JP4368479B2 - Refrigerator oil composition - Google Patents

Refrigerator oil composition Download PDF

Info

Publication number
JP4368479B2
JP4368479B2 JP2000035304A JP2000035304A JP4368479B2 JP 4368479 B2 JP4368479 B2 JP 4368479B2 JP 2000035304 A JP2000035304 A JP 2000035304A JP 2000035304 A JP2000035304 A JP 2000035304A JP 4368479 B2 JP4368479 B2 JP 4368479B2
Authority
JP
Japan
Prior art keywords
general formula
oil composition
refrigerating machine
reactive additive
base oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000035304A
Other languages
Japanese (ja)
Other versions
JP2001226692A (en
Inventor
忠紀 加藤
孝夫 福原
眞嘉 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Sun Oil Co Ltd
Original Assignee
Japan Sun Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Sun Oil Co Ltd filed Critical Japan Sun Oil Co Ltd
Priority to JP2000035304A priority Critical patent/JP4368479B2/en
Publication of JP2001226692A publication Critical patent/JP2001226692A/en
Application granted granted Critical
Publication of JP4368479B2 publication Critical patent/JP4368479B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Lubricants (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、HFC(ハイドロフルオロカーボン)系冷媒に添加される冷凍機油組成物に関する。
【0002】
【従来の技術】
電気冷蔵庫や空調機等の冷媒として従来広く使用されていたR−12やR−22等のフロン類は、オゾン層破壊等の環境問題から規制対象となっており、今日ではHFC系冷媒(例えば、HFC−134a、R−407C、R410A等)への代替化が進んでいる。
【0003】
一方、電気冷蔵庫や空調機等では、コンプレッサの摺動部分の潤滑のために、通常、潤滑油からなる基油に各種の添加剤を配合してなる冷凍機油組成物を添加した冷媒を使用している。従って、冷凍機油組成物の基油はHFC系フルオロカーボンと相溶性を有する必要があり、ポリアルキレングリコール(PAG)やポリオールエステル(POE)が一般的となっている。例えば、米国特許第4755316号明細書や特開平2−276881号公報には1,1,1,2−テトラフルオロエタンとの相溶性に優れたPAG系冷凍機油組成物が、また米国特許第5021179号明細書には1,1,1,2−テトラフルオロエタンとの相溶性に優れたPEO系冷凍機油組成物が記載されている。
【0004】
【発明が解決しようとする課題】
冷凍機油は通常、冷媒とともに充填された後は無交換で長期にわたり使用される。しかし、上記に挙げた冷凍機油組成物をはじめとして、POEやPAGを基油とする冷凍機油組成物では、POEやPAGが混入水分や工程剤等の影響を受けやすく、使用期間を経るのに従って加水分解を起こして脂肪酸を生成し、配管等の金属腐食、冷却不良、絶縁抵抗の低下等の種々の問題を引き起こすようになり、経時安定性の点で十分とは言えない。
【0005】
本発明はこのような状況に鑑みてなされたものであり、基油の分解を抑制して、金属の腐食や冷却不足、絶縁性の低下を招くことが無く、経時安定性に優れたHFC系冷媒用冷凍機油組成物を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記の目的を達成するために、本発明は、HFC系冷媒に添加される冷凍機油組成物であって、ネオペンチル型アルコールと下記一般式(I)で表される酸残基を有する脂肪酸との脱水反応生成物からなるエステル油を基油とし、前記基油に下記一般式(II)で表される化合物からなる酸性成分反応性添加剤を0.1〜1重量%、下記一般式(III)で表される化合物からなる水・塩酸反応性添加剤を0.1〜1重量%の割合で含有することを特徴とする冷凍機油組成物を提供する。
【0007】
【化2】

Figure 0004368479
【0008】
一般式(I)において、R1、R2、R3はそれぞれCn2n+1(n=1〜21)で表される直鎖または分岐のアルキル基もしくは水素原子であり、またR1、R2、R3は同時に2個以上が水素原子とはならず、かつR1、R2、R3を合わせたnの総和は4以上22以下である。また、一般式(II)において、R4、R5はそれぞれ芳香族基もしくはアルキル置換芳香族基であり、同一であっても互いに異なっていてもよい。また、一般式(III)において、R6は炭素数4〜20の直鎖または分岐のアルキル基、直鎖または分岐のアシル基、アルキル置換芳香族基である。
【0009】
【発明の実施の形態】
以下、本発明に関して詳細に説明する。
本発明の冷凍機油組成物において、基油は、ネオペンチル型アルコールと、下記一般式(I)で表される酸残基を有する脂肪酸とを脱水反応させて得られるエステル油である。
【0010】
【化3】
Figure 0004368479
【0011】
尚、一般式(I)において、R1、R2、R3はそれぞれCn2n+1(n=1〜21)で表される直鎖または分岐のアルキル基もしくは水素原子であり、またR1、R2、R3は同時に2個以上が水素原子とはならず、かつR1、R2、R3を合わせた炭素数(n)の総和は4以上22以下である。
【0012】
この一般式(I)で表される酸残基を有する脂肪酸は、オレフィンと、一酸化炭素と、フッ化水素とを反応させることにより容易に得られる。この反応に際してオレフィンの大部分は、当初の炭素数よりも少ない炭素数の種々のフラグメントに分解し、それらフラグメントが一般式(I)のR1、R2及びR3として結合する。従って、一般式(I)で表される酸残基を有する脂肪酸は、種々の炭素数からなるアルキル基または水素原子がR1、R2及びR3としてランダムに結合した脂肪酸の混合物となる。尚、オレフィンとしては、R1、R2及びR3の炭素数の総数が22を超えないように、余り炭素数の多いものを使用することは好ましくなく、例えばブチレン、ペンテン、ヘキセン、オクテン等を好ましく使用することができる。また、これらのオレフィンは、必要に応じて、炭素数の異なるものを混合して用いることもできる。
【0013】
一方、ネオペンチル型アルコールとしては、ネオペンチルグリコール、トリメチロールプロパン、ペンタエリスリトールまたはジペンタエリスリトールが好ましく、これらを単独で、もしくは複数種を組み合わせて使用することができる。
【0014】
上記ネオペンチル型アルコールと、一般式(I)で表される酸残基を有する脂肪酸とを脱水反応させて得られるエステル油は、酸残基側のC=O結合の隣のα炭素が2級もしくは3級構造のα−ブランチ構造を有し、他方アルコール残基側のO−C結合を形成するβ炭素も分岐構造を有する。これにより、加水分解反応に係わるエステル結合部分が両分岐構造により遮蔽されるため、エステル油自体が加水分解反応を起こし難い分子構造を有するようになる。従って、一般式(I)で表される酸残基において、R1、R2、R3が上記した定義を満足しない場合には、このような遮蔽効果が得られない。また、この遮蔽効果は、一般式(I)で表される酸残基において、3級の分岐構造である場合に最も高くなる。
【0015】
上記エステル油からなる基油には、下記一般式(II)で表される化合物からなる有機脂肪酸成分反応性添加剤及び下記一般式(III)で表される化合物からなる水・塩酸反応性添加剤が添加される。
【0016】
【化4】
Figure 0004368479
【0017】
尚、一般式(II)において、R4、R5はそれぞれ芳香族基もしくはアルキル置換芳香族基であり、また同一であっても互いに異なっていてもよい。この一般式(II)で表される有機脂肪酸成分反応性添加剤としては、例えば4,4−ジメチルジフェニルカルボジイミド、2,6,2,6−テトラメチルジフェニルカルボジイミド、3.5.3.5−テトラメチルジフェニルカルボジイミド、4,4−ジイソプロピルジフェニルカルボジイミド、2,6,2,6−テトライソプロピルジフェニルカルボジイミド、3.5.3.5−テトライソプロピルジフェニルカルボジイミド、4,4−ジターシャルブチルジフェニルカルボジイミド、2,6,2,6−テトラターシャルブチルジフェニルカルボジイミド、3,5,3,5−テトラターシャルブチルジフェニルカルボジイミド、ジフェニルカルボジイミド等を挙げることができる。
【0018】
また、一般式(III)において、R6は炭素数4〜20の直鎖または分岐のアルキル基、直鎖または分岐のアシル基、アルキル置換芳香族基である。この一般式(III)で表される水・塩酸反応性添加剤としては、例えばn−ブチルグリシジルエーテル、イソブチルグリシジルエーテル、n−ヘキシルグリシジルエーテル、2−メチルペンチルグリシジルエーテル、n−オクチルグリシジルエーテル、2−エチルヘキシルグリシジルエーテル、2−メチルオクチルグリシジルエーテル、n−ウンデカングリシジルエーテル、ネオオクタン酸グリシジルエステル、ネオデカン酸グリシジルエステル、フェニルグリシジルエーテル、4−sec−ブチルフェニルグリシジルエーテル等を挙げることができる。
【0019】
上記の酸性成分反応性添加剤は、各種の酸性成分との反応性に富んだ添加剤であり、加水分解により生成した脂肪酸を消失させる。一方、上記の水・塩酸反応性添加剤は水との反応性が高く、混入水分を捕捉する。従って、酸性成分反応性添加剤と水・塩酸反応性添加剤とを含有させることにより、両者の相乗作用により、基油の加水分解反応がより一層抑制される。
【0020】
上記の酸性成分反応性添加剤は、冷凍機油組成物中に0.1〜1重量%、また水・塩酸反応性添加剤は0.1〜1重量%の割合で添加されることが好ましい。両添加剤とも、含有量が前記の量未満では基油の加水分解反応の進行を抑制する効果が不十分となり、一方1重量%を超える場合には増分に見合う効果が得られず不経済であるばかりでなく、配管の目詰まりを起こす等冷媒の循環に悪影響を及ぼすようになる。
【0021】
尚、本発明の冷凍機油組成物には本発明の効果を損なわない範囲で従来公知の添加剤、例えば摩耗防止材、極圧剤、酸化防止剤、消泡剤等を添加してもよい。
【0022】
また、上記したように酸性成分反応性添加剤及び水・塩酸反応性添加剤は、両者の相乗効果により基油の加水分解反応の進行をより効果的に抑制するため、両者の含有量は略同量であることが特に好ましい。酸性成分反応性添加剤の含有量と水・塩酸反応性添加剤の含有量との差が大きくなるほど、両者のバランスが崩れて加水分解反応の抑制効果が十分に発揮されなくなる。
【0023】
本発明の冷凍機油組成物は、それぞれ上記に挙げたアルコールと一般式(I)で表される酸残基を有する脂肪酸とを、常法に従って脱水反応させてエステル油を作製しておき、このエステル油に酸性成分反応性添加剤と水・塩酸反応性添加剤とを所定量添加して得られる。従って、特別な装置や複雑な工程、過酷な製造条件等を要することなく、冷凍機油組成物が得られる。
【0024】
【実施例】
以下に実施例を挙げて更に本発明を明確にするが、本発明はこれにより何ら制限されるものではない。
【0025】
(基油の調製)
表1に示すように、オレフィンとしてヘキセン(C6)及びオクテン(C8)を用い、一酸化炭素及びフッ化水素と反応させて脂肪酸を作製した。得られた脂肪酸は何れも、一般式(I)におけるR1、R2、R3が総炭素数4〜22の範囲で分岐した脂肪酸残基を有する種々の脂肪酸の混合物であった。次いで、この脂肪酸混合物とNPG、TMP又はPEとを脱水反応させて基油A、基油B及び基油Cを調製した。
【0026】
また、比較のために、表2に示すように、アルコール及び脂肪酸の種類を変えて脱水反応させて基油D及び基油Eを調製した。更に、PAGを基油Fとし、鉱物油を基油Gとして用いた。
【0027】
上記の各基油について、粘度グレード、密度、色、粘度(40℃、100℃)、引火点、流動点、全酸化、含有水分、破壊電圧、体積抵抗率、P−134a臨界溶解温度、銅板腐食、FALEX焼付荷重及び耐湿性について測定した。測定結果を表1及び表2に示すが、本発明に従う基油A、基油B及び基油Cは何れも他の基油と比較して、R−134aとの相溶性も良好で、また体積抵抗率が高く、吸湿性も低くなっていることが分かる。
【0028】
【表1】
Figure 0004368479
【0029】
【表2】
Figure 0004368479
【0030】
また、基油A〜基油Eについて、シールドチューブ法に従い加水分解性試験を行った。即ち、基油10gに対して2gのHFC−134aを混合した混合油と、触媒としての鉄、銅及びアルミニウムと、1000ppmの水とを封入したチューブを、175℃の恒温槽に20日間または40日間入れた後、チューブを開封して混合油及び触媒を取り出し、混合油の色及び全酸価、触媒の状態、沈殿物の有無を測定または観察した。結果を表3に示す。
【0031】
【表3】
Figure 0004368479
【0032】
表3から、本発明に従う基油A、基油B及び基油Cは、何れも全酸価が調製時の値と変わらず、基油の加水分解に起因する脂肪酸の発生が抑えられていることが分かる。これに対して基油D及び基油Eは、全酸価が高く、しかも保持期間が長い程その値が大きくなっており、基油の加水分解が起こっている。また、40日程度の保持期間では、全ての基油において触媒の状態に変化は見られず、沈殿物も生成していないが、基油D及び基油Eは全酸価の増加度合から見て、40日以降の比較的早い時期に触媒の変化や沈殿物の生成が起こることが予測される。
【0033】
(実施例1〜4、比較例1〜3)
有機脂肪酸成分反応性添加剤として4.4−ジメチルジフェニルカルボンジイミドを、水・塩酸反応性添加剤として2−エチルヘキシルグリシジルエーテルを用い、上記の基油Aにそれぞれ配合量を変えて添加して冷凍機油組成物を調製した。そして、各冷凍機油組成物について、シールドチューブ法に従い加水分解性試験を行った。即ち、冷凍機油組成物5gに対して1gのR−410Aを混合した混合油と、触媒としての鉄、銅及びアルミニウムと、1000ppmの水とを封入したチューブを、200℃の恒温槽に28日間入れた後、チューブを開封して混合油及び触媒を取り出し、混合油の色及び全酸価、触媒の状態、沈殿物の有無を測定または観察した。結果を表4に示す。
【0034】
【表4】
Figure 0004368479
【0035】
表4から、本発明に従い、有機脂肪酸成分反応性添加剤を0.1〜1重量%、水・塩酸反応性添加剤油を0.1〜1重量%含有する冷凍機油組成物は、何れも全酸価が調製時の値と変わらず(実施例2〜4)、もしくは増加しても0.03〔mgKOH/g〕と低く、加水分解に起因する脂肪酸の発生が抑えられていることが分かる。これに対して有機脂肪酸成分反応性添加剤と水・塩酸反応性添加剤の何れか一方しか含有しない冷凍機油組成物(比較例1、比較例2)、並びに有機脂肪酸成分反応性添加剤及び水・塩酸反応性添加剤油の含有量が本発明の範囲外である冷凍機油組成物(比較例3)では、全酸価が高く、加水分解が起こっている。また、実施例及び比較例ともに、触媒の状態に変化は見られず、沈殿物も生成していないが、比較例の冷凍機油組成物では全酸価から見て、28日以降の比較的早い時期に触媒の変化や沈殿物の生成が起こることが予測される。
【0036】
【発明の効果】
以上説明してきたように、本発明によれば、特定のエステル油を基油とし、これに有機脂肪酸成分反応性添加剤と水・塩酸反応性添加剤とを両方、特定量配合させることにより、基油の加水分解反応に対する耐性がより高められ、金属の腐食や冷却不足、絶縁抵抗の低下を招くことが無く、経時安定性に優れたHFC系冷媒用冷凍機油組成物が提供される。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a refrigerating machine oil composition added to an HFC (hydrofluorocarbon) refrigerant.
[0002]
[Prior art]
Fluorocarbons such as R-12 and R-22, which have been widely used as refrigerants for electric refrigerators, air conditioners and the like, are subject to regulation due to environmental problems such as ozone layer destruction. Today, HFC refrigerants (for example, HFC-134a, R-407C, R410A, etc.).
[0003]
On the other hand, electric refrigerators, air conditioners, etc., usually use a refrigerant in which a refrigerating machine oil composition comprising various additives and a base oil made of lubricating oil is added to lubricate sliding parts of a compressor. ing. Therefore, the base oil of the refrigerating machine oil composition needs to be compatible with the HFC fluorocarbon, and polyalkylene glycol (PAG) and polyol ester (POE) are generally used. For example, in US Pat. No. 4,755,316 and JP-A-2-276881, a PAG refrigerator oil composition having excellent compatibility with 1,1,1,2-tetrafluoroethane is disclosed in US Pat. No. 5,021,179. The specification describes a PEO refrigerating machine oil composition excellent in compatibility with 1,1,1,2-tetrafluoroethane.
[0004]
[Problems to be solved by the invention]
The refrigerating machine oil is normally used for a long time without replacement after being filled with the refrigerant. However, in the refrigerating machine oil composition based on POE and PAG, including the refrigerating machine oil compositions listed above, POE and PAG are easily affected by mixed water and process agents, etc. Hydrolysis causes fatty acids to cause various problems such as corrosion of pipes and the like, poor cooling, and a decrease in insulation resistance, which is not sufficient in terms of stability over time.
[0005]
The present invention has been made in view of such a situation, and suppresses decomposition of the base oil, and does not cause metal corrosion, lack of cooling, or deterioration of insulation, and is an HFC system having excellent temporal stability. It aims at providing the refrigerating machine oil composition for refrigerant | coolants.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a refrigerating machine oil composition added to an HFC refrigerant, comprising a neopentyl alcohol and a fatty acid having an acid residue represented by the following general formula (I): An ester oil composed of a dehydration reaction product is used as a base oil, and 0.1 to 1 wt% of an acidic component reactive additive composed of a compound represented by the following general formula (II) is added to the base oil. A refrigerating machine oil composition comprising 0.1 to 1% by weight of a water / hydrochloric acid reactive additive comprising a compound represented by formula (1) is provided.
[0007]
[Chemical formula 2]
Figure 0004368479
[0008]
In the general formula (I), R 1 , R 2 and R 3 are each a linear or branched alkyl group represented by C n H 2n + 1 (n = 1 to 21) or a hydrogen atom, and R 1 , R 2 , R 3 are not two or more hydrogen atoms at the same time, and the total sum of n including R 1 , R 2 , R 3 is 4 or more and 22 or less. In the general formula (II), R 4 and R 5 are each an aromatic group or an alkyl-substituted aromatic group, and may be the same or different from each other. In the general formula (III), R 6 is a linear or branched alkyl group having 4 to 20 carbon atoms, a linear or branched acyl group, or an alkyl-substituted aromatic group.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
In the refrigerator oil composition of the present invention, the base oil is an ester oil obtained by dehydrating a neopentyl alcohol and a fatty acid having an acid residue represented by the following general formula (I).
[0010]
[Chemical 3]
Figure 0004368479
[0011]
In the general formula (I), R 1 , R 2 and R 3 are each a linear or branched alkyl group represented by C n H 2n + 1 (n = 1 to 21) or a hydrogen atom, Two or more of R 1 , R 2 , and R 3 are not hydrogen atoms at the same time, and the total number of carbon atoms (n) including R 1 , R 2 , and R 3 is 4 or more and 22 or less.
[0012]
The fatty acid having an acid residue represented by the general formula (I) can be easily obtained by reacting an olefin, carbon monoxide, and hydrogen fluoride. In this reaction, most of the olefin is decomposed into various fragments having a carbon number smaller than the original carbon number, and these fragments are bonded as R 1 , R 2 and R 3 in the general formula (I). Therefore, the fatty acid having an acid residue represented by the general formula (I) is a mixture of fatty acids in which alkyl groups having various carbon numbers or hydrogen atoms are randomly bonded as R 1 , R 2 and R 3 . In addition, it is not preferable to use an olefin having an excessively large number of carbon atoms so that the total number of carbon atoms of R 1 , R 2 and R 3 does not exceed 22, for example, butylene, pentene, hexene, octene, etc. Can be preferably used. Moreover, these olefins can also be used by mixing those having different carbon numbers as required.
[0013]
On the other hand, neopentyl glycol is preferably neopentyl glycol, trimethylolpropane, pentaerythritol or dipentaerythritol, and these can be used alone or in combination.
[0014]
The ester oil obtained by dehydrating the neopentyl alcohol and the fatty acid having an acid residue represented by the general formula (I) has a secondary α carbon adjacent to the C = O bond on the acid residue side. Alternatively, it has a tertiary α-branch structure, and the β carbon that forms an O—C bond on the alcohol residue side also has a branched structure. As a result, the ester bond portion involved in the hydrolysis reaction is shielded by both branched structures, so that the ester oil itself has a molecular structure that hardly causes the hydrolysis reaction. Therefore, when R 1 , R 2 , R 3 do not satisfy the above definition in the acid residue represented by the general formula (I), such a shielding effect cannot be obtained. Further, this shielding effect is highest when the acid residue represented by the general formula (I) has a tertiary branched structure.
[0015]
To the base oil composed of the above ester oil, an organic fatty acid component reactive additive composed of a compound represented by the following general formula (II) and a water / hydrochloric acid reactive additive composed of a compound represented by the following general formula (III) Agent is added.
[0016]
[Formula 4]
Figure 0004368479
[0017]
In the general formula (II), R 4 and R 5 are each an aromatic group or an alkyl-substituted aromatic group, and may be the same or different from each other. Examples of the organic fatty acid component reactive additive represented by the general formula (II) include 4,4-dimethyldiphenylcarbodiimide, 2,6,2,6-tetramethyldiphenylcarbodiimide, 3.5.3.5- Tetramethyldiphenylcarbodiimide, 4,4-diisopropyldiphenylcarbodiimide, 2,6,2,6-tetraisopropyldiphenylcarbodiimide, 3.5.3.5-tetraisopropyldiphenylcarbodiimide, 4,4-ditertiarybutyldiphenylcarbodiimide, 2 , 6,2,6-tetratertiarybutyldiphenylcarbodiimide, 3,5,3,5-tetratertiarybutyldiphenylcarbodiimide, diphenylcarbodiimide and the like.
[0018]
In the general formula (III), R 6 is a linear or branched alkyl group having 4 to 20 carbon atoms, a linear or branched acyl group, or an alkyl-substituted aromatic group. Examples of the water / hydrochloric acid reactive additive represented by the general formula (III) include n-butyl glycidyl ether, isobutyl glycidyl ether, n-hexyl glycidyl ether, 2-methylpentyl glycidyl ether, n-octyl glycidyl ether, Examples include 2-ethylhexyl glycidyl ether, 2-methyloctyl glycidyl ether, n-undecane glycidyl ether, neooctanoic acid glycidyl ester, neodecanoic acid glycidyl ester, phenyl glycidyl ether, and 4-sec-butylphenyl glycidyl ether.
[0019]
The above acidic component reactive additive is an additive rich in reactivity with various acidic components and eliminates fatty acids generated by hydrolysis. On the other hand, the above-mentioned water / hydrochloric acid reactive additive is highly reactive with water and traps mixed water. Therefore, by including the acidic component reactive additive and the water / hydrochloric acid reactive additive, the hydrolysis reaction of the base oil is further suppressed by the synergistic action of both.
[0020]
The acidic component reactive additive is preferably added to the refrigerating machine oil composition in an amount of 0.1 to 1% by weight, and the water / hydrochloric acid reactive additive is preferably added in an amount of 0.1 to 1% by weight. In both additives, if the content is less than the above-mentioned amount, the effect of suppressing the progress of the hydrolysis reaction of the base oil becomes insufficient. On the other hand, if it exceeds 1% by weight, an effect commensurate with the increment cannot be obtained and it is uneconomical. Not only does this affect the circulation of the refrigerant, it also causes clogging of the piping.
[0021]
In the refrigerating machine oil composition of the present invention, conventionally known additives such as antiwear agents, extreme pressure agents, antioxidants, antifoaming agents and the like may be added to the extent that the effects of the present invention are not impaired.
[0022]
In addition, as described above, the acidic component reactive additive and the water / hydrochloric acid reactive additive more effectively suppress the progress of the hydrolysis reaction of the base oil due to the synergistic effect of both, so the content of both is approximately The same amount is particularly preferred. As the difference between the content of the acidic component reactive additive and the content of the water / hydrochloric acid reactive additive increases, the balance between the two is lost and the effect of suppressing the hydrolysis reaction is not sufficiently exhibited.
[0023]
The refrigerating machine oil composition of the present invention is an ester oil prepared by dehydrating each of the alcohols listed above and a fatty acid having an acid residue represented by the general formula (I) according to a conventional method. It is obtained by adding a predetermined amount of an acidic component reactive additive and water / hydrochloric acid reactive additive to ester oil. Therefore, a refrigerating machine oil composition can be obtained without requiring special equipment, complicated processes, harsh production conditions, and the like.
[0024]
【Example】
EXAMPLES The present invention will be further clarified by examples below, but the present invention is not limited thereby.
[0025]
(Preparation of base oil)
As shown in Table 1, hexene (C6) and octene (C8) were used as olefins and reacted with carbon monoxide and hydrogen fluoride to produce fatty acids. All the fatty acids obtained were a mixture of various fatty acids having fatty acid residues in which R 1 , R 2 and R 3 in the general formula (I) were branched in the range of 4 to 22 carbon atoms. Subsequently, base oil A, base oil B, and base oil C were prepared by dehydrating this fatty acid mixture with NPG, TMP, or PE.
[0026]
For comparison, as shown in Table 2, base oil D and base oil E were prepared by dehydration reaction by changing the types of alcohol and fatty acid. Further, PAG was used as base oil F, and mineral oil was used as base oil G.
[0027]
For each of the above base oils, viscosity grade, density, color, viscosity (40 ° C., 100 ° C.), flash point, pour point, total oxidation, moisture content, breakdown voltage, volume resistivity, P-134a critical melting temperature, copper plate Corrosion, FALEB seizure load and moisture resistance were measured. The measurement results are shown in Tables 1 and 2, and the base oil A, base oil B, and base oil C according to the present invention are all more compatible with R-134a than other base oils. It can be seen that the volume resistivity is high and the hygroscopicity is also low.
[0028]
[Table 1]
Figure 0004368479
[0029]
[Table 2]
Figure 0004368479
[0030]
Moreover, about the base oil A-base oil E, the hydrolyzability test was done according to the shield tube method. That is, a tube in which 2 g of HFC-134a is mixed with 10 g of base oil, iron, copper, and aluminum as catalysts and 1000 ppm of water is sealed in a thermostatic bath at 175 ° C. for 20 days or 40 After putting in for a day, the tube was opened, the mixed oil and the catalyst were taken out, and the color and total acid value of the mixed oil, the state of the catalyst, and the presence or absence of precipitates were measured or observed. The results are shown in Table 3.
[0031]
[Table 3]
Figure 0004368479
[0032]
From Table 3, base oil A, base oil B, and base oil C according to the present invention all have the same total acid value as the value at the time of preparation, and the generation of fatty acids due to hydrolysis of the base oil is suppressed. I understand that. On the other hand, the base oil D and the base oil E have a high total acid value, and the longer the retention period, the larger the value, and hydrolysis of the base oil occurs. Further, in the retention period of about 40 days, no change was observed in the state of the catalyst in all base oils, and no precipitate was formed, but the base oil D and the base oil E were seen from the degree of increase in the total acid value. Thus, it is predicted that catalyst changes and precipitate formation will occur relatively early after the 40th day.
[0033]
(Examples 1-4, Comparative Examples 1-3)
Freeze by adding 4.4-dimethyldiphenylcarbondiimide as an organic fatty acid component reactive additive and 2-ethylhexyl glycidyl ether as a water / hydrochloric acid reactive additive and changing the blending amount to the above base oil A. A machine oil composition was prepared. And about each refrigerator oil composition, the hydrolyzability test was done according to the shield tube method. That is, a mixed oil in which 1 g of R-410A is mixed with 5 g of a refrigerating machine oil composition, a tube containing iron, copper and aluminum as a catalyst, and 1000 ppm of water, is placed in a constant temperature bath at 200 ° C. for 28 days. After the addition, the tube was opened to remove the mixed oil and the catalyst, and the color and total acid value of the mixed oil, the state of the catalyst, and the presence or absence of precipitates were measured or observed. The results are shown in Table 4.
[0034]
[Table 4]
Figure 0004368479
[0035]
From Table 4, in accordance with the present invention, any refrigerating machine oil composition containing 0.1 to 1% by weight of organic fatty acid component reactive additive and 0.1 to 1% by weight of water / hydrochloric acid reactive additive oil The total acid value is not different from the value at the time of preparation (Examples 2 to 4), or even if it is increased, it is as low as 0.03 [mg KOH / g], and the generation of fatty acids due to hydrolysis is suppressed. I understand. In contrast, a refrigerating machine oil composition (Comparative Example 1, Comparative Example 2) containing only one of an organic fatty acid component reactive additive and a water / hydrochloric acid reactive additive, and an organic fatty acid component reactive additive and water In the refrigerator oil composition (Comparative Example 3) in which the content of the hydrochloric acid reactive additive oil is outside the range of the present invention, the total acid value is high and hydrolysis occurs. Further, in both the examples and the comparative examples, no change was observed in the state of the catalyst and no precipitate was formed, but the comparative refrigeration oil composition was relatively early after 28 days in terms of the total acid value. It is anticipated that catalyst changes and precipitate formation will occur over time.
[0036]
【The invention's effect】
As described above, according to the present invention, a specific ester oil is used as a base oil, and by adding a specific amount of both an organic fatty acid component reactive additive and a water / hydrochloric acid reactive additive, Provided is a refrigerating machine oil composition for HFC-based refrigerants that is more resistant to hydrolysis of base oil, does not cause metal corrosion, lack of cooling, and lower insulation resistance, and has excellent temporal stability.

Claims (2)

HFC系冷媒に添加される冷凍機油組成物であって、
ネオペンチル型アルコールと下記一般式(I)で表される酸残基を有する脂肪酸との脱水反応生成物からなるエステル油を基油とし、前記基油に下記一般式(II)で表される化合物からなる酸性成分反応性添加剤を0.1〜1重量%、下記一般式(III)で表される化合物からなる水・塩酸反応性添加剤を0.1〜1重量%の割合で含有することを特徴とする冷凍機油組成物。
Figure 0004368479
一般式(I)において、R1、R2、R3はそれぞれCn2n+1(n=1〜21)で表される直鎖または分岐のアルキル基もしくは水素原子であり、またR1、R2、R3は同時に2個以上が水素原子とはならず、かつR1、R2、R3を合わせたnの総和は4以上22以下である。
また、一般式(II)において、R4、R5はそれぞれ芳香族基もしくはアルキル置換芳香族基であり、同一であっても互いに異なっていてもよい。
また、一般式(III)において、R6は炭素数4〜20の直鎖または分岐のアルキル基、直鎖または分岐のアシル基、アルキル置換芳香族基である。
A refrigerating machine oil composition added to an HFC refrigerant,
A compound represented by the following general formula (II) based on an ester oil comprising a dehydration reaction product of a neopentyl alcohol and a fatty acid having an acid residue represented by the following general formula (I): 0.1 to 1% by weight of an acidic component reactive additive comprising: 0.1 to 1% by weight of a water / hydrochloric acid reactive additive comprising a compound represented by the following general formula (III) A refrigerating machine oil composition characterized by the above.
Figure 0004368479
In the general formula (I), R 1 , R 2 and R 3 are each a linear or branched alkyl group represented by C n H 2n + 1 (n = 1 to 21) or a hydrogen atom, and R 1 , R 2 , R 3 are not two or more hydrogen atoms at the same time, and the total sum of n including R 1 , R 2 , R 3 is 4 or more and 22 or less.
In the general formula (II), R 4 and R 5 are each an aromatic group or an alkyl-substituted aromatic group, and may be the same or different from each other.
In the general formula (III), R 6 is a linear or branched alkyl group having 4 to 20 carbon atoms, a linear or branched acyl group, or an alkyl-substituted aromatic group.
前記ネオペンチル型アルコールが、ネオペンチルグリコール、トリメチロールプロパン、ペンタエリスリトール及びジペンタエリスリトールから選ばれる少なくとも1種であることを特徴とする請求項1記載の冷凍機油組成物。The refrigerating machine oil composition according to claim 1, wherein the neopentyl alcohol is at least one selected from neopentyl glycol, trimethylolpropane, pentaerythritol and dipentaerythritol.
JP2000035304A 2000-02-14 2000-02-14 Refrigerator oil composition Expired - Lifetime JP4368479B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000035304A JP4368479B2 (en) 2000-02-14 2000-02-14 Refrigerator oil composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000035304A JP4368479B2 (en) 2000-02-14 2000-02-14 Refrigerator oil composition

Publications (2)

Publication Number Publication Date
JP2001226692A JP2001226692A (en) 2001-08-21
JP4368479B2 true JP4368479B2 (en) 2009-11-18

Family

ID=18559525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000035304A Expired - Lifetime JP4368479B2 (en) 2000-02-14 2000-02-14 Refrigerator oil composition

Country Status (1)

Country Link
JP (1) JP4368479B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3909743B2 (en) * 2001-07-09 2007-04-25 株式会社ジャパンエナジー Lubricating oil composition for refrigerator
JP5951263B2 (en) * 2012-01-18 2016-07-13 川田工業株式会社 Plate for underground water channel formation

Also Published As

Publication number Publication date
JP2001226692A (en) 2001-08-21

Similar Documents

Publication Publication Date Title
US5403503A (en) Refrigerator oil composition for hydrogen-containing hydrofluorocarbon refrigerant
CN1114682C (en) Poly (neopentyl polyol) ester based coolants and improved additive package
AU714683B2 (en) Blended polyol ester lubricants for refrigerant heat transfer fluids
JP3354152B2 (en) Lubricants for refrigerators and refrigerant compositions using the same
JP2573111B2 (en) Composition for working fluid of refrigerator
KR100287584B1 (en) Refrigerator oil composition
EP1533363B1 (en) Method for providing a refrigeration lubricant composition
JP5231060B2 (en) Refrigerating machine oil for refrigerant
CN104520415A (en) Lubricant composition
WO1993024585A1 (en) Polyol ester lubricants for refrigerant heat transfer fluids
KR101580319B1 (en) Refrigerating Machine Oil For Refrigerant
US5560854A (en) Working fluid composition for HFC refrigerant compressor containing benzotriazole derivatives, and a process for improving lubrication in a compressor
EP0557796B1 (en) Lubricant for refrigerating machine employing refrigerant comprising tetrafluoroethane
JPH08505160A (en) Polyol ester lubricant for refrigeration compressors operating at high temperatures
JP4368479B2 (en) Refrigerator oil composition
IL111521A (en) Polyol ester lubricants for refrigerating compressers and processes for using the same
JPH0570789A (en) Working fluid composition for refrigerator
JP2815160B2 (en) Refrigeration oil for fluorinated refrigerants
US20020055442A1 (en) Method of reducing wear of metal surfaces and maintaining a hydrolytically stable environment in refrigeration equipment during the operation of such equipment
JP2946075B2 (en) Composition for working fluid of refrigerator
JP2787083B2 (en) Tetrafluoroethane refrigerator composition
JP2585429B2 (en) Refrigeration oil composition
JPH055098A (en) Working fluid composition for refrigerator
JPH0688087A (en) Refrigerator oil composition
JP2979363B2 (en) Composition for working fluid of refrigerator

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060425

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070213

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090818

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090826

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4368479

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130904

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term