JP3716179B2 - レーザ装置 - Google Patents

レーザ装置 Download PDF

Info

Publication number
JP3716179B2
JP3716179B2 JP2000398652A JP2000398652A JP3716179B2 JP 3716179 B2 JP3716179 B2 JP 3716179B2 JP 2000398652 A JP2000398652 A JP 2000398652A JP 2000398652 A JP2000398652 A JP 2000398652A JP 3716179 B2 JP3716179 B2 JP 3716179B2
Authority
JP
Japan
Prior art keywords
laser
paths
laser light
laser beam
emitted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000398652A
Other languages
English (en)
Other versions
JP2002196278A (ja
Inventor
芳文 美濃和
弘一 鈴木
茂明 藤田
勤 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2000398652A priority Critical patent/JP3716179B2/ja
Publication of JP2002196278A publication Critical patent/JP2002196278A/ja
Application granted granted Critical
Publication of JP3716179B2 publication Critical patent/JP3716179B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Lasers (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、均一なビーム品質を得るようにしたレーザ装置に関するものである。
【0002】
【従来の技術】
発振器単独、あるいは発振器と複数の増幅器とで構成されるレーザ装置は、指向性のよいレーザ光により穴あけ、溶接、切断等の加工や、同位体分離等の光化学反応に用いることができる。特に炭酸ガスレーザ装置及び銅蒸気レーザ装置は、kw級の高出力で高い指向性を有するレーザ光を得ることができるので、加工分野及び同位体分離に適用されている。
図18は、例えば「大口径CVL発振器の開発」、平成8年レーザ学会学術講演会第16回年次大会予稿集(井上勤他)、(1977)第67頁に記載された従来のレーザ装置の構成図である。
図18において、放電管1、凹面鏡2及び凸面鏡3で発振器4が構成されている。放電管1の両端に配置した電極(図示せず)間に急峻な立ち上がりのパルス電圧を印加して、急峻な立ち上がりの電流を流すことにより放電管1内に放電エネルギーを投入する。この放電エネルギーにより銅粒5が加熱されて蒸発し、銅原子が励起されて発光する。この光が凹面鏡2と凸面鏡3との間を反射して複数回往復するうちに、凸面鏡3で共焦点6を中心に放射される方向に反射する。そして、凹面鏡2では、放電管1の光軸方向に平行に反射して進行する光のみが、図18のA−A断面である図19(a)に示すレーザ光として出射される。5aは銅粒5の影、3aは凸面鏡3の影である。図19(b)は図19(a)のR−L断面におけるレーザ光の強度分布の時間的変化を示したもので、t〜t
は発振器10の励起時間帯を示す。
共焦点6が放電管1の内壁面の延長線上近傍に設定されているので、光が放電の開始時から凹面鏡2と凸面鏡3との間を往復して往復回数を増すことができるため、指向性の高いレーザ発振が可能である。しかし、図19に示すようにレーザ発振が共焦点6の反対側の内壁に拡大する時間(t)の直前までは指向性の悪い自然放出光(Amplified spontaneous emission)が含まれる。
【0003】
【発明が解決しようとする課題】
従来のレーザ装置は以上のように構成されているので、銅粒5及び凸面鏡3によってレーザ光が遮られるため、図19に示すように強度分布が非対称となり、加工、照射等を均一に行うのが困難であるという問題点があった。
この発明は以上のような問題点を解消するためになされたもので、レーザ光の強度分布の対称性を向上させることができるレーザ装置を提供することを目的としたものである。
【0004】
【課題を解決するための手段】
この発明に係わるレーザ装置は、発光した光が凸面鏡と凹面鏡との間で複数回反射して放射されたレーザ光の中心軸と直交する直交線の両側で、ビームの強度分布と発散角分布とが非対称なレーザ光を出射する発振器と、発振器から出射されたレーザ光をハーフミラーで反射する一方の経路とハーフミラーを透過する他方の経路との二つに分割する分割手段と、この分割手段と凹面鏡との間に配置されてレーザ光を所定の方向に偏光する偏光手段と、分割手段で分割した一方の経路のレーザ光を直交線の両側でビームを反転させる反転手段と、分割手段で分割した他方の経路のレーザ光の偏光方向を90度回転させる回転手段と、反転手段で反転させた一方のレーザ光及び回転手段で回転された他方のレーザ光を合成する偏光ビームスプリッターからなる合成手段とを備えたものである
た、回転手段をファラデーローテーターとしたものである。
また、反転手段を一対の凸レンズとしたものである。
また、反転手段を一対の全反射ミラーとしたものである
また、分割手段の入力側に自然放出光を除去する自然放出光除去手段を設けたものである。
また、分割手段で分割したレーザ光の光路の短い方に光路調整手段を設けたものである。
さらに、合成手段で合成されたレーザ光を増幅する増幅器を設けたものである。
【0005】
【発明の実施の形態】
実施例1.
図1は実施例1を示す構成図である。図1において、7は放電管、8は放電管7の一端側に配置された凹面鏡、9は放電管7の他端側に配置された凸面鏡である。なお、7〜9で発振器10が構成されている。さらに、凹面鏡8及び凸面鏡9の共焦点11は放電管7の内壁面の延長上近傍に設定されている。12は分割手段で、ハーフミラーである。13は合成手段で、ハーフミラーである。14はレーザ光の中心軸と直交する直交線の両側でレーザ光のビームの強度分布と発散角分布とを反転させる反転手段で、凸レンズ14a,14bからなる凸レンズペアである。なお、ビーム品質はレーザ光の強度分布及び発散角で評価される。15,16は全反射ミラーである。17は合成手段で、全反射ミラーである。18aは放電管7の中央側である凸面鏡9の端面近傍から出射されるレーザ光の経路、18bは経路18aとは反対側の放電管7の内壁近傍から出射されるレーザ光の経路、19a,19bは分割手段12を透過した分のレーザ光の経路、20a,20bは分割手段12で反射した分のレーザ光の経路、21a,21bは経路19a,19bのレーザ光が合成手段13を透過した分のレーザ光の経路、22a,22bは経路19a,19bのレーザ光が合成手段13で反射した分のレーザ光の経路、23a,23bは経路20a,20bのレーザ光が合成手段13を透過した分のレーザ光の経路、24a,24bは経路20a,20bのレーザ光が合成手段13で反射した分のレーザ光の経路である。25は銅粒である。
【0006】
次に動作について説明する。図2は図1のII−II線側からみたレーザ光の断面(a)及びレーザ光のR−L断面の強度分布(b)を示す説明図である。図2(b)は図2(a)のR−L断面におけるレーザ光の強度分布の時間的変化を示したもので、t〜tは発振器10の励起時間帯を示す。
図1及び図2において、放電管7内の放電エネルギーにより銅粒25が加熱蒸発されると、銅原子が励起されて発光する。この発光した光が凹面鏡8と凸面鏡9の間を複数回往復するうちに、凸面鏡9で共焦点11を中心に放射される方向に反射する。そして、凹面鏡8では放電管1の光軸方向に平行に反射して進行する光のみがレーザ光となって、発振器10から経路18a,18bで出射される。経路18a,18bで出射されたレーザ光は、1/2が分割手段12を透過し、経路19a,19bを経由して全反射ミラー15で全反射する。さらに、全反射ミラー15で全反射した経路19a,19bのレーザ光は、1/2が合成手段13で反射して経路22a,22bで出力(出射)される。そして、経路19a,19bのレーザ光の残り1/2は、合成手段13を透過して経路21a,21bを経由し、合成手段17で反射して出力(出射)される。
【0007】
一方、経路18a,18bで出射されたレーザ光の残り1/2は分割手段12で反射される。そして、反射されたレーザ光は反転手段14において、レーザ光と直交する直交線の両側でビームの強度分布と発散角分布とが軸対称に反転される。反転手段14で像が反転されたレーザ光は、全反射ミラー16で全反射され、レーザ光の1/2が合成手段13を透過して、経路23a,23bで出力(出射)される。また、合成手段13で反射された経路20a,20bのレーザ光の残り1/2は、合成手段17で全反射されて出力(出射)される。
分割手段12を透過して経路19a,19bを経由するレーザ光と、分割手段12で反射して反転手段14で像が軸対称に反転されて経路20a,20bを経由するレーザ光とは、全反射ミラー16により光軸が一致するように調整して、合成手段13,17により合成される。このようにすることにより、図2(a)に示す銅粒25の影25a及び凸面鏡9の影9aが、図3(a)に示すように強度分布が上下左右とも対称となる。
【0008】
また、分割手段12を透過したレーザ光の合成手段13までの経路19a,19bの光路長と、分割手段12で反射したレーザ光の合成手段13までの経路20a,20bの光路長とを同じにすることにより、経路19a,19b及び経路20a,20bを伝送されるレーザ光は殆ど同時に合成手段13に到達する。従って、合成手段13の出射口の断面におけるレーザ励起時間帯は、図3(b)のt〜tに示すように図1の図示で上下方向からほぼ同時に中心側に移動するので、強度分布が時間的に上下及び左右が対称になる。
同様に、分割手段12を透過して全反射ミラー15を経由し、さらに合成手段13を透過して合成手段17を経由して出射されるレーザ光と、分割手段12で反射して反転手段14で軸対称に像が反転されて全反射ミラー16を経由し、さらに合成手段13で反射して合成手段17を経由して出射されるレーザ光とは、同軸かつ軸対称に合成されて出射されるので、強度分布が図3(b)に示すように上下及び左右対称になり、図1の図示で上下方向からほぼ同時に中心側に移動する。
【0009】
以上のように、分割手段12で分割して反転手段14でビームの強度分布と発散角分布とを反転させた一方のレーザ光と、分割手段12で分割した他方のレーザ光とを合成手段13,17で合成することにより軸対称のレーザ光を出射できるので、対象物の均一な加工及び対象物への均一な照射を行うことができる。
実施例1において、反転手段14として凸レンズペアを用いたものについて説明したが、図4に示すように一対の凹レンズ26a,26bで構成しても同様の効果を期待することができる。また、一方向にのみ非対称(例えば銅粒25の影25aが凸面鏡9の軸対称位置に存在する場合)のときは、面対称に反転すればレーザ光の断面分布が左右上下が対称になる場合は、シリンドリカルレンズペア、又はシリンドリカル凹面鏡ペアを用いても同様の効果を期待することができる。
実施例1において、反転手段14を経路20a,20bに配置したものについて説明したが、経路19a,19bに配置しても同様の効果を期待することができる。
【0010】
実施の形態
図5は実施の形態を示す構成図である。図5において、7〜12,14〜16,25は実施例1のものと同様のものである。27は凹面鏡8と凸面鏡9との間に配置された偏光手段で、偏光子で構成されている。28は分割手段12と全反射ミラー15との間に配置された回転手段で、ファラデーローテータで構成されている。29は合成手段で、偏光ビームスプリッターで構成されている。30aは放電管7の中央側である凸面鏡9の端面近傍から出射されるレーザ光の経路、30bは経路30aとは反対側の放電管7の内壁近傍から出射されるレーザ光の経路、なお、経路30a,30bのレーザ光は偏光手段27により、偏光方向が所定の方向に特定されている。31a,31bは分割手段12を透過した分のレーザ光の経路、32a,32bは回転手段28で偏光方向が90度回転されたレーザ光の経路、33a,33bは分割手段12で反射した分のレーザ光の経路である。
次に動作について説明する。図6は図5のVI−VI線側からみたレーザ光の断面及びレーザ光のR−L断面の強度分布を示す説明図である。図5及び図6において、放電管7内の放電エネルギーにより銅粒25が加熱蒸発されると、銅原子が励起されて発光する。この発光した光が凹面鏡8と凸面鏡9との間を複数回往復しているうちに、凸面鏡9で共焦点11を中心に放射される方向に反射する。そして、凹面鏡8では放電管7の光軸方向に平行に反射して進行する光のみがレーザ光となって、発振器10から経路30a,30bで出射される。この場合、発振器10で生成されたレーザ光は偏光手段27により、例えば紙面に平行な方向に偏光されている。
【0011】
経路30a,30bで出射されたレーザ光は、1/2が分割手段12を透過し、回転手段28により偏向方向が90度回転されて紙面に垂直になり経路32a,32bで全反射ミラー15を経由して合成手段29で全てが反射して出射される。一方、分割手段12で反射した経路33a,33bのレーザ光は、反転手段14において、レーザ光と直交する直交線の両側でビームの強度分布と発散角分布とが軸対称に反転される。しかし、反転手段14で反転されたレーザ光の偏光方向は紙面に平行なままである。次いで、反転されたレーザ光は全反射ミラー16を経由して、経路32a,32bのレーザ光と同軸に合成されるように調節されて、合成手段29から出射される。
このようにすることにより、図6(a)に示す銅粒25の影25a及び凸面鏡9の影9aが、図7(a)に示すように互いに軸対称の位置にできるので、図7(b)に示すように強度分布が上下左右とも対称になる。
また、分割手段12を透過したレーザ光が回転手段28及び全反射ミラー15を経由して合成手段29に至るまでの光路長と、分割手段12で反射したレーザ光が反転手段14及び全反射ミラー16を経由して合成手段29に至るまでの光路長とを同じにすることにより、両レーザ光が殆ど同時に合成手段29に到達する。従って、合成手段29の出射光の断面におけるレーザ発振時間帯は、図7(b)のt〜tに示すように図5の図示で経路30a,30bの上下方向からほぼ同時に中心側に移動するので、強度分布が時間的に上下及び左右が対称になる。
【0012】
以上のように、反転手段14でビームの強度分布と発散角分布とを反転させた一方のレーザ光及び回転手段28で偏光方向を90度回転させた他方のレーザ光を合成手段29で合成することにより、軸対称のレーザ光を出射できるので、対象物の均一な加工及び対象物への均一な照射を行うことができる。
実施の形態において、反転手段14として凸レンズペアを用いたものについて説明したが、図4に示すように凹レンズ26a,26bからなる凹面鏡ペアで構成しても同様の効果を期待することができる。また、一方向にのみ非対称(例えば銅粒25の影25aが凸面鏡9の軸対称位置に存在する場合)のときは、面対称に反転すればレーザ光の断面分布が左右上下が対称になる場合は、シリンドリカルレンズペア、又はシリンドリカル凹面鏡ペアを用いても同様の効果を期待することができる。
実施の形態において、経路31a,31bに回転手段28を配置し、経路33a,33bに反転手段14を配置したものについて説明したが、経路31a,31bに反転手段14を配置し、経路33a,33bに回転手段28を配置しても同様の効果を期待することができる。
実施の形態において、経路31a,31bに回転手段28を配置し、経路33a,33bに反転手段14を配置したものについて説明したが、経路33a,33bに反転手段14と回転手段28とを配置しても同様の効果を期待することができる。
さらに、実施の形態において偏向手段27を凹面鏡8と凸面鏡9との間に配置したものについて説明したが、凸面鏡9と分割手段12との間に配置しても同様の効果を期待することができる。
【0013】
実施の形態2.
図8は実施の形態を示す構成図である。図8において、7〜11,18a,18b,25は実施例1のものと同様のものである。34はASE(自然放出光)除去手段で、一対の凸レンズ35a,35bとアパーチャー36で構成されている。37はハーフミラーの分割手段で、反射されたレーザ光が紙面より上方に向かうように配置されている。38は合成手段で、ハーフミラーである。39は反転手段で、後述の一対の全反射ミラー40a,40bにより構成されている。40aは全反射ミラーで、分割手段37で反射されたレーザ光が再び紙面上の後述の全反射ミラー40bへ伝送されるように配置されている。40bは全反射ミラーで、全反射ミラー40aから反射されたレーザ光を紙面上の方向へ伝送する。41は光路調整手段で、全反射ミラー42a,42bで構成されている。43は全反射ミラーである。44は合成手段で、全反射ミラーである。45a,45bは分割手段37を透過した分のレーザ光の経路、46a,46bは分割手段37で反射した分のレーザ光の経路、47a,47bは経路45a,45bのレーザ光が合成手段38を透過した分のレーザ光の経路、48a,48bは経路45a,45bのレーザ光が合成手段38で反射した分のレーザ光の経路、49a,49bは経路46a,46bのレーザ光が合成手段38を透過した分のレーザ光の経路、50a,50bは経路46a,46bのレーザ光が合成手段38で反射した分のレーザ光の経路である。
【0014】
次に動作について説明する。図9は図8のIX−IX線側からみたレーザ光の断面(a)及びレーザ光のR−L断面の強度分布(b)を示す説明図である。図9(b)は図9(a)のR−L断面におけるレーザ光の強度分布の時間的変化を示したもので、t〜tは発振器10の励起時間帯を示す。
図8及び図9において、発振器10からレーザ光が経路18a,18bで出射される。発振器10から出射されたレーザ光はASE除去手段34内の凸レンズ35aで集光されてアパーチャー36を透過して、凸レンズ35bにより再び平行光に戻される。このとき、指向性の悪いASE(自然放出光)成分は集光されないので、アパーチャー36を透過できずに除去される。ASE成分が除去された経路18a,18bのレーザ光は1/2が分割手段37を透過し経路45a,45bにより、光路調整手段41及び全反射ミラー43を経由して合成手段38に到達する。そして、経路45a,45bのレーザ光の1/2は合成手段38で反射して経路48a,48bで出射される。また、経路45a,45bのレーザ光の残りの1/2は合成手段38を透過して、合成手段44で反射して出射される。
【0015】
一方、ASE成分が除去された経路18a,18bのレーザ光の残りの1/2は分割手段37で反射し、経路46a,46bにおいて反転手段39でビームの強度分布と発散角分布とが軸対称に反転されて合成手段38に到達する。そして、経路46a,46bのレーザ光の1/2は合成手段38を透過して経路48a,48bのレーザ光と合成されて経路49a,49bで出射される。また、経路46a,46bのレーザ光の残りの1/2は合成手段38で反射され、さらに合成手段44で反射されて、経路47a,47bのレーザ光と合成されて経路50a,50bで出射される。
経路45a,45bを経由するレーザ光と、経路46a,46bを経由するレーザ光とは、合成手段38に同時に到達するように光路調整手段41により光路長が調整されている。さらに、経路45a,45bを経由するレーザ光と、経路46a,46bを経由するレーザ光とは、反転手段39により光軸が一致するように調整されている。
経路18a,18bから分割手段37を透過した経路45a,45bのレーザ光は、ASE除去手段34を出て合成手段38,44から出射されるまでに、紙面に平行な方向に4回(偶数回)反射し、紙面に垂直な方向に0回(偶数回)反射するので、像の反転はない。一方、経路18a,18bから分割手段37で反射した経路46a,46bのレーザ光は、ASE除去手段34を出てから合成手段38,44から出射されるまでに、紙面に平行な方向に3回又は5回(奇数回)反射し、紙面に垂直な方向に3回(奇数回)反射するので、像が軸対称に反転する。従って、ASE除去手段36を出たレーザ光は、図9(a)に示すように断面に凸面鏡9の影9a及び銅粒25の影25aが非対称に現れる。このため、図9(b)に示すようにレーザ光の強度分布は非対称となる。
【0016】
しかし、合成手段38,44で合成されたレーザ光は、図10(a)に示すように凸面鏡9の影9a及び銅粒25の影25aが軸対称に現れる。また、経路45a,45bのレーザ光と経路46a,46bのレーザ光とが合成手段38に同時に到達するように、光路調整手段41により光路長が調整されている。このため、合成手段38,44で合成されたレーザ光は、図10(b)に示すようにレーザ発振時間帯が紙面の上下から同時に中心に移動し、時間的にも強度分布が上下左右が対称になる。なお、ASE(自然放出光)はASE除去手段34により除去されるので、図9(b)及び図10(b)には現れない。
以上のように、分割手段37で分割して反転手段39でビームの強度分布と発散角分布とを反転させた一方の経路46a,46bのレーザ光と、分割手段37で分割した他方の経路45a,45bのレーザ光とを合成手段38,44で合成することにより軸対称のレーザ光を出射できるので、対象物の均一な加工及び対象物への均一な照射を行うことができる。
【0017】
また、反転手段39を一対の全反射ミラー40a,40bで構成したことにより、経路46a,46bを経由するレーザ光の反転手段39での反射回数が、全反射ミラー40a,40bにおける2回だけとなるので、反射時の損失を低減させることができる。さらに、曲面加工がないので製作が容易になる。
また、ASE除去手段34を設けたことにより指向性のよいレーザ光が得られるので、集光性の必要な加工及び長距離伝送が可能になる。
さらに、経路45a,45bを経由するレーザ光と、経路46a,46bを経由するレーザ光とは、合成手段38に同時に到達するように光路調整手段41により光路長が調整されているので、合成手段38,44で合成されたレーザ光はレーザ発振時間帯が紙面の上下から同時に中心に移動し、時間的にも強度分布が上下左右対称になるため、対象物の均一な加工及び対象物への均一な照射を行うことができる。
実施の形態において、ASE除去手段34は一対の凸レンズ35a,35bとアパーチャー36とで構成されたものについて説明したが、凸レンズ35a,35bを一対の凹面鏡にしても同様の効果を期待することができる。
さらに、実施の形態において偏向手段27を凹面鏡8と凸面鏡9との間に配置したものについて説明したが、凸面鏡9と分割手段37との間に配置しても同様の効果を期待することができる。
【0018】
実施の形態
図11は実施の形態を示す構成図である。図11において、7〜11,25は実施例1のものと同様のものであり、27,29,30a,30は実施の形態のものと同様のものであり、34,37,39,41,43,45a,45b,46a,46は実施の形態のものと同様のものである。51は全反射ミラー43と合成手段29との間に配置された回転手段で、ファラデーロータで構成されている。52a,52bは回転手段51で偏光方向が90度回転されたレーザ光の経路である。
次に動作について説明する。図12は図11のXII−XII線側からみたレーザ光の断面(a)及びR−L断面の強度分布(b)を示す説明図である。図12(b)は図12(a)のR−L断面におけるレーザ光の強度分布の時間的変化を示したもので、t〜tは発振器10の励起時間帯を示す。
図11及び図12において、発振器10から出射されたレーザ光は、偏光手段27により例えば紙面に平行な方向に偏光される。偏光手段27で変更された経路30a,30bのレーザ光はASE除去手段34でASE(自然放出光)が除去され、1/2が分割手段37を透過する。そして、経路45a,45bのレーザ光は光路調整手段41及び全反射ミラー43を経由して回転手段51に到達する。さらに、レーザ光は回転手段51により偏光方向が90度回転されて紙面に垂直となり、経路52a,52bを経由して合成手段29で全反射して出射される。
一方、分割手段37で反射された経路46a,46bのレーザ光は、反転手段39でビームの強度分布と発散角分布とが軸対称に反転され、さらに合成手段29を透過して経路52a,52bのレーザ光と合成されて出射される。
【0019】
経路45a,45bのレーザ光はASE除去手段34を出てから出射されるまでに、紙面に平行な方向に4回(偶数回)、紙面に垂直方向には0回(偶数回)反射するので、像の反転はない。一方、経路46a,46bのレーザ光は紙面に平行な方向に3回(奇数回)、紙面に垂直方向にも3回(奇数回)反射するので、像が軸対称に反転する。従って、図13(a)に示すように合成手段29で合成されたレーザ光の断面には、凸面鏡9の影9a及び銅粒25の影25aが軸対称に現れる。また、経路45a,45bのレーザ光と経路46a,46bのレーザ光とが合成手段29に同時に到達するように、光路調整手段41により光路長が調整されている。このため、合成手段29で合成されたレーザ光は、図13(b)に示すようにレーザ発振時間帯が紙面の上下から同時に中心に移動し、時間的にも強度分布が上下左右が対称になる。なお、ASE(自然放出光)はASE除去手段34により除去されるので、図12(b)及び図13(b)には現れない。
以上のように、分割手段37で分割して反転手段39でビームの強度分布と発散角分布とを反転させた経路46a,46bのレーザ光と、分割手段37を透過して回転手段51で偏光方向を90度回転した経路52a,52bのレーザ光とを、合成手段29により合成することにより軸対称のレーザ光を出射できるので、対象物の均一な加工及び対象物への均一な照射を行うことができる。さらに、合成手段29により一本のレーザ光として出射するので、高出力を得ることができる。
さらに、実施の形態において偏向手段27を凹面鏡8と凸面鏡9との間に配置したものについて説明したが、凸面鏡9と分割手段37との間に配置しても同様の効果を期待することができる。
【0020】
実施の形態
図14は実施の形態を示す構成図である。図14において、7〜12,14〜16,25は実施例1のものと同様のものである。27〜29,30a,30b,31a,31b,33a,33bは実施の形態のものと同様のものである。53は増幅器である。54a,54bは経路32a,32bのレーザ光が、増幅器53で増幅されて出射された経路である。55a,55bは経路33a,33bのレーザ光が、増幅器53で増幅されて出射された経路である。
次に動作について説明する。図15(a)は増幅器55から出射されたレーザ光の断面を示す説明図である。図15(b)は図15(a)のR−L断面におけるレーザ光の強度分布の時間的変化を示す説明図で、t〜tは増幅器53の励起時間帯である。
合成手段29から出射されたレーザ光の断面は図15(a)に示すように軸対称であり、周辺からレーザ光が中心に向かって立ち上がる。このため励起エネルギーが放電管(図示せず)の周辺から中心に向かって立ち上がる増幅器53と全断面にわたって時間的にもほぼ一致して入射することができる。従って、図15(b)に示すように増幅器53の励起時間帯t〜tではASE(自然放出光)の発生が抑制される。
【0021】
以上のように、反転手段14でビームの強度分布と発散角分布とを反転させた一方のレーザ光及び回転手段28で偏光方向を90度回転させた他方のレーザ光を合成手段29で合成したレーザ光を増幅器53で増幅したことにより、ASEの発生が抑制された軸対称で指向性の良好なレーザ光を高出力で得られるので、高出力を必要とする加工や同位体分離に適用することができる。
実施の形態において、実施の形態2の合成手段29から出射されたレーザ光を増幅器53により増幅するものについて説明したが、実施例1の合成手段13,17、実施の形態の合成手段38,44及び実施の形態の合成手段29から出射されたレーザ光を増幅するようにしても同様の効果を期待することができる。
さらに、実施の形態において偏向手段27を凹面鏡8と凸面鏡9との間に配置したものについて説明したが、凸面鏡9と分割手段12との間に配置しても同様の効果を期待することができる。
【0022】
実施の形態
図16は実施の形態を示す構成図である。図16において、7〜11,25は実施例1のものと同様のものであり、29,30a,30bは実施の形態のものと同様のものであり、34,37,39,41,43,45a,45b,46a,46bは実施の形態のものと同様のものであり、51,52a,52bは実施の形態のものと同様のものである。
56は増幅器である。56a,56bは経路52a,52bのレーザ光が、増幅器56で増幅されて出射された経路である。57a,57bは経路46a,46bのレーザ光が、増幅器56で増幅されて出射された経路である。
次に動作について説明する。図16(a)は増幅器56から出射されたレーザ光の断面を示す説明図である。図16(b)は図16(a)のR−L断面におけるレーザ光の強度分布の時間的変化を示す説明図で、t〜tは増幅器56の励起時間帯である。
【0023】
合成手段29から出射されたレーザ光の断面は図17(a)に示すように軸対称であり、周辺からレーザ光が中心に向かって立ち上がるこのため、励起エネルギーが放電管(図示せず)の周辺から中心に向かって立ち上がる増幅器56と全断面にわたって時間的にもほぼ一致して入射することができる。また、発振器10から出射されたレーザ光はASE除去手段34によりASE(自然放出光)が除去されているので、増幅器56へ入射されるレーザ光にASEが含まれていない。従って、図17(b)に示すように発振器10により発信されたレーザ光が、経路30bまで拡大して到達する時間t以前の時間t
から増幅器56を励起することによりASEの発生を抑制できる。
以上のように、分割手段37で分割して反転手段39でビームの強度分布と発散角分布とを反転させた経路46a,46bのレーザ光と、分割手段37で分割した経路45a,45bのレーザ光を回転手段51で偏光方向を90度回転し、合成手段29で合成したレーザ光を増幅器56で増幅したことにより、ASEの発生が抑制された軸対称で指向性の良好なレーザ光を高出力で得られるので、高出力を必要とする加工や同位体分離に適用することができる。
さらに、実施の形態において偏向手段27を凹面鏡8と凸面鏡9との間に配置したものについて説明したが、凸面鏡9と分割手段12との間に配置しても同様の効果を期待することができる。
【0024】
【発明の効果】
この発明によれば、発振器から出射されたレーザ光をハーフミラーの分割手段で反射する一方の経路とハーフミラーを透過する他方の経路との二つに分割し、反転手段でビームの強度分布と発散角分布とを反転させた一方の経路のレーザ光及び回転手段で偏光方向を90度回転させた他方の経路のレーザ光を合成手段で合成することにより、軸対称のレーザ光を出射できるので、対象物の均一な加工及び対象物への均一な照射を行うことができる
た、回転手段をファラデーローターとしたことにより、簡単な構成にすることができる。
また、反転手段を一対の凸レンズとしたことにより、簡単な構成にすることができる。
また、反転手段を一対の全反射ミラーとしたことにより、分割手段で分割された一方のレーザ光が反転手段で反射する回数が2回だけとなるので、反射時の損失を低減させることができる。さらに、曲面加工がないので製作を容易することができる。
【0025】
分割手段の入力側に自然放出光を除去する自然放出光除去手段を設けたことにより指向性のよいレーザ光が得られるので、集光性の必要な加工及び長距離伝送を可能にすることができる。
また、分割手段で分割したレーザ光の光路の短い方に光路調整手段を設けたことにより、分割手段で分割した一方の経路を経由するレーザ光と、分割手段で分割した他方の経路を経由するレーザ光とは、合成手段に同時に到達するように調整されているので、合成手段で合成されてレーザ発振時間帯が紙面の上下から同時に中心に移動し、時間的にも強度分布が上下左右が対称になるため、対象物の均一な加工及び対象物への均一な照射を行うことができる。
さらに、分割手段で分割して反転手段でビームの強度分布と発散角分布とを反転させた一方の経路のレーザ光と、分割手段で分割した他方の経路のレーザ光を回転手段で偏光方向を90度回転し、合成手段で合成したレーザ光を増幅器で増幅したことにより、ASEの発生が抑制された軸対称で指向性の良好なレーザ光を高出力で得られるので、高出力を必要とする加工や同位体分離に適用することができる。
【図面の簡単な説明】
【図1】 この発明の実施例1を示す構成図である。
【図2】 図1のII−II線側からみたレーザ光の断面(a)及びレーザ光のR−L断面の強度分布(b)を示す説明図である。
【図3】 図1の合成手段から出射されるレーザ光の断面(a)及びレーザ光のR−L断面の強度分布(b)を示す説明図である。
【図4】 図1の反転手段を一対の凹レンズとした要部の構成図である。
【図5】 この発明の実施の形態を示す構成図である。
【図6】 図5のVI−VI線側からみたレーザ光の断面(a)及びレーザ光のR−L断面の強度分布(b)を示す説明図である。
【図7】 図5の合成手段から出射されるレーザ光の断面(a)及びレーザ光のR−L断面の強度分布(b)を示す説明図である。
【図8】 この発明の実施の形態を示す構成図である。
【図9】 図8のIX−IX線側からみたレーザ光の断面(a)及びレーザ光のR−L断面の強度分布(b)を示す説明図である。
【図10】 図8の合成手段から出射されるレーザ光の断面(a)及びレーザ光のR−L断面の強度分布(b)を示す説明図である。
【図11】 この発明の実施の形態を示す構成図である。
【図12】 図11のXII−XII線側からみたレーザ光の断面(a)及びレーザ光のR−L断面の強度分布(b)を示す説明図である。
【図13】 図11の合成手段から出射されるレーザ光の断面(a)及びレーザ光のR−L断面の強度分布(b)を示す説明図である。
【図14】 この発明の実施の形態を示す構成図である。
【図15】 図14の合成手段から出射されるレーザ光の断面(a)及びレーザ光のR−L断面の強度分布(b)を示す説明図である。
【図16】 この発明の実施の形態を示す構成図である。
【図17】 図14の合成手段から出射されるレーザ光の断面(a)及びレーザ光のR−L断面の強度分布(b)を示す説明図である。
【図18】 従来のレーザ装置の構成図である。
【図19】 図19のXIX−XIX線側からみたレーザ光の断面(a)及びレーザ光のR−L断面の強度分布(b)を示す説明図である。
【符号の説明】
8 凹レンズ、9 凸レンズ、10 発振器、12 分割手段、
13,17,29,38,44 合成手段、14,39 反転手段、
27 偏光手段、28,51 回転手段、34 自然放出光除去手段、
41 光路調整手段、53,56増幅器。

Claims (7)

  1. 発光した光が凸面鏡と凹面鏡との間で複数回反射して放射されたレーザ光の中心軸と直交する直交線の両側で、ビームの強度分布と発散角分布とが非対称な上記レーザ光を出射する発振器と、上記発振器から出射された上記レーザ光をハーフミラーで反射する一方の経路と上記ハーフミラーを透過する他方の経路との二つに分割する分割手段と、この分割手段と上記凹面鏡との間に配置されて上記レーザ光を所定の方向に偏光する偏光手段と、上記分割手段で分割した一方の経路の上記レーザ光を上記直交線の両側で上記ビームを反転させる反転手段と、上記分割手段で分割した他方の経路の上記レーザ光の偏光方向を90度回転させる回転手段と、上記反転手段で反転させた一方の上記レーザ光及び上記回転手段で回転された他方の上記レーザ光を合成する偏光ビームスプリッターからなる合成手段とを備えたレーザ装置。
  2. 回転手段はファラデーローテーターであることを特徴とする請求項1に記載のレーザ装置。
  3. 反転手段は凸レンズペアであることを特徴とする請求項1又は請求項2のいずれか一項に記載のレーザ装置。
  4. 反転手段は一対の全反射ミラーであることを特徴とする請求項1又は請求項2のいずれか一項に記載のレーザ装置。
  5. 分割手段の入力側に自然放出光を除去する自然放出光除去手段を設けたことを特徴とする請求項1から請求項のいずれか一項に記載のレーザ装置。
  6. 分割手段で分割したレーザ光の光路の短い方に光路調整手段を設けたことを特徴とする請求項1から請求項のいずれか一項に記載のレーザ装置。
  7. 合成手段で合成されたレーザ光を増幅する増幅器を設けたことを特徴とする請求項1から請求項のいずれか一項に記載のレーザ装置。
JP2000398652A 2000-12-27 2000-12-27 レーザ装置 Expired - Fee Related JP3716179B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000398652A JP3716179B2 (ja) 2000-12-27 2000-12-27 レーザ装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000398652A JP3716179B2 (ja) 2000-12-27 2000-12-27 レーザ装置

Publications (2)

Publication Number Publication Date
JP2002196278A JP2002196278A (ja) 2002-07-12
JP3716179B2 true JP3716179B2 (ja) 2005-11-16

Family

ID=18863576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000398652A Expired - Fee Related JP3716179B2 (ja) 2000-12-27 2000-12-27 レーザ装置

Country Status (1)

Country Link
JP (1) JP3716179B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008105096A (ja) * 2006-09-28 2008-05-08 Sumitomo Electric Ind Ltd レーザ加工方法及びレーザ加工装置
KR102435763B1 (ko) * 2016-03-14 2022-08-24 삼성디스플레이 주식회사 레이저 장치 및 레이저 빔 균일화 방법

Also Published As

Publication number Publication date
JP2002196278A (ja) 2002-07-12

Similar Documents

Publication Publication Date Title
Oron et al. The formation of laser beams with pure azimuthal or radial polarization
JP4964882B2 (ja) 光ビーム整形装置
US5210643A (en) Wave combining apparatus for semiconductor lasers
US7211812B2 (en) Entangled photon pair generating apparatus
JP2010003755A (ja) 波長変換レーザ装置
US20240181563A1 (en) Device and method for processing a workpiece
JPH01286477A (ja) 環状共振式レーザ装置
JP2003112280A (ja) 光照射装置と光加工装置およびその加工方法並びに電子部品
JP2009276389A (ja) テラヘルツ波発生装置およびテラヘルツ波発生方法
JP3716179B2 (ja) レーザ装置
JP7410121B2 (ja) 2つのオフセットレーザビームを提供するための光学装置及び方法
JP3251873B2 (ja) レーザ増幅装置
RU2192341C2 (ru) Способ прошивки прецизионных отверстий лазерным излучением
JP2009032780A (ja) 光軸入れ替え装置、ビーム照射装置、及び、ビーム照射方法
JP2006349784A (ja) ビーム合成装置
CN113904208B (zh) 一种高纯度拉盖尔高斯光束产生***及其产生方法
JP3596068B2 (ja) レーザ増幅器およびレーザ発振器
JPH0722685A (ja) 光線の焦点合成方法及びその焦点合成装置
KR20230129236A (ko) 양자 컴퓨팅 장치, 사용 및 방법
JP2003290941A (ja) レーザーマーカ
JP2004276063A (ja) レーザ加工装置
JPH09181375A (ja) パルスガスレーザ装置
JP7097236B2 (ja) レーザ装置
JPH10333077A (ja) ビームホモジナイザ及び半導体薄膜作製方法
JP2002043666A (ja) 材料加工用のレーザ装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050829

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080902

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090902

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees