JP3722218B2 - 内燃機関用燃料噴射装置 - Google Patents

内燃機関用燃料噴射装置 Download PDF

Info

Publication number
JP3722218B2
JP3722218B2 JP2002170868A JP2002170868A JP3722218B2 JP 3722218 B2 JP3722218 B2 JP 3722218B2 JP 2002170868 A JP2002170868 A JP 2002170868A JP 2002170868 A JP2002170868 A JP 2002170868A JP 3722218 B2 JP3722218 B2 JP 3722218B2
Authority
JP
Japan
Prior art keywords
fuel
pressure
drive current
pump
current value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002170868A
Other languages
English (en)
Other versions
JP2004011629A (ja
Inventor
泰弘 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2002170868A priority Critical patent/JP3722218B2/ja
Publication of JP2004011629A publication Critical patent/JP2004011629A/ja
Application granted granted Critical
Publication of JP3722218B2 publication Critical patent/JP3722218B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、吸入調量弁を経て加圧室内に吸入される燃料を加圧して高圧化し蓄圧容器に圧送する吸入調量型の燃料供給ポンプを設置した内燃機関用燃料噴射装置に関するものである。
【0002】
【従来の技術】
従来より、ディーゼルエンジン用の燃料噴射システムとして知られる蓄圧式燃料噴射システムでは、蓄圧容器としてのコモンレール内に高圧燃料を蓄圧し、コモンレールより分岐する複数の電磁式燃料噴射弁から所定のタイミングで各気筒に燃料を噴射するように構成されている。コモンレールには、燃料噴射圧力に相当する燃料圧力を常時蓄圧する必要があるために、吸入調量型の燃料供給ポンプ(サプライポンプ)から燃料配管を経て高圧燃料が圧送され、この圧送量(ポンプ吐出量)を制御することにより、コモンレール内の燃料圧力が目標燃料圧力と略一致するようにフィードバック制御している。これは、吸入調量型のサプライポンプに内蔵された吸入調量弁(SCV)の電磁コイルに印加するSCV駆動電流値をフィードバック制御することで実行される。
【0003】
ここで、従来の技術によるSCVの電磁コイルに印加するSCV駆動電流値を、公知のPID(比例積分微分)制御を用いて算出する方法を簡単に説明する。これは、先ず、指令噴射量とインジェクタリーク量と目標燃料圧力(PFIN)とから要求吐出量を演算する。さらに、その要求吐出量とコモンレール内の実燃料圧力とSCV駆動電流値との関係を予め実験等により測定して作成したSCV駆動電流値算出マップを用いてSCV駆動電流値(IPMP)を演算する。
【0004】
そして、コモンレール内の実燃料圧力と目標燃料圧力(PFIN)との偏差(ΔP)に基づいてフィードバック補正量を算出し、次に、SCV駆動電流値とフィードバック補正量とを加算して、最終的な駆動電流値を演算する。そして、この最終的な駆動電流値を所定の変換係数を用いてパルス状のポンプ駆動信号に変換して、SCVの電磁コイルに印加する。これにより、SCVのリフト量がSCV駆動電流値に応じて変えられ、SCVの開口面積が変化するので、サプライポンプからコモンレールへ圧送されるポンプ吐出量がSCV駆動電流値に応じて変更される。したがって、コモンレール内の実燃料圧力が目標燃料圧力(PFIN)に略一致するようにフィードバック制御される。
【0005】
【発明が解決しようとする課題】
ところが、従来の蓄圧式燃料噴射システムにおいては、サプライポンプのポンプ吸入周期(またはポンプ吸入開始時期)がSCVの駆動電流周期の整数倍の値になると、定常的にコモンレール内の実燃料圧力にうねりが発生する。ここで、図6に、SCVとして通電停止時に弁のリフト量が小で、且つ弁の開口面積が最大となる常開型の電磁弁を用いてそのコモンレール内の実燃料圧力にうねりが発生する原理を示す。
【0006】
SCVのリフト量は、駆動電流周期に同期して振動している。この駆動電流周期とポンプ吸入周期とのずれが僅かな場合には、吸入開始時期がSCVのリフト量が小(SCVの開口面積が大)と一致してコモンレール圧力が大になるタイミングと、吸入開始時期がSCVのリフト量が大(SCVの開口面積が小)と一致してコモンレール内の実燃料圧力(コモンレール圧力)が小になるタイミングとが、比較的に長い周期で繰り返される。その結果、コモンレール内の実燃料圧力(コモンレール圧力)が比較的に長い周期でうねる現象が発生する。ここで、ポンプ吸入周期は、ポンプ回転速度に反比例するため、特定のポンプ回転速度域において圧力安定性が悪化することになる。
【0007】
【発明の目的】
本発明の目的は、ポンプ吸入周期またはポンプ回転速度に応じて駆動電流周期を変化させることにより、実燃料圧力の圧力制御性および圧力安定性を向上することのできる内燃機関用燃料噴射装置を提供することにある。
【0008】
【課題を解決するための手段】
請求項1に記載の発明によれば、内燃機関の運転状態に応じてポンプ回転速度またはポンプ吸入周期が算出され、さらに、ポンプ回転速度またはポンプ吸入周期に応じて駆動電流周期が設定される。そして、内燃機関の運転状態または運転条件に応じて設定された目標燃料圧力に対して必要な電流値と上記の駆動電流周期とから、吸入調量弁に印加する駆動電流値が算出される。このようにして吸入調量弁に印加する駆動電流値を調整することにより、吸入調量弁のリフト量が変わるので、吸入調量弁の開口面積が最適な開口面積に変更される。これにより、燃料供給ポンプより吐出される燃料の圧送量が最適な圧送量となるように制御される。
【0009】
このとき、ポンプ回転速度またはポンプ吸入周期に応じて駆動電流周期が最適な駆動電流周期に設定されることにより、燃料供給ポンプのポンプ吸入周期が吸入調量弁の駆動電流周期の整数倍の値とならないようにすることができるので、ポンプ吸入周期が吸入調量弁の駆動電流周期の整数倍の値となった時の定常的な実燃料圧力のうねりが生じることはなく、実燃料圧力の圧力制御性および圧力安定性を向上することができる。
【0010】
また、燃料供給ポンプのポンプ吸入周期が吸入調量弁の駆動電流周期の整数倍近傍に当たる領域の場合、ポンプ吸入周期が駆動電流周期の整数倍の値にならないように駆動電流周期を長くしたり、または短くしたりして変化させるようにしている。これにより、ポンプ吸入周期が吸入調量弁の駆動電流周期の整数倍の値とならないようにすることができるので、ポンプ吸入周期が吸入調量弁の駆動電流周期の整数倍の値となった時の定常的な実燃料圧力のうねりが生じることはなく、実燃料圧力の圧力制御性および圧力安定性を向上することができる。
【0011】
請求項に記載の発明によれば、駆動電流値を所定の変換係数を用いてパルス状のポンプ駆動信号に変換し、そのパルス状のポンプ駆動信号を吸入調量弁に印加して吸入調量弁のリフト量を変えることにより、吸入調量弁の開口面積が最適な開口面積に変更される。なお、駆動電流値の制御は、デューティ制御により行なうことが望ましい。すなわち、実燃料圧力と目標燃料圧力との偏差に応じて単位時間当たりのポンプ駆動信号のオン/オフの割合(通電時間割合・デューティ比)を調整して、吸入調量弁のリフト量および吸入調量弁の開口面積を変化させるデューティ制御を用いることで、高精度なデジタル制御が可能になる。
【0012】
請求項に記載の発明によれば、蓄圧容器内の実燃料圧力と目標燃料圧力との偏差から、必要な電流値に対して必要となるフィードバック補正量を算出し、さらに少なくとも目標燃料圧力に対して必要な電流値とフィードバック補正量とを加算して最終的な駆動電流値を算出し、さらにこの最終的な駆動電流値を吸入調量弁に印加する。これにより、吸入調量弁のリフト量および吸入調量弁の開口面積が変化するので、燃料供給ポンプより蓄圧容器へ圧送されるポンプ吐出量が最終的な駆動電流値に応じて変更される。したがって、蓄圧容器内の実燃料圧力が目標燃料圧力に略一致するようにフィードバック制御される。
【0013】
【発明の実施の形態】
[実施例の構成]
発明の実施の形態を実施例に基づき図面を参照して説明する。ここで、図1はコモンレール式燃料噴射システムの全体構成を示した図である。
【0014】
本実施例のコモンレール式燃料噴射システムは、例えば自動車等の車両に搭載された4気筒のディーゼルエンジン等の内燃機関(以下エンジンと呼ぶ)の各気筒に噴射供給する燃料噴射圧力に相当する高圧燃料を蓄圧する蓄圧容器としてのコモンレール1と、このコモンレール1にそれぞれ接続されて、エンジンの各気筒内に燃料を噴射するための複数個(本例では4個)の電磁式燃料噴射弁(インジェクタ)2と、エンジンにより回転駆動される燃料供給ポンプ(サプライポンプ)3と、複数個のインジェクタ2およびサプライポンプ3を電子制御する制御部としての電子制御ユニット(以下ECUと呼ぶ)10とを備えている。この図1では、4気筒エンジンの1つの気筒に対応するインジェクタ2のみを示し、他の気筒については図示を省略している。
【0015】
コモンレール1には、連続的に燃料噴射圧力に相当する高い圧力が蓄圧される必要があり、そのためにコモンレール1に蓄圧される高圧燃料は、高圧配管11を介してサプライポンプ3から供給されている。そして、コモンレール1には、燃料タンク5に連通する燃料排出路(燃料還流路)15、16への燃料排出路(燃料還流路)13の開口度合を調整することが可能な常閉型の減圧弁7が設置されている。なお、減圧弁7の代わりに、コモンレール1と燃料還流路13との間に、コモンレール1内の燃料圧力が限界設定圧力を超えることがないように、コモンレール1内の燃料圧力を逃がすためのプレシャリミッタを取り付けるようにしても良い。
【0016】
減圧弁7は、減圧弁駆動回路を介してECU10から印加される減圧弁駆動電流値によって電子制御されることにより、例えば減速時またはエンジン停止時に速やかにコモンレール1内の燃料圧力、所謂コモンレール圧力を高圧から低圧へ減圧させる降圧性能に優れる電磁弁である。この減圧弁7は、コモンレール1から燃料タンク5へ燃料を還流させるための燃料還流路13の開度を調整するバルブ(図示せず)、このバルブを閉弁方向または開弁方向に駆動するソレノイドコイル(図示せず)、およびバルブを開弁方向または閉弁方向に付勢するスプリング等のバルブ付勢手段(図示せず)を有している。そして、減圧弁7は、減圧弁駆動回路を介してソレノイドコイルに印加される減圧弁駆動電流値の大きさに比例して、コモンレール1内から燃料還流路13、15、16を経て燃料タンク5に還流される燃料の還流量(減圧弁流量)を調整して、コモンレール圧力を変更する。
【0017】
各気筒のインジェクタ2は、コモンレール1より分岐する複数の高圧配管12の下流端に接続されて、エンジンの各気筒内への燃料噴射を行なう燃料噴射ノズル、この燃料噴射ノズル内に収容されたノズルニードルを開弁方向に駆動する電磁式アクチュエータ、およびノズルニードルを閉弁方向に付勢するスプリング等のニードル付勢手段等から構成された電磁式燃料噴射弁である。これらのインジェクタ2からエンジンの各気筒への燃料噴射は、ノズルニードルに連結したコマンドピストンの背圧制御室内の圧力を制御する電磁式アクチュエータとしての電磁弁4への通電および通電停止により電子制御される。つまり、各気筒のインジェクタ2の電磁弁4が開弁している間、コモンレール1内に蓄圧された高圧燃料がエンジンの各気筒に噴射供給される。
【0018】
サプライポンプ3は、燃料タンク5からフィルタ9を介して吸入される低圧燃料を高圧に加圧してコモンレール1へ圧送し、例えば加速時またはエンジン始動時に速やかにコモンレール1内の燃料圧力、所謂コモンレール圧力を低圧から高圧へ昇圧させる昇圧性能に優れる吸入調量型の高圧供給ポンプである。このサプライポンプ3は、エンジンのクランクシャフトの回転に伴ってポンプ駆動軸が回転することで、燃料タンク5から低圧燃料を汲み上げる周知のフィードポンプ(低圧供給ポンプ:図示せず)と、ポンプ駆動軸により回転駆動されるカム(図示せず)と、このカムに駆動されて上死点と下死点との間を往復運動する2個のプランジャ#1、#2と、これらのプランジャ#1、#2がシリンダ内を往復摺動することにより吸入された燃料を加圧する2個の加圧室(プランジャ室:図示せず)と、これらの加圧室内の燃料圧力が所定値以上に上昇すると開弁する2個の吐出弁(図示せず)とを有している。
【0019】
そして、サプライポンプ3は、図2に示したように、プランジャ#1、#2が上死点(TDC)位置から下死点位置を過ぎるまでの期間が加圧室内に低圧燃料を吸入する吸入期間とされ、その後に、吐出弁が開弁している間、つまりプランジャ#1、#2が上死点(TDC)位置に戻るまでの期間が加圧室内で加圧された高圧燃料を圧送する圧送期間とされている。また、サプライポンプ3には、内部の燃料温度が高温にならないように、リークポートが設けられており、サプライポンプ3からのリーク燃料は、燃料還流路14から燃料還流路16を経て燃料タンク5にリターンされる。
【0020】
このサプライポンプ3内に形成される燃料流路、フィードポンプから加圧室に至る燃料供給路(図示せず)には、その燃料供給路の開口度合(弁のリフト量または弁の開口面積)を調整することで、サプライポンプ3からコモンレール2への燃料の吐出量(ポンプ吐出量、ポンプ圧送量)を変更するソレノイドコイルアクチュエータとしての吸入調量弁(以下SCVと言う)6が取り付けられている。SCV6は、ポンプ駆動回路を介してECU10から印加されるSCV駆動電流値によって電子制御されることにより、サプライポンプ3の加圧室内に吸入される燃料の吸入量を調整する。このSCV6は、フィードポンプから加圧室内へ燃料を送るための燃料供給路の開度を調整するバルブ(図示せず)、バルブを閉弁方向に駆動するソレノイドコイル(図示せず)、およびバルブを開弁方向に付勢するスプリング等のバルブ付勢手段(図示せず)を有している。
【0021】
SCV6は、ポンプ駆動回路を介してソレノイドコイルに印加されるSCV駆動電流値の大きさに比例して、サプライポンプ3の加圧室から、コモンレール1へ吐出される高圧燃料の圧送量(ポンプ吐出量)を調整して、コモンレール1内の燃料圧力、つまり各インジェクタ2からエンジンの各気筒内へ噴射供給する燃料噴射圧力に相当するコモンレール圧力を変更する。
【0022】
ECU10には、制御処理、演算処理を行なうCPU、各種プログラムおよびデータを保存する記憶装置(ROM、RAM等のメモリ)、入力回路、出力回路、電源回路、インジェクタ駆動回路(EDU)、ポンプ駆動回路、減圧弁駆動回路等の機能を含んで構成される周知の構造のマイクロコンピュータが設けられている。そして、各種センサからのセンサ信号は、A/D変換器でA/D変換された後にマイクロコンピュータに入力されるように構成されている。
【0023】
そして、ECU10は、図1に示したように、燃料圧力センサ(燃料圧力検出手段)25からの電圧信号や、その他の各種センサからのセンサ信号は、A/D変換器でA/D変換された後に、ECU10に内蔵されたマイクロコンピュータに入力されるように構成されている。また、ECU10は、エンジンをクランキングさせた後にエンジンキーをIG位置に戻して、図示しないイグニッションスイッチがオン(ON)すると、メモリ内に格納された制御プログラムに基づいて、例えばインジェクタ2やサプライポンプ3等の各制御部品のアクチュエータを電子制御するように構成されている。
【0024】
ここで、マイクロコンピュータには、エンジンの運転状態または運転条件を検出する運転条件検出手段としての、エンジンのクランクシャフトの回転角度を検出するためのクランク角度センサ21、アクセル開度(ACCP)を検出するためのアクセル開度センサ(エンジン負荷検出手段)22、エンジン冷却水温(THW)を検出するための冷却水温センサ23およびサプライポンプ3内に吸入されるポンプ吸入側の燃料温度(THF)を検出するための燃料温度センサ24等が接続されている。
【0025】
上記のセンサのうちクランク角度センサ21は、エンジンのクランクシャフト、あるいはサプライポンプ3のポンプ駆動軸に取り付けられたNEタイミングロータ(図示せず)の外周に対向するように設けられている。そのNEタイミングロータの外周面には、所定角度毎に凸状歯が複数個配置されている。なお、本実施例では、図2に示したように、エンジンの各気筒にそれぞれを対応させるように、基準とする各気筒の基準位置(上死点位置:気筒#1のTDC位置、気筒#3のTDC位置、気筒#4のTDC位置、気筒#2のTDC位置)を判別するための4個の凸状歯が所定角度(180°CA)毎に設けられている。また、サプライポンプ3の吸入開始時期(上死点位置:プランジャ#1のTDC位置、プランジャ#2のTDC位置)を判別するための2個の凸状歯が所定角度(360°CA)毎に設けられている。
【0026】
そして、クランク角度センサ21は、電磁ピックアップよりなり、NEタイミングロータの各凸状歯がクランク角度センサ21に対して接近離反することにより、電磁誘導によってパルス状の回転位置信号(NE信号パルス)、特にサプライポンプ3の回転速度(ポンプ回転速度)と同期したNE信号パルスが出力される。なお、ECU10は、クランク角度センサ21より出力されたNE信号パルスの間隔時間を計測することによってエンジン回転速度(NE)を検出する回転速度検出手段として働く。
【0027】
そして、ECU10は、クランク角度センサ21等の回転速度検出手段によって検出されたエンジン回転速度(NE)とアクセル開度センサ22によって検出されたアクセル開度(ACCP)とに応じて設定される指令噴射量(QFIN)を算出する噴射量決定手段と、エンジン回転速度(NE)と指令噴射量(QFIN)とから指令噴射時期(TFIN)を算出する噴射時期決定手段と、指令噴射量(QFIN)と燃料圧力センサ25によって検出されるコモンレール圧力(NPC)とから指令噴射パルス時間(TQ)を算出する噴射期間決定手段と、インジェクタ駆動回路(EDU)を介して各気筒のインジェクタ2の電磁弁4にパルス状のインジェクタ駆動電流を印加するインジェクタ駆動手段とから構成されている。
【0028】
そして、ECU10は、エンジンの運転条件または運転状態に応じた最適な燃料噴射圧力を演算し、ポンプ駆動回路を介してSCV6のソレノイドコイルを駆動する圧送量制御手段を有している。これは、指令噴射量(QFIN)とエンジン回転速度(NE)とによって目標燃料圧力(PFIN)を算出し、この目標燃料圧力(PFIN)を達成するために、SCV6のソレノイドコイルに印加するSCV駆動電流値を調整して、サプライポンプ3よりコモンレール1内へ吐出される燃料の吐出量(ポンプ吐出量)またはコモンレール1から燃料タンク5へ還流させる減圧弁流量(燃料還流量)を制御するように構成されている。
【0029】
さらに、より好ましくは、燃料噴射量の制御精度を向上させる目的で、燃料圧力センサ25によって検出されるコモンレール1内のコモンレール圧力(NPC)が目標燃料圧力(PFIN)と略一致するように、PID制御によって、SCV6のソレノイドコイルに印加するSCV駆動電流値をフィードバック制御することが望ましい。なお、SCV駆動電流値の制御は、デューティ(DUTY)制御により行なうことが望ましい。すなわち、コモンレール圧力(NPC)と目標燃料圧力(PFIN)との偏差(ΔP)に応じて単位時間当たりの制御パルス信号(パルス状のポンプ駆動信号)のオン/オフの割合(通電時間割合・デューティ比)を調整して、SCV6のリフト量およびSCV6の開口面積を変化させるデューティ制御を用いることで、高精度なデジタル制御が可能になる。
【0030】
[実施例の制御方法]
次に、本実施例のSCV6のソレノイドコイルに印加するSCV駆動電流値の制御方法を図1ないし図5に基づいて簡単に説明する。ここで、SCV駆動電流値を、公知のPID(比例積分微分)制御を用いて算出する方法を、図3および図4(a)の制御ロジックに示す。
【0031】
ECU10は、クランク角度センサ21等の回転速度検出手段によって検出されるエンジン回転速度(NE)とアクセル開度センサ22によって検出されるアクセル開度(ACCP)とによって設定された基本噴射量(Q)に、冷却水温センサ23によって検出されるエンジン冷却水温(THW)や燃料温度センサ24によって検出される燃料温度(THF)等の噴射量補正量を加味して指令噴射量(QFIN)を算出する(噴射量決定手段)。また、ECU10は、指令噴射量(QFIN)とエンジン回転速度(NE)とによって目標燃料圧力(PFIN)を算出する(燃料圧力決定手段)。
【0032】
ここで、SCV6のソレノイドコイルに印加するSCV駆動電流値を、公知のPID(比例積分微分)制御を用いて算出する方法を説明する。
ECU10は、クランク角度センサ21等の回転速度検出手段によって検出されるエンジン回転速度(NE)と燃料圧力センサ25によって検出されるコモンレール圧力(NPC)とインジェクタリーク量の基準値との関係を予め実験等により求めて作成した特性マップまたは演算式を用いてインジェクタリーク量の基準値を算出する。次に、インジェクタリーク量の基準値に、燃料温度センサ24によって検出される燃料温度(THF)を考慮した燃料温度補正係数を乗算してインジェクタリーク量(QLEAK)を算出する(インジェクタリーク量演算手段)。
【0033】
次に、指令噴射量(QFIN)と目標燃料圧力(PFIN)とインジェクタリーク量(QLEAK)と要求吐出量(QPMP)との関係を予め実験等により求めて作成した特性マップまたは演算式を用いて要求吐出量(QPMP)を算出する(要求吐出量決定手段)。次に、要求吐出量(QPMP)とコモンレール圧力(NPC)とSCV駆動電流値(IPMP)との関係を予め実験等により測定して作成したSCV駆動電流値算出マップまたは演算式に基づいて、SCV駆動電流値(IPMP)を算出する(駆動電流値決定手段)。
【0034】
また、ECU10は、コモンレール圧力(NPC)と目標燃料圧力(PFIN)との偏差(=ΔP)とフィードバックゲイン(比例ゲインKp、積分ゲインKi、微分ゲインKd)との関係を予め実験等により測定して作成したフィードバックゲインマップに基づいて、フィードバックゲイン(比例ゲインKp、積分ゲインKi、微分ゲインKd)を算出する。そして、下記の数1の演算式に基づいてフィードバック補正量(IFB)を算出する(補正量決定手段)。
【数1】
Figure 0003722218
但し、ΔPは目標燃料圧力(PFIN)とコモンレール圧力(NPC)との偏差である。
【0035】
そして、ECU10は、下記の数2の演算式に基づいて、SCV駆動電流値(IPMP)とフィードバック補正量(IFB)とを加算して、目標燃料圧力(PFIN)に対して必要な最終的なSCV駆動電流値(IPMP)を算出する。
【数2】
Figure 0003722218
【0036】
そして、ECU10は、図2に示したように、クランク角度センサ21より出力されるポンプ回転速度と同期したNE信号パルスを読み込んで、ポンプ回転速度(NP)を算出し、更にサプライポンプ3のプランジャ#1のTDC位置判別信号およびプランジャ#2のTDC位置判別信号を入力し、ポンプ回転速度(NP)と2つのTDC位置判別信号とからサプライポンプ3のポンプ吸入周期を算出する(吸入周期演算手段)。なお、図2のサプライポンプ3のプランジャ#1位置およびプランジャ#2位置の推移は、サプライポンプ3のカムプロフィールまたはカム位相であっても同様な波形を形成する。
【0037】
次に、サプライポンプ3のポンプ吸入周期に応じてSCV6の駆動電流周期を算出する(駆動電流周期決定手段)。ここで、ポンプ吸入周期に応じた駆動電流周期の算出例を図5に示す。この算出例では、基本ベースとなる駆動電流周期を第1駆動電流周期(τa)とし、ポンプ吸入周期がτaの整数倍近傍に当たる領域においては、駆動電流周期をτaよりも長い第2駆動電流周期(τb)に変化させて、ポンプ吸入周期が駆動電流周期の整数倍の値にならないように、SCV6の駆動電流周期を設定する。なお、本実施例の算出例では、エンジン回転速度変動を要因とするポンプ回転速度変動によるポンプ吸入周期のばらつきを考慮して、駆動電流周期をτaとτbとに切り替えるポンプ吸入周期に対してヒステリシス(τHIS)を持たせるようにしている。
【0038】
そして、ECU10は、その駆動電流周期と目標燃料圧力(PFIN)に対して必要な最終的なSCV駆動電流値(IPMP)とからSCV駆動電流のDUTY比を算出する(DUTY比決定手段)。このDUTY比の算出方法は、ECU10内にてSCV駆動電流値(IPMP)とDUTY値との関係を予め実験等により測定して作成した駆動電流値/DUTY値変換マップまたは演算式に基づいて、図4(b)に示したように、SCV駆動電流周期に対するDUTY値を算出する。
【0039】
そして、ECU10は、SCV駆動電流周期に対するDUTY値を所定の変換係数を用いて制御パルス信号(パルス状のポンプ駆動信号)に変換する。そして、ECU10は、パルス状のポンプ駆動信号を、SCV駆動回路を介してSCV6のソレノイドコイルに印加する。これにより、SCV駆動電流値に対応してSCV6のバルブのリフト量およびSCV6の開口面積が調整され、サプライポンプ3の加圧室から高圧配管11を経てコモンレール1へ加圧圧送される高圧燃料の圧送量が制御され、コモンレール1内の実燃料圧力(コモンレール圧力:NPC)が目標燃料圧力(PFIN)と略一致するようにフィードバック制御される。
【0040】
[実施例の効果]
以上のように、本実施例のコモンレール式燃料噴射システムにおいては、サプライポンプ3のポンプ吸入周期がSCV6の駆動電流周期の整数倍近傍に当たる領域の場合、ポンプ吸入周期が駆動電流周期の整数倍の値にならないように駆動電流周期をベースのτaよりτbに変更して長くしている。これにより、ポンプ吸入周期がSCV6の駆動電流周期の整数倍の値とならないようになるので、ポンプ吸入周期がSCV6の駆動電流周期の整数倍の値となった時の定常的な実燃料圧力のうねりが生じることはなく、コモンレール1内の実燃料圧力(コモンレール圧力:NPC)の圧力制御性および圧力安定性を向上することができる。
【0041】
したがって、エンジン回転速度(NE)と指令噴射量(QFIN)とに応じて設定される指令噴射時期(TFIN)から、指令噴射量(QFIN)とコモンレール圧力(NPC)とに応じて設定される指令噴射パルス時間(TQ)が終了するまで、インジェクタ2の電磁弁4にパルス状のインジェクタ駆動電流を印加することにより、指令噴射量(QFIN)に対応した燃料噴射量の燃料がエンジンの各気筒内に噴射供給されるようになるので、燃料噴射量の制御性も向上することができる。
【0042】
[変形例]
本実施例では、本発明の内燃機関用燃料噴射装置の一例として、コモンレール式燃料噴射システムに適用した例を説明したが、コモンレール等の蓄圧容器を持たず、燃料供給ポンプから高圧配管を経て直接インジェクタに高圧燃料を供給するタイプの内燃機関用燃料噴射装置に適用しても良い。
【0043】
本実施例では、本発明を、PID制御によってSCV駆動電流値(=ポンプ圧送量またはポンプ吐出量または弁のリフト量または弁の開口面積)をフィードバック制御する方法に適用したが、本発明を、PI制御またはPD制御によってSCV駆動電流値(=ポンプ圧送量またはポンプ吐出量または弁のリフト量または弁の開口面積)をフィードバック制御する方法に適用しても良い。
【0044】
本実施例では、燃料圧力センサ25をコモンレール1に直接取り付けて、コモンレール1内に蓄圧される実燃料圧力(コモンレール圧力:NPC)を検出するようにしているが、燃料圧力検出手段をサプライポンプ3のプランジャ室(加圧室)からインジェクタ2内の燃料通路までの間の燃料配管等に取り付けて、サプライポンプ3の加圧室より吐出された燃料圧力を検出するようにしても良い。
【0045】
本実施例では、フィードポンプから加圧室に至る燃料供給路の開口度合(弁のリフト量または弁の開口面積)を調整して、フィードポンプから加圧室内に吸入される燃料の吸入量を駆動電流値に応じて変更することで、サプライポンプ3よりコモンレール1内に圧送される燃料の圧送量を制御する吸入調量弁(SCV)6を設けたが、このSCV6は、その電磁コイル(ソレノイドコイル)への通電停止時に全開、つまり弁の開口面積が最大、リフト量が最小となるノーマリオープンタイプ(常開型)の電磁弁を用いても、あるいはソレノイドコイルへの通電停止時に全閉、つまり弁の開口面積が最小、リフト量が最小となるノーマリクローズタイプ(常閉型)の電磁弁を用いても良い。また、吸入調量弁として電動モータ駆動式の吸入調量弁を用いても良い。
【図面の簡単な説明】
【図1】コモンレール式燃料噴射システムの全体構成を示した概略図である(実施例)。
【図2】NE信号パルス、サプライポンプのプランジャ#1位置、サプライポンプのプランジャ#2位置の推移を示したタイミングチャートである(実施例)。
【図3】ECUの制御ロジックを示した図である(実施例)。
【図4】(a)はECUの制御ロジックを示した図で、(b)はSCV駆動電流波形を示した図である(実施例)。
【図5】ポンプ吸入周期に対する駆動電流周期の算出例を示した図である(実施例)。
【図6】コモンレール内の実燃料圧力(コモンレール圧力)のうねりが発生する原理を示した説明図である(従来の技術)。
【符号の説明】
1 コモンレール(蓄圧容器)
2 インジェクタ(電磁式燃料噴射弁)
3 サプライポンプ(燃料供給ポンプ)
6 SCV(吸入調量弁)
10 ECU(圧送量制御手段)
25 燃料圧力センサ(燃料圧力検出手段)

Claims (3)

  1. (a)内燃機関により回転駆動されて、加圧室内に吸入した燃料を加圧して圧送する燃料供給ポンプと、
    (b)前記加圧室内に吸入される燃料の吸入量を駆動電流値に応じて変更する吸入調量弁と、
    (c)前記駆動電流値を調整して前記吸入調量弁の開口面積を変化させて、前記燃料供給ポンプより吐出される燃料の圧送量を制御する圧送量制御手段と
    を備え、
    前記圧送量制御手段は、
    前記内燃機関の運転状態または運転条件に応じて目標燃料圧力を算出する燃料圧力決定手段と、
    前記内燃機関の運転状態に応じてポンプ回転速度またはポンプ吸入周期を算出する吸入周期演算手段と、
    前記ポンプ回転速度またはポンプ吸入周期に応じて駆動電流周期を設定する駆動電流周期決定手段と、
    前記目標燃料圧力に対して必要な電流値と前記駆動電流周期とから、前記吸入調量弁に印加する駆動電流値を算出する駆動電流値決定手段と
    を備え
    前記駆動電流周期決定手段は、前記ポンプ吸入周期が前記駆動電流周期の整数倍近傍に当たる領域の場合、前記ポンプ吸入周期が前記駆動電流周期の整数倍の値にならないように前記駆動電流周期を変化させることを特徴とする内燃機関用燃料噴射装置。
  2. 請求項1に記載の内燃機関用燃料噴射装置において、
    前記圧送量制御手段は、前記駆動電流値を所定の変換係数を用いてパルス状のポンプ駆動信号に変換し、そのパルス状のポンプ駆動信号を前記吸入調量弁に印加して前記吸入調量弁のリフト量を変えることを特徴とする内燃機関用燃料噴射装置。
  3. 請求項1または請求項2に記載の内燃機関用燃料噴射装置において、
    燃料噴射圧力に相当する高圧燃料を蓄圧すると共に、蓄圧された高圧燃料を前記内燃機関の各気筒毎に搭載された複数の燃料噴射弁に分配供給するための蓄圧容器を備え、
    前記圧送量制御手段は、前記蓄圧容器内の実燃料圧力を検出する燃料圧力検出手段と、比例積分制御または比例微分制御または比例積分微分制御を用いて、前記蓄圧容器内の実燃料圧力と前記目標燃料圧力との偏差から、前記必要な電流値に対して必要となるフィードバック補正量を算出する補正量決定手段とを備え、
    少なくとも前記目標燃料圧力に対して必要な電流値と前記フィードバック補正量とを加算した値に対応した最終的な駆動電流値を前記吸入調量弁に印加して、前記蓄圧容器内の実燃料圧力が前記目標燃料圧力と略一致するようにフィードバック制御することを特徴とする内燃機関用燃料噴射装置。
JP2002170868A 2002-06-12 2002-06-12 内燃機関用燃料噴射装置 Expired - Fee Related JP3722218B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002170868A JP3722218B2 (ja) 2002-06-12 2002-06-12 内燃機関用燃料噴射装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002170868A JP3722218B2 (ja) 2002-06-12 2002-06-12 内燃機関用燃料噴射装置

Publications (2)

Publication Number Publication Date
JP2004011629A JP2004011629A (ja) 2004-01-15
JP3722218B2 true JP3722218B2 (ja) 2005-11-30

Family

ID=30436971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002170868A Expired - Fee Related JP3722218B2 (ja) 2002-06-12 2002-06-12 内燃機関用燃料噴射装置

Country Status (1)

Country Link
JP (1) JP3722218B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4613920B2 (ja) * 2007-03-16 2011-01-19 株式会社デンソー 内燃機関用燃料噴射装置
DE602007004729D1 (de) * 2007-09-11 2010-03-25 Fiat Ricerche Kraftstoffeinspritzeinrichtung mit einer Hochdruckkraftstoffpumpe mit variabler Durchflussmenge
JP6036531B2 (ja) * 2013-05-10 2016-11-30 トヨタ自動車株式会社 燃料圧力制御装置
CN114060190B (zh) * 2020-07-31 2022-08-23 长城汽车股份有限公司 高压油泵上止点位置自学习方法、轨压控制方法、车辆控制器及车辆

Also Published As

Publication number Publication date
JP2004011629A (ja) 2004-01-15

Similar Documents

Publication Publication Date Title
JP4026368B2 (ja) 蓄圧式燃料噴射装置
JP5774521B2 (ja) 燃料漏れ検出装置
JP2004308464A (ja) 内燃機関用燃料噴射装置の故障診断装置
JP3885652B2 (ja) 蓄圧式燃料噴射装置
EP1441119A2 (en) Fuel injection system for internal combustion engine
KR20030066411A (ko) 축압식 연료 분사 시스템
JP2004156578A (ja) 蓄圧式燃料噴射装置
JP4269975B2 (ja) 噴射量学習制御装置
JP4207580B2 (ja) 内燃機関用運転状態学習制御装置
JP2005155561A (ja) 内燃機関用燃料噴射装置
JP3722218B2 (ja) 内燃機関用燃料噴射装置
JP3695411B2 (ja) 内燃機関用燃料噴射制御装置
JP2004156558A (ja) 蓄圧式燃料噴射装置
JP3948294B2 (ja) 燃料噴射装置
EP1447546B1 (en) Engine control unit including phase advance compensator
JP3982516B2 (ja) 内燃機関用燃料噴射装置
JP4292717B2 (ja) 蓄圧式燃料噴射装置
JP2005344573A (ja) 内燃機関用燃料噴射装置
JP2003201865A (ja) 蓄圧式燃料噴射装置
JP3969104B2 (ja) 蓄圧式燃料噴射装置
JP4186648B2 (ja) リニアアクチュエータ制御装置
JP2003314338A (ja) 内燃機関用噴射量制御装置
JP2004316460A (ja) 蓄圧式燃料噴射装置
JP2005163559A (ja) 蓄圧式燃料噴射装置
JP4232426B2 (ja) 内燃機関用噴射量制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050824

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050906

R150 Certificate of patent or registration of utility model

Ref document number: 3722218

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees