JP3710910B2 - Combine - Google Patents

Combine Download PDF

Info

Publication number
JP3710910B2
JP3710910B2 JP05418897A JP5418897A JP3710910B2 JP 3710910 B2 JP3710910 B2 JP 3710910B2 JP 05418897 A JP05418897 A JP 05418897A JP 5418897 A JP5418897 A JP 5418897A JP 3710910 B2 JP3710910 B2 JP 3710910B2
Authority
JP
Japan
Prior art keywords
weight
grain
sensor
grain tank
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05418897A
Other languages
Japanese (ja)
Other versions
JPH10229740A (en
Inventor
田 健 二 浜
竹 一 男 小
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanma Agricultural Equipment Co Ltd
Original Assignee
Yanma Agricultural Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanma Agricultural Equipment Co Ltd filed Critical Yanma Agricultural Equipment Co Ltd
Priority to JP05418897A priority Critical patent/JP3710910B2/en
Publication of JPH10229740A publication Critical patent/JPH10229740A/en
Application granted granted Critical
Publication of JP3710910B2 publication Critical patent/JP3710910B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Threshing Machine Elements (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、連続的に穀稈を刈取って脱穀するコンバインに関する。
【0002】
【発明が解決しようとする課題】
従来、収穫穀粒を入れる穀物タンクと、穀物タンクの穀粒を取出す穀粒排出コンベアを備え、容量が約1.5立方メートルの穀物タンクに重量が約1トンの穀粒(籾)を収集し、カントリーエレベータに運ぶトラック荷台などに穀物タンクの穀粒を積み換える技術があり、穀物タンク内部の穀粒容量を多段的に検出し、穀粒取出し時期並びに空状態などを検出していた。
しかし、カントリーエレベータに穀粒を搬入して計量するまで収穫穀粒の重量が不明である。そのため、複数圃場で連続的に収穫作業を行うことにより、各圃場で収穫された穀粒容量とカントリーエレベータで計量された穀粒総重量に基づき、各圃場で収穫された穀粒重量を計算する必要があり、各圃場間で差が生じる穀粒の水分量または比重などの相違によって圃場毎の穀粒重量の算出誤差が大きくなり易い不具合がある。
従って、各圃場毎に収穫した穀粒をカントリーエレベータなどで計量し、各圃場毎の穀粒重量を確認し、圃場の土壌改良または施肥及び水管理などの参考にする必要があり、収穫作業の能率向上並びに圃場管理の適正化などを容易に図り得ない等の問題がある。
【0003】
【課題を解決するための手段】
該課題を解決するための手段は、次の如くである。
収穫穀粒を入れる穀物タンク(15)と、該穀物タンク(15)の空状態を検出する零設定センサである籾センサ(79)と、該穀物タンク(15)の重量を検出する重量センサ(87)(91)とを設け、前記籾センサ(79)がオフで、穀物タンク(15)が空のときの重量センサ(87)(91)の出力を入力させ、穀物タンク(15)が空のときの機台(3)支持荷重である基準重量を演算して記憶させ、基準重量とし、収穫作業が開始されて穀粒が穀物タンク(15)に投入され、前記籾センサ(79)がオンになると、重量センサ(87)(91)出力を入力し、前記基準重量を重量センサ(87)(91)の検出値から差し引き、前記穀物タンク(15)に投入された穀粒重量を演算し、収穫重量スイッチ(96)のオン操作によって重量表示部(95)に穀粒重量を表示すべく構成したものである。
【0004】
これにより、零設定センサ出力と重量センサ出力に基づき穀物タンクが空状態の重量を更新し乍ら、適正に計測し得、重量センサ出力に基づき収穫作業中の穀物タンク内部の穀粒重量を高精度で測定し得る。それと共に、穀粒排出センサ出力と重量センサ出力に基づき穀物タンクから取出された穀粒重量を正確に算出し得、穀物タンク内部の穀粒容量を検出する従来センサを不要にし、また複数圃場で連続的に収穫作業を行うときにも各圃場毎の収穫穀粒重量を容易に確認し得、圃場別の収穫穀粒重量を参考にして土壌改良または施肥及び水管理などを各圃場毎に適正に行い得、収穫作業能率の向上並びに圃場管理の適正化などを容易に図り得るものである。
【0005】
【発明の実施の形態】
以下、本発明の実施例を図面に基づいて詳述する。
図1は水平制御回路図、図2はコンバインの全体側面図、図3は同平面図であり、図中(1)は走行クローラ(2)を装設するトラックフレーム、(3)は前記トラックフレーム(1)に架設する機台、(4)はフィードチェン(5)を左側に張架し扱胴(6)及び処理胴(7)を内蔵している脱穀機である脱穀部、(8)は刈刃(9)及び穀稈搬送機構(10)などを備える刈取部、(11)は刈取フレーム(12)を介して刈取部(8)を昇降させる油圧昇降シリンダ、(13)は排藁チェン(14)終端を臨ませる排藁処理部、(15)は脱穀部(4)からの穀粒を揚穀筒(16)を介して搬入する穀物タンク、(17)は前記タンク(15)の穀粒を機外に搬出する穀粒排出オーガ、(18)は運転操作部(19)及び運転席(20)を備える運転キャビン、(21)は運転キャビン(18)下方に設ける水冷ディーゼルエンジンであり、連続的に穀稈を刈取って脱穀するように構成している。
【0006】
さらに、図4に示す如く、前記エンジン(21)の動力をカウンタケース(22)に自在継手付ドライブシャフト(23)を介して伝えると共に、脱穀出力軸(24)、選別出力軸(25)、刈取出力軸(26)、走行出力軸(27)をカウンタケース(22)に設ける。前記脱穀出力軸(24)に設ける脱穀プーリ(28)を介して扱胴(6)及び処理胴(7)を駆動すると共に、前記扱胴(6)下方に配設させる送塵ファン、唐箕、1番コンベア、二番コンベア、揺動駆動軸、吸排塵ファン、排藁カッタなどを、選別出力軸(25)の選別プーリ(29)を介して駆動するように構成している。
【0007】
また、前記ドライブシャフト(23)を連結させるカウンタケース(22)の入力軸(30)上に作業油圧ポンプ(31)を設け、入力軸(30)を介してポンプ(31)を駆動し、油タンクを兼用するカウンタケース(22)内の作動油を前記昇降シリンダ(11)などに送給して作動させる。
それと共に、前記走行出力軸(27)及び作業軸(32)に入力軸(30)を常時連結させ、油圧脱穀クラッチ(33)を介して作業軸(32)を選別出力軸(25)に連結させ、選別出力軸(25)に脱穀出力軸(24)を連結させ、脱穀クラッチ(33)を介して各プーリ(28)(29)を駆動し、脱穀部(4)各部に動力を伝えるように構成している。
【0008】
また、前記作業軸(32)を刈取出力軸(26)に油圧刈取クラッチ(34)を介して連結させ、刈取出力軸(26)に刈取プーリ(35)を軸支させ、また刈取部(8)の各部を駆動する刈取入力1軸(36)に入力プーリ(37)を設け、前記1軸(36)を介してフィードチェン(5)を駆動する。
それと共に、前記1軸(36)に手扱ぎ用クラッチ(38)を介して刈取2軸(39)を連結させ、刈取部(8)各部に動力を伝えるように構成している。
【0009】
さらに、前記走行出力軸(27)に走行プーリ(40)を軸支させると共に、左右一対の走行クローラ(2)(2)を駆動する走行変速ケース(41)を設け、油圧ポンプ及び油圧モータを内蔵する油圧無段変速機(42)を走行変速ケース(41)に取付け、走行出力軸(27)の走行プーリ(40)に変速機(42)の変速入力軸(43)をベルト連結させ、エンジン(21)動力によって変速入力軸(43)を常時回転させるもので、変速機(42)の変速出力により変速ケース(41)内の変速ギヤを介して左右の走行クローラ(2)(2)を駆動するように構成している。
【0010】
また、前記走行変速ケース(41)に車速同調出力軸(44)を設け、走行クローラ(2)の前進走行速度に比例させて、出力軸(44)を増減速回転させる。それと共に、出力軸(44)に一方向クラッチ(45)を介して軸支させる車速同調プーリ(46)と、前記刈取入力1軸(36)の入力プーリ(37)を、テンションローラ形刈取クラッチ(47)を介してベルト連結させる。
また、前記刈取プーリ(35)に車速同調プーリ(46)をベルト連結させ、刈取クラッチ(47)入のとき、低速走行状態で車速同調出力軸(44)回転数が刈取出力軸(26)回転数よりも低いと、刈取出力軸(26)によって1軸(36)が駆動される一方、高速走行状態で車速同調出力軸(44)回転数が刈取出力軸(26)回転数よりも高いと、車速同調出力軸(44)によって1軸(36)が駆動され、走行速度に比例した速度で刈取部(8)及びフィードチェン(5)が駆動されるように構成している。
【0011】
また、テンションローラ形オーガクラッチ(48)及びVベルト(49)を介してエンジン(21)の出力軸(50)にオーガ入力軸(51)を連結させるプーリ(52)(53)と、オーガ入力軸(51)に横送オーガ(54)を連結させるベベルギヤ(55)を設け、エンジン(21)出力を取出す。それと共に、穀粒排出オーガ(17)を横送オーガ(54)に接続させる縦送オーガ(56)を設け、縦送オーガ(56)軸芯回りに穀物タンク(15)を水平回転させるときに係脱するクラッチ(57)を設け、エンジン(21)出力を各オーガ(54)(56)(17)に伝え、穀物タンク(15)の穀粒を各オーガ(54)(56)(17)によってトラック荷台などに搬出させるように構成している。
【0012】
さらに、図5及び図6に示す如く、機台(3)に固定した走行変速ケース(41)に取付ける駆動スプロケット(58)と、前記左右に分割して各別に昇降させる左右トラックフレーム(1)(1)に取付ける複数のトラックローラ(59)及びイコライザ転輪(60)及びテンションローラ(61)とで左右走行クローラ(2)(2)を支持する。それと共に、前記トラックフレーム(1)を前後支点軸(62)(62)及び前後昇降リンク(63)(63)を介して上下昇降自在に機台(3)に支持させている。前記昇降リンク(63)中間を機台(3)に支点軸(62)を介して揺動自在に取付け、昇降リンク(63)の下端側にトラックフレーム(1)を連結させる。それと共に、前後昇降リンク(63)(63)の上端側間をロッド(64)によって連結させる。
また、機台(3)にブラケット(65)(65)を介して設ける左右ローリングシリンダ(66)(66)を備え、ローリングシリンダ(66)のピストン先端に後昇降リンク(63)の上端を連結させ、左右走行クローラ(2)(2)にそれぞれ備える左右ローリングシリンダ(66)(66)のピストン伸縮制御により、機台(3)に対して左右のトラックフレーム(1)(1)を略同時にまたは各別に昇降させ、左右走行クローラ(2)(2)による機台(3)の左右支持高さ(左右車高)を変更させ、機台(3)を略水平に保ち乍ら略垂直に昇降させたり、機台(3)を左右に傾斜させて略水平に支持するように構成している。
【0013】
また、左右走行クローラ(2)(2)による機台(3)の左右支持高さを検出する左右車高センサ(67)(67)を機台(3)に設け、ポテンショメータ型の前記車高センサ(67)にセンシングロッド(68)(69)を介して後昇降リンク(63)を連結させている。
【0014】
さらに、図7に示す如く、前記排出オーガ(17)の後側基部を中心に前側先端部を昇降させる油圧オーガ昇降シリンダ(70)を設け、前記縦送オーガ(56)上端部に排出オーガ(17)基部を水平軸芯回りに回転自在に連結させる。それと共に、縦送オーガ(56)の上半分を軸芯回りに回転させる電動旋回モータ(71)を設け、縦送オーガ(56)の略垂直な軸芯回りに縦送オーガ(56)上半分及び排出オーガ(17)を回転させるもので、前記昇降シリンダ(70)制御によって排出オーガ(17)先端排出口を昇降させる。それと共に、前記旋回モータ(71)制御によって排出オーガ(17)先端排出口を左右に旋回させるように構成している。
また、前記揚穀筒(16)に内設させる揚穀オーガ(72)上端の投出口(73)下方で、穀物タンク(15)内部に満杯スイッチ(74)及び上位置スイッチ(75)を設ける。それと共に、穀物タンク(15)内部で上位置スイッチ(75)の下方に中位置スイッチ(76)及び下位置スイッチ(72)を設け、前記横送オーガ(54)の山形上面ガイド(78)上側で縦送オーガ(56)との受継部近くに籾センサ(79)を設けるもので、満杯、上位置、中位置、下位置の各穀粒貯蔵状態を前記各スイッチ(74)〜(77)によって検出させる。それと共に、カントリーエレベータに運ぶトラック荷台になどに前記排出オーガ(17)から穀物タンク(15)の穀粒が取出されたとき、穀物タンク(15)の空状態を前記籾センサ(79)によって検出させるように構成している。
【0015】
さらに、図1に示す如く、脱穀クラッチ(33)入操作による脱穀部(4)の駆動を検出する脱穀スイッチ(80)と、左右ローリングシリンダ(66)を手動操作して機台(3)の対地高さまたは左右傾斜を変更する手動傾斜スイッチ(81)と、機台(3)の左右傾斜を検出する傾斜センサ(82)と、上記した左右車高センサ(67)(67)を、マイクロコンピュータで形成する水平制御コントローラ(83)に接続させる。それと共に、左ローリングシリンダ(66)を作動させる電磁左昇降バルブ(84)の上昇ソレノイド(85)及び下降ソレノイド(86)と、機台(3)左側を持上げる左ローリングシリンダ(66)の作動油圧を検出するポテンショメータ型重量センサ(87)と、右ローリングシリンダ(66)を作動させる電磁右昇降バルブ(88)の上昇ソレノイド(89)及び下降ソレノイド(90)と、機台(3)右側を持上げる右ローリングシリンダ(66)の作動油圧を検出するポテンショメータ型重量センサ(91)を、前記水平制御コントローラ(83)に接続させるもので、脱穀部(4)が作動しているとき、左右車高センサ(67)(67)及び傾斜センサ(82)の検出結果に基づき、左右昇降バルブ(84)(88)自動制御によって左右ローリングシリンダ(66)(66)を自動的に作動させ、刈取部(8)の穀稈刈高さを略一定に保ち乍ら機台(3)を略水平に維持するファジィ水平制御動作を自動的に行わせる。それと共に、左右ローリングシリンダ(66)(66)によって支持する機体荷重を左右重量センサ(87)(91)によって検出するように構成している。
【0016】
また、マイクロコンピュータで形成する重量表示コントローラ(92)を前記水平制御コントローラ(83)に接続させる。それと共に、前記籾センサ(79)と、穀粒排出レバー(93)のオーガクラッチ(48)入切動作を検出する穀粒排出センサ(94)と、穀物タンク(15)に収集された収穫穀粒重量をキログラム単位でデジタル表示する重量表示部(95)と、前記タンク(15)内部の穀粒重量を表示させる収穫重量スイッチ(96)と、収穫作業の全穀粒重量を表示させる総重量スイッチ(97)と、前記表示部(95)をリセットするリセットスイッチ(98)を、前記重量表示コントローラ(92)に接続させる。
そして、前記籾センサ(79)出力と重量センサ(87)(91)出力に基づき穀物タンク(15)が空状態の基準重量を演算して更新させ、例えば機台(3)などに付着した泥土重量、または刈取部(8)及び脱穀部(4)の穀稈重量など、穀物タンク(15)内部の穀粒以外のものが原因で変化する重量を除き、前記タンク(15)内部の穀粒の正味重量を測定させる。それと共に、前記重量センサ(87)(91)出力と穀粒排出センサ(94)出力に基づき穀物タンク(15)から取出された穀粒重量を演算して記憶させ、収穫穀粒の全重量を測定させるように構成している。
【0017】
上記から明らかなように、収穫穀粒を入れる穀物タンク(15)と、穀物タンク(15)の穀粒を取出す穀粒排出コンベアである穀粒排出オーガ(17)を備えるコンバインにおいて、穀物タンク(15)の空状態を検出する零設定センサである籾センサ(79)と、穀粒排出オーガ(17)のオンオフを検出する穀粒排出センサ(94)と、穀物タンク(15)重量を検出する重量センサ(87)(91)の検出結果に基づき、収穫穀粒重量を計算するように構成している。
そして、籾センサ(79)出力と重量センサ(87)(91)出力に基づき穀物タンク(15)が空状態の重量を更新し乍ら計測し、重量センサ(87)(91)出力に基づき収穫作業中の穀物タンク(15)内部の穀粒重量を高精度で測定する。それと共に、穀粒排出センサ(94)出力と重量センサ(87)(91)出力に基づき穀物タンク(15)から取出された穀粒重量を正確に算出し、穀物タンク(15)内部の穀粒容量を検出する従来センサを不要にし、また複数圃場で連続的に収穫作業を行うときにも各圃場毎の収穫穀粒重量を総重量スイッチ(97)操作によって確認でき、圃場別の収穫穀粒重量を参考にして土壌改良または施肥及び水管理などを各圃場毎に適正に行え、収穫作業能率の向上並びに圃場管理の適正化などを図れるように構成している。
また、機体の左右傾斜制御を行うローリングシリンダ(66)の作動油圧を重量センサ(87)(91)によって検出して作業中の穀物タンク(15)の穀粒重量を計算するもので、ローリングシリンダ(66)によって支持する機体荷重変化に基づき収穫穀粒重量を算出させ、収穫穀粒重量検出構造の簡略化及び製造コスト低減並びに収穫穀粒重量検出精度の向上などを図れる。それと共に、圃場を往復走行し乍ら収穫作業を行うとき、収穫重量スイッチ(96)操作により、1往復走行の収穫穀粒重量を確認でき、穀物タンク(15)が満杯になる作業地点(1往復刈取りを行えるか)を作業者に予測させ、例えば枕地に到達したときに穀物タンク(15)の空き部分が1往復分の穀粒量よりも少ない場合、次工程の刈取りを行わず、穀物タンク(15)の穀粒をトラック荷台などに排出させ、刈取りを中止した場所とトラック荷台などとの往復距離が少なくなるように作業を行い、穀物タンク(15)内の穀粒が1往復走行の途中で満杯になるのを防いだり、揚穀筒(16)などに穀粒が詰るのを未然に防げるように構成している。
【0018】
本実施例は上記の如く構成するもので、図8のフローチャートに示す如く、手動スイッチ(81)のオン操作により、左右ローリングシリンダ(66)(66)が作動し、手動傾斜調節が行われ、機台(3)の左右傾斜または車高が手動操作によって修正される。また、手動スイッチ(81)がオフのとき、傾斜センサ(82)及び左右車高センサ(67)(67)の各出力が入力され、脱穀スイッチ(80)がオフで脱穀部(4)が停止しているとき、車高が最低高さになるように、左右ローリングシリンダ(66)(66)自動制御により、機台(3)を下降させる調節動作が自動的に行われるもので、路上走行または圃場出入時、機台(3)を自動的に最低高さに下降させ、機体重心を自動的に低くして安定した姿勢で走行させ、機体の転倒などを防止している。
【0019】
さらに、図9のフローチャートに示す如く、籾センサ(79)がオフで穀物タンク(15)が空のとき、水平制御がオフのときの重量センサ(87)(91)出力を入力させ、穀物タンク(15)が空のときのローリングシリンダ(66)の機台(3)支持荷重である基準重量を演算して記憶させるもので、機台(3)などに付着する泥土重量と、刈取部(8)及び脱穀部(4)の穀稈重量と、運転席(20)の作業者体重などが機体重量に加算されて基準重量が計算されるから、収穫作業が開始されて穀物タンク(15)に穀粒が搬入される直前のローリングシリンダ(66)支持荷重が基準重量として記憶される。
【0020】
また、収穫作業が行われて穀粒が穀物タンク(15)に投入され、籾センサ(79)がオンになると、水平制御がオフのときの重量センサ(87)(91)出力が入力され、前記基準重量が重量センサ(87)(91)検出値から差し引かれ、前記タンク(15)に投入された収穫穀粒重量が演算され、収穫重量スイッチ(96)のオン操作によって重量表示部(95)に収穫穀粒重量がキログラム単位でデジタル表示される。
前記表示により、1行程(1往復走行)分の穀粒重量などを作業者が確認でき、前記タンク(15)が1行程分以下の空き部分を残した状態で運搬用トラック荷台などにタンク(15)から穀粒を取出す作業を行えるもので、トラック荷台など穀粒取出し場所に最も近い地点で収穫作業を中止させ、穀粒取出し場所に移動する時間の短縮などを図る。
【0021】
また、穀粒排出レバー(93)入操作によって穀粒排出オーガ(17)を作動させると、前記レバー(93)入操作によって穀粒排出センサ(94)がオンになって取出される直前の穀物タンク(15)内部の収穫穀粒重量が記憶されると共に、前記レバー(93)の切操作によって穀粒排出オーガ(17)を停止させると、前記レバー(93)切操作によって穀粒排出センサ(94)がオフになり、穀物タンク(15)に残っている穀粒残量並びに穀物タンク(15)から取出された排出穀粒重量が演算されて記憶されるもので、総重量スイッチ(7)のオン操作により、穀物タンク(15)内部の穀粒重量と該タンク(15)から取出された穀粒重量を加算した収穫穀粒の総重量が重量表示部(95)に表示される。
なお、収穫作業終了時または開始時、リセットスイッチ(98)の操作によって前記各コントローラ(83)(92)が初期設定され、記憶された重量データの消去などが行われる。
【0022】
【発明の効果】
以上実施例から明らかなように本発明は、次のような効果を奏するものである。
収穫穀粒を入れる穀物タンク(15)と、該穀物タンク(15)の空状態を検出する零設定センサである籾センサ(79)と、該穀物タンク(15)の重量を検出する重量センサ(87)(91)とを設け、前記籾センサ(79)がオフで、穀物タンク(15)が空のときの重量センサ(87)(91)の出力を入力させ、穀物タンク(15)が空のときの機台(3)支持荷重である基準重量を演算して記憶させ、基準重量とし、収穫作業が開始されて穀粒が穀物タンク(15)に投入され、前記籾センサ(79)がオンになると、重量センサ(87)(91)出力を入力し、前記基準重量を重量センサ(87)(91)の検出値から差し引き、前記穀物タンク(15)に投入された穀粒重量を演算し、収穫重量スイッチ(96)のオン操作によって重量表示部(95)に穀粒重量を表示すべく構成したので、籾センサ(79)の出力と重量センサ(87)(91)出力に基づき穀物タンク(15)が空状態の重量を更新し乍ら適正に計測でき、重量センサ(87)(91)出力に基づき収穫作業中の穀物タンク(15)内部の穀粒重量を高精度で測定できる。それと共に、重量センサ(87)(91)出力に基づき穀物タンク(15)から取出された穀粒重量を正確に算出でき、穀物タンク(15)内部の穀粒容量を検出する従来センサを不要にした。
また、複数圃場で連続的に収穫作業を行うときにも各圃場毎の収穫穀粒重量を容易に確認でき、圃場別の収穫穀粒重量を参考にして土壌改良または施肥及び水管理などを各圃場毎に適正に行うことができ、収穫作業能率の向上並びに圃場管理の適正化などを容易に図ることができるものである。
また、圃場を往復走行し乍ら収穫作業を行うとき、収穫重量スイッチ(96)操作により、1往復走行の収穫穀粒重量を確認でき、穀物タンク(15)が満杯になる作業地点(1往復刈取りを行えるか)を作業者に予測させ、例えば枕地に到達したときに穀物タンク(15)の空き部分が1往復分の穀粒量よりも少ない場合、次工程の刈取りを行わず、穀物タンク(15)の穀粒をトラック荷台などに排出させ、刈取りを中止した場所とトラック荷台などとの往復距離が少なくなるように作業を行い、穀物タンク(15)内の穀粒が1往復走行の途中で満杯になるのを防いだり、揚穀筒(16)などに穀粒が詰るのを未然に防げるように構成している。
【図面の簡単な説明】
【図1】 水平制御回路図。
【図2】 コンバインの全体側面図。
【図3】 コンバインの全体平面図。
【図4】 刈取部の側面説明図。
【図5】 走行クローラ部の側面図。
【図6】 同背面図。
【図7】 穀物タンク部の部分図。
【図8】 水平制御フローチャート。
【図9】 重量表示制御フローチャート。
【符号の説明】
(15) 穀物タンク
(17) 穀粒排出オーガ(穀粒排出コンベア)
(79) 籾センサ(零設定センサ)
(87)(91) 重量センサ
(94) 穀粒排出センサ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a combine that continuously harvests and thresh grains.
[0002]
[Problems to be solved by the invention]
Conventionally, a grain tank that contains harvested grains and a grain discharge conveyor that picks up the grains from the grain tanks are collected, and grains with a weight of about 1 ton are collected in a grain tank with a capacity of about 1.5 cubic meters. In addition, there is a technology for transshipment of grain in a grain tank to a truck bed carried to a country elevator, and the grain capacity inside the grain tank is detected in multiple stages, and the grain take-out time and the empty state are detected.
However, the weight of the harvested grain is unknown until the grain is brought into the country elevator and weighed. Therefore, by continuously harvesting in multiple fields, calculate the weight of the grains harvested in each field based on the volume of grains harvested in each field and the total weight of the grains measured by the country elevator. There is a problem that the calculation error of the grain weight for each field tends to be large due to the difference in the moisture content or specific gravity of the grain that needs to be different between the fields.
Therefore, it is necessary to measure the grain harvested for each field with a country elevator, etc., check the grain weight for each field, and use it as a reference for soil improvement or fertilization and water management in the field. There are problems such as inability to easily improve efficiency and optimize field management.
[0003]
[Means for Solving the Problems]
Means for solving the problem is as follows.
Grain tank (15) for storing harvested grains, paddy sensor (79) which is a zero setting sensor for detecting the empty state of the grain tank (15), and weight sensor for detecting the weight of the grain tank (15) ( 87) (91) and the output of the weight sensor (87) (91) when the hull sensor (79) is off and the grain tank (15) is empty is input, and the grain tank (15) is empty. Machine base (3) at the time of calculation, the reference weight which is the supporting load is calculated and stored, and is set as the reference weight. The harvesting operation is started and the grain is put into the grain tank (15). When turned on, the output of the weight sensor (87) (91) is input, the reference weight is subtracted from the detected value of the weight sensor (87) (91), and the weight of the grain put into the grain tank (15) is calculated. The harvest weight switch (96) is turned on. Thus it is obtained by configured to display the grain weight the weight display (95).
[0004]
As a result, the weight of the grain tank can be properly measured while the weight of the grain tank is updated based on the zero setting sensor output and the weight sensor output, and the grain weight inside the grain tank during the harvesting operation is increased based on the weight sensor output. It can be measured with accuracy. At the same time, the weight of the grain taken out from the grain tank can be accurately calculated based on the output of the grain discharge sensor and the weight sensor, eliminating the need for a conventional sensor for detecting the grain volume inside the grain tank, and in multiple fields. Even when harvesting continuously, the harvested grain weight for each field can be easily confirmed, and soil improvement or fertilization and water management are appropriate for each field with reference to the harvested grain weight for each field. Therefore, it is possible to easily improve the harvesting efficiency and optimize the field management.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below in detail with reference to the drawings.
FIG. 1 is a horizontal control circuit diagram, FIG. 2 is an overall side view of the combine, FIG. 3 is a plan view thereof, in which (1) is a track frame on which a traveling crawler (2) is installed, and (3) is the track. A machine base installed on the frame (1), (4) a threshing section that is a threshing machine that stretches the feed chain (5) on the left side and incorporates a handling cylinder (6) and a processing cylinder (7); ) Is a cutting part including a cutting blade (9) and a grain transporting mechanism (10), (11) is a hydraulic lifting cylinder that lifts and lowers the cutting part (8) via a cutting frame (12), and (13) is a discharge cylinder. A waste disposal processing section facing the end of the straw chain (14), (15) a grain tank for carrying the grain from the threshing section (4) through the milled cylinder (16), and (17) the tank (15 ) The grain discharge auger that carries the grain out of the machine, (18) is the operation part (19) and the driver's seat (20 Driving cabin comprises, constituting (21) as is the water-cooled diesel engine provided with the operating cabin (18) downward, threshing continuously harvests culms.
[0006]
Further, as shown in FIG. 4, the power of the engine (21) is transmitted to the counter case (22) via a drive shaft (23) with a universal joint, and the threshing output shaft (24), the sorting output shaft (25), The cutting output shaft (26) and the travel output shaft (27) are provided in the counter case (22). A dust feed fan that drives the handling cylinder (6) and the processing cylinder (7) via a threshing pulley (28) provided on the threshing output shaft (24) and is disposed below the handling cylinder (6), The first conveyor, the second conveyor, the swing drive shaft, the dust suction fan, the waste cutter, and the like are configured to be driven via the sorting pulley (29) of the sorting output shaft (25).
[0007]
Also, a working hydraulic pump (31) is provided on the input shaft (30) of the counter case (22) to which the drive shaft (23) is connected, and the pump (31) is driven via the input shaft (30) to The hydraulic oil in the counter case (22) that also serves as a tank is supplied to the elevating cylinder (11) and operated.
At the same time, the input shaft (30) is always connected to the travel output shaft (27) and the work shaft (32), and the work shaft (32) is connected to the sorting output shaft (25) via the hydraulic threshing clutch (33). The threshing output shaft (24) is connected to the sorting output shaft (25), the pulleys (28) (29) are driven via the threshing clutch (33), and power is transmitted to each part of the threshing portion (4). It is configured.
[0008]
The working shaft (32) is connected to the cutting output shaft (26) via a hydraulic cutting clutch (34), and the cutting output shaft (26) is pivotally supported by a cutting pulley (35), and the cutting portion (8 ) Is provided with an input pulley (37) on a cutting input single shaft (36) for driving each part of the), and the feed chain (5) is driven through the single shaft (36).
At the same time, the two cutting shafts (39) are connected to the one shaft (36) via a hand-handling clutch (38), and the power is transmitted to each portion of the cutting portion (8).
[0009]
In addition, a travel pulley (40) is pivotally supported on the travel output shaft (27), and a travel speed change case (41) for driving the pair of left and right travel crawlers (2) (2) is provided, and a hydraulic pump and a hydraulic motor are provided. The built-in hydraulic continuously variable transmission (42) is attached to the traveling transmission case (41), the transmission input shaft (43) of the transmission (42) is belt-connected to the traveling pulley (40) of the traveling output shaft (27), The engine (21) constantly rotates the speed change input shaft (43) by the power, and the left and right traveling crawlers (2) (2) via the speed change gear in the speed change case (41) by the speed change output of the transmission (42). Is configured to be driven.
[0010]
Further, a vehicle speed synchronization output shaft (44) is provided in the travel speed change case (41), and the output shaft (44) is rotated at an increased or decreased speed in proportion to the forward travel speed of the travel crawler (2). At the same time, a vehicle speed tuning pulley (46) pivotally supported on the output shaft (44) via a one-way clutch (45) and an input pulley (37) of the cutting input single shaft (36) are connected to a tension roller type cutting clutch. The belt is connected via (47).
When the cutting pulley (35) is belt-connected to the cutting pulley (35) and the cutting clutch (47) is engaged, the rotational speed of the vehicle speed tuning output shaft (44) rotates at the cutting output shaft (26) in a low-speed running state. If it is lower than the number, one shaft (36) is driven by the cutting output shaft (26), while the vehicle speed tuning output shaft (44) rotation speed is higher than the cutting output shaft (26) rotation speed in the high speed traveling state. The first shaft (36) is driven by the vehicle speed tuning output shaft (44), and the cutting unit (8) and the feed chain (5) are driven at a speed proportional to the traveling speed.
[0011]
Also, pulleys (52) (53) for connecting the auger input shaft (51) to the output shaft (50) of the engine (21) via the tension roller type auger clutch (48) and the V belt (49), and the auger input A bevel gear (55) for connecting the transverse auger (54) to the shaft (51) is provided, and the engine (21) output is taken out. At the same time, a longitudinal auger (56) for connecting the grain discharge auger (17) to the transverse auger (54) is provided, and when the grain tank (15) is rotated horizontally around the axis of the longitudinal auger (56). A clutch (57) for engaging / disengaging is provided, and the output of the engine (21) is transmitted to each auger (54) (56) (17), and the grains in the grain tank (15) are transmitted to each auger (54) (56) (17). It is configured to be carried out to a truck bed.
[0012]
Further, as shown in FIGS. 5 and 6, a drive sprocket (58) attached to a traveling speed change case (41) fixed to the machine base (3), and a left and right track frame (1) which is divided into the left and right parts and is moved up and down separately. The left and right traveling crawlers (2) and (2) are supported by a plurality of track rollers (59), equalizer rollers (60) and tension rollers (61) attached to (1). At the same time, the track frame (1) is supported on the machine base (3) so as to be movable up and down through front and rear fulcrum shafts (62) and (62) and front and rear lifting links (63) and (63). The middle of the lifting link (63) is swingably attached to the machine base (3) via a fulcrum shaft (62), and the track frame (1) is connected to the lower end side of the lifting link (63). At the same time, the upper end sides of the front and rear elevating links (63) (63) are connected by the rod (64).
In addition, the machine base (3) is provided with left and right rolling cylinders (66) (66) provided via brackets (65) (65), and the upper end of the rear lifting link (63) is connected to the piston tip of the rolling cylinder (66). The left and right track frames (1) and (1) are moved substantially at the same time with respect to the machine base (3) by the piston expansion and contraction control of the left and right rolling cylinders (66) and (66) respectively provided in the left and right traveling crawlers (2) and (2). Alternatively, it is moved up and down separately to change the left and right support height (left and right vehicle height) of the machine base (3) by the left and right traveling crawlers (2) and (2), and keep the machine base (3) substantially horizontal and substantially vertical. It is configured to move up and down, and to tilt the machine base (3) to the left and right to support it substantially horizontally.
[0013]
Also, left and right vehicle height sensors (67) and (67) for detecting the left and right support height of the machine base (3) by the left and right traveling crawlers (2) and (2) are provided on the machine base (3), and the potentiometer type vehicle height is provided. The rear elevating link (63) is connected to the sensor (67) via the sensing rods (68) (69).
[0014]
Further, as shown in FIG. 7, a hydraulic auger elevating cylinder (70) for raising and lowering the front end portion around the rear base portion of the discharge auger (17) is provided, and a discharge auger (56) is provided at the upper end portion of the longitudinal feed auger (56). 17) The base portion is rotatably connected around the horizontal axis. At the same time, an electric turning motor (71) for rotating the upper half of the longitudinal auger (56) around the axis is provided, and the upper half of the longitudinal auger (56) around the substantially vertical axis of the longitudinal auger (56). The discharge auger (17) is rotated, and the discharge port of the discharge auger (17) is moved up and down by the control of the lift cylinder (70). At the same time, the discharge port of the discharge auger (17) is configured to turn left and right by controlling the turning motor (71).
Further, a full switch (74) and an upper position switch (75) are provided in the grain tank (15) below the outlet (73) at the upper end of the cereal auger (72) installed in the cereal cylinder (16). . At the same time, a middle position switch (76) and a lower position switch (72) are provided below the upper position switch (75) in the grain tank (15), and the upper side of the chevron upper surface guide (78) of the transverse auger (54). And a vertical sensor auger (56) in the vicinity of the joint with the longitudinal feed auger (56). The switches (74) to (77) indicate the storage states of the grains in the full, upper position, middle position and lower position. Let it be detected by. At the same time, when the grain of the grain tank (15) is taken out from the discharge auger (17) to a truck bed carried to a country elevator, the empty state of the grain tank (15) is detected by the straw sensor (79). It is configured to make it.
[0015]
Furthermore, as shown in FIG. 1, the threshing switch (80) for detecting the driving of the threshing part (4) by the threshing clutch (33) engagement operation and the left and right rolling cylinder (66) are manually operated to A manual tilt switch (81) for changing the ground height or left / right tilt, a tilt sensor (82) for detecting the left / right tilt of the machine base (3), and the left and right vehicle height sensors (67) (67) described above It is connected to a horizontal control controller (83) formed by a computer. At the same time, ascending solenoid (85) and descending solenoid (86) of electromagnetic left elevating valve (84) for operating left rolling cylinder (66) and operation of left rolling cylinder (66) for lifting the left side of machine base (3) The potentiometer type weight sensor (87) for detecting the hydraulic pressure, the raising solenoid (89) and the lowering solenoid (90) of the electromagnetic right lifting valve (88) for operating the right rolling cylinder (66), and the right side of the machine base (3) A potentiometer type weight sensor (91) for detecting the hydraulic pressure of the right rolling cylinder (66) to be lifted is connected to the horizontal control controller (83). When the threshing part (4) is operating, Left and right lift valve (84) (88) automatic control based on detection results of high sensor (67) (67) and tilt sensor (82) Accordingly, the left and right rolling cylinders (66) and (66) are automatically actuated to keep the cutting height of the harvesting part (8) substantially constant while maintaining the machine base (3) substantially horizontal. Is automatically performed. At the same time, the machine body load supported by the left and right rolling cylinders (66) and (66) is detected by the left and right weight sensors (87) and (91).
[0016]
Further, a weight display controller (92) formed by a microcomputer is connected to the horizontal control controller (83). At the same time, the rice cake sensor (79), the grain discharge sensor (94) for detecting the on / off operation of the auger clutch (48) of the grain discharge lever (93), and the harvested grains collected in the grain tank (15) Weight display unit (95) for digitally displaying the grain weight in kilogram units, harvest weight switch (96) for displaying the grain weight inside the tank (15), and total weight for displaying the total grain weight of the harvesting work A switch (97) and a reset switch (98) for resetting the display unit (95) are connected to the weight display controller (92).
The grain tank (15) calculates and updates the reference weight when the grain tank (15) is empty based on the output of the dredge sensor (79) and the weight sensor (87) (91), for example, mud adhered to the machine base (3). Grains in the tank (15), except for weight or weight that changes due to something other than the grains in the grain tank (15), such as the weight of the harvesting part (8) and threshing part (4) Let the net weight of be measured. At the same time, the grain weight taken out from the grain tank (15) is calculated and stored based on the outputs of the weight sensor (87) (91) and the grain discharge sensor (94), and the total weight of the harvested grain is calculated. It is configured to be measured.
[0017]
As apparent from the above, in a combine provided with a grain tank (15) for containing harvested grains and a grain discharge auger (17) which is a grain discharge conveyor for taking out grains from the grain tank (15), a grain tank ( 15) A cocoon sensor (79) which is a zero setting sensor for detecting an empty state, a grain discharge sensor (94) for detecting on / off of the grain discharge auger (17), and a weight of the grain tank (15). Based on the detection results of the weight sensors (87) and (91), the harvested grain weight is calculated.
Then, the grain tank (15) updates the empty weight based on the output of the culm sensor (79) and the weight sensor (87) (91), and measures the weight while updating the weight in the empty state, and harvests based on the output of the weight sensor (87) (91). The grain weight inside the grain tank (15) during work is measured with high accuracy. At the same time, the grain weight extracted from the grain tank (15) is accurately calculated based on the output of the grain discharge sensor (94) and the weight sensor (87) (91), and the grain inside the grain tank (15) is calculated. The conventional sensor for detecting the capacity is not required, and the harvested grain weight for each field can be confirmed by operating the total weight switch (97) when harvesting operations are continuously performed in a plurality of fields. With reference to the weight, soil improvement or fertilization and water management can be appropriately performed for each field, and the harvesting work efficiency is improved and field management is optimized.
The rolling cylinder (66) detects the hydraulic pressure of the rolling cylinder (66) that controls the tilting of the airframe by the weight sensors (87) and (91), and calculates the grain weight of the grain tank (15) in operation. The harvested grain weight can be calculated based on the change in the body load supported by (66), the harvested grain weight detection structure can be simplified, the manufacturing cost can be reduced, and the harvested grain weight detection accuracy can be improved. At the same time, when the harvesting operation is performed while reciprocating in the field, the harvested grain weight of one reciprocal operation can be confirmed by operating the harvesting weight switch (96), and the working point (1) where the grain tank (15) is full. For example, if the empty part of the grain tank (15) is smaller than the amount of grain for one round trip when reaching the headland, the next process is not carried out, The grains in the grain tank (15) are discharged to a truck bed, etc., and the work is carried out so that the reciprocation distance between the place where the cutting is stopped and the truck bed, etc. is reduced, and the grains in the grain tank (15) make one round trip. It is configured so that it can be prevented from becoming full in the middle of traveling, and the grain can be prevented from being clogged in the milled cylinder (16).
[0018]
This embodiment is configured as described above. As shown in the flowchart of FIG. 8, when the manual switch (81) is turned on, the left and right rolling cylinders (66) and (66) are operated, and manual tilt adjustment is performed. The left-right inclination or the vehicle height of the machine base (3) is corrected by manual operation. When the manual switch (81) is off, the outputs of the tilt sensor (82) and the left and right vehicle height sensors (67) (67) are input, the threshing switch (80) is off, and the threshing section (4) is stopped. When the vehicle is running, the adjustment operation to lower the machine base (3) is automatically performed by the left and right rolling cylinders (66) (66) automatic control so that the vehicle height becomes the minimum height. Alternatively, when entering and leaving the field, the machine base (3) is automatically lowered to the minimum height, the center of gravity of the machine body is automatically lowered to run in a stable posture, and the machine body is prevented from falling.
[0019]
Further, as shown in the flow chart of FIG. 9, when the hull sensor (79) is off and the grain tank (15) is empty, the output of the weight sensor (87) (91) when the horizontal control is off is input, and the grain tank is input. The base weight (3) supporting load of the rolling cylinder (66) when (15) is empty is calculated and stored, and the weight of mud adhering to the base (3) and the cutting part ( 8) The cereal weight of the threshing unit (4) and the operator weight of the driver's seat (20) are added to the body weight to calculate the reference weight, so that the harvesting operation is started and the grain tank (15) The supporting load of the rolling cylinder (66) immediately before the grain is carried in is stored as the reference weight.
[0020]
When the harvesting operation is performed and the grain is put into the grain tank (15) and the culm sensor (79) is turned on, the output of the weight sensor (87) (91) when the horizontal control is off is input, The reference weight is subtracted from the detection value of the weight sensor (87) (91), the harvested grain weight put into the tank (15) is calculated, and the weight display section (95) is turned on by operating the harvest weight switch (96). ) The harvested grain weight is digitally displayed in kilograms.
By the display, the operator can confirm the grain weight for one stroke (one round trip), and the tank (15) is left on the tank (15 15) It is possible to carry out the work of taking out the grain, and the harvesting work is stopped at a point closest to the grain taking-out place such as a truck bed to shorten the time for moving to the grain taking-out place.
[0021]
Further, when the grain discharge auger (17) is operated by the operation of entering the grain discharge lever (93), the grain immediately before the grain discharge sensor (94) is turned on and taken out by the operation of entering the lever (93). The harvested grain weight inside the tank (15) is stored, and when the grain discharge auger (17) is stopped by turning the lever (93), the grain discharge sensor ( 94) is turned off, and the remaining amount of grain remaining in the grain tank (15) and the discharged grain weight taken out from the grain tank (15) are calculated and stored, and the total weight switch (7) Is turned on, and the total weight of the harvested grain obtained by adding the grain weight inside the grain tank (15) and the grain weight taken out from the tank (15) is displayed on the weight display section (95).
At the end or start of the harvesting operation, the controller (83) (92) is initialized by operating the reset switch (98), and the stored weight data is erased.
[0022]
【The invention's effect】
As is apparent from the above embodiments, the present invention has the following effects.
Grain tank (15) for storing harvested grains, paddy sensor (79) which is a zero setting sensor for detecting the empty state of the grain tank (15), and weight sensor for detecting the weight of the grain tank (15) ( 87) (91) and the output of the weight sensor (87) (91) when the hull sensor (79) is off and the grain tank (15) is empty is input, and the grain tank (15) is empty. Machine base (3) at the time of calculation, the reference weight which is the supporting load is calculated and stored, and is set as the reference weight. The harvesting operation is started and the grain is put into the grain tank (15). When turned on, the output of the weight sensor (87) (91) is input, the reference weight is subtracted from the detected value of the weight sensor (87) (91), and the weight of the grain put into the grain tank (15) is calculated. The harvest weight switch (96) is turned on. Thus since it is configured so as to display the grain weight the weight display (95), an output and a weight sensor (87) of rice sensor (79) (91) updates the weight grain tank (15) is empty based on the output Therefore, it is possible to measure appropriately, and it is possible to measure the grain weight inside the grain tank (15) during the harvesting operation with high accuracy based on the output of the weight sensor (87) (91). At the same time, the weight of the grain taken out from the grain tank (15) can be accurately calculated based on the output of the weight sensor (87) (91), and a conventional sensor for detecting the grain volume inside the grain tank (15) is unnecessary. did.
In addition, the harvested grain weight for each field can be easily confirmed even when harvesting operations are performed continuously in multiple fields, and soil improvement or fertilization and water management can be performed with reference to the harvested grain weight for each field. This can be performed appropriately for each field, and it is possible to easily improve the harvesting work efficiency and optimize the field management.
When the harvesting operation is performed while reciprocating in the field, the harvested grain weight of one reciprocating operation can be confirmed by operating the harvesting weight switch (96), and the work point where the grain tank (15) is full (one reciprocation). For example, if the empty part of the grain tank (15) is smaller than the amount of grain for one round trip when reaching the headland, the next process is not carried out, and the grain is cut. The grains in the tank (15) are discharged to the truck bed, etc., and work is performed so that the reciprocation distance between the place where the cutting is stopped and the truck bed is reduced, and the grain in the grain tank (15) travels once. It is constructed so that it can be prevented from becoming full in the middle of the process, and it is possible to prevent the kernel from being clogged in the cereal cylinder (16).
[Brief description of the drawings]
FIG. 1 is a horizontal control circuit diagram.
FIG. 2 is an overall side view of the combine.
FIG. 3 is an overall plan view of the combine.
FIG. 4 is an explanatory side view of a cutting part.
FIG. 5 is a side view of a traveling crawler unit.
FIG. 6 is a rear view of the same.
FIG. 7 is a partial view of a grain tank unit.
FIG. 8 is a horizontal control flowchart.
FIG. 9 is a weight display control flowchart.
[Explanation of symbols]
(15) Grain tank (17) Grain discharge auger (grain discharge conveyor)
(79) Amber sensor (zero setting sensor)
(87) (91) Weight sensor (94) Kernel discharge sensor

Claims (1)

収穫穀粒を入れる穀物タンク(15)と、該穀物タンク(15)の空状態を検出する零設定センサである籾センサ(79)と、該穀物タンク(15)の重量を検出する重量センサ(87)(91)とを設け、
前記籾センサ(79)がオフで、穀物タンク(15)が空のときの重量センサ(87)(91)の出力を入力させ、穀物タンク(15)が空のときの機台(3)支持荷重である基準重量を演算して記憶させ、基準重量とし、
収穫作業が開始されて穀粒が穀物タンク(15)に投入され、前記籾センサ(79)がオンになると、重量センサ(87)(91)出力を入力し、前記基準重量を重量センサ(87)(91)の検出値から差し引き、前記穀物タンク(15)に投入された穀粒重量を演算し、収穫重量スイッチ(96)のオン操作によって重量表示部(95)に穀粒重量を表示すべく構成したことを特徴とするコンバイン。
A grain tank (15) for storing harvested grains, a paddle sensor (79) that is a zero-setting sensor for detecting an empty state of the grain tank (15), and a weight sensor (for detecting the weight of the grain tank (15)) 87) (91),
Supporting the machine base (3) when the grain sensor (79) is off and the output of the weight sensor (87) (91) when the grain tank (15) is empty is input Calculate and store the reference weight, which is the load, and use it as the reference weight.
When the harvesting operation is started and the grain is put into the grain tank (15) and the straw sensor (79) is turned on, the output of the weight sensor (87) (91) is inputted, and the reference weight is inputted to the weight sensor (87). ) Subtract from the detected value of (91), calculate the weight of the grain put into the grain tank (15), and display the grain weight on the weight display section (95) by turning on the harvesting weight switch (96). Combine that is characterized by being constructed according to
JP05418897A 1997-02-20 1997-02-20 Combine Expired - Fee Related JP3710910B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05418897A JP3710910B2 (en) 1997-02-20 1997-02-20 Combine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05418897A JP3710910B2 (en) 1997-02-20 1997-02-20 Combine

Publications (2)

Publication Number Publication Date
JPH10229740A JPH10229740A (en) 1998-09-02
JP3710910B2 true JP3710910B2 (en) 2005-10-26

Family

ID=12963584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05418897A Expired - Fee Related JP3710910B2 (en) 1997-02-20 1997-02-20 Combine

Country Status (1)

Country Link
JP (1) JP3710910B2 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005087155A (en) * 2003-09-19 2005-04-07 Yanmar Agricult Equip Co Ltd Combine harvester
JP4388428B2 (en) * 2004-07-13 2009-12-24 ヤンマー株式会社 Combine
JP4578907B2 (en) * 2004-09-16 2010-11-10 ヤンマー株式会社 Combine
JP4714456B2 (en) * 2004-11-17 2011-06-29 ヤンマー株式会社 Combine
JP2006246845A (en) * 2005-03-14 2006-09-21 Yanmar Co Ltd Combine
JP4895515B2 (en) * 2005-03-14 2012-03-14 ヤンマー株式会社 Combine
JP5508619B2 (en) * 2009-08-12 2014-06-04 ヤンマー株式会社 Combine
PL2654396T3 (en) * 2010-12-22 2018-09-28 Precision Planting Llc Methods, systems, and apparatus for monitoring yield and vehicle
KR101462387B1 (en) * 2013-03-05 2014-11-17 경상대학교산학협력단 Rotation speed control device of the combine's discharge auger
JP2015069451A (en) * 2013-09-30 2015-04-13 株式会社日立ソリューションズ Farm field management system
KR102302684B1 (en) 2014-03-19 2021-09-15 가부시끼 가이샤 구보다 Harvester
JP6300591B2 (en) * 2014-03-19 2018-03-28 株式会社クボタ Harvesting machine
JP6300592B2 (en) * 2014-03-19 2018-03-28 株式会社クボタ Harvesting machine
JP6338434B2 (en) * 2014-04-22 2018-06-06 ヤンマー株式会社 Combine
JP6373147B2 (en) * 2014-09-26 2018-08-15 株式会社クボタ Combine
US9974233B2 (en) 2014-09-25 2018-05-22 Kubota Corporation Harvesting machine
WO2016147452A1 (en) 2015-03-18 2016-09-22 株式会社クボタ Combine harvester
JP6807067B2 (en) * 2016-12-19 2021-01-06 株式会社タカキタ Control method in the weight measuring machine of the harvest, and the weight measuring machine
JP6621490B2 (en) * 2018-02-21 2019-12-18 株式会社クボタ Harvester
JP6728256B2 (en) * 2018-02-21 2020-07-22 株式会社クボタ Harvester
WO2020003882A1 (en) * 2018-06-25 2020-01-02 株式会社クボタ Combine, yield calculation method, yield calculation system, yield calculation program, recording medium having yield calculation program recorded thereon, grain discharge yield calculation method, grain discharge yield calculation system, grain discharge yield calculation program, recording medium having grain discharge yield calculation program recorded thereon, irregular inflow detection system, irregular inflow detection program, recording medium having irregular inflow detection program recorded thereon, irregular inflow detection method, and storage level detection system

Also Published As

Publication number Publication date
JPH10229740A (en) 1998-09-02

Similar Documents

Publication Publication Date Title
JP3710910B2 (en) Combine
JP2009072068A (en) Combine harvester
KR20120030350A (en) Traveling vehicle
JP2010227078A (en) Combine harvester
US5039273A (en) Conveyor system for a container
JP2855426B2 (en) Combine
JP5788169B2 (en) Work vehicle
WO2012077496A1 (en) Combine
JP5756070B2 (en) Combine
JP7156448B2 (en) combine
JP3828417B2 (en) Combine
JP7386410B2 (en) combine
JP6355579B2 (en) Combine
JP4119055B2 (en) Onion harvester
JP2541447Y2 (en) Combine
JP2688145B2 (en) Combine harvesting pretreatment structure
JP5780628B2 (en) Normal combine
JP4787576B2 (en) Combine
JP2000037133A (en) Grain tank of general-purpose combine harvester
JPH11266683A (en) Rotation control constitution of discharge auger of combine harvester
JP3846997B2 (en) Combine
JP3848593B2 (en) Combine
JP3652262B2 (en) Attitude control device for mowing harvester
JP2002218831A (en) Engine control system for combine harvester
JP4085764B2 (en) Combine

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040510

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050811

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080819

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090819

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100819

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100819

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100819

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110819

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120819

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130819

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130819

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130819

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees