重量%未満では、十分な安定化効果が得られない。一方、含有量が10重量%を越えると、安定化効果が飽和状態となるとともに、製造コストが高いものとなって好ましくない。つまり、エポキシ系化合物の含有量は0.5〜10重量%の範囲内が好適であり、十分な安定化効果を得るためには1.5〜10重量%の範囲が特に好ましい。
【0016】
以上のようなこの実施形態によれば、次のような効果が得られる。
(1) ヨウ素化合物を添加することより、非塩素系冷媒の循環する冷凍サイクル内の圧縮機の摺動表面において、ヨウ化物の被膜が形成される。そして、摺動表面上の潤滑油が希薄な状態となっても、焼き付き等の不具合が起こりにくくすることができる。
【0017】
(2) ヨウ素化合物に加えて、エポキシ系化合物を添加することにより、ヨウ素化合物による合成油の熱劣化が抑制されて、金属部品の腐食、プラスチック及びゴム部品の劣化が抑制される。
【0018】
(3) 冷凍機油として、非塩素系冷媒との相溶性に優れた合成油が採用されている。このため、ヨウ素化合物を含む合成油が冷媒に均一分散され、その冷媒が冷凍回路内を循環されることにより、ヨウ素化合物を圧縮機の摺動表面に確実に導くことができる。
【0019】
【実施例】
次に、実施例及び比較例により、この発明をさらに具体的に説明するが、この発明はこの実施例によってなんら限定されるものではない。
【0020】
なお、潤滑油組成物の性能評価は次のようにして行った。
(焼き付き防止性評価)
斜板式圧縮機を実装する冷凍サイクルに、冷媒としてフロンガスR134aを潤滑油組成物とともに封入した。そして、圧縮機への潤滑油戻り量が通常運転時の1/10以下となるような条件下で、圧縮機を4000rpmで運転し、摺動部の焼き付きが発生するまでの焼付時間を時間を測定した。この試験の条件は、圧縮機内の潤滑油が少なくなって、摺動表面上の潤滑油が希薄な状態を反映している。
(安定性評価)
潤滑油組成物の化学的安定性は、いわゆるシールドチューブ試験に準拠して行った。つまり、潤滑油組成物を所定量ガラスチューブ内に入れ、水2000ppmを添加し、触媒としてFe、Cu、Alの細線を浸漬し、ガラスチューブ内の上方空間部に微量の空気を含むフロンガスR134aを満たして、ガラスチューブを封緘した。このガラスチューブを175℃で90時間放置後開封して、潤滑油組成物の全酸価を測定した。
(実施例)
冷凍機油用合成油として代表的なポリアルキレングリコールに、ヨウ素化合物としてヨウ化n−ブチルを所定量添加し、さらにエポキシ系化合物としてエポキシヘキサデカンを所定量添加して潤滑油組成物を得た。ヨウ化n−ブチルの含有量をそれぞれ変更して得られた各潤滑油組成物の焼き付き防止性評価結果を、表1及び図1に示した。ヨウ化n−ブチルの含有量を3重量%とし、エポキシヘキサデカンの含有量を変更して得られた各潤滑油組成物の安定性評価結果を、図2に示した。
(比較例1)
ポリアルキレングリコール単独での、焼き付き防止性評価結果を表1及び図1に示した。
(比較例2〜6)
ポリアルキレングリコールに、表1に示す各種の潤滑性向上用添加剤を5重量%添加して比較例2〜6の潤滑油組成物を得た。これらの潤滑油組成物の焼き付き防止性評価結果を表1に示した。また、比較例2については、リン系の潤滑性向上用添加剤であるリン酸エステルの含有量をそれぞれ変更して得られた各潤滑油組成物の焼き付き防止性評価結果を、図1に示した。
【0021】
【表1】

Figure 0003726336
【0022】
図1に示したように、ポリアルキレングリコール単独の比較例1では、前記圧縮機内の潤滑油が希薄な条件での焼き付き防止性評価において、100秒で圧縮機の摺動部の焼き付きが認められた。これに対して、実施例においては、ヨウ化n−ブチルを0.1重量%添加するのみでも焼付時間の延長が認められ、さらにヨウ化n−ブチルを1重量%添加することにより焼付時間が比較例1の約16倍に延長された。そして、ヨウ化n−ブチルの含有量が3重量%以上では、3600秒を経過しても摺動部の焼き付きが認められず、焼き付き防止効果が著しく向上された。ここで、従来の塩素系冷媒であるフロンガスR12を鉱油系の潤滑油とともに使用して前記焼き付き防止性試験を行った場合には、3600秒を経過しても摺動部の焼き付きが認められない。つまり、非塩素系冷媒であるフロンガスR134aを使用する冷凍サイクルにおいて、ポリアルキレングリコールにヨウ化n−ブチルを3重量%以上添加することにより、塩素系冷媒であるフロンガスR12を使用する場合に匹敵する焼き付き防止効果が認められた。
【0023】
一方、表1に示したように、ポリアルキレングリコールに各種の潤滑性向上用添加剤を5重量%添加しても、いずれも比較例2のポリアルキレングリコールのみの場合に比べ、わずかに焼付時間が延長されたにすぎないものであった。
【0024】
また、図2に示したように、前記実施例の潤滑油組成物において、エポキシヘキサデカンを0.5重量%添加することにより、シールドチューブ試験後の全酸価が、エポキシ系化合物を添加しない場合に比べて半減された。そして、エポキシ系化合物の含有量が2.5重量%以上では、全酸価の低下が飽和した状態となった。従って、エポキシヘキサデカンを0.5重量%以上添加することにより、ヨウ化n−ブチルの添加に伴って引き起こされる潤滑油の劣化が抑制されることが認められた。
【0025】
【発明の効果】
以上詳述したように、本発明の潤滑油組成物によれば以下の優れた効果を奏する。
【0026】
請求項1〜4に記載の発明によれば、摺動表面において、ヨウ化物の被膜が形成される。そして、潤滑油が希薄な状態となっても、摺動部の焼き付き等の不具合が起こりにくいものとなる。
【0027】
さらに、ヨウ素化合物による合成油の熱劣化が抑制されて、冷凍サイクルの金属部品の腐食、プラスチック及びゴム部品の劣化が抑制される。
また、ヨウ素化合物を含む合成油が冷媒に均一分散され、その冷媒が冷凍回路内を循環されることにより、ヨウ素化合物を圧縮機の摺動表面に確実に導くことができる。
【図面の簡単な説明】
【図1】 添加剤含有量と潤滑油組成物の焼き付き防止効果との関係を示す説明図。
【図2】 エポキシ系化合物含有量と潤滑油組成物の焼き付き防止効果との関係を示す説明図。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a lubricating oil composition that is used, for example, as a refrigerating machine oil that is used in a refrigeration cycle and that can hardly cause seizure of a sliding portion.
[0002]
[Prior art]
Conventionally, chlorine-based refrigerants such as Freon gas R12 have been widely used as refrigerants for refrigeration cycles. However, the chlorine-based refrigerant as described above has been replaced with a non-chlorine-based refrigerant that does not contain chlorine, such as Freon gas R134a, due to the problem of ozone layer destruction. As this refrigeration oil for non-chlorine refrigerant, synthetic oil having good compatibility with non-chlorine refrigerant is used.
[0003]
[Problems to be solved by the invention]
By the way, since the non-chlorine refrigerant does not contain chlorine, in the combination with the synthetic oil, the lubricity in the state where the lubricating oil is lean is inferior to the combination of the conventional chlorine refrigerant and the mineral oil refrigerator oil. It is said that. For this reason, for example, in the sliding portion of the compressor that constitutes a part of the refrigeration cycle, when the return amount of the lubricating oil into the compressor is small, there is a possibility that problems such as seizure may occur. In order to solve this problem, for example, various additives for improving lubricity that have been used conventionally (phosphorus, molybdenum, sulfur, chlorine, ashless, etc.) are added to synthetic oil and seized. It is conceivable to improve the prevention effect. However, each additive has a slight improvement in the anti-seizure effect, but has a problem that it does not reach the anti-seize effect in the conventional combination of chlorinated refrigerant and mineral oil-based refrigeration oil.
[0004]
The present invention has been made paying attention to such problems existing in the prior art. The purpose is to provide a lubricating oil composition that can be applied to refrigerating machine oil for non-chlorine refrigerants and has a large seizure-preventing effect.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, in the invention of the lubricating oil composition for non-chlorine refrigerant according to claim 1, the lubricating oil comprising at least one selected from polyalkylene glycol synthetic oil and ester synthetic oil and the number of carbon atoms iodine compounds 1-8 straight-chain aliphatic hydrocarbons, non-chlorine is the composition and at least one iodine compound and an epoxy compound selected from branched aliphatic iodine compound of hydrocarbons and iodine compounds alicyclic hydrocarbon It is a lubricating oil composition for system refrigerant | coolants, Comprising: This iodine compound contains 0.1 to 10weight%, It is characterized by the above-mentioned.
[0006]
The invention according to claim 2 is characterized in that, in the lubricating oil composition for non-chlorine refrigerant according to claim 1, the epoxy compound is contained in an amount of 0.5 to 10% by weight.
According to a third aspect of the present invention, in the lubricating oil composition for a non-chlorine refrigerant according to the first or second aspect, the iodine compound includes methyl iodide, ethyl iodide, n-propyl iodide, and isoiodide. -Propyl, n-butyl iodide, iso-butyl iodide, tert-butyl iodide, n-pentyl iodide, 2-methyl-butyl iodide, 2,2-dimethyl-propyl iodide, n-hexyl iodide , N-heptyl iodide, n-octyl iodide and cyclohexyl iodide .
[0007]
In invention of Claim 4, in the lubricating oil composition for non-chlorine-type refrigerant | coolants as described in any one of Claims 1-3 , the said epoxy-type compound is epoxidized hydrocarbon and epoxidized fatty acid ester it is at least one selected from the group consisting of.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be sequentially described in detail.
The lubricating oil composition of the present invention comprises a refrigerating machine oil made of synthetic oil containing 0.1 to 10% by weight of an iodine compound and 0.5 to 10% by weight of an epoxy compound. And this lubricating oil composition is used for the refrigerating cycle which uses non-chlorine system refrigerants, such as Freon gas 134a, as a refrigerant, for example.
[0009]
Examples of the synthetic oil include polyalkylene glycol synthetic oil and ester synthetic oil. Since this synthetic oil has good compatibility with the non-chlorine refrigerant, it is uniformly dissolved in the liquid refrigerant and is stably dispersed in a mist state with respect to the refrigerant gas. For this reason, it is possible to stably supply the lubricating oil composition to a portion requiring lubrication, such as a sliding portion of a compressor, on the flow of the refrigerant gas in the refrigeration cycle.
[0010]
Examples of the iodine compound include linear aliphatic hydrocarbons having 1 to 8 carbon atoms, branched aliphatic hydrocarbons, alicyclic hydrocarbons, and iodides of aromatic hydrocarbons. Specifically, methyl iodide, ethyl iodide, n-propyl iodide, iso-propyl iodide, n-butyl iodide, iso-butyl iodide, tert-butyl iodide, n-pentyl iodide, iodine 2-methyl-butyl iodide, 2,2-dimethyl-iodide iodide, n-hexyl iodide, n-heptyl iodide, n-octyl iodide, cyclohexyl iodide, phenyl iodide and the like.
[0011]
As described above, the synthetic oil to which the iodine compound is added circulates in the refrigeration cycle along the flow of the refrigerant gas, so that the iodine compound comes into contact with the sliding surface of the compressor. Then, metal atoms on the sliding surface react with iodine in the iodine compound to form a metal iodide film on the sliding surface. Further, the lubrication characteristics of the sliding surface are improved, and even when the lubricating oil on the sliding surface becomes diluted, problems such as seizure hardly occur.
[0012]
Here, when the content of the iodine compound with respect to the synthetic oil is less than 0.1% by weight, almost no improvement in the seizure prevention effect is observed. On the other hand, if the content exceeds 10% by weight, not only a further improvement in the effect of preventing seizure is observed, but the production cost is high, which is not preferable. That is, the content of the iodine compound is preferably in the range of 0.1 to 10% by weight, and the range of 1 to 10% by weight is particularly preferable in order to obtain a sufficient burn-in preventing effect.
[0013]
By the way, when an iodine compound is added to the synthetic oil by several weight% or more, the chemical stability of the synthetic oil at a high temperature is lowered. When a shield tube test is performed on a synthetic oil containing an iodine compound under a predetermined condition, deterioration of the synthetic oil, that is, an increase in the total acid value of the synthetic oil is observed. If such oxidized lubricating oil is circulated in the refrigeration cycle, there is a risk of causing problems such as corrosion of metal parts and deterioration of plastic and rubber parts.
[0014]
On the other hand, in the lubricating oil composition of this embodiment, an epoxy compound is added. For this reason, iodine released from synthetic oil molecules and iodine compounds oxidized under high temperature conditions is captured by epoxy compounds, preventing the occurrence of defects such as corrosion of metal parts and deterioration of plastic and rubber parts. The Examples of the epoxy compound include epoxidized hydrocarbons and epoxidized fatty acid esters.
[0015]
Here, if the content of the epoxy compound is less than 0.5% by weight, a sufficient stabilizing effect cannot be obtained. On the other hand, if the content exceeds 10% by weight, the stabilizing effect becomes saturated and the production cost is high, which is not preferable. That is, the content of the epoxy compound is preferably in the range of 0.5 to 10% by weight, and in order to obtain a sufficient stabilizing effect, the range of 1.5 to 10% by weight is particularly preferable.
[0016]
According to this embodiment as described above, the following effects can be obtained.
(1) By adding an iodine compound, an iodide film is formed on the sliding surface of the compressor in the refrigeration cycle in which the non-chlorine refrigerant circulates. And even if the lubricating oil on the sliding surface is in a lean state, problems such as seizure can be made difficult to occur.
[0017]
(2) By adding an epoxy compound in addition to the iodine compound, thermal deterioration of the synthetic oil due to the iodine compound is suppressed, and corrosion of metal parts and deterioration of plastic and rubber parts are suppressed.
[0018]
(3) As refrigerating machine oil, synthetic oil excellent in compatibility with non-chlorine refrigerant is adopted. For this reason, the synthetic oil containing an iodine compound is uniformly dispersed in the refrigerant, and the refrigerant is circulated in the refrigeration circuit, whereby the iodine compound can be reliably guided to the sliding surface of the compressor.
[0019]
【Example】
Next, the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to the examples.
[0020]
The performance evaluation of the lubricating oil composition was performed as follows.
(Evaluation of seizure prevention)
Freon gas R134a as a refrigerant was sealed together with a lubricating oil composition in a refrigeration cycle in which a swash plate compressor was mounted. Then, under the condition that the amount of lubricant returned to the compressor is 1/10 or less of that during normal operation, the compressor is operated at 4000 rpm, and the seizure time until the seizure of the sliding portion occurs is set as the time. It was measured. The conditions of this test reflect the state where the lubricant in the compressor is low and the lubricant on the sliding surface is lean.
(Stability evaluation)
The chemical stability of the lubricating oil composition was determined according to a so-called shield tube test. That is, a predetermined amount of the lubricating oil composition is placed in a glass tube, 2000 ppm of water is added, a fine wire of Fe, Cu, and Al is immersed as a catalyst, and Freon gas R134a containing a small amount of air is placed in the upper space in the glass tube. Filled and sealed the glass tube. The glass tube was left at 175 ° C. for 90 hours and then opened, and the total acid value of the lubricating oil composition was measured.
(Example)
A predetermined amount of n-butyl iodide as an iodine compound was added to a polyalkylene glycol representative as a synthetic oil for refrigerator oil, and a predetermined amount of epoxy hexadecane was added as an epoxy compound to obtain a lubricating oil composition. Table 1 and FIG. 1 show the seizure prevention evaluation results of the respective lubricating oil compositions obtained by changing the content of n-butyl iodide. The stability evaluation result of each lubricating oil composition obtained by changing the content of n-butyl iodide to 3% by weight and changing the content of epoxyhexadecane is shown in FIG.
(Comparative Example 1)
Table 1 and FIG. 1 show the evaluation results of the anti-seizure property of the polyalkylene glycol alone.
(Comparative Examples 2-6)
The lubricating oil compositions of Comparative Examples 2 to 6 were obtained by adding 5% by weight of various lubricant improving additives shown in Table 1 to the polyalkylene glycol. Table 1 shows the evaluation results of the seizure resistance of these lubricating oil compositions. Moreover, about the comparative example 2, the seizure prevention evaluation result of each lubricating oil composition obtained by changing the content of the phosphoric acid ester which is a phosphorus-based additive for improving lubricity is shown in FIG. It was.
[0021]
[Table 1]
Figure 0003726336
[0022]
As shown in FIG. 1, in Comparative Example 1 using polyalkylene glycol alone, seizure of the sliding portion of the compressor was recognized in 100 seconds in the anti-seizure evaluation under the condition that the lubricating oil in the compressor was thin. It was. On the other hand, in the examples, an extension of the baking time was recognized only by adding 0.1% by weight of n-butyl iodide, and the baking time was further increased by adding 1% by weight of n-butyl iodide. The length was about 16 times that of Comparative Example 1. When the content of n-butyl iodide was 3% by weight or more, no seizure of the sliding portion was observed even after 3600 seconds, and the seizure prevention effect was remarkably improved. Here, when the above-mentioned anti-seizure test is performed using Freon gas R12, which is a conventional chlorinated refrigerant, together with a mineral oil-based lubricant, no seizure of the sliding portion is recognized even after 3600 seconds. . In other words, in the refrigeration cycle using Freon gas R134a, which is a non-chlorine refrigerant, by adding 3% by weight or more of n-butyl iodide to polyalkylene glycol, it is comparable to using Freon gas R12, which is a chlorine refrigerant. An anti-seizure effect was observed.
[0023]
On the other hand, as shown in Table 1, even when 5 wt% of various additives for improving lubricity were added to the polyalkylene glycol, the baking time was slightly shorter than in the case of using only the polyalkylene glycol of Comparative Example 2. Was just an extension.
[0024]
In addition, as shown in FIG. 2, in the lubricating oil composition of the above example, when 0.5 wt% of epoxyhexadecane is added, the total acid value after the shield tube test does not add an epoxy compound. Compared to halved. When the content of the epoxy compound was 2.5% by weight or more, the decrease in the total acid value was saturated. Accordingly, it was confirmed that the addition of 0.5% by weight or more of epoxyhexadecane suppresses the deterioration of the lubricating oil caused by the addition of n-butyl iodide.
[0025]
【The invention's effect】
As described in detail above, the lubricating oil composition of the present invention has the following excellent effects.
[0026]
According to the first to fourth aspects of the invention, an iodide film is formed on the sliding surface. And even if the lubricating oil is in a dilute state, problems such as seizure of the sliding portion hardly occur.
[0027]
Furthermore, the thermal deterioration of the synthetic oil due to the iodine compound is suppressed, and the corrosion of the metal parts of the refrigeration cycle and the deterioration of the plastic and rubber parts are suppressed.
Moreover , the synthetic oil containing the iodine compound is uniformly dispersed in the refrigerant, and the refrigerant is circulated in the refrigeration circuit, so that the iodine compound can be reliably guided to the sliding surface of the compressor.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing the relationship between the additive content and the seizure prevention effect of a lubricating oil composition.
FIG. 2 is an explanatory diagram showing the relationship between the epoxy compound content and the seizure prevention effect of the lubricating oil composition.

Claims (1)

ポリアルキレングリコール系合成油及びエステル系合成油から選ばれる少なくとも一種からなる潤滑油と炭素数1〜8の直鎖脂肪族炭化水素のヨウ素化合物、分岐脂肪族炭化水素のヨウ素化合物及び脂環族炭化水素のヨウ素化合物から選ばれる少なくとも一種のヨウ素化合物とエポキシ化合物とから組成される非塩素系冷媒用潤滑油組成物であって、
該ヨウ素化合物は0.1〜10重量%含有されることを特徴とする非塩素系冷媒用潤滑油組成物。
Polyalkylene glycol based synthetic oil and ester iodine compound a linear aliphatic hydrocarbon lubricating oil and from 1 to 8 carbon atoms composed of at least one selected from synthetic oils, the iodine compounds of branched aliphatic hydrocarbons and alicyclic hydrocarbons a non-chlorine type refrigerant lubricating oil compositions the composition and at least one iodine compound and an epoxy compound selected from iodine compound of hydrogen,
The iodine compound is contained in an amount of 0.1 to 10% by weight.
JP06446496A 1996-03-21 1996-03-21 Lubricating oil composition Expired - Fee Related JP3726336B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06446496A JP3726336B2 (en) 1996-03-21 1996-03-21 Lubricating oil composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06446496A JP3726336B2 (en) 1996-03-21 1996-03-21 Lubricating oil composition

Publications (2)

Publication Number Publication Date
JPH09255981A JPH09255981A (en) 1997-09-30
JP3726336B2 true JP3726336B2 (en) 2005-12-14

Family

ID=13258990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06446496A Expired - Fee Related JP3726336B2 (en) 1996-03-21 1996-03-21 Lubricating oil composition

Country Status (1)

Country Link
JP (1) JP3726336B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61296092A (en) * 1985-06-25 1986-12-26 Ajinomoto Co Inc Lubricating oil composition
JP2999622B2 (en) * 1992-02-20 2000-01-17 日石三菱株式会社 Refrigeration oil composition for fluorinated alkane refrigerant
JPH06313180A (en) * 1992-08-04 1994-11-08 Asahi Chem Ind Co Ltd Lubricant composition for refrigerator

Also Published As

Publication number Publication date
JPH09255981A (en) 1997-09-30

Similar Documents

Publication Publication Date Title
KR960007698B1 (en) Tetrafluoroethane composition for a refrigerator
KR950005694B1 (en) Refrigeration lubricants
JP2573111B2 (en) Composition for working fluid of refrigerator
US6350392B1 (en) Blended polyol ester lubricants for refrigerant heat transfer fluids
US5704216A (en) Refrigerating unit
JP3860942B2 (en) Lubricating oil composition for refrigeration equipment, working fluid and refrigeration equipment
US10723926B2 (en) Refrigerating machine oil and refrigerating machine working fluid composition
US5653909A (en) Refrigerating machine oil composition for use with HFC refrigerant
US10386099B2 (en) Desicating synthetic refrigeration oil composition for fluoro-olefin refrigeration systems
US5728655A (en) Refrigerating machine oil composition for use with HCFC and HFC refrigerants
US9725630B2 (en) Working fluid composition for refrigerator
US5560854A (en) Working fluid composition for HFC refrigerant compressor containing benzotriazole derivatives, and a process for improving lubrication in a compressor
KR19990067513A (en) Refrigeration oil, refrigeration fluids, and lubrication of refrigeration systems
JP2001226690A (en) Lubricant composition for freezing device, and freezing device
JP3726336B2 (en) Lubricating oil composition
KR960022964A (en) Refrigerator oils and fluid compositions for refrigerators
JP2837861B2 (en) Tetrafluoroethane refrigerator composition
CN112111316B (en) Refrigerating machine oil, working fluid composition and compressor
JP2946075B2 (en) Composition for working fluid of refrigerator
JPS60123577A (en) Refrigerating machine oil composition
JPH0570789A (en) Working fluid composition for refrigerator
JP4368479B2 (en) Refrigerator oil composition
JPH09302373A (en) Refrigerator oil composition
JPH0336073B2 (en)
JPH0688086A (en) Lubricating oil composition

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050425

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050919

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111007

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees