JP3718106B2 - 半導体集積回路 - Google Patents

半導体集積回路 Download PDF

Info

Publication number
JP3718106B2
JP3718106B2 JP2000150302A JP2000150302A JP3718106B2 JP 3718106 B2 JP3718106 B2 JP 3718106B2 JP 2000150302 A JP2000150302 A JP 2000150302A JP 2000150302 A JP2000150302 A JP 2000150302A JP 3718106 B2 JP3718106 B2 JP 3718106B2
Authority
JP
Japan
Prior art keywords
voltage
circuit
output
generation circuit
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000150302A
Other languages
English (en)
Other versions
JP2001332094A (ja
Inventor
昌貴 近藤
清人 大田
知則 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2000150302A priority Critical patent/JP3718106B2/ja
Priority to TW090110726A priority patent/TW544521B/zh
Priority to US09/852,839 priority patent/US6864693B2/en
Priority to KR10-2001-0027663A priority patent/KR100406658B1/ko
Publication of JP2001332094A publication Critical patent/JP2001332094A/ja
Application granted granted Critical
Publication of JP3718106B2 publication Critical patent/JP3718106B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2884Testing of integrated circuits [IC] using dedicated test connectors, test elements or test circuits on the IC under test

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Dram (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • For Increasing The Reliability Of Semiconductor Memories (AREA)
  • Tests Of Electronic Circuits (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体集積回路に関し、更に詳細には、半導体集積回路に内蔵された電源電圧発生回路に関する。
【0002】
【従来の技術】
ここでは、半導体集積回路に内蔵された電源電圧発生回路を用いる機能回路として、ダイナミック型メモリデバイスを取り上げて説明を行う。
【0003】
ダイナミック型メモリデバイスでは、マトリックス状に配置された記憶素子(メモリセル)へのデータアクセス方法として、ワード線に電位を与え、ビット線とメモリセルとの間でデータをやりとりすることで読み出し、書き込み動作を実現している。
【0004】
図11に、一般的なダイナミック・ランダム・アクセス・メモリ(DRAM)のメモリセル部の回路構成を示す。
【0005】
DRAMの記憶動作では、図11に示すビット線BLから伝達される論理「H」レベルの電位もしくは論理「L」レベルの電位を、アクセストランジスタTMEMを介し、メモリセルキャパシタCOに電荷を蓄積することで、メモリセルキャパシタCOに論理「H」レベル、もしくは論理「L」レベルのデータの書き込みを行い、データの記憶を行う。
【0006】
近年、DRAMの高集積化や大容量化に伴い、回路全体での微細化が進行しており、メモリセルキャパシタC0の面積も微細化の傾向にあるため、容量も縮小される傾向がある。ここで、メモリセルキャパシタCOの容量の縮小に対してもメモリ動作を保証するためには、メモリセルキャパシタCOの電荷蓄積時間を充分確保することが必要となる。
【0007】
そのためには、電荷転送を行うアクセストランジスタTMEMを介したリーク電流による、メモリセルキャパシタCOからの電荷の減少を防止する必要がある。
【0008】
そこで、アクセストランジスタTMEMの基板に負の電圧を印加することで、アクセストランジスタTMEMの閾値電圧VTを大きくし、アクセストランジスタTMEMを介したリーク電流を抑えることにより、電荷の減少を防止する対策がDRAMでは一般的に行われている。
【0009】
図12に、メモリセルトランジスタTMEMの断面構造を示す。
【0010】
図12において、アクセストランジスタTMEMのソース(S)に接続されるメモリセルキャパシタCからの電荷のリーク成分としては、TMEMのソースからドレイン(D)方向へのリーク電流成分I(off)と、ソースのn型不純物拡散領域からp型基板(p−Sub.)へのリーク電流成分I(leak)に分けられる。
【0011】
ここで、図12では、p型領域からn型領域へ向かう電流の向きを正の方向と定義する。
【0012】
図13(a)のグラフは、I(off)の基板電圧VBB依存性を、図13(b)のグラフは、I(leak)の基板電圧VBB依存性を示したものである。
【0013】
ワード線WLに電位が印加されておらず、非活性状態にあるときには、図13(a)において、(i)で示す領域でのドレイン−ソース間電流IdsがI(off)となることが示されている。ここで、基板電位VBBの印加により、アクセストランジスタTMEMの閾値電圧VTが大きくなり、グラフの傾きが緩やかとなることから、基板電位VBBの印加にともなうI(off)の現象が観測される。
【0014】
その一方で、図13(b)に示される、p−n接合での電流Ip−nに着目すると、負の基板電位VBBの印加に伴い、Ip−nは、図13(b)のグラフの第3象現において増加する。このことは、VBBを大きくするに伴い、ソースのn型不純物拡散領域からp型基板への電流が増加する、つまりTMEMのソース領域からp型基板へのリーク電流Ip−n=I(leak)が増加することを示している。
【0015】
次に、図14に、従来から用いられている、p型基板に印加される負電圧VBBを発生するための負電圧発生回路の一般的な構成を示す。
【0016】
図14において、負電圧発生回路は、基板電圧発生部(チャージポンプ部)15−Aと、電圧検知部15−Bとから構成される。基板電圧発生部15−Aは、自励発振回路15−A1、タイミング生成論理回路15−A2、チャージポンプ回路15−A3により構成され、自励発振回路15−A1は、電圧検知部15−Bにより生成される制御信号BBGOEが論理「H」レベルである期間動作する。
【0017】
タイミング生成回路15−A2で生成されるタイミング信号によって、チャージポンプ回路15−A3が駆動され、負電圧VBBが発生する。
【0018】
この負電圧発生回路は、電圧検知部15−Bにより基板電圧発生部15−Aの制御を行い、基板に印加する負電圧VBBを所定の値に保持する機能を有している。
【0019】
図15に、電圧検知部15−Bの一構成例を示す。
【0020】
図15において、電圧検知部15−Bでは、PチャネルトランジスタTP151と、NチャネルトランジスタTN152および抵抗R153によって構成される分圧回路によって、電源電圧VDDと基板電圧VBBを分圧した電位DETINを生成し、PチャネルトランジスタTP154、TP155、およびNチャネルトランジスタTN156で構成されるインバータによって、設定電圧との大小関係を判定し、インバータI157、I158、およびI159により増幅を行い、大小関係を論理信号BBGOEとして出力する。
【0021】
図16に、図14の負電圧発生回路における電源電圧VDDに対する負電圧VBB特性(a)およびメモリのデータ保持時間であるポーズタイム(Pausetime)特性(b)を示す。
【0022】
図16(a)に示すように、電圧検知部15−Bでは、電源電圧VDDが大きくなると、基板に印加する負電圧VBBが大きく、VDDが小さいときにはVBBは小さくなり、また、図16(b)に示すように、ポーズタイムが最も長くなる電源電圧VDDPが存在し、電源電圧VDDがVDDPより大きい場合および小さい場合ともに、データ保持時間は短くなる。これは、メモリセルトランジスタの基板に負電圧VBBを印加したときには、図13(a)に示すように、メモリセルトランジスタの閾値電圧が大きくなり(VT1→VT2→VT3)、ソースからドレインへと向かう電流成分I(off)が減少する一方、VDDの増加に伴うVBBのレベル変化により、p型基板へと向かうリーク電流成分I(leak)が増加することが原因である。これらは、図16(b)に示すポーズタイム特性において、減少する電流成分I(off)に起因したディスターブポーズ(P1)と、増加する電流成分I(leak)に起因したスタティックポーズ(P2)として、DRAMメモリセルの特性を示すのに用いられる。
【0023】
したがって、基板に印加する負電圧VBBを設定する際には、前述した2種類の電荷のリーク経路を考慮し、それぞれが最小となる電圧条件でかつ電源電圧に依存しないように設定された回路が望ましく、このような負電圧発生回路を適用することで、リーク電流を低減してメモリのデータ保持時間を長く設定できるため、メモリの消費電力を低減することが可能となり、特に、携帯用通信機器など消費電力の少ない回路が望まれる場合に有用である。
【0024】
また、回路の消費電力を低減すると、発熱などを抑えることができ、その他の電子回路においても安定した動作を達成することが可能となる。
【0025】
【発明が解決しようとする課題】
しかしながら、前述した従来の電圧検知部15−Bの構成では、電源電圧VDDと基板電位VBBを分圧した電位DETINを設定電圧との大小関係の判定に用いるため、電源電圧VDDの変動によって検出電圧が変化するという特性がある。
【0026】
メモリセルキャパシタCOに接続されるアクセストランジスタTMEMは、電源電圧VDDが低い場合もしくは高い場合での特性が違ってくるために、電源電圧VDDの条件によっては、メモリの特性が充分発揮できないという問題があった。
【0027】
また、電圧検知部15−B内のNチャネルトランジスタTN152において、基板電位VBBの値によっては、そのソース電極に負の電圧が印加される可能性があり、p基板からソースのn型不純物拡散領域に電流が流れる可能性が考えられる。
【0028】
したがって、PチャネルトランジスタTP151と、NチャネルトランジスタTN152および抵抗R153とによって構成される分圧回路を正常に動作させるには、NチャネルトランジスタTN152のp型基板にVBBを印加する必要があり、そのために、NチャネルトランジスタTN152の基板を周囲の基板から分離させた領域を設ける必要がある。
【0029】
このために、回路を作製する際の製造工程が複雑になると同時に、レイアウト構成上での電圧検知部の配置が難しくなるという問題が生じる。
【0030】
よって、本発明は、上記問題点に鑑みてなされたものであり、その目的は、電源電圧や環境条件の変動、プロセス条件等によらず安定した負電圧をメモリセルトランジスタ基板に供給可能な負電圧発生回路を容易に実現し、メモリセルトランジスタのリーク電流が最小となる条件を維持して、メモリのデータ保持時間を充分に確保可能であり且つ低消費電力化を図った半導体集積回路を提供することにある。
【0031】
【課題を解決するための手段】
前記の目的を達成するため、本発明に係る半導体集積回路は、機能ブロックと、前記機能ブロックに供給する所定の負電圧を発生する負電圧発生回路とを有する半導体集積回路であって、前記負電圧発生回路は、電源電圧を前記所定の負電圧に変換し出力するチャージポンプ部と、前記チャージポンプ部の出力電圧を検知する電圧検知部とを備え、前記チャージポンプ部は、前記電圧検知部からの出力信号が活性化状態にある期間のみ所定のパルス信号を発生する自励発振器と、前記自励発振器からの出力パルス信号をタイミング信号に変換するタイミング信号発生回路とを備え、前記電圧検知部は、定電圧発生回路と、前記定電圧発生回路からの出力電圧と前記チャージポンプ部からの出力電圧を受けて、抵抗器により測定電圧に変換する測定電圧発生回路と、前記測定電圧発生回路からの測定電圧を接地電圧と比較し比較結果を出力する第1の比較器と、前記第1の比較器からの比較出力を増幅して前記チャージポンプ部に出力する出力バッファ回路とを備え、前記定電圧発生回路は、カレントミラー回路を構成するトランジスタのサイズを変化させ、出力電流値を変化させることで出力電圧の調整を行う第1の電圧調整手段を備え、前記測定電圧発生回路は、前記抵抗器の抵抗値を変化させることで測定電圧を変化させる第2の電圧調整手段を備えたことを特徴とする。
【0033】
前記本発明に係る半導体集積回路によれば、チャージポンプ部からの出力電圧を、電源電圧や環境条件の変動、プロセス条件等によるトランジスタ特性の影響を受けない参照電位として、接地電圧と比較して、チャージポンプ部の出力電圧制御を行うことで、安定した負電圧を機能ブロックに供給することができる。また、負電圧発生回路の出力電圧制御を行う電圧検知部を定電圧発生回路によって構成することにより、電源電圧の変動に対して出力される負電圧を一定にすることができる。さらに、定電圧発生回路と抵抗器のそれぞれに独立して電圧調整手段を設けることにより、プロセス条件の変化に対して一定の負電圧出力が保証され、また回路検査および調整が容易になる。
【0044】
本発明に係る半導体集積回路において、前記抵抗器は、各々が直列に接続された第1から第nの抵抗器を含み、前記第2の電圧調整手段は、各々が前記第1から第nの抵抗器と並列に接続された第1から第nのヒューズを備え、前記第1のヒューズと並列に接続された第1の抵抗器の抵抗値をRとした場合、第nのヒューズと並列に接続された第nの抵抗器の抵抗値がRの2(n-1)倍に設定され、前記第2の電圧調整手段は、前記第1から第nのヒューズの少なくとも1つが切断されることにより、抵抗値の増分をRからRの2(n-1)倍まで変化させることで前記測定電圧を変化させることが好ましい。
【0045】
この構成によれば、各抵抗器に並列接続されたヒューズで調整できる抵抗値を最小ステップの2のべき乗に設定することにより、ヒューズの本数がn本の場合、電圧の変化幅を最小ステップの0倍から2(n-1)倍まで調整することが可能になる。
【0046】
本発明に係る半導体集積回路において、前記電圧検知部の前記第1の比較器は、前記電圧検知部における前記第1の比較器よりも前段の回路で用いるトランジスタよりも厚いゲート酸化膜を有するトランジスタからなることが好ましい
【0047】
この構成によれば、チャージポンプ部からの出力電圧を、電源電圧や環境条件の変動、プロセス条件等によるトランジスタ特性の影響を受けない参照電位として、接地電圧と比較して、チャージポンプ部の出力電圧制御を行うことで、安定した負電圧を機能ブロックに供給することができる。また、負電圧発生回路の出力電圧制御を行う電圧検知部を定電圧発生回路によって構成することにより、電源電圧の変動に対して出力される負電圧を一定にすることができる。さらに、第1の比較器に入力される電圧が急激に変動した場合でも、トランジスタ素子の絶縁破壊を防止することができる。
【0048】
本発明に係る半導体集積回路において、前記電圧検知部の前記出力バッファ回路は、初段のインバータが他段のインバータよりも厚いゲート酸化膜を有するトランジスタからなる複数段のインバータを備えていることが好ましい
【0049】
この構成によれば、チャージポンプ部からの出力電圧を、電源電圧や環境条件の変動、プロセス条件等によるトランジスタ特性の影響を受けない参照電位として、接地電圧と比較して、チャージポンプ部の出力電圧制御を行うことで、安定した負電圧を機能ブロックに供給することができる。また、負電圧発生回路の出力電圧制御を行う電圧検知部を定電圧発生回路によって構成することにより、電源電圧の変動に対して出力される負電圧を一定にすることができる。さらに、電圧が緩やかに変化する初段のインバータに対しては、厚いゲート酸化膜を有するトランジスタを用いて、ゲートの容量負荷を低減させる一方、電圧が充分速く変化する2段目以降のインバータに対しては、初段よりも薄いゲート酸化膜を有するトランジスタを用いて、回路全体の応答速度を向上させることができる。
【0059】
【発明の実施の形態】
以下、本発明の実施の形態について、図面を参照しながら説明する。
【0060】
(第1実施形態)
図1は、本発明の第1実施形態による半導体集積回路に含まれる負電圧発生回路の構成例を示すブロック図である。
【0061】
図1において、負電圧発生回路は、負電圧発生部1−A(チャージポンプ部)と電圧検知部1−Bとで構成されており、負電圧発生部1−Aは、電圧検知部1−Bから供給される制御信号BBGOEにより動作制御され、機能ブロックを構成するトランジスタの基板電圧VBBを所定の負電圧に保持する。ここで、負電圧発生部1−Aは、電圧検知部1−Bから供給される制御信号BBGOEが論理「H」レベルである期間動作する自励発振回路1−A1と、タイミング生成回路1−A2と、負電圧生成のためのチャージポンプ回路1−A3とで構成される。
【0062】
電圧検知部1−Bは、定電圧発生回路1−B1と、電圧複製回路1−B2と、測定電圧発生回路1−B3と、出力部1−B4とで構成される。
【0063】
図2は、電圧検知部1−Bの概略構成例を示す回路図である。
【0064】
図2において、電圧複製回路1−B2は、差動増幅器AMP11(第2の比較器)およびPチャネルトランジスタTP11からなり、定電圧発生回路1−B1からの定電圧を受けてその電圧を複製する。
【0065】
測定電圧発生回路1−B3は、可変抵抗器R1’およびR2’からなり、電圧複製回路1−B2から出力される所定の定電圧と負電圧発生部1−Aからの基板電圧VBBとを分圧し、電圧REFV0として出力する。
【0066】
出力部1−B4は、測定電圧発生回路1−B3から出力される電圧REFV0を、参照電圧である接地電圧VSSと比較して、大小関係を判別する差動増幅器AMP12(第1の比較器)と、出力バッファ回路1−B4’とで構成される。出力バッファ回路1−B4’は、緩やかに変化する差動増幅器AMP12の出力信号M22を増幅し、制御信号BBGOEを生成するためのインバータ列INV11、INV12、INV13、バッファBUF14と、INV13の出力をゲートに印加することで、「H」レベルから「L」レベルへの変化と、「L」レベルから「H」レベルへの変化に対する応答に差を生じさせヒステリシス特性を生成するPチャネルトランジスタ組TP12によるシュミットトリガ回路とで構成される。
【0067】
図3は、図1に示す定電圧発生回路1−B1と電圧複製回路1−B2の構成を示す回路図である。なお、図3において、定電圧発生回路1−B1を構成するNチャネルトランジスタT4およびT5に接続され、トランジスタサイズ変更による電流調整で出力電圧調整を行う部分については説明の便宜上削除しているが、図4に記載があり、後ほど説明する。
【0068】
図3において、定電圧発生回路1−B1におけるPチャネルトランジスタT1およびT2、またNチャネルトランジスタT4およびT5は、それぞれ同じゲート幅およびゲート長でカレントミラー回路を構成している。ここでは、PチャネルトランジスタT1およびT2のゲート幅をWP1、ゲート長をLP1とし、NチャネルトランジスタT4およびT5のゲート幅をWN1、ゲート長をLN1とし、PチャネルトランジスタT1とNチャネルトランジスタT4を含む経路を流れる電流をI1、PチャネルトランジスタT2とNチャネルトランジスタT5を含む経路を流れる電流をI2とすると、PチャネルトランジスタT1とNチャネルトランジスタT5について、それぞれ以下の関係式が成立する。
【0069】
I1=−(β/2)・(WP1/LP1)・(V1−VTP)2
I2=(β/2)・(WN1/LN1)・(V3−VTN)2
ただし、上記の式では、Pチャネルトランジスタの閾値電圧をVTとした場合、VTP=VT+VDDと定義するものとする。
【0070】
また、抵抗R0については、R0・I2=VDD−V4となることから、電源電圧VDDの上昇に伴い、電流I2は増加しようとする。NチャネルトランジスタT5を流れる電流の関係を考慮すると、T5のドレインおよびゲート電圧V3は上昇することになり、トランジスタT6、T7、T8の経路を流れる電流I3は減少する傾向を示す。電流I3が減少すると、T8の電流の関係により電圧V7が上昇し、T11およびT12の経路を流れる電流I4が減少することになる。電流I4が減少すると、T12についての電流の関係から、電圧V5が減少することになり、その結果、電流I1が減少する。電流I1の減少は、T1を流れる電流の関係から電圧V1の上昇を招くことになり、電流I2を減少させる方向に働く。
【0071】
以上をまとめると、カレントミラー回路と電圧を制御するトランジスタT11、T12の働きにより、電源電圧VDDの増加および減少に対する系全体の電流および電圧の変化を打ち消す方向に作用し、電圧V7が安定するためにT9およびT10を流れる電流は一定となり、定電圧発生回路1−B1の出力電圧V9は、PチャネルトランジスタT10のサイズで決定される、一定の値となる。
【0072】
定電圧発生回路1−B1で生成される一定の電圧V9は、電圧複製回路1−B2の差動増幅器AMP11の反転入力端子に印加されており、差動増幅器AMP11の出力をPチャネルトランジスタTP11のゲート端子に接続し、ドレインを電源電圧VDDに接続し、ソースを出力STDVOUTおよび差動増幅器AMP11の正転入力端子に接続して帰還をかけることで、入力電圧V9と等しい出力STDVOUTが複製される。
【0073】
次に、図4を用いて、定電圧発生回路1−B1における第1の電圧調整手段について説明する。
【0074】
図4は、定電圧発生回路1−B1の詳細回路図である。
【0075】
定電圧発生回路1−B1は、図4に示すように、カレントミラー回路の左右に、それぞれ3つずつ、ヒューズFUSE4TA、FUSE4TB、FUSE4TCと、ヒューズFUSE5TA、FUSE5TB、FUSE5TCとを備えており、未切断状態では、トランジスタT4+T4A+T4B+T4Cと、トランジスタT5+T5A+T5B+T5Cとして機能するトランジスタを、ヒューズの切断によりサイズを変えることで左右の電流を変え、安定点での電圧V5およびV7を変化させることで、電圧調整が行える機能を有している。
【0076】
カレントミラー回路の右側におけるトランジスタT5A、T5B、T5Cのドレイン端子にそれぞれ備えられた3本のヒューズFUSE5TA、FUSE5TB、FUSE5TCを切断することにより、電流I2に対する電流I3の比率を増加させる働きがあるため、電流I3の増加により電圧V7は下降し、トランジスタT9およびT10を流れる電流が増加するため、出力電圧V9は上昇する。
【0077】
一方、カレントミラー回路の左側におけるトランジスタT4A、T4B、T4Cのドレイン端子にそれぞれ備えられた3本のヒューズFUSE4TA、FUSE4TB、FUSE4TCを切断した場合、電流I2に対する電流I1の比率が減少するために、電圧V1は未切断状態に比べ高いレベルで安定するようになり、電流I2も減少することから安定状態での電圧V7は上昇し、出力電圧V9が下降する。
【0078】
次に、図5を用いて、測定電圧発生回路1−B3における第2の電圧調整手段について説明する。
【0079】
図5は、測定電圧発生回路1−B3を構成する可変抵抗器R1’とR2’の構成を示す回路図である。
【0080】
図5において、ヒューズFUSE1、FUSE2、FUSE3がそれぞれ並列接続された抵抗器RTRIM1、RTRIM2、RTRIM3は、抵抗器RTRIM2の抵抗値が抵抗器RTRIM1の抵抗値(R1)の2倍に、抵抗器RTRIM3の抵抗値がRTRIM1の抵抗値(R1)の4倍に設定されている。
【0081】
同様に、ヒューズFUSE4、FUSE5、FUSE6がそれぞれ並列接続された抵抗器RTRIM4、RTRIM5、RTRIM6は、抵抗器RTRIM5の抵抗値が抵抗器RTRIM4の抵抗値(R4)の2倍に、抵抗器RTRIM6の抵抗値がRTRMI4の抵抗値(R4)の4倍に設定されている。
【0082】
これにより、最小でR1、R4、最大で7×R1、7×R4だけの抵抗値の設定、したがって電圧設定をそれぞれのヒューズで8通り、合計16通り行うことが可能となる。
【0083】
抵抗器による電圧設定は、温度やプロセス条件などから受ける特性変化の影響が小さいため、あらかじめ目標設定電圧との差から切るべきヒューズを特定することが可能であり、設定に必要な時間を短縮することが可能である。
【0084】
次に、図6を用いて、差動増幅器AMP12(第1の比較器)の動作の概略について説明する。
【0085】
図6は、差動増幅器AMP12の等価回路図である。図6に示すように、差動増幅器AMP12は、AMP12A、AMP12B、AMP12Cの3個の差動増幅器によって構成される。
【0086】
AMP12Aの反転入力端子には、定電圧STDVOUTと負電圧VBBから分圧された電圧REFV0が印加され、その正転入力端子には、接地電圧VSSが印加される。また、AMP12Bの正転入力端子には、測定電圧REFV0が印加され、その反転入力端子には接地電圧VSSが印加される。AMP12Aの出力をAMP12Cの正転入力端子に、AMP12Bの出力をAMP12Cの反転入力端子に印加することで、REFV0>VSSの場合は、AMP12Cの出力M22の電圧レベルが下がり、REFV0<VSSの場合は、AMP12Cの出力M22の電圧レベルは上がることになる。したがって、差動増幅器AMP12全体としては、REFV0を反転入力端子に、VSSを正転入力端子に印加する構成と等価になる。
【0087】
次に、図7を用いて、差動増幅器AMP12の動作の詳細について説明する。
【0088】
図7は、差動増幅器AMP12の詳細回路図である。
【0089】
図7において、AMP12A、AMP12Bはそれぞれ同じ能力、特性を備えさせるために、対応するトランジスタが同じサイズで構成されている。AMP12A、AMP12B、AMP12Cのそれぞれの電流源を構成するトランジスタTP12A1、TP12B1、TP12C1のゲートに、図3に示す定電圧発生回路1−B1のカレントミラー回路で生成される電圧V1が入力されている。
【0090】
AMP12Aでは、測定電圧REFV0の電圧レベルが上昇した場合、TP12A3を流れる電流が減少して、その減少分だけTP12A2を流れる電流が増加する。ここで、TN12A4、TN12A5はカレントミラー回路を構成しており、TN12A4を流れる電流すなわちTN12A2を流れる電流が増加し、その増加分だけTN12A5を流れる電流が減少した場合、出力M14の電圧レベルが下降する方向へと状態が遷移する。一方、測定電圧REFV0の電圧レベルが下降した場合は、逆に、出力M14の電圧レベルが上昇する方向へと状態が変化する。
【0091】
また、AMP12Bでは、測定電圧REFV0はTP12B2のゲートに入力されているために、測定電圧REFV0の電圧レベルの上昇にともない、出力M17の電圧レベルは上昇し、逆に、測定電圧REFV0の電圧レベルの下降によって出力M17の電圧レベルが下降する。
【0092】
よって、AMP12Cでは、AMP12AとAMP12Bの出力結果から、測定電圧REFV0の上昇に伴い、出力M22の電圧レベルは上昇し、測定電圧REFV0の下降に伴い、出力M22の電圧レベルは下降する。
【0093】
ここで、本実施形態によれば、トランジスタTP12A2、TP12B3のゲートにはそれぞれ接地電圧VSSが接続されるため、定電圧源で生成される電圧と違い、プロセス条件の影響を受けず、差動増幅器12において常に安定した電圧比較が可能となる。
【0094】
また、負電圧VBBの変化が急峻であった場合に、トランジスタ素子の絶縁破壊を防止するために、AMP12を構成する回路は、他の回路よりも厚いゲート酸化膜を有するトランジスタによって構成されている。
【0095】
図8は、図1に示す出力部1−B4のうち、差動増幅器AMP12の出力M22を受け、制御信号BBGOEを生成する出力バッファ段の構成を示す詳細回路図である。
【0096】
図8において、差動増幅器AMP12の出力M22は緩やかに変化するため、M22を受ける初段のインバータINV11においては、他段のインバータINV12、INV13、およびバッファBUF14を構成するトランジスタ、およびPチャネルトランジスタ組TP12よりも厚いゲート酸化膜を有するトランジスタを用いることで、ゲートの容量負荷を低減し、応答速度の遅れの影響を軽減している。
【0097】
初段のインバータINV11は、8個のNチャネルトランジスタTN111〜TN118と、8個のPチャネルトランジスタTP111〜TP118とで構成され、TN111およびTN112をNチャネル側として、TP111〜TP115をPチャネル側として機能させており、残りのトランジスタは、最上層の配線マスクを変更することで、INV11のスイッチングレベルを調整可能とするために、予備として設けられている。
【0098】
Pチャネルトランジスタ組TP12は、INV12のスイッチングレベルにヒステリシス特性を持たせるために用いるもので、M25の電圧レベルが下降しようとする場合には、TP12内のTP121を流れる電流が増えることで、M24の電圧レベルを決定するINV12のスイッチングレベルが上がり、M25の電圧レベルが下降して「L」レベルに近づこうとする電圧変化を阻止するように働く。ここでは、TP121のみを機能させており、他の4個のトランジスタTP122〜TP125は、最上層マスクで使用するトランジスタの個数を変化させることことで、ヒステリシスの幅を変化させるために、予備として設けられている。
【0099】
バッファBUF14では、制御信号BBGOEを供給する負電圧発生部1−Aのトランジスタに対し、十分な出力電流を確保するため、トランジスタTP141およびTN141に比べて、大きなゲート幅を有するトランジスタTP142およびTN142を用いている。
【0100】
上記のように、本実施形態によれば、定電圧発生回路1−B1の出力電圧を基板に印加する負電圧VBBに対する参照電圧として用いることで、基板電圧の電源電圧依存性を無くすと同時に、基板電圧の検出に用いる差動増幅器の基準電圧を接地電圧VSSに設定することで、電源電圧や環境温度の変動、プロセス条件等のいずれに対しても、安定した負電圧VBBをメモリセルトランジスタ基板に供給することが可能となる。
【0101】
また、2つの電圧調整手段を定電圧発生回路1−B1と測定電圧発生回路1−B3の2箇所に独立して備えることで、定電圧発生回路1−B1の定電圧を適正な値として出力するための調整を行った後、測定電圧発生回路1−B3により、その適正な定電圧と負電圧VBBから分圧される電圧を変化させて、制御信号BBGOEの最適設定を行うことが可能になる。
【0102】
(第2実施形態)
図9は、本発明の第2実施形態による半導体集積回路に含まれる負電圧発生回路の部分構成例を示すブロック図である。
【0103】
図9に示すように、本実施形態では、差動増幅器AMP11およびPチャネルトランジスタTP11で構成される第1の電圧複製回路1−B2と、差動増幅器AMP11BおよびPチャネルトランジスタTP11Bで構成される第2の電圧複製回路1−B2’とに共通の定電圧発生回路1−B1を用いることで、第1の制御信号BBGOE1と第2の制御信号BBGOE2を出力可能な複数の電圧検知部が構成されている。
【0104】
まず、第1の電圧検知部からの第1の制御信号BBGOE1によって制御される第1の負電圧をVBB1、第1の電圧検知部で用いる定電圧出力をSTDVOUT1とした場合、AMP12の反転入力端子に印加される電圧REFV0が、正転入力端子に印加されている接地電圧VSSに等しくなったとき、すなわちREFV0=0Vで制御系が安定するため、第1の負電圧VBB1は以下の式で表される。
【0105】
VBB1=−(R2’/R1’)・STDVOUT1
次に、第2の電圧検知部からの第2の制御信号BBGOE2によって制御される第2の負電圧をVBB2、第2の電圧検知部で用いる定電圧出力をSTDVOUT2とした場合、AMP212の反転入力端子に印加される電圧REFV1が、正転入力端子に印加されている接地電圧VSSに等しくなったとき、すなわちREFV1=0Vで制御系が安定するため、第2の負電圧VBB2は以下の式で表される。
【0106】
VBB2=−(R4’/R3’)・STDVOUT2
このように、第1の負電圧VBB1と第2の負電圧VBB2は、それぞれ、R1’とR2’の抵抗比、R3’とR4’の抵抗比によって決められる。
【0107】
本実施形態によれば、DRAMのメモリセル以外に負電圧が必要な回路が、集積回路の中に含まれるときに、複数の電圧検知部で定電圧発生回路を共用することで、レイアウト面積を低減することが可能になる。
【0108】
(第3実施形態)
図10は、本発明の第3実施形態による半導体集積回路に含まれる負電圧発生回路の部分構成例を示すブロック図である。
【0109】
図10に示すように、本実施形態では、差動増幅器AMP11およびPチャネルトランジスタTP11で構成された第1の電圧複製回路1−B2により複製される一定の電圧STDVOUT1と負電圧VBBとから制御信号BBGOEを生成する第1の電圧検知部に加え、差動増幅器AMP11CおよびPチャネルトランジスタTP11Cで構成された第3の電圧複製回路1−B2”により複製される一定の電圧STDVOUT3と、差動増幅器AMP312の正転入力端子に供給される電圧VMEASUREとから、制御信号CTRLOUTを生成可能な第3の電圧検知部が構成されている。
【0110】
ここでは、電圧VMEASURE=(R6/(R5+R6))・STDVOUT3が印加された場合に、制御信号CTRLOUTによる制御が可能になる。一例としては、第3の電圧検知部は、制御信号CTRLOUTにより昇圧電源電圧VPPを検知する回路として機能させることが可能である。
【0111】
このように、定電圧発生回路の出力V9を直接用いず、電圧を複製させて用いることで、複数の電圧検知部を独立して機能させることが可能になる。
【0112】
本発明の実施の形態による負電圧発生回路の検査項目として、素子作製プロセスの条件などにより定電圧発生回路の出力変動を抑制するために、ヒューズによる出力電圧の調整が必要となるため、同一ウェハ上に作製される半導体集積回路の検査としては、全数検査を行うよりも、あらかじめ良否判定を行った後に、負電圧発生回路の検査を行うことが検査時間の短縮に有用である。
【0113】
DRAMでは、この負電圧発生回路の適用回路ブロックはメモリセルであり、その特性の良否はメモリセルのポーズタイム測定に基づいて行われる。
【0114】
従って、以上のことを考慮に入れた、検査プログラムのアルゴリズムの一例としては、次に示すような流れとなる。
【0115】
(1)負電圧発生回路とは独立した入力端子からメモリセルの基板領域に負の電圧を入力し、ポーズタイムの測定をウェハ上の半導体集積回路にそれぞれ備えられたDRAMに対して実行する。また、同時にポーズタイムが最大となる基板電圧の値をそれぞれの回路に対し記録しておく。
【0116】
(2)ポーズタイム測定結果が規格を満たす回路に対し、良品選別を行って、良品と判定された回路に対してのみ、負電圧発生回路の検査を行う。
【0117】
(3)負電圧発生回路の出力電圧が、あらかじめ外部電圧入力により行ったポーズタイム検査での基板電圧の値と違った場合には、回路内に備えられたヒューズを用いて前記基板電圧と等しい値が出力されるよう出力電圧の調整を行う。
【0118】
(4)以降、DRAMのファンクションテストは、ポーズタイムが規格を満足する回路で、前記負電圧発生回路の電圧調整を行ったものに対してのみ実施する。
【0119】
このように、良品と判定された回路に対してのみ負電圧発生回路の検査を行うことで、検査時間の短縮を行えると同時に、それぞれの回路に対してポーズタイムを最大にできる負電圧出力の調整が行えるために、メモリの性能を最大限に活用できる設定による検査手法が提供される。
【0120】
【発明の効果】
以上説明したように、本発明の半導体集積回路によれば、電源電圧や環境条件の変動、プロセス条件等によらず安定した負電圧をメモリセルトランジスタ基板に供給可能な負電圧発生回路を容易に実現し、メモリセルトランジスタのリーク電流が最小となる条件を維持して、メモリのデータ保持時間を充分に確保可能にするとともに、低消費電力化を図ることで、携帯用の記録装置や通信装置等に適用した際に、特に効果を発揮させることが可能になる。
【図面の簡単な説明】
【図1】 本発明の第1実施形態による半導体集積回路に含まれる負電圧発生回路の構成例を示すブロック図
【図2】 電圧検知部1−Bの概略構成例を示す回路図
【図3】 定電圧発生回路1−B1と電圧複製回路1−B2の構成を示す回路図
【図4】 定電圧発生回路1−B1の詳細構成を示す回路図
【図5】 測定電圧発生回路1−B3の詳細構成を示す回路図
【図6】 差動増幅器AMP12の構成を等価的に示す回路図
【図7】 差動増幅器AMP12の詳細構成を示す回路図
【図8】 出力バッファ回路1−B4’の詳細構成を示す回路図
【図9】 本発明の第2実施形態による半導体集積回路に含まれる負電圧発生回路の部分構成例を示すブロック図
【図10】 本発明の第3実施形態による半導体集積回路に含まれる負電圧発生回路の部分構成例を示すブロック図
【図11】 DRAMメモリセル部の回路構成図
【図12】 メモリセルトランジスタの構造を示す断面図
【図13】 メモリセルトランジスタのリーク電流I(off)の基板電圧VBB依存性(a)、およびリーク電流I(leak)の基板電圧VBB依存性を示すグラフ
【図14】 従来の負電圧発生回路の構成を示すブロック図
【図15】 従来の電圧検知部15−Bの詳細回路図
【図16】 従来の負電圧発生回路における負電圧VBBの電源電圧VDD依存性(a)、およびメモリにおけるポーズタイムの電源電圧VDD依存性(b)を示すグラフ
【符号の説明】
1−A 負電圧発生部(チャージポンプ部)
1−B 電圧検知部
1−A1 自励発振回路
1−A2 タイミング生成回路
1−A3 チャージポンプ回路
1−B1 定電圧発生回路
1−B2 電圧複製回路(第1の電圧複製回路)
1−B2’ 第2の電圧複製回路
1−B2” 第3の電圧複製回路
1−B3 測定電圧発生回路
1−B4 出力部
1−B4’ 出力バッファ回路
AMP11 差動増幅器(第2の比較器)
AMP12 差動増幅器(第1の比較器)
INV11 初段インバータ
R1’、R2’ 抵抗器

Claims (4)

  1. 機能ブロックと、前記機能ブロックに供給する所定の負電圧を発生する負電圧発生回路とを有する半導体集積回路であって、
    前記負電圧発生回路は、
    電源電圧を前記所定の負電圧に変換し出力するチャージポンプ部と、
    前記チャージポンプ部の出力電圧を検知する電圧検知部とを備え、
    前記チャージポンプ部は、
    前記電圧検知部からの出力信号が活性化状態にある期間のみ所定のパルス信号を発生する自励発振器と、前記自励発振器からの出力パルス信号をタイミング信号に変換するタイミング信号発生回路とを備え、
    前記電圧検知部は、
    定電圧発生回路と、前記定電圧発生回路からの出力電圧と前記チャージポンプ部からの出力電圧を受けて、抵抗器により測定電圧に変換する測定電圧発生回路と、前記測定電圧発生回路からの測定電圧を接地電圧と比較し比較結果を出力する第1の比較器と、前記第1の比較器からの比較出力を増幅して前記チャージポンプ部に出力する出力バッファ回路とを備え、
    前記定電圧発生回路は、カレントミラー回路を構成するトランジスタのサイズを変化させ、出力電流値を変化させることで出力電圧の調整を行う第1の電圧調整手段を備え、前記測定電圧発生回路は、前記抵抗器の抵抗値を変化させることで測定電圧を変化させる第2の電圧調整手段を備えたことを特徴とする半導体集積回路。
  2. 前記抵抗器は、各々が直列に接続された第1から第nの抵抗器を含み、前記第2の電圧調整手段は、各々が前記第1から第nの抵抗器と並列に接続された第1から第nのヒューズを備え、
    前記第1のヒューズと並列に接続された第1の抵抗器の抵抗値をRとした場合、第nのヒューズと並列に接続された第nの抵抗器の抵抗値がRの2(n-1)倍に設定され、前記第2の電圧調整手段は、前記第1から第nのヒューズの少なくとも1つが切断されることにより、抵抗値の増分をRからRの2(n-1)倍まで変化させることで前記測定電圧を変化させることを特徴とする請求項記載の半導体集積回路。
  3. 記電圧検知部の前記第1の比較器は、前記電圧検知部における前記第1の比較器よりも前段の回路で用いるトランジスタよりも厚いゲート酸化膜を有するトランジスタからなることを特徴とする請求項1記載の半導体集積回路。
  4. 記電圧検知部の前記出力バッファ回路は、初段のインバータが他段のインバータよりも厚いゲート酸化膜を有するトランジスタからなる複数段のインバータを備えていることを特徴とする請求項1記載の半導体集積回路。
JP2000150302A 2000-05-22 2000-05-22 半導体集積回路 Expired - Fee Related JP3718106B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2000150302A JP3718106B2 (ja) 2000-05-22 2000-05-22 半導体集積回路
TW090110726A TW544521B (en) 2000-05-22 2001-05-04 Semiconductor integrated circuit, test method for the same, and recording device and communication equipment having the same
US09/852,839 US6864693B2 (en) 2000-05-22 2001-05-10 Semiconductor integrated circuit with negative voltage generation circuit, test method for the same, and recording device and communication equipment having the same
KR10-2001-0027663A KR100406658B1 (ko) 2000-05-22 2001-05-21 반도체 집적회로 및 그 검사방법 및 그것을 가지는기록장치 및 통신기기

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000150302A JP3718106B2 (ja) 2000-05-22 2000-05-22 半導体集積回路

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004323974A Division JP2005117056A (ja) 2004-11-08 2004-11-08 半導体集積回路の検査方法

Publications (2)

Publication Number Publication Date
JP2001332094A JP2001332094A (ja) 2001-11-30
JP3718106B2 true JP3718106B2 (ja) 2005-11-16

Family

ID=18656033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000150302A Expired - Fee Related JP3718106B2 (ja) 2000-05-22 2000-05-22 半導体集積回路

Country Status (4)

Country Link
US (1) US6864693B2 (ja)
JP (1) JP3718106B2 (ja)
KR (1) KR100406658B1 (ja)
TW (1) TW544521B (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10342997A1 (de) * 2003-09-17 2005-04-28 Infineon Technologies Ag Elektronischer Schaltkreis, Schaltkreis-Testanordnung und Verfahren zum Ermitteln der Funktionsfähigkeit eines elektronischen Schaltkreises
KR100761358B1 (ko) * 2004-06-03 2007-09-27 주식회사 하이닉스반도체 반도체 기억 소자 및 그의 내부 전압 조절 방법
KR100680441B1 (ko) * 2005-06-07 2007-02-08 주식회사 하이닉스반도체 안정적인 승압 전압을 발생하는 승압 전압 발생기
US20070164754A1 (en) * 2006-01-18 2007-07-19 International Business Machines Corporation On-chip high frequency power supply noise sensor
US7345467B2 (en) * 2006-06-27 2008-03-18 Advantest Corporation Voltage generating apparatus, current generating apparatus, and test apparatus
US7808265B2 (en) * 2006-11-01 2010-10-05 Synopsys, Inc. Differential voltage defectivity monitoring circuit
US7692996B2 (en) * 2007-07-30 2010-04-06 Micron Technology, Inc. Method, system, and apparatus for voltage sensing and reporting
JP2009260072A (ja) * 2008-04-17 2009-11-05 Toshiba Corp 半導体装置
KR101536194B1 (ko) * 2008-05-19 2015-07-13 삼성디스플레이 주식회사 액정 표시 장치와 그 구동 방법
JP5376516B2 (ja) * 2009-07-27 2013-12-25 スパンション エルエルシー 半導体装置
DE102011018941A1 (de) * 2011-04-29 2012-10-31 Borgwarner Beru Systems Gmbh Verfahren zur Messung des elektrischen Widerstands einer Glühkerze
EP2846211A1 (en) 2013-09-10 2015-03-11 Dialog Semiconductor GmbH Reduction in on-resistance in pass device
JP6436821B2 (ja) * 2015-03-19 2018-12-12 エイブリック株式会社 電流検出回路
US20240045461A1 (en) * 2022-08-05 2024-02-08 Semtech Corporation Biasing control for compound semiconductors
CN116047276B (zh) * 2023-03-06 2023-06-20 苏州贝克微电子股份有限公司 一种半导体芯片测试电路和测试方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0630381B2 (ja) * 1986-02-13 1994-04-20 日本電気株式会社 半導体装置の製造方法
JPS63211193A (ja) * 1987-02-27 1988-09-02 Hitachi Ltd 半導体集積回路装置
JPH01290191A (ja) * 1988-05-17 1989-11-22 Ricoh Co Ltd センスアンプ回路装置
US5341035A (en) * 1990-06-04 1994-08-23 Matsushita Electric Industrial Co., Ltd. Substrate potential generator
JP2682725B2 (ja) * 1990-06-04 1997-11-26 松下電器産業株式会社 半導体装置
JPH04352467A (ja) * 1991-05-30 1992-12-07 Toshiba Corp Mos型半導体集積回路装置
JP3132067B2 (ja) * 1991-08-12 2001-02-05 株式会社日立製作所 半導体装置
JPH0547934A (ja) * 1991-08-15 1993-02-26 Fujitsu Ten Ltd 大規模集積回路の製造方法
JPH05189968A (ja) * 1992-01-16 1993-07-30 Mitsubishi Electric Corp 半導体記憶装置
US5282170A (en) * 1992-10-22 1994-01-25 Advanced Micro Devices, Inc. Negative power supply
KR950009204B1 (ko) * 1993-04-08 1995-08-16 삼성전자 주식회사 반도체 집적회로의 워드라인 드라이버회로 및 그 소오스전원 공급방법
KR0172217B1 (ko) * 1993-08-02 1999-03-20 한승준 자동차의 배기가스를 이용한 히터 장치
JP3326949B2 (ja) * 1994-01-28 2002-09-24 富士通株式会社 半導体集積回路
US5553295A (en) * 1994-03-23 1996-09-03 Intel Corporation Method and apparatus for regulating the output voltage of negative charge pumps
JP3510335B2 (ja) * 1994-07-18 2004-03-29 株式会社ルネサステクノロジ 半導体記憶装置、内部電源電圧発生回路、内部高電圧発生回路、中間電圧発生回路、定電流源、および基準電圧発生回路
US5670907A (en) * 1995-03-14 1997-09-23 Lattice Semiconductor Corporation VBB reference for pumped substrates
EP0750314B1 (en) 1995-06-19 2000-01-26 STMicroelectronics S.r.l. Negative word line voltage regulation circuit for electrically erasable semiconductor memory devices
FR2735922B1 (fr) * 1995-06-21 1997-08-22 Sgs Thomson Microelectronics Circuit generateur de tension negative du type pompe de charge
JPH1070243A (ja) * 1996-05-30 1998-03-10 Toshiba Corp 半導体集積回路装置およびその検査方法およびその検査装置
JPH09330590A (ja) * 1996-06-07 1997-12-22 Mitsubishi Electric Corp 内部電圧検出回路、および基板電圧検出回路
JP3450629B2 (ja) * 1997-02-26 2003-09-29 株式会社東芝 負電圧検知回路及び不揮発性半導体記憶装置
JP3278765B2 (ja) * 1997-11-17 2002-04-30 日本電気株式会社 負電圧生成回路
JP3853513B2 (ja) 1998-04-09 2006-12-06 エルピーダメモリ株式会社 ダイナミック型ram
JP2001332696A (ja) * 2000-05-24 2001-11-30 Nec Corp 基板電位検知回路及び基板電位発生回路

Also Published As

Publication number Publication date
TW544521B (en) 2003-08-01
US20010045841A1 (en) 2001-11-29
US6864693B2 (en) 2005-03-08
KR100406658B1 (ko) 2003-11-20
KR20010107605A (ko) 2001-12-07
JP2001332094A (ja) 2001-11-30

Similar Documents

Publication Publication Date Title
JP4768437B2 (ja) 半導体記憶装置
JP3718106B2 (ja) 半導体集積回路
US7920438B2 (en) Semiconductor memory device having the operating voltage of the memory cell controlled
JP3704188B2 (ja) 半導体記憶装置
KR100261013B1 (ko) 반도체 집적 회로 장치
JP4046382B2 (ja) 半導体集積回路装置
TWI629685B (zh) 用於一源極隨耦器電壓調節器之一負載電流控制電路之設備及方法
US9958887B2 (en) Device having internal voltage generating circuit
JP2007164960A (ja) 半導体集積回路装置
US8923082B2 (en) Semiconductor device on which wafer-level burn-in test is performed and manufacturing method thereof
CN111833923B (zh) 用于排放泄漏电流的***和装置
US20020176305A1 (en) Semiconductor integrated circuit device having internal supply voltage generating circuit
US6498760B2 (en) Semiconductor device having test mode
US20130223136A1 (en) SRAM based on 6 transistor structure including a first inverter, a second inverter, a first pass-gate transistor, and a second pass-gate transistor
US6628162B2 (en) Semiconductor integrated circuit
JP2007073143A (ja) 半導体記憶装置
US20120218019A1 (en) Internal voltage generating circuit and testing method of integrated circuit using the same
US6330173B1 (en) Semiconductor integrated circuit comprising step-up voltage generation circuit
US7697356B2 (en) Method of testing semiconductor apparatus
US20220130454A1 (en) Circuitry for adjusting retention voltage of a static random access memory (sram)
KR20010039668A (ko) 노이즈를 억제하면서 내부 회로에 외부로부터 전원 전위를공급할 수 있는 반도체 집적 회로 장치
JPH06187780A (ja) 半導体メモリー装置の内部電源電圧供給装置
US11262783B2 (en) Systems and methods for initializing bandgap circuits
JP2005117056A (ja) 半導体集積回路の検査方法
Mojumder et al. Design and analysis of a self-repairing SRAM with on-chip monitor and compensation circuitry

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050901

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080909

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090909

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090909

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100909

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110909

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120909

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130909

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees