JP3722465B2 - Image forming method and reverse development type digital image forming apparatus - Google Patents

Image forming method and reverse development type digital image forming apparatus Download PDF

Info

Publication number
JP3722465B2
JP3722465B2 JP2000132860A JP2000132860A JP3722465B2 JP 3722465 B2 JP3722465 B2 JP 3722465B2 JP 2000132860 A JP2000132860 A JP 2000132860A JP 2000132860 A JP2000132860 A JP 2000132860A JP 3722465 B2 JP3722465 B2 JP 3722465B2
Authority
JP
Japan
Prior art keywords
group
image forming
layer
general formula
photosensitive member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000132860A
Other languages
Japanese (ja)
Other versions
JP2001312075A (en
Inventor
之勝 今中
宏昭 岩崎
裕二 田中
政克 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Document Solutions Inc
Original Assignee
Kyocera Mita Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Mita Corp filed Critical Kyocera Mita Corp
Priority to JP2000132860A priority Critical patent/JP3722465B2/en
Publication of JP2001312075A publication Critical patent/JP2001312075A/en
Application granted granted Critical
Publication of JP3722465B2 publication Critical patent/JP3722465B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、電子写真式複写機、ファクシミリ、レーザービームプリンタ等に用いられる特定の単層型電子写真感光体を用いた画像形成方法及び反転現像式デジタル画像形成装置に関するものである。
【0002】
より詳細には、除電工程を有さない反転現像式デジタル画像形成装置において使用してもメモリー画像が発生しない特定の単層型電子写真感光体を用いた画像形成方法及び除電工程を有さない反転現像式デジタル画像形成装置に関するものである。
【0003】
【従来の技術】
有機感光体は、従来の無機感光体に比べて製造が容易であり、コストが安く、電荷輸送剤、電荷発生剤、結着樹脂等の感光体材料の選択肢が多様で、機能設計の自由度が高いという利点を有することから、近年、広く用いられている。
【0004】
有機感光体には、電荷輸送剤(ホール輸送剤、電子輸送剤)を電荷発生剤とともに同一の感光層中に分散させた単層型感光体と、電荷発生剤を含有する電荷発生層と電荷輸送剤を含有する電荷輸送層とを積層した積層型感光体とがあり、層構成が簡単で生産性に優れている、層間の界面が少ないので光学的特性を向上できる、といった利点を有するため、近年、脚光を浴びつつある。
【0005】
一方、電子写真方式を利用した画像形成装置は、感光体を帯電し(主帯電工程)、画像露光して静電潜像を形成し(露光工程)、この静電潜像を現像バイアス電圧が印加された状態でトナー現像し(現像工程)、形成されるトナー像を転写紙に転写し(転写工程)、定着して画像形成を行う。また、感光体上の残留トナーはウレタンブレード等によりクリーニングされ(クリーニング工程)、感光体上の残留電荷はLED等により消去される(除電工程)。
【0006】
そして、画像形成装置の小型化やイニシャルコストダウン等のために、前記クリーニング工程と除電工程については省略される試みが種々なされている。
【0007】
また、前記電子写真方式を利用した画像形成装置には、デジタル及びアナログ複写機、ファクシミリ、レーザービームプリンタ等があり、特に帯電工程で感光体に印加される帯電電圧と同極性のトナーを使用して現像する反転現像方式は、デジタル画像形成装置に広く使用されている。
【0008】
【発明が解決しようとする課題】
<転写メモリー>
電子写真感光体を反転現像式デジタル画像形成装置に使用した場合、転写工程で感光体に印加される転写電圧は、通常、感光体に直接印加せず転写媒体(紙)を介して印加され、転写媒体が転写工程を通過しないときは印加されない。
【0009】
しかしながら、転写電圧の入切タイミングは非常に困難で、転写媒体の先後端部については感光体に直接印加される部分が発生してしまうことが多い。すなわち、転写媒体の先端が転写装置を覆う前に、転写電圧が印加され始め、また、転写媒体の後端の通過により転写装置の一部が露出されてもなお、転写電圧が印加され続けるため、当該部分は前記感光体に転写電圧が直接印加されるのである。
【0010】
このため、例えば正帯電単層型感光体の場合、転写装置で印加される電圧の極性は負であるため、負電圧が印加された感光体部分には負の空間電荷が残存してしまう。一般に、単層型感光体は両極性に感度を有するため、次の除電工程において負の空間電荷が消去される。
【0011】
ところが、前記正帯電単層型感光体の負極性に対する感度が非常に悪い(電子輸送剤の移動度が極端に小さい)場合や、除電工程を有さない画像形成装置において使用する場合には、負の空間電荷が十分に消去されず、次の帯電工程で正帯電されても空間電荷の影響で電位低下が引き起こされ、更に現像工程においては感度差となって現れ、画像中では当該部分が黒くなる(メモリー画像)という問題が発生する。
【0012】
<露光メモリー>
例えば、正帯電単層型感光体は、露光工程、現像工程を経て、通常は、除電工程で一様に感光体表面の正電荷が消去された後、次帯電工程において均一に正帯電される。
【0013】
しかし、転写メモリーの場合と同様に、前記正帯電単層型感光体の負極性に対する感度が悪い場合や、除電工程を有さない画像形成装置において使用する場合には、露光部分の方が非露光部分に比較して負の空間電荷密度が大きく、次帯電工程で電位差が生じ、メモリー画像が発生し易くなる。
【0014】
そこで、本発明の目的は、除電工程を有さない反転現像式デジタル画像形成装置に使用しても、露光メモリー及び転写メモリーが非常に小さく、メモリー画像の発生しない特定の単層型電子写真感光体を用いた画像形成方法及び反転現像式デジタル画像形成装置を提供することである。
【0015】
【課題を解決するための手段】
本発明者らは鋭意研究の結果、上記目的を達成するために、導電性基体上に感光層を形成し、感光層が、電荷発生剤としてフタロシアニン系化合物、及びホール輸送剤、電子輸送剤を含有し、前記フタロシニン系化合物の含有量がバインダー樹脂重量に対して0.1〜4wt%であり、前記感光層の膜厚が10〜35μmであって、且つ、帯電電位を800Vに設定し、露光波長780nm、露光エネルギー1.0μJ/cm2の条件で500msec経過後に測定したプラス極性とマイナス極性の感度の絶対値差が312V以下である単層型電子写真感光体が、露光メモリー及び転写メモリーが非常に小さく、除電工程を有さない反転現像デジタル式画像形成システムにおいてもメモリー画像が発生しない事実を見出した。
【0016】
すなわち、本発明は、除電工程を有さない反転現像式デジタル画像形成装置における正帯電の単層型電子写真感光体を用いた画像形成方法であって、
単層型電子写真感光体の導電性基体上に感光層が形成してあり、当該感光層が、電荷発生剤としてのフタロシアニン系化合物と、ホール輸送剤と、電子輸送剤とをバインダー樹脂中に含有し、前記フタロシニン系化合物の含有量がバインダー樹脂重量に対して0.1〜4wt%であり、感光層の膜厚が10〜35μmであって、且つ、帯電電位を800Vに設定し、露光波長780nm、露光エネルギー1.0μJ/cm2の条件で、500msec経過後に測定したプラス極性とマイナス極性の感度の絶対値差が312V以下の値であるとともに、単層型電子写真感光体におけるプラス極性感度の絶対値が、マイナス極性感度の絶対値よりも小さく、さらに、当該単層型電子写真感光体を、帯電工程においてプラス極性に帯電させると、露光メモリー及び転写メモリーが非常に小さくなる。これは、プラス極性とマイナス極性の感度の絶対値差が小さいほど、感光層中で発生したホールと電子の輸送バランスが良好となりメモリーが小さくなるためと考えられる。
なお、単層型電子写真感光体において、移動度の大きい電子輸送剤の材料設計が困難で、電子輸送剤の移動度がホール輸送剤の移動度に比較して小さいこと、画像形成装置内でのオゾンの発生が極めて少ないこと等の理由により、プラス極性感度の絶対値がマイナス極性感度の絶対値より小さい、すなわち正帯電型であることが好ましい。
【0017】
また、上記単層型電子写真感光体において、電荷発生剤であるフタロシニン系化合物の含有量は、バインダー樹脂重量に対して0.1〜4wt%の範囲が好ましい。フタロシアニン系化合物の含有量が4wt%を超えるとメモリーが大きくなる。すなわち、メモリーが、感光層中のトラップにキャリアが入りこみ残存キャリアとなって発生すると考えられるため、発生するキャリア数が過剰となり、残存キャリア数も多くなるためである。一方、含有量が0.1wt%未満の場合は光感度不足となり実使用が困難となる。
【0018】
また、上記単層型電子写真感光体において、感光層の膜厚は10〜35μmの範囲が好ましい。膜厚が35μmを超えるとメモリーが大きくなる。すなわち、感光層膜厚が大きくなるほど、暗減衰が大きくなり帯電能力が低下し、メモリーの影響を受け易くなること、または感光層構成材料の絶対量が増大することによりトラップが増えることに起因していると考えられる。一方、膜厚が10μm未満の場合、膜削れによる感度悪化が著しくなり実使用が困難となる。
【0019】
*削除
【0020】
また、上記単層型電子写真感光体において、ホール輸送剤として、一般式(1)で示される化合物を含有することが好ましい。これは、メモリー低減のためフタロシアニン系化合物含有量や膜厚を減少させることが、正帯電単層型電子写真感光体の初期感度を悪化させるため、ホール輸送能力の高い前記化合物を使用することにより十分な初期感度を得ることができるためである。
【0021】
また、上記単層型電子写真感光体において、電子輸送剤として、一般式(2)、(3)、(4)または(5)で示される化合物を、少なくとも1種以上含有することが好ましい。これは、電子輸送能力の高い前記化合物を使用することにより、十分な初期感度が得られるとともに、メモリー低減に非常に効果的なためである。
【0022】
【発明を実施するための最良の形態】
本発明の単層型電子写真感光体に用いられる種々の材料について詳細に説明する。
【0023】
<電荷発生剤>
デジタル画像形成装置において、レーザを光源とする場合、小型・安価・簡便さ等の点から、多くは半導体レーザ、LEDが使用される。従って、少なくとも700〜850nmの波長領域に感度を有する有機感光体が必要である。前記要求を満たす、有機感光体に使用される電荷発生剤として、例えば、多環キノン化合物、ピリリウム化合物、スクエアリウム化合物、フタロシアニン系化合物、アゾ化合物等が提案または実用化されているが、本発明の単層型電子写真感光体には、種々のフタロシアニン系化合物が使用される。
【0024】
一般的にフタロシニン系化合物には、中心金属を有さないメタルフリーフタロシニン(CGM−1)と、近年研究開発が活発に行われているチタニルフタロシアニン(CGM−2)、及び、アルミニウムフタロシアニン、バナジウムフタロシニン、カドミウムフタロシアニン、アンチモンフタロシニン、クロムフタロシニン、銅4−フタロシニン、ゲルマニウムフタロシニン、鉄フタロシニン、クロロアルミニウムフタロシニン、クロロインジウムフタロシアニン、クロロガリウムフタロシニン、マグネシウムフタロシニン、ジアルキルフタロシニン、テトラメチルフタロシニン、テトラフェニルフタロシニン等の中心金属を有する金属フタロシアニンとがあり、またα型、β型、γ型、δ型、ε型、σ型、x型、τ型等の結晶型のものがある。
【0025】
<CGM−1>
【化6】

Figure 0003722465
【0026】
<CGM−2>
【化7】
Figure 0003722465
【0027】
また、本発明の単層型電子写真感光体には、フタロシアニン系化合物として、メタルフリーフタロシアニン、またはチタニルフタロシニンが好適に使用される。また、フタロシアニン系化合物は、前述のようにバインダー樹脂重量に対して0.1〜4wt%含有することが好ましい。
【0028】
<ホール輸送剤>
本発明の単層型電子写真感光体に用いられるホール輸送剤としては、特に一般式(1)で示されるスチルベン系化合物が好適に使用される。
【0029】
また、ホール輸送剤として、該スチルベン系化合物を使用する場合、単独、または少なくとも1種以上含有すればよい。すなわち該スチルベン系化合物と共に、種々のホール輸送剤を含有していてもよい。
【0030】
種々のホール輸送剤としては、例えば2,5−ジ(4−メチルアミノフェニル)−1,3,4−オキサジアゾール等のオキサジアゾール系の化合物、9−4(−ジエチルアミノスチリル)アントラセン等のスチリル系化合物、ポリビニルカルバゾール等のカルバゾール系化合物、有機ポリシラン化合物、1−フェニル−3(p−ジメチルアミノフェニル)ピラゾリン等のピラゾリン系化合物、ヒドラゾン系化合物、トリフェニルアミン系化合物、インドール系化合物、オキサゾール系化合物、イソオキサゾール系化合物、チアゾール系化合物、チアジアゾール系化合物、イミダゾール系化合物、ピラゾール系化合物、トリアゾール系化合物等の含窒素環式化合物等があげられる。
【0031】
ホール輸送剤の含有量は、バインダー樹脂重量に対して5〜500wt%、更には25〜200wt%が好ましい。
【0032】
<電子輸送剤>
本発明の単層型電子写真感光体に用いられる電子輸送剤としては、特に一般式(2)、(3)、(4)または(5)で示されるキノン系化合物が好適に使用される。
【0033】
また、電子輸送剤として、該キノン系化合物を使用する場合、単独、または少なくとも1種以上含有すればよい。すなわち該キノン系化合物と共に、種々の電子輸送剤を含有していてもよい。
【0034】
種々の電子輸送剤としては、例えばピレン系化合物、カルバゾール系化合物、ヒドラゾン系化合物、N,N−ジアルキルアニリン系化合物、ジフェニルアミン系化合物、トリフェニルアミン系化合物、トリフェニルメタン系化合物、テトラシアノエチル、テトラシアノキノジメタン、クロルアニル、ブロモアニル、2,4,7−トリニトロ−9−フルオレノン、2,4,5,7−テトラニトロ−9−フルオレノン、2,4,7−トリニトロ−9−ジシアノメチレンフルオレノン、2,4,5,7−テトラニトロキサントン、2,4,8−トリニトロチオキサントン等の電子吸引性物質、あるいはこれらの電子吸引性物質を高分子化したもの等があげられる。
【0035】
電子輸送剤の含有量は、バインダー樹脂重量に対して5〜100wt%、更には10〜80wt%が好ましい。
【0036】
<バインダー樹脂>
前記各成分を分散させるためのバインダー樹脂は、従来から感光層に使用されている種々の樹脂を使用することができる。
【0037】
例えば、スチレン−ブタジエン共重合体、スチレン−アクリロニトリル共重合体、スチレン−マレイン酸共重合体、アクリル共重合体、スチレン−アクリル酸共重合体、ポリエチレン、エチレン−酢酸ビニル共重合体、塩素化ポリエチレン、ポリ塩化ビニル、ポリプロピレン、アイオノマー、塩化ビニル−酢酸ビニル共重合体、ポリエステル、アルキド樹脂、ポリアミド、ポリウレタン、ポリカーボネート、ポリアリレート、ポリスルホン、ジアリルフタレート樹脂、ケトン樹脂、ポリビニルブチラール樹脂、ポリエーテル樹脂等の熱可塑性樹脂、シリコーン樹脂、エポキシ樹脂、フェノール樹脂、尿素樹脂、メラミン樹脂、その他架橋性の熱硬化性樹脂、エポキシアクリレート、ウレタン−アクリレート等の光硬化型樹脂等の樹脂が使用可能である。これらのバインダー樹脂は単独または二種類以上をブレンドして使用できる。
【0038】
また、特に好適な樹脂は、帝人化成(株)社製パンライト、三菱瓦斯化学(株)社製PCZ等のビスフェノールZ型モノマーとホスゲンとから誘導されるビスフェノールZ型ポリカーボネートである。
【0039】
前記例のバインダー樹脂の重量平均分子量は5,000〜200,000、更には15,000〜100,000が好ましい。
【0040】
本発明の単層型電子写真感光体には、前記各成分のほかに、電子写真特性に悪影響を与えない範囲で、従来公知の種々の添加剤、例えば、酸化防止剤、ラジカル補足剤、一重項クエンチャー、紫外線吸収剤等の劣化防止剤、軟化剤、可塑剤、表面改質剤、増量剤、増粘剤、分散安定剤、ワックス、アクセプター、ドナー等を配合することができる。また、感光層の感度を向上させるために、例えば、テルフェニル、ハロナフトナフトキノン類、アセナフチレン等の公知の増感剤を電荷発生剤と併用してもよい。
【0041】
本発明の単層型電子写真感光体においては、導電性基体と感光層との間に、感光体の特性を阻害しない範囲でバリア層が形成されていてもよい。
【0042】
単層型電子写真感光体は、導電性基体上に単一の感光層を設けたものである。この感光層は、電荷発生剤、ホール輸送剤、電子輸送剤、バインダー樹脂等を適当な溶媒に溶解または分散させ、得られた塗布液を導電性基体上に塗布し、乾燥させることで形成される。
【0043】
上記感光層が形成される導電性基体としては、導電性を有する種々の材料を使用することができ、例えば、鉄、アルミニウム、銅、スズ、白金、銀、バナジウム、モリブデン、クロム、カドミウム、チタン、ニッケル、パラジウム、インジウム、ステンレス鋼、真鍮等の金属単体や、上記金属が蒸着またはラミネートされたプラスチック材料、ヨウ化アルミニウム、酸化スズ、酸化インジウム等で被覆されたガラス等があげられる。
【0044】
導電性基体の形状は、使用する画像形成装置の構造に合わせて、シート状、ドラム状等のいずれであってもよく、基体自体が導電性を有するか、あるいは基体の表面が導電性を有していればよい。また、導電性基体は、使用に際して十分な機械的強度を有するものが好ましい。
【0045】
上記感光層を塗布の方法により形成する場合には、上記例示のホール輸送剤、電荷発生剤、電子受容体、結着樹脂等を適当な溶剤とともに、公知の方法、例えば、ロールミル、ボールミル、アトライタ、ペイントシェーカー、超音波分散機等を用いて分散混合して分散液を調整し、これを公知の手段により塗布して乾燥させればよい。
【0046】
上記分散液を作製するための溶剤としては、種々の有機溶剤が使用可能であり、例えば、メタノール、エタノール、イソプロパノール、ブタノール等のアルコール類、n−ヘキサン、オクタン、シクロヘキサン等の脂肪族系炭化水素、ベンゼン、トルエン、キシレン等の芳香族系炭化水素、ジクロロメタン、ジクロロエタン、クロロホルム、四塩化炭素、クロロベンゼン等のハロゲン化炭化水素、ジメチルエーテル、ジエチルエーテル、テトラヒドロフラン、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル等のエーテル類、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸エチル、酢酸メチル等のエステル類、ジメチルホルムアルデヒド、ジメチルホルムアミド、ジメチルスルホキシド等があげられる。これらの溶剤は単独で、または2種以上混合して用いられる。
【0047】
更に、ホール輸送剤、電荷発生剤、電子受容体の分散性、感光層表面の平滑性を良くするために、界面活性剤、レベリング剤等を使用してもよい。
【0048】
本発明の単層型電子写真感光体は、転写・露光メモリーが非常に小さいため、除電工程を有さない前記画像形成装置に使用してもメモリー画像が発生することはない。
【0049】
また前述のように、画像形成装置の小型化やイニシャルコストダウン等のために、クリーニング工程は除電工程と同様に省略される場合がある。
【0050】
【実施例】
以下、実施例、比較例をあげて本発明を説明する。なお、以下の実施形態は本発明を具体化した一例であって、本発明の技術的範囲を限定するものではない。
【0051】
[実施例1〜7、参考例8
電荷発生剤としてX型無金属フタロシアニン(CGM−1)2.0重量部、一般式(1)で示されるホール輸送剤(HTM−1)70重量部、一般式(2)、(3)、(4)、(5)で示される電子輸送剤(ETM−1〜ETM−8)40重量部、及びバインダー樹脂として重量平均分子量30,000のbis−Z型ポリカーボネート樹脂100重量部、及びテトラヒドロフラン800重量部を、ボールミル中で24時間分散あるいは溶解させ、単層型感光層用塗布液を調合した。そして、この塗布液を、支持体としてのアルミニウム素管上にディップコート法にて塗布し、125℃、30分間の熱風乾燥を行い、膜厚20μmの単一感光層を有する単層型感光体を作製した。
【0052】
[比較例1〜3]
電子輸送剤としてETM−9〜ETM−11を使用した以外は実施例1〜7と同様に単層型感光体を作製した。
【0053】
<HTM−1>
【化8】
Figure 0003722465
【0054】
<ETM−1>
【化9】
Figure 0003722465
【0055】
<ETM−2>
【化10】
Figure 0003722465
【0056】
<ETM−3>
【化11】
Figure 0003722465
【0057】
<ETM−4>
【化12】
Figure 0003722465
【0058】
<ETM−5>
【化13】
Figure 0003722465
【0059】
<ETM−6>
【化14】
Figure 0003722465
【0060】
<ETM−7>
【化15】
Figure 0003722465
【0061】
<ETM−8>
【化16】
Figure 0003722465
【0062】
<ETM−9>
【化17】
Figure 0003722465
【0063】
<ETM−10>
【化18】
Figure 0003722465
【0064】
<ETM−11>
【化19】
Figure 0003722465
【0065】
[実施例9〜15、参考例16
電荷発生剤としてチタニルフタロシアニン(CGM−2)を使用した以外は、実施例1〜7、及び参考例8と同様に単層型感光体を作製した。
【0066】
[比較例4〜6]
電荷発生剤としてチタニルフタロシアニン(CGM−2)を使用した以外は、比較例1〜3と同様に単層型感光体を作製した。
【0067】
[比較例7]
電荷発生剤としてX型無金属フタロシアニン(CGM−1)を4.5重量部含有させた以外は、実施例1と同様に単層型感光体を作製した。
【0068】
[比較例8]
膜厚40μmの感光層を得た以外は、実施例1と同様に単層型感光体を作製した。
【0069】
[比較例9]
電荷発生剤としてチタニルフタロシアニン(CGM−2)を4.5重量部含有させた以外は、実施例9と同様に単層型感光体を作製した。
【0070】
[比較例10]
膜厚40μmの感光層を得た以外は、実施例9と同様に単層型感光体を作製した。
【0071】
上記各実施例、比較例の単層型電子写真感光体について、下記の各特性を評価した。評価結果を表1、2に示した。また、これらのデータのうち、転写メモリー電位・露光メモリー電位と、プラス極性感度とマイナス極性感度の絶対値差との関係を図1に示した。
【0072】
<プラス極性感度評価>
ジェンテック(GENTEC)社製のドラム感度試験機(商品名ジェンテックシンシア30M)を用いて、各実施例、比較例の電子写真感光体に印加電圧を加えて、その表面を+800Vに帯電させた。次に、上記試験機の露光光源であるハロゲンランプの白色光からバンドパスフィルターを用いて取り出した波長780nmの単色光(半値幅20nm,光強度20μW)を、上記帯電状態の感光体の表面に露光(露光時間100msec)した(露光エネルギーは1.0μJ/cm2)。そして、露光開始時点から500msec経過した時点での表面電位を露光後電位VLP(V)として測定した。すなわち、露光後電位が小さいほど感光体は高感度である。
【0073】
<マイナス極性感度評価>
ジェンテック(GENTEC)社製のドラム感度試験機(商品名ジェンテックシンシア30M)を用いて、各実施例、比較例の電子写真感光体に印加電圧を加えて、その表面を−800Vに帯電させた以外は、前記<プラス極性感度評価>と同様に、露光開始時点から500msec経過した時点での表面電位を露光後電位VLN(V)として測定した。
【0074】
<転写メモリー電位評価>
除電ランプを取除いた京セラミタ(株)社製マルチファンクションプリンタAntico40に、各実施例、比較例の電子写真感光体を搭載し、転写バイアスを印加しない時の表面電位、及び転写バイアス印加時の次帯電工程後の表面電位を測定し、その差異を転写メモリー電位とした。転写メモリー電位については、転写メモリー画像の発生しない45V以下を可、45Vより大きい場合を不可とした。
【0075】
<露光メモリー電位評価>
除電ランプを取除いた京セラミタ(株)社製マルチファンクションプリンタAntico40に、各実施例、比較例の電子写真感光体を搭載し、未露光時の表面電位、及び露光時の次帯電工程後の表面電位を測定し、その差異を露光メモリー電位とした。露光メモリー電位については、転写メモリー電位と同様、露光メモリー画像の発生しない45V以下を可、45Vより大きい場合を不可とした。
【0076】
<転写メモリー画像評価>
除電ランプを取除いた京セラミタ(株)社製マルチファンクションプリンタAntico40に、各実施例、比較例の電子写真感光体を搭載し、印写試験を実施し、転写メモリー画像が発生しているか否かを目視により判断した。転写メモリー画像とは、図6に示すように、前面グレー(マンセル値:N=6.5)原稿を使用し印写試験を実施した場合、転写バイアスが印加された部分の感光体表面電位の低下により、ドラム長手方向に黒横帯が発生した画像を示す。
【0077】
<露光メモリー画像評価>
除電ランプを取除いた京セラミタ(株)社製マルチファンクションプリンタAntico40に、各実施例、比較例の電子写真感光体を搭載し、印写試験を実施し、露光メモリー画像が発生しているか否かを目視により判断した。露光メモリー画像とは、図7に示すような原稿を使用し印写試験を実施した場合、強い露光部分(黒ベタ部)の感光体表面電位の低下により、露光部分のゴースト画像がグレー部に発生した画像を示す。
【0078】
【表1】
Figure 0003722465
【0079】
【表2】
Figure 0003722465
【0080】
表1、2、図1より、プラス極性とマイナス極性の感度の絶対値差が500V以下である場合、転写メモリー電位及び露光メモリー電位の両方が45V以下となり、メモリー画像が発生しないことが明らかとなった。
【0081】
図2には、実施例6で作製した単層型電子写真感光体のX型無金属フタロシアニン添加量と、転写メモリー電位・露光メモリー電位との関係を、図3には、前記感光体のX型無金属フタロシアニン添加量と、プラス極性とマイナス極性の感度の絶対値差との関係を示した。
【0082】
図2、3より、X型無金属フタロシアニン添加量がバインダー樹脂重量に対して4wt%以下の場合、プラス極性とマイナス極性の感度の絶対値差が500V以下、転写メモリー電位及び露光メモリー電位の両方が45V以下となった。
【0083】
図4には、実施例6で作製した単層型電子写真感光体の感光層膜厚と、転写メモリー電位・露光メモリー電位との関係を、図5には前記感光体の感光層膜厚と、プラス極性とマイナス極性の感度の絶対値差との関係を示した。
【0084】
図4、5より、感光層膜厚が35μm以下の場合、プラス極性とマイナス極性の感度の絶対値差が500V以下、転写メモリー電位及び露光メモリー電位の両方が45V以下となった。
【0085】
【発明の効果】
本発明の単層型電子写真感光体は、露光メモリー及び転写メモリーが非常に小さいため、除電工程を有さない反転現像方式のデジタル画像形成装置に使用してもメモリー画像が発生しない。
【0086】
【図面の簡単な説明】
【図1】各実施例、比較例の単層型電子写真感光体の転写メモリー電位・露光メモリー電位と、プラス極性とマイナス極性の感度の絶対値差との関係を示すグラフである。
【図2】実施例6で作製した単層型電子写真感光体のX型無金属フタロシアニン添加量と、転写メモリー電位・露光メモリー電位との関係を示すグラフである。
【図3】実施例6で作製した単層型電子写真感光体のX型無金属フタロシアニン添加量と、プラス極性とマイナス極性の感度の絶対値差との関係を示すグラフである。
【図4】実施例6で作製した単層型電子写真感光体の感光層膜厚と、転写メモリー電位・露光メモリー電位との関係を示すグラフである。
【図5】実施例6で作製した単層型電子写真感光体の感光層膜厚と、プラス極性とマイナス極性の感度の絶対値差との関係を示すグラフである。
【図6】転写メモリー画像評価用原稿と転写メモリー画像を示す図である。
【図7】露光メモリー画像評価用原稿と露光メモリー画像を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an image forming method and a reversal development type digital image forming apparatus using a specific single layer type electrophotographic photosensitive member used in an electrophotographic copying machine, a facsimile, a laser beam printer and the like.
[0002]
More specifically, an image forming method using a specific single layer type electrophotographic photosensitive member that does not generate a memory image even when used in a reversal development type digital image forming apparatus that does not have a charge eliminating step, and does not have a charge eliminating step. The present invention relates to a reversal development type digital image forming apparatus .
[0003]
[Prior art]
Organic photoconductors are easier to manufacture than conventional inorganic photoconductors, are less expensive, have a wide range of options for photoconductor materials such as charge transport agents, charge generators, and binder resins. Has been widely used in recent years.
[0004]
The organic photoreceptor includes a single-layer type photoreceptor in which a charge transport agent (a hole transport agent, an electron transport agent) is dispersed in the same photosensitive layer together with a charge generator, a charge generation layer containing the charge generator, and a charge. There are laminated photoconductors with a charge transport layer containing a transport agent, which has advantages such as a simple layer structure and excellent productivity, and improved optical characteristics because there are few interfaces between layers. In recent years, it has been in the spotlight.
[0005]
On the other hand, an image forming apparatus using an electrophotographic method charges a photosensitive member (main charging step), exposes an image to form an electrostatic latent image (exposure step), and develops the electrostatic latent image with a developing bias voltage. The toner is developed in the applied state (development process), and the formed toner image is transferred to transfer paper (transfer process) and fixed to perform image formation. The residual toner on the photoconductor is cleaned by a urethane blade or the like (cleaning process), and the residual charge on the photoconductor is erased by an LED or the like (static elimination process).
[0006]
Various attempts have been made to omit the cleaning process and the charge removal process in order to reduce the size of the image forming apparatus and reduce the initial cost.
[0007]
In addition, image forming apparatuses using the electrophotographic method include digital and analog copying machines, facsimiles, laser beam printers, and the like, and in particular, use toner having the same polarity as the charging voltage applied to the photoreceptor in the charging process. The reversal development method in which development is performed in this manner is widely used in digital image forming apparatuses.
[0008]
[Problems to be solved by the invention]
<Transfer memory>
When the electrophotographic photosensitive member is used in a reversal development type digital image forming apparatus, the transfer voltage applied to the photosensitive member in the transfer step is usually applied via a transfer medium (paper) without being directly applied to the photosensitive member, It is not applied when the transfer medium does not pass through the transfer process.
[0009]
However, the transfer voltage on / off timing is very difficult, and a portion that is directly applied to the photoreceptor often occurs at the front and rear end portions of the transfer medium. That is, the transfer voltage starts to be applied before the leading edge of the transfer medium covers the transfer device, and the transfer voltage continues to be applied even if a part of the transfer device is exposed due to the passage of the rear end of the transfer medium. In this portion, a transfer voltage is directly applied to the photoconductor.
[0010]
For this reason, for example, in the case of a positively charged single layer type photoreceptor, since the polarity of the voltage applied by the transfer device is negative, negative space charges remain on the photoreceptor portion to which a negative voltage is applied. In general, a single-layer type photoreceptor has sensitivity in both polarities, so that negative space charges are erased in the next static elimination step.
[0011]
However, when the positively charged single layer type photoreceptor is very insensitive to the negative polarity (the mobility of the electron transfer agent is extremely small) or when used in an image forming apparatus that does not have a charge eliminating step, Even if the negative space charge is not sufficiently erased and is positively charged in the next charging step, the potential drop is caused by the effect of the space charge, and further appears as a difference in sensitivity in the development step, and this portion is displayed in the image. The problem of blackening (memory image) occurs.
[0012]
<Exposure memory>
For example, a positively charged single layer type photoreceptor is normally positively charged in the next charging step after the positive charge on the surface of the photosensitive member is erased uniformly in the static elimination step after the exposure step and the development step. .
[0013]
However, as in the case of the transfer memory, when the sensitivity to the negative polarity of the positively charged single layer type photoreceptor is poor, or when used in an image forming apparatus that does not have a charge eliminating step, the exposed portion is non-exposed. The negative space charge density is larger than that of the exposed portion, and a potential difference is generated in the next charging step, so that a memory image is easily generated.
[0014]
Accordingly, an object of the present invention is to provide a specific single-layer type electrophotographic photosensitive device in which an exposure memory and a transfer memory are very small and no memory image is generated even when used in a reversal development type digital image forming apparatus having no static elimination process. An image forming method using a body and a reverse development type digital image forming apparatus are provided.
[0015]
[Means for Solving the Problems]
As a result of diligent research, the present inventors have formed a photosensitive layer on a conductive substrate in order to achieve the above object, and the photosensitive layer comprises a phthalocyanine compound, a hole transport agent, and an electron transport agent as a charge generator. And the content of the phthalosinine compound is 0.1 to 4 wt% with respect to the binder resin weight, the film thickness of the photosensitive layer is 10 to 35 μm, and the charging potential is set to 800 V, A single-layer electrophotographic photosensitive member having an absolute value difference between positive and negative polarities measured after elapse of 500 msec under conditions of an exposure wavelength of 780 nm and an exposure energy of 1.0 μJ / cm 2 is 312 V or less is an exposure memory and a transfer memory. The present inventors have found that a memory image is not generated even in a reversal development digital image forming system having a very small size and no charge eliminating step.
[0016]
That is, the present invention is an image forming method using a positively charged single layer type electrophotographic photosensitive member in a reversal development type digital image forming apparatus that does not have a static elimination step,
A photosensitive layer is formed on a conductive substrate of a single-layer electrophotographic photosensitive member, and the photosensitive layer contains a phthalocyanine compound as a charge generating agent, a hole transport agent, and an electron transport agent in a binder resin. And the content of the phthalosinine compound is 0.1 to 4 wt% with respect to the weight of the binder resin, the film thickness of the photosensitive layer is 10 to 35 μm, the charging potential is set to 800 V, and exposure is performed. The absolute value difference between the positive polarity and negative polarity sensitivity measured after 500 msec under the condition of wavelength 780 nm and exposure energy 1.0 μJ / cm 2 is a value of 312 V or less, and positive polarity in the single-layer electrophotographic photosensitive member the absolute value of sensitivity is smaller than the absolute value of the negative polarity sensitivity, further, the single-layer type electrophotographic photoconductor, when the positively charged polarity in a charging process, an exposure Molly and transfer memory is very small. This is presumably because the smaller the absolute value difference between the positive and negative polarities, the better the transport balance between holes and electrons generated in the photosensitive layer and the smaller the memory.
Note that it is difficult to design a material for an electron transport agent having a high mobility in a single layer type electrophotographic photosensitive member, and the mobility of the electron transport agent is small compared to the mobility of the hole transport agent. Therefore, it is preferable that the absolute value of the positive polarity sensitivity is smaller than the absolute value of the negative polarity sensitivity, that is, a positively charged type.
[0017]
In the single-layer electrophotographic photoreceptor, the content of the phthalocinine compound as a charge generator is preferably in the range of 0.1 to 4 wt% with respect to the weight of the binder resin. When the content of the phthalocyanine compound exceeds 4 wt%, the memory becomes large. That is, since it is considered that the memory is generated as a residual carrier by entering the trap in the photosensitive layer, the number of generated carriers becomes excessive and the number of remaining carriers also increases. On the other hand, when the content is less than 0.1 wt%, the photosensitivity is insufficient and actual use becomes difficult.
[0018]
In the single-layer electrophotographic photoreceptor, the thickness of the photosensitive layer is preferably in the range of 10 to 35 μm. When the film thickness exceeds 35 μm, the memory becomes large. That is, as the photosensitive layer thickness increases, the dark decay increases and the charging ability decreases, making it more susceptible to memory, or the increase in the absolute amount of photosensitive layer constituent material increases traps. It is thought that. On the other hand, when the film thickness is less than 10 μm, the sensitivity is greatly deteriorated due to film shaving, and actual use becomes difficult.
[0019]
* Delete [0020]
In the single-layer electrophotographic photosensitive member, it is preferable that the compound represented by the general formula (1) is contained as a hole transport agent. This is because, by reducing the content of phthalocyanine compounds and the film thickness in order to reduce memory, the initial sensitivity of the positively charged single layer type electrophotographic photoreceptor is deteriorated. This is because sufficient initial sensitivity can be obtained.
[0021]
In the single-layer electrophotographic photoreceptor, it is preferable to contain at least one compound represented by the general formula (2), (3), (4) or (5) as an electron transport agent. This is because by using the compound having a high electron transport capability, a sufficient initial sensitivity can be obtained and it is very effective in reducing the memory.
[0022]
BEST MODE FOR CARRYING OUT THE INVENTION
Various materials used for the single-layer electrophotographic photosensitive member of the present invention will be described in detail.
[0023]
<Charge generator>
In a digital image forming apparatus, when a laser is used as a light source, semiconductor lasers and LEDs are often used from the viewpoints of small size, low cost, and simplicity. Therefore, an organic photoreceptor having sensitivity in a wavelength region of at least 700 to 850 nm is necessary. As charge generators used in organic photoreceptors that satisfy the above requirements, for example, polycyclic quinone compounds, pyrylium compounds, squalium compounds, phthalocyanine compounds, azo compounds, etc. have been proposed or put into practical use. Various phthalocyanine compounds are used in the single-layer type electrophotographic photoreceptor.
[0024]
In general, phthalocinine compounds include metal-free phthalosinin (CGM-1) having no central metal, titanyl phthalocyanine (CGM-2), which has been actively researched and developed in recent years, and aluminum phthalocyanine and vanadium. Phthalocinine, Cadmium phthalocyanine, Antimony phthalocinine, Chromium phthalosinine, Copper 4-phthalosinine, Germanium phthalosinine, Iron phthalosinin, Chloroaluminum phthalosinine, Chloroindium phthalocyanine, Chlorogallium phthalosinine, Magnesium phthalosinine, Dialkylphthalosinine, Tetramethyl There are metal phthalocyanines having a central metal such as phthalosinine and tetraphenylphthalosinin, and crystal types such as α-type, β-type, γ-type, δ-type, ε-type, σ-type, x-type, τ-type, etc. is there.
[0025]
<CGM-1>
[Chemical 6]
Figure 0003722465
[0026]
<CGM-2>
[Chemical 7]
Figure 0003722465
[0027]
In the single-layer electrophotographic photoreceptor of the present invention , metal-free phthalocyanine or titanyl phthalosinine is preferably used as the phthalocyanine compound. Moreover, it is preferable to contain 0.1-4 wt% of phthalocyanine type compounds with respect to the binder resin weight as mentioned above.
[0028]
<Hole transport agent>
As the hole transporting agent used in the single layer type electrophotographic photoreceptor of the present invention, a stilbene compound represented by the general formula (1) is particularly preferably used.
[0029]
Moreover, when using this stilbene type compound as a hole transport agent, what is necessary is just to contain individually or at least 1 sort (s) or more. That is, various hole transport agents may be contained together with the stilbene compound.
[0030]
Examples of various hole transporting agents include oxadiazole compounds such as 2,5-di (4-methylaminophenyl) -1,3,4-oxadiazole, 9-4 (-diethylaminostyryl) anthracene, and the like. Styryl compounds, carbazole compounds such as polyvinyl carbazole, organic polysilane compounds, pyrazoline compounds such as 1-phenyl-3 (p-dimethylaminophenyl) pyrazoline, hydrazone compounds, triphenylamine compounds, indole compounds, Examples thereof include nitrogen-containing cyclic compounds such as oxazole compounds, isoxazole compounds, thiazole compounds, thiadiazole compounds, imidazole compounds, pyrazole compounds, and triazole compounds.
[0031]
The content of the hole transport agent is preferably 5 to 500 wt%, more preferably 25 to 200 wt%, based on the binder resin weight.
[0032]
<Electron transport agent>
As the electron transporting agent used in the single-layer electrophotographic photosensitive member of the present invention, a quinone compound represented by the general formula (2), (3), (4) or (5) is particularly preferably used.
[0033]
Moreover, when using this quinone type compound as an electron transport agent, what is necessary is just to contain individually or at least 1 sort (s) or more. That is, various electron transport agents may be contained together with the quinone compound.
[0034]
Examples of various electron transfer agents include pyrene compounds, carbazole compounds, hydrazone compounds, N, N-dialkylaniline compounds, diphenylamine compounds, triphenylamine compounds, triphenylmethane compounds, tetracyanoethyl, tetra Cyanoquinodimethane, chloroanil, bromoanil, 2,4,7-trinitro-9-fluorenone, 2,4,5,7-tetranitro-9-fluorenone, 2,4,7-trinitro-9-dicyanomethylenefluorenone, 2 , 4,5,7-tetranitroxanthone, 2,4,8-trinitrothioxanthone and the like, or those obtained by polymerizing these electron withdrawing substances.
[0035]
The content of the electron transfer agent is preferably 5 to 100 wt%, more preferably 10 to 80 wt%, based on the binder resin weight.
[0036]
<Binder resin>
As the binder resin for dispersing each component, various resins conventionally used in the photosensitive layer can be used.
[0037]
For example, styrene-butadiene copolymer, styrene-acrylonitrile copolymer, styrene-maleic acid copolymer, acrylic copolymer, styrene-acrylic acid copolymer, polyethylene, ethylene-vinyl acetate copolymer, chlorinated polyethylene , Polyvinyl chloride, polypropylene, ionomer, vinyl chloride-vinyl acetate copolymer, polyester, alkyd resin, polyamide, polyurethane, polycarbonate, polyarylate, polysulfone, diallyl phthalate resin, ketone resin, polyvinyl butyral resin, polyether resin, etc. Resin such as thermoplastic resin, silicone resin, epoxy resin, phenol resin, urea resin, melamine resin, other cross-linkable thermosetting resin, epoxy acrylate, urethane acrylate, etc. It is. These binder resins can be used alone or in combination of two or more.
[0038]
Particularly suitable resins are bisphenol Z-type polycarbonates derived from bisphenol Z-type monomers and phosgene such as Panlite manufactured by Teijin Chemicals Ltd. and PCZ manufactured by Mitsubishi Gas Chemical Company, Inc.
[0039]
The weight average molecular weight of the binder resin in the above example is preferably 5,000 to 200,000, more preferably 15,000 to 100,000.
[0040]
In addition to the above-mentioned components, the single-layer electrophotographic photosensitive member of the present invention includes various conventionally known additives such as an antioxidant, a radical scavenger, a single layer within the range that does not adversely affect the electrophotographic characteristics. A terminator, a deterioration inhibitor such as an ultraviolet absorber, a softener, a plasticizer, a surface modifier, a bulking agent, a thickener, a dispersion stabilizer, a wax, an acceptor, a donor, and the like can be blended. In order to improve the sensitivity of the photosensitive layer, for example, a known sensitizer such as terphenyl, halonaphthoquinone, and acenaphthylene may be used in combination with the charge generator.
[0041]
In the single-layer electrophotographic photoreceptor of the present invention, a barrier layer may be formed between the conductive substrate and the photosensitive layer as long as the characteristics of the photoreceptor are not impaired.
[0042]
A single layer type electrophotographic photosensitive member is obtained by providing a single photosensitive layer on a conductive substrate. This photosensitive layer is formed by dissolving or dispersing a charge generator, a hole transport agent, an electron transport agent, a binder resin, etc. in an appropriate solvent, coating the resulting coating solution on a conductive substrate, and drying. The
[0043]
As the conductive substrate on which the photosensitive layer is formed, various materials having conductivity can be used. For example, iron, aluminum, copper, tin, platinum, silver, vanadium, molybdenum, chromium, cadmium, titanium Examples thereof include simple metals such as nickel, palladium, indium, stainless steel, and brass, plastic materials on which the above metals are vapor-deposited or laminated, glass coated with aluminum iodide, tin oxide, indium oxide, and the like.
[0044]
The shape of the conductive substrate may be any of a sheet shape and a drum shape according to the structure of the image forming apparatus to be used. The substrate itself has conductivity or the surface of the substrate has conductivity. If you do. The conductive substrate preferably has sufficient mechanical strength when used.
[0045]
When the photosensitive layer is formed by a coating method, the above-exemplified hole transporting agent, charge generating agent, electron acceptor, binder resin, and the like together with a suitable solvent are known methods such as a roll mill, ball mill, and attritor. A dispersion is prepared by dispersing and mixing using a paint shaker, an ultrasonic disperser, etc., and this is applied by a known means and dried.
[0046]
As the solvent for preparing the dispersion, various organic solvents can be used, for example, alcohols such as methanol, ethanol, isopropanol and butanol, and aliphatic hydrocarbons such as n-hexane, octane and cyclohexane. , Aromatic hydrocarbons such as benzene, toluene, xylene, halogenated hydrocarbons such as dichloromethane, dichloroethane, chloroform, carbon tetrachloride, chlorobenzene, ethers such as dimethyl ether, diethyl ether, tetrahydrofuran, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, Ketones such as acetone, methyl ethyl ketone and cyclohexanone, esters such as ethyl acetate and methyl acetate, dimethylformaldehyde, dimethylformamide, dimethyl sulfoxide, etc. Can be given. These solvents are used alone or in combination of two or more.
[0047]
Further, a surfactant, a leveling agent or the like may be used in order to improve the dispersibility of the hole transporting agent, charge generating agent, electron acceptor, and surface of the photosensitive layer.
[0048]
Since the single layer type electrophotographic photosensitive member of the present invention has a very small transfer / exposure memory, a memory image is not generated even if it is used in the image forming apparatus having no charge eliminating step.
[0049]
In addition, as described above, the cleaning process may be omitted in the same manner as the charge removal process in order to reduce the size of the image forming apparatus and reduce the initial cost.
[0050]
【Example】
Hereinafter, the present invention will be described with reference to examples and comparative examples. The following embodiment is an example embodying the present invention, and does not limit the technical scope of the present invention.
[0051]
[Examples 1 to 7, Reference Example 8 ]
As a charge generating agent, 2.0 parts by weight of X-type metal-free phthalocyanine (CGM-1), 70 parts by weight of a hole transport agent (HTM-1) represented by the general formula (1), general formulas (2) and (3), (4), 40 parts by weight of the electron transporting agent (ETM-1 to ETM-8) shown in (5), 100 parts by weight of a bis-Z type polycarbonate resin having a weight average molecular weight of 30,000 as a binder resin, and tetrahydrofuran 800 Weight parts were dispersed or dissolved in a ball mill for 24 hours to prepare a single-layer photosensitive layer coating solution. Then, this coating solution is applied on an aluminum base tube as a support by a dip coating method, followed by hot air drying at 125 ° C. for 30 minutes, and a single-layer photoreceptor having a single photosensitive layer with a thickness of 20 μm. Was made.
[0052]
[Comparative Examples 1 to 3]
Single layer type photoreceptors were prepared in the same manner as in Examples 1 to 7 except that ETM-9 to ETM-11 were used as the electron transporting agent.
[0053]
<HTM-1>
[Chemical 8]
Figure 0003722465
[0054]
<ETM-1>
[Chemical 9]
Figure 0003722465
[0055]
<ETM-2>
[Chemical Formula 10]
Figure 0003722465
[0056]
<ETM-3>
Embedded image
Figure 0003722465
[0057]
<ETM-4>
Embedded image
Figure 0003722465
[0058]
<ETM-5>
Embedded image
Figure 0003722465
[0059]
<ETM-6>
Embedded image
Figure 0003722465
[0060]
<ETM-7>
Embedded image
Figure 0003722465
[0061]
<ETM-8>
Embedded image
Figure 0003722465
[0062]
<ETM-9>
Embedded image
Figure 0003722465
[0063]
<ETM-10>
Embedded image
Figure 0003722465
[0064]
<ETM-11>
Embedded image
Figure 0003722465
[0065]
[Examples 9 to 15, Reference Example 16 ]
Single layer type photoreceptors were prepared in the same manner as in Examples 1 to 7 and Reference Example 8 except that titanyl phthalocyanine (CGM-2) was used as the charge generating agent.
[0066]
[Comparative Examples 4 to 6]
Single layer type photoreceptors were prepared in the same manner as in Comparative Examples 1 to 3, except that titanyl phthalocyanine (CGM-2) was used as the charge generator.
[0067]
[Comparative Example 7]
A single-layer photoreceptor was prepared in the same manner as in Example 1 except that 4.5 parts by weight of X-type metal-free phthalocyanine (CGM-1) was contained as a charge generator.
[0068]
[Comparative Example 8]
A single layer type photoreceptor was prepared in the same manner as in Example 1 except that a photosensitive layer having a thickness of 40 μm was obtained.
[0069]
[Comparative Example 9]
A monolayer type photoreceptor was produced in the same manner as in Example 9 except that 4.5 parts by weight of titanyl phthalocyanine (CGM-2) was contained as a charge generating agent.
[0070]
[Comparative Example 10]
A single-layer type photoreceptor was produced in the same manner as in Example 9 except that a photosensitive layer having a thickness of 40 μm was obtained.
[0071]
The following characteristics were evaluated for the single-layer electrophotographic photoreceptors of the above Examples and Comparative Examples. The evaluation results are shown in Tables 1 and 2. Of these data, the relationship between the transfer memory potential / exposure memory potential and the absolute value difference between the positive polarity sensitivity and the negative polarity sensitivity is shown in FIG.
[0072]
<Positive polarity sensitivity evaluation>
An applied voltage was applied to the electrophotographic photosensitive member of each example and comparative example using a drum sensitivity tester (product name Gentec Cynthia 30M) manufactured by GENTEC, and the surface was charged to + 800V. . Next, monochromatic light having a wavelength of 780 nm (half-value width 20 nm, light intensity 20 μW) extracted from the white light of a halogen lamp, which is an exposure light source of the testing machine, using a band-pass filter is applied to the surface of the charged photoreceptor. Exposure (exposure time 100 msec) was performed (exposure energy was 1.0 μJ / cm 2 ). Then, the surface potential after 500 msec from the exposure start time was measured as a post-exposure potential V LP (V). That is, the smaller the post-exposure potential, the higher the sensitivity of the photoreceptor.
[0073]
<Negative polarity sensitivity evaluation>
Using a drum sensitivity testing machine (product name Gentec Cynthia 30M) manufactured by GENTEC, an applied voltage is applied to the electrophotographic photosensitive member of each example and comparative example, and the surface is charged to -800V. Except for the above, the surface potential at the time when 500 msec had elapsed from the start of exposure was measured as the post-exposure potential V LN (V) in the same manner as in <Positive polarity sensitivity evaluation>.
[0074]
<Evaluation of transfer memory potential>
The multi-function printer Antico40 manufactured by Kyocera Mita Co., Ltd., from which the static elimination lamp has been removed, is mounted with the electrophotographic photosensitive member of each example and comparative example, and the surface potential when no transfer bias is applied, and when the transfer bias is applied. The surface potential after the next charging step was measured, and the difference was taken as the transfer memory potential. As for the transfer memory potential, 45 V or less at which no transfer memory image was generated was allowed, and when it was greater than 45 V, it was not allowed.
[0075]
<Evaluation of exposure memory potential>
The multi-function printer Antico40 manufactured by Kyocera Mita Co., Ltd., from which the static elimination lamp has been removed, is mounted with the electrophotographic photosensitive member of each example and comparative example, and the surface potential at the time of unexposed and after the next charging step at the time of exposure The surface potential was measured and the difference was taken as the exposure memory potential. As for the exposure memory potential, 45 V or less at which no exposure memory image is generated is allowed, and when it is higher than 45 V, the transfer memory potential is not allowed.
[0076]
<Evaluation of transfer memory image>
Whether or not a transfer memory image is generated by mounting the electrophotographic photosensitive member of each example and comparative example on the multi-function printer Antico40 manufactured by Kyocera Mita Co., Ltd., from which the static elimination lamp has been removed, and performing a printing test. It was judged visually. As shown in FIG. 6, the transfer memory image means that the surface potential of the photosensitive member at the portion to which the transfer bias is applied when a printing test is performed using a front gray (Munsell value: N = 6.5) document. An image in which a black horizontal band is generated in the drum longitudinal direction due to the decrease is shown.
[0077]
<Exposure memory image evaluation>
Whether or not an exposure memory image is generated by mounting the electrophotographic photosensitive member of each example and comparative example on the multifunction printer Antico40 manufactured by Kyocera Mita Co., Ltd., from which the static elimination lamp has been removed, and performing a printing test. It was judged visually. The exposure memory image means that when a printing test is carried out using a document as shown in FIG. 7, the ghost image of the exposed portion is changed to a gray portion due to a decrease in the photosensitive member surface potential of the strongly exposed portion (solid black portion). The generated image is shown.
[0078]
[Table 1]
Figure 0003722465
[0079]
[Table 2]
Figure 0003722465
[0080]
From Tables 1 and 2 and FIG. 1, it is clear that when the absolute value difference between the positive and negative polarities is 500 V or less, both the transfer memory potential and the exposure memory potential are 45 V or less, and no memory image is generated. became.
[0081]
FIG. 2 shows the relationship between the added amount of X-type metal-free phthalocyanine and the transfer memory potential / exposure memory potential of the single-layer electrophotographic photoreceptor produced in Example 6, and FIG. 3 shows the X of the photoreceptor. The relationship between the added amount of type metal-free phthalocyanine and the difference in absolute value of sensitivity between positive polarity and negative polarity was shown.
[0082]
2 and 3, when the X-type metal-free phthalocyanine addition amount is 4 wt% or less with respect to the binder resin weight, the absolute value difference between the positive polarity and the negative polarity sensitivity is 500 V or less, both the transfer memory potential and the exposure memory potential. Became 45V or less.
[0083]
4 shows the relationship between the photosensitive layer thickness of the single-layer electrophotographic photosensitive member produced in Example 6 and the transfer memory potential / exposure memory potential . FIG. 5 shows the photosensitive layer thickness of the photosensitive member . The relationship between the positive and negative polarity sensitivity difference was shown.
[0084]
4 and 5, when the film thickness of the photosensitive layer is 35 μm or less, the absolute value difference between the positive polarity and the negative polarity sensitivity is 500 V or less, and both the transfer memory potential and the exposure memory potential are 45 V or less.
[0085]
【The invention's effect】
Since the single layer type electrophotographic photosensitive member of the present invention has very small exposure memory and transfer memory, a memory image is not generated even when used in a reversal development type digital image forming apparatus having no charge eliminating step.
[0086]
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the transfer memory potential / exposure memory potential of single layer type electrophotographic photosensitive members of each example and comparative example, and the absolute value difference between the positive and negative polarity sensitivities.
2 is a graph showing the relationship between the addition amount of X-type metal-free phthalocyanine and the transfer memory potential / exposure memory potential of the single-layer electrophotographic photosensitive member produced in Example 6. FIG.
3 is a graph showing the relationship between the amount of X-type metal-free phthalocyanine added to the single-layer electrophotographic photosensitive member produced in Example 6 and the absolute value difference between positive and negative polarity sensitivities. FIG.
4 is a graph showing the relationship between the photosensitive layer thickness of the single-layer electrophotographic photosensitive member produced in Example 6, and the transfer memory potential and the exposure memory potential. FIG.
5 is a graph showing the relationship between the photosensitive layer thickness of the single-layer electrophotographic photosensitive member produced in Example 6 and the absolute value difference between the positive and negative polarities.
FIG. 6 is a diagram showing a transfer memory image evaluation document and a transfer memory image.
FIG. 7 is a view showing an exposure memory image evaluation document and an exposure memory image.

Claims (7)

除電工程を有さない反転現像式デジタル画像形成装置における正帯電の単層型電子写真感光体を用いた画像形成方法であって、
前記単層型電子写真感光体の導電性基体上に感光層が形成してあり、当該感光層が、電荷発生剤としてのフタロシアニン系化合物と、ホール輸送剤と、電子輸送剤とをバインダー樹脂中に含有し、前記フタロシニン系化合物の含有量がバインダー樹脂重量に対して0.1〜4wt%であり、前記感光層の膜厚が10〜35μmであって、且つ、帯電電位を800Vに設定し、露光波長780nm、露光エネルギー1.0μJ/cm2の条件で、500msec経過後に測定したプラス極性とマイナス極性の感度の絶対値差が312V以下の値であるとともに、前記単層型電子写真感光体におけるプラス極性感度の絶対値が、マイナス極性感度の絶対値よりも小さく、さらに、当該単層型電子写真感光体を、帯電工程においてプラス極性に帯電させることを特徴とする画像形成方法
An image forming method using a positively charged single layer type electrophotographic photosensitive member in a reversal development type digital image forming apparatus having no charge eliminating step,
A photosensitive layer is formed on a conductive substrate of the single-layer electrophotographic photoreceptor, and the photosensitive layer contains a phthalocyanine compound as a charge generating agent, a hole transport agent, and an electron transport agent in a binder resin. And the content of the phthalocinine compound is 0.1 to 4 wt% with respect to the weight of the binder resin, the film thickness of the photosensitive layer is 10 to 35 μm, and the charging potential is set to 800V. And the absolute value difference between the positive and negative polarities measured after 500 msec under the conditions of an exposure wavelength of 780 nm and an exposure energy of 1.0 μJ / cm 2 is 312 V or less, and the single-layer electrophotographic photosensitive member The absolute value of the positive polarity sensitivity is smaller than the absolute value of the negative polarity sensitivity, and the single-layer electrophotographic photosensitive member is charged to the positive polarity in the charging step. The image forming method according to claim Rukoto.
前記フタロシアニン系化合物として、中心金属を有さないメタルフリーフタロシニン、またはチタニルフタロシニンを含有することを特徴とする請求項1に記載の画像形成方法2. The image forming method according to claim 1, wherein the phthalocyanine compound contains metal-free phthalosinin having no central metal or titanyl phthalosinin. 3. 前記ホール輸送剤として、下記一般式(1)で示される化合物を含有することを特徴とする請求項1または2に記載の画像形成方法
【化1】
一般式(1):
Figure 0003722465
(一般式(1)中、R1およびR3は同一または異なって、置換基を有してもよいアルキル基、置換基を有してもよいアリール基、置換基を有してもよい、アラルキル基またはアルコキシ基を示し、R2およびR4は同一または異なって、水素原子、置換基を有してもよい、アルキル基またはアルコキシ基を示す。但し、R2およびR4の置換位置がパラ位の場合、R2およびR4は水素原子である。)
The image forming method according to claim 1, wherein the hole transport agent contains a compound represented by the following general formula (1).
[Chemical 1]
General formula (1):
Figure 0003722465
(In the general formula (1), R 1 and R 3 are the same or different, and may have an alkyl group which may have a substituent, an aryl group which may have a substituent, or a substituent. An aralkyl group or an alkoxy group, wherein R 2 and R 4 are the same or different and each represents a hydrogen atom, an alkyl group or an alkoxy group which may have a substituent, provided that the substitution positions of R 2 and R 4 are In the para position, R 2 and R 4 are hydrogen atoms.)
前記電子輸送剤として、一般式(2)、(3)、(4)または(5)で示される化合物を、少なくとも1種以上含有することを特徴とする請求項1〜3のいずれか一項に記載の画像形成方法
【化2】
一般式(2):
Figure 0003722465
(一般式(2)中、R5はハロゲン原子、置換基を有してもよい、アルキル基またはアリール基を示し、R6は置換基を有してもよい、アルキル基またはアリール基、または基:−O−R6aを示す。R6aは、置換基を有してもよい、アルキル基またはアリール基を示す。)
【化3】
一般式(3):
Figure 0003722465
(一般式(3)中、R7およびR8は同一または異なって、アルキル基、ハロゲン化アルキル基、アリール基、アラルキル基、アルコキシ基、アリールオキシ基、アラルキルオキシ基、アシル基、アルコキシカルボニル基、アリールオキシカルボニル基、アラルキルオキシカルボニル基またはニトロ基を示す。nは0〜3の整数を表わす。)
【化4】
一般式(4):
Figure 0003722465
(一般式(4)中、R9a、R9b、R9c、およびR9dは同一または異なって、水素原子、置換基を有してもよい、アルキル基またはアリール基を示す。)
【化5】
一般式(5):
Figure 0003722465
(一般式(5)中、R10およびR11は同一または異なって、アルキル基、ハロゲン化アルキル基、アリール基、アラルキル基、アルコキシ基、アリールオキシ基、アラルキルオキシ基、アシル基、アルコキシカルボニル基、アリールオキシカルボニル基、アラルキルオキシカルボニル基またはニトロ基を示す。nは0〜3の整数を表わす。)
4. The electron transport agent according to claim 1, comprising at least one compound represented by the general formula (2), (3), (4) or (5). The image forming method described in 1.
[Chemical formula 2]
General formula (2):
Figure 0003722465
(In General Formula (2), R 5 represents a halogen atom, an alkyl group or an aryl group which may have a substituent, and R 6 represents an alkyl group or an aryl group, which may have a substituent, or group: .R 6a showing a -O-R 6a may have a substituent, an alkyl group or an aryl group).
[Chemical 3]
General formula (3):
Figure 0003722465
(In the general formula (3), R 7 and R 8 are the same or different and are alkyl group, halogenated alkyl group, aryl group, aralkyl group, alkoxy group, aryloxy group, aralkyloxy group, acyl group, alkoxycarbonyl group. And represents an aryloxycarbonyl group, an aralkyloxycarbonyl group, or a nitro group, and n represents an integer of 0 to 3.)
[Formula 4]
General formula (4):
Figure 0003722465
(In the general formula (4), R 9a , R 9b , R 9c and R 9d are the same or different and represent a hydrogen atom or an alkyl group or an aryl group which may have a substituent.)
[Chemical formula 5]
General formula (5):
Figure 0003722465
(In the general formula (5), R 10 and R 11 are the same or different and are an alkyl group, halogenated alkyl group, aryl group, aralkyl group, alkoxy group, aryloxy group, aralkyloxy group, acyl group, alkoxycarbonyl group. And represents an aryloxycarbonyl group, an aralkyloxycarbonyl group, or a nitro group, and n represents an integer of 0 to 3.)
前記バインダー樹脂として、重量平均分子量が15,000〜100,000のビスフェノールZ型ポリカーボネートを含有することを特徴とする請求項1〜4のいずれか一項に記載の画像形成方法5. The image forming method according to claim 1, wherein the binder resin contains a bisphenol Z-type polycarbonate having a weight average molecular weight of 15,000 to 100,000. 前記単層型電子写真感光体における露光メモリおよび転写メモリを45V以下の値とすることを特徴とする請求項1〜5のいずれか一項に記載の画像形成方法6. The image forming method according to claim 1, wherein an exposure memory and a transfer memory in the single-layer type electrophotographic photosensitive member have a value of 45 V or less. 除電工程を有さない反転現像式デジタル画像形成装置において、
正帯電の単層型電子写真感光体を備えるとともに、
前記単層型電子写真感光体の導電性基体上に感光層が形成してあり、当該感光層が、電荷発生剤としてのフタロシアニン系化合物と、ホール輸送剤と、電子輸送剤とをバインダー樹脂中に含有し、前記フタロシニン系化合物の含有量がバインダー樹脂重量に対して0.1〜4wt%であり、前記感光層の膜厚が10〜35μmであって、且つ、帯電電位を800Vに設定し、露光波長780nm、露光エネルギー1.0μJ/cm2の条件で、500msec経過後に測定したプラス極性とマイナス極性の感度の絶対値差が312V以下の値であるとともに、前記単層型電子写真感光体におけるプラス極性感度の絶対値が、マイナス極性感度の絶対値よりも小さく、さらに、当該単層型電子写真感光体を、帯電工程においてプラス極性に帯電させることを特徴とする反転現像式デジタル画像形成装置
In a reversal development type digital image forming apparatus that does not have a static elimination process,
While equipped with a positively charged single layer type electrophotographic photoreceptor,
A photosensitive layer is formed on a conductive substrate of the single-layer electrophotographic photoreceptor, and the photosensitive layer contains a phthalocyanine compound as a charge generating agent, a hole transport agent, and an electron transport agent in a binder resin. And the content of the phthalocinine compound is 0.1 to 4 wt% with respect to the weight of the binder resin, the film thickness of the photosensitive layer is 10 to 35 μm, and the charging potential is set to 800V. And the absolute value difference between the positive and negative polarities measured after 500 msec under the conditions of an exposure wavelength of 780 nm and an exposure energy of 1.0 μJ / cm 2 is 312 V or less, and the single-layer electrophotographic photosensitive member The absolute value of the positive polarity sensitivity is smaller than the absolute value of the negative polarity sensitivity, and the single-layer electrophotographic photosensitive member is charged to the positive polarity in the charging step. Reversal development type digital image forming apparatus according to claim Rukoto.
JP2000132860A 2000-04-27 2000-04-27 Image forming method and reverse development type digital image forming apparatus Expired - Lifetime JP3722465B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000132860A JP3722465B2 (en) 2000-04-27 2000-04-27 Image forming method and reverse development type digital image forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000132860A JP3722465B2 (en) 2000-04-27 2000-04-27 Image forming method and reverse development type digital image forming apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005177261A Division JP3748452B2 (en) 2005-06-17 2005-06-17 Single layer type electrophotographic photoreceptor

Publications (2)

Publication Number Publication Date
JP2001312075A JP2001312075A (en) 2001-11-09
JP3722465B2 true JP3722465B2 (en) 2005-11-30

Family

ID=18641475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000132860A Expired - Lifetime JP3722465B2 (en) 2000-04-27 2000-04-27 Image forming method and reverse development type digital image forming apparatus

Country Status (1)

Country Link
JP (1) JP3722465B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6190812B1 (en) 1999-10-25 2001-02-20 Kyocera Mita Corporation Single-layer type electrophotosensitive material and image forming apparatus using the same
CN102012647B (en) * 2009-09-08 2013-05-22 京瓷办公信息***株式会社 Electronic photographic sensitive body and manufacture method thereof
JP5581736B2 (en) 2010-03-02 2014-09-03 富士ゼロックス株式会社 Electrophotographic photosensitive member, process cartridge, and electrophotographic image forming apparatus
JP5857804B2 (en) 2012-03-07 2016-02-10 富士ゼロックス株式会社 Image forming apparatus and process cartridge
WO2017187838A1 (en) * 2016-04-25 2017-11-02 京セラドキュメントソリューションズ株式会社 Electrophotographic photoreceptor, process cartridge and image-forming device

Also Published As

Publication number Publication date
JP2001312075A (en) 2001-11-09

Similar Documents

Publication Publication Date Title
JP3556146B2 (en) Electrophotographic photoreceptor
USRE42189E1 (en) Single-layer type electrophotosensitive material and image forming apparatus using the same
JP3748452B2 (en) Single layer type electrophotographic photoreceptor
JP3638500B2 (en) Single layer type electrophotographic photosensitive member and image forming apparatus using the same
JP2991783B2 (en) Electrophotographic photoreceptor
JP3532808B2 (en) Electrophotographic photosensitive member and image forming apparatus using the same
JP3722465B2 (en) Image forming method and reverse development type digital image forming apparatus
JP2006091488A (en) Image forming apparatus
JP4111399B2 (en) Single layer type electrophotographic photosensitive member and image forming apparatus
JP2001242655A (en) Electrophotographic photoreceptor
JP3086284B2 (en) Electrophotographic photoreceptor
JP2009282495A (en) Electrophotographic photoreceptor and image forming apparatus
JP2644925B2 (en) Electrophotographic photoreceptor
JP3184741B2 (en) Electrophotographic photoreceptor
JP3192528B2 (en) Organic photoreceptor for electrophotography
JP2841490B2 (en) Laminated photoconductor
JPH0446350A (en) Photosensitive body
JPH07209886A (en) Electrophotographic organic photoreceptor
JP2545096B2 (en) Organic photoreceptor
JP2991797B2 (en) Carbazole compounds and photoreceptors using the same
JP3192529B2 (en) Organic photoreceptor for electrophotography
JP3192527B2 (en) Organic photoreceptor for electrophotography
JP2004341005A (en) Electrophotographic photoreceptor and image forming apparatus
JP2518834B2 (en) Charge generation material for electrophotographic photoreceptor
JP3486708B2 (en) Positively charged organic electrophotographic photoreceptor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20010420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20021205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050615

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050725

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050912

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3722465

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080922

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 8

EXPY Cancellation because of completion of term