JP3698516B2 - Film electrode and manufacturing method thereof - Google Patents

Film electrode and manufacturing method thereof Download PDF

Info

Publication number
JP3698516B2
JP3698516B2 JP08459597A JP8459597A JP3698516B2 JP 3698516 B2 JP3698516 B2 JP 3698516B2 JP 08459597 A JP08459597 A JP 08459597A JP 8459597 A JP8459597 A JP 8459597A JP 3698516 B2 JP3698516 B2 JP 3698516B2
Authority
JP
Japan
Prior art keywords
film
electrode
crystalline carbon
carbon
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08459597A
Other languages
Japanese (ja)
Other versions
JPH10261403A (en
Inventor
光市 松本
Original Assignee
パイロットプレシジョン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイロットプレシジョン株式会社 filed Critical パイロットプレシジョン株式会社
Priority to JP08459597A priority Critical patent/JP3698516B2/en
Publication of JPH10261403A publication Critical patent/JPH10261403A/en
Application granted granted Critical
Publication of JP3698516B2 publication Critical patent/JP3698516B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【産業上の利用分野】
本発明は、炭素のフィルム状電極およびその製造法に関するもので、特にはリチウムイオンを用いた2次電池用の電極に関するものである。
【0002】
【従来の技術】
近年、小型の映像機器、情報機器、通信機器等の普及に伴って、小型で高性能を有する2次電池の必要性が高まっており、その最有力候補として電極にアルカリ金属、特に金属リチウムを用いた2次電池が開発されている。この2次電池は、従来のニッケル−カドミウム電池と比べ高作動電圧(3.6V)、高エネルギー密度を有するもので、新しい電池として嘱望されているが、負極として金属リチウムを用いたものは、繰り返しの充放電により負極であるリチウム金属の表面にデンドライト(樹枝状結晶)が生成し、さらに充放電を繰り返すうちにデンドライトが成長し、ついには正極と短絡してしまい、電池として使用できない状況になってしまうばかりか、発火等の危険性も充分考えられる。要するに、負極にリチウム金属を用いた2次電池は寿命が短く、危険性も高いというものであった。
【0003】
このため、負極にリチウム金属を使用せず、炭素材料特には結晶質炭素を使用する方法が検討、実施されている。つまり、黒鉛等の結晶質炭素は充電時にリチウムイオンを吸収し、放電時にリチウムイオンを放出することにより2次電池を構成するもので、特に結晶質炭素を用いた場合には、放電曲線が平坦でかつ充放電効率が優れているという特徴を有し、リチウム金属を使用した時の問題は解消し、きわめて良好な負極となる。
この炭素材料を用いた電極としては、イ)黒鉛などの炭素材料の粉末をテフロン等のバインダで結着したもの。ロ)樹脂フィルムを2000℃以上で焼成して結晶質のグラファイトフィルムとするもの(特開平4−79154)などが挙げられる。
【0004】
【発明が解決しようとする課題】
しかしながら、上記の電極ではいまだ充分なものとはいい難い。即ち、通常使用されているイ)の構成では、バインダが介在するために、炭素材料の密度が充分に高くできず、電極材料の内部抵抗も高いものとなってしまい、電極単位体積当りの充分な容量が得られにくく、また内部抵抗が高いために分極が大きく、クーロン効率も低いものとなってしまう可能性が大きい。さらに繰り返し充放電に伴うバインダの劣化により、強度が低下して電極材料の崩壊が生じる可能性が大きく、サイクル寿命も短いものである。
ロ)の構成はバインダを含まず、イ)の問題を解決したものである。しかし、フィルム全体を構成する樹脂を焼成していくので、分解収縮が大きく、そのためかなり厳密に管理しないとフィルムの強度や表面形状などの品質上のばらつきが大きくなり易く、フィルムとして安定した性能が得られ難い。
2次電池用の電極は、きわめて薄物の電極であるので、フィルム状とした時その取扱いには細心の注意が必要であり、そのために強度が高くそれでいて繰り返し充電に伴う破壊劣化が小さく寿命の長いものが要求されるのである。
【0005】
【課題を解決するための手段】
本発明は、上記問題に鑑み鋭意検討した結果完成されたものであり、炭素から成るフィルム状電極であって、充放電効率が良く、平坦な放電曲線を有し、さらに強度が強く寿命の長いリチウムイオン2次電池用のフィルム状電極を提供するものである。
【0006】
【発明の実施の形態】
本発明のリチウムイオン2次電池用のフィルム状電極は結晶質炭素から構成され、その構造として粉末状あるいは繊維状の結晶質炭素の表面に、有機高分子物質から得られた結晶質炭素の皮膜が被覆され、かつこの皮膜どうしが相互に連結された構造となっている。この時、皮膜状の結晶質炭素には微細な空孔が形成され、2次電池として充放電される際、空孔を通じて結晶のよく発達した粉末状あるいは繊維状の結晶質炭素にリチウムイオンがドーピングされると同時に、皮膜状の結晶質炭素にもリチウムイオンがドーピングされることになる。この時、皮膜状の結晶質炭素はフィルムの強度に寄与していることとなる。この構造とすることにより、薄いフィルムであっても強度が強く、しかも繰り返しのドーピング、脱ドーピングにも劣化が小さく寿命の長いリチウムイオン2次電池用のフィルム状電極となり、さらにはテフロン等の通常のバインダを用いたものと比べて内部抵抗が減少すると共に、イオンのドーピングが容易であるなどの種々の特徴を有するものである。
【0007】
粉末状、繊維状の結晶質炭素と皮膜状の結晶質炭素との重量割合は任意であり、フィルムとして形成できるように適宜設定すればよいが、好ましくは粉末状の結晶質炭素が全体の40〜98重量%、より好ましくは50〜95重量%の範囲が好適である。粉末状の結晶質炭素が40重量%以下であると、高分子物質の焼成によって得られた結晶質炭素が多くなり、電極としての性能は変わらないものの、強度や表面形状の安定した品質を有する良好なフィルムが得られ難い。また98重量%以上であると、フィルムとしての強度が弱く、ドーピング、脱ドーピングの繰り返しによる破壊劣化が生じ易い。
【0008】
さらにここで、強度が強く、寿命が長くなる別の理由としては、定かではないが以下のように考えられる。即ち本発明のリチウムイオン2次電池用のフィルム状電極は、結晶質炭素として単一形態のフィルムとは異なり、2つの形態の異なる結晶質炭素を用いている。従って、リチウム(アルカリ金属)が材料中に挿入されたり、脱離されたりする時の膨張収縮が2形態の材料間で吸収緩和され、結果として電極が破壊されにくく、寿命が長くなるものと考えられる。
【0009】
本発明で用いる粉末状、繊維状の結晶質炭素としては、格子面間隔d(002)が概ね3.4オングストローム以下の構造を有する炭素材料であればいずれを用いてもよく、例えば高配向性気相熱分解黒鉛、天然黒鉛、キッシュ黒鉛、人造黒鉛、黒鉛ウィスカ、黒鉛繊維などが好適に使用されるが、このほかにカーボンブラック、石油コークス等の非晶質炭素を非酸化性雰囲気下にて概ね2000℃以上の焼成温度でグラファイト化したもの、あるいはメソフェーズ、ピッチ類、樹脂、オリゴマー等の高分子物質を非酸化性雰囲気下にて概ね2000℃以上の焼成温度でグラファイト化したものなどが挙げられ、これらを単独もしくは組み合わせて用いることができるが、好ましくはフィルム内において均一に分散可能で、かつ安定した構造を有する粉末状、繊維状の黒鉛が好適である。
ここで、カーボンブラック、石油コークスなどの非晶質炭素については、これらの材質をそのまま有機高分子物質と共に2000℃以上で焼成して、共に結晶質化させて本発明の炭素電極とすることもできる。
【0010】
本発明で用いる皮膜状の結晶質炭素としては、結晶構造が粉末状、繊維状の炭素に近く、かつフィルムの強度に寄与するものであればいずれを用いてもよく、例えば天然樹脂、合成樹脂、ピッチ類、アスファルト、オリゴマー、メソフェーズ等の有機高分子物質を単独もしくは組み合わせて非酸化性雰囲気下にて概ね2000℃以上で焼成してグラファイト化したものを用いる。この結晶質炭素の存在により、電極の負極としての良好な性能のほかに、強度が強く寿命の長いフィルム状電極が得られる。
【0011】
次に、本発明のリチウムイオン2次電池用のフィルム状電極の製造法について述べると、前記の粉末状あるいは繊維状の結晶質炭素と前記の有機高分子物質を混合した後、押出成形、湿式法、プレス法等によりフィルム状に成形する。ここで混合する際、別素材としてカーボンブラック、石油コークス等の非晶質炭素物質を添加してもよい。これらの非晶質炭素は焼成後に結晶質炭素となる。さらに、成形助剤としてワックスや可塑剤、溶剤などを添加してもよい。次に、必要に応じて不融化処理を行った後、非酸化雰囲気中において概ね2000℃以上で焼成して、有機高分子物質を炭素化させて結晶質炭素とし、所望のフィルム状電極を得る。この時、有機高分子物質の分解あるいはワックス、溶剤などの蒸発により、フィルム内に微細な空孔が多数形成される。ここで有機高分子物質として、熱可塑性の有機高分子物質を用いる場合は、熱をかけて混合し、また溶剤に溶けるタイプの有機高分子物質を用いる場合には溶剤に溶かして混合する。熱硬化性の有機高分子物質を用いる場合には、硬化する前の柔らかい状態で混合し、成形しておくことが肝要である。
【0012】
【実施例】
実施例1
結晶質炭素(粉末状の天然黒鉛・平均粒径6μm) 60重量部
有機高分子物質(ポリ塩化ビニル・平均重合度800) 40重量部
メチルエチルケトン 100重量部
上記材料を混合機にて混合し、この混練物をステンレス製の皿に流しこんだ。その後、メチルエチルケトンを常温で蒸発させて、天然黒鉛とポリ塩化ビニルの混合物のフィルム素材を得た。このフィルム素材を最初に空気雰囲気下において220℃、10時間保持して不融化処理を行った後、アルゴンガス雰囲気下において3℃/分の昇温速度で2200℃まで昇温し、2200℃で3時間保持して厚さ120μmのフィルム状電極を得た。このフィルムの組成は結晶質炭素(天然黒鉛)が92.7重量%、ポリ塩化ビニルから得られた結晶質炭素が7.3重量%であり、天然黒鉛の表面にポリ塩化ビニルから得られた結晶質炭素の皮膜が被覆され、この皮膜が連結された構造である。
次に、上記フィルム状電極を用いて充放電評価を行った。電解液は、1M過塩素酸リチウムを含むEC/DEC=1/1溶液、対極および参照極には金属リチウム板を用いる三極式セルで評価した。電流密度は50mA/g、リチウム電極電位の0から2V間で充放電を行い、放電容量、充放電効率(クーロン効率)を測定した。その結果は、表1に示した。
【0013】
実施例2
結晶質炭素(石油コークスを2600℃で焼成したもの) 60重量部
(平均粒径10μm)
有機高分子物質(コールタールピッチ・軟化点100℃) 40重量部
上記材料を混合機にて加熱混合後、この混練物を押出機にてフィルム状に成形した。このフィルム素材を最初に空気雰囲気下において250℃、10時間保持して不融化処理を行った後、アルゴンガス雰囲気下において5℃/分の昇温速度で2000℃まで昇温し、2000℃で3時間保持して厚さ75μmのフィルム状電極を得た。このフィルムの組成は粉末状の結晶質炭素が78.0重量%、コールタールピッチから得られた結晶質炭素が22.0重量%であり、その構造は実施例1と同じである。次に上記フィルム状電極を用いて、実施例1と同様の評価を行った。
【0014】
実施例3
結晶質炭素(黒鉛ウィスカ・平均長さ10μm) 50重量部
非晶質炭素(カーボンブラック) 10重量部
有機高分子物質(ポリ塩化ビニル・平均重合度1000) 40重量部
メチルエチルケトン 100重量部
上記材料を混合機にて混合し、この混練物をステンレス製の皿に流しこんだ。その後、メチルエチルケトンを常温で蒸発させて黒鉛ウィスカとカーボンブラックとポリ塩化ビニルの混合物のフィルム素材を得た。このフィルム素材を最初に空気雰囲気下において220℃、10時間保持して不融化処理を行った後、アルゴンガス雰囲気下において2℃/分の昇温速度で2500℃まで昇温し、2500℃で3時間保持して厚さ85μmのフィルム状電極を得た。このフィルムの組成は、結晶質炭素(黒鉛ウィスカ)が77.4重量%、カーボンブラックから得られた結晶質炭素が15.3重量%、ポリ塩化ビニルから得られた結晶質炭素が7.3重量%であり、その構造は繊維状の結晶質炭素(黒鉛ウィスカ)およびカーボンブラックから得られた粉末状の結晶質炭素の表面に、ポリ塩化ビニルから得られた結晶質炭素の皮膜が形成され、この皮膜が連結された構造である。次に上記フィルム状電極を用いて、実施例1と同様の評価を行った。
【0015】
比較例1
有機高分子物質(ポリ塩化ビニル・平均重合度1000) 40重量部
メチルエチルケトン 100重量部
上記材料を実施例1と同様に調製後、アルゴンガス雰囲気下において2℃/分の昇温速度で2500℃で焼成し、フィルム状電極を得た。このフィルムの組成は、ポリ塩化ビニルから得られた結晶質炭素が100重量%であった。次にこのフィルム状電極を用いて、実施例1と同様の評価を行った。
【0016】
比較例2
結晶質炭素(粉末状の天然黒鉛・平均粒径6μm) 90重量部
ポリフッ化ビニリデン 10重量部
N−メチルピロリドン 50重量部
上記材料を混合機にて混合し、この混練物をステンレス製の皿に流しこんだ。その後、N−メチルピロリドンを常温で蒸発させて、天然黒鉛とポリフッ化ビニリデンから成る厚さ120μmのフィルム状電極を得た。
【0017】
上記実施例1、2、3および比較例1、2についてそれぞれ放電容量、充放電効率を測定、さらにくりかえし充放電による寿命を判定し、またフィルム強度は、取扱いのし易さを目安として判断して、その結果を表1に示した。なお、単位は放電容量がmAh/gで、充放電効率が%である。
【0018】
【表1】

Figure 0003698516
【0019】
【発明の効果】
以上、本発明のリチウムイオン2次電池用のフィルム状電極は次のような種々の特徴を有する。
1)単一材料のフィルムとは異なり、粉末状あるいは繊維状の結晶質炭素を、有機高分子物質から得られた皮膜状の結晶質炭素が被覆し、かつ立体的に連結されているため強度が高く、さらには繰り返し充放電に伴う結晶質炭素の劣化も小さい。従って、材料の崩壊が生じ難くなり、寿命も長くなる。また、従来の電極に使用されている有機バインダを含まないので、単位体積当りの容量が大きくなる。
2)収縮のない結晶質炭素と有機高分子物資とを混合して作製しているので、成形、焼成が容易となってフィルム内部のひずみが生じがたいこと、さらに収縮する程度が小さく、そのため得られたフィルムの表面状態が良く、また強度などのばらつきも少なくなり、安定した性能を有する電極となる。[0001]
[Industrial application fields]
The present invention relates to a carbon film electrode and a method for producing the same, and more particularly to an electrode for a secondary battery using lithium ions.
[0002]
[Prior art]
In recent years, with the widespread use of small video equipment, information equipment, communication equipment, etc., the need for secondary batteries with small size and high performance has increased. As the most promising candidates, alkali metals, especially metallic lithium, are used as electrodes. The secondary battery used has been developed. This secondary battery has a higher operating voltage (3.6 V) and higher energy density than the conventional nickel-cadmium battery, and is expected to be a new battery. Due to repeated charging and discharging, dendrites (dendritic crystals) are generated on the surface of lithium metal, which is the negative electrode, and the dendrites grow as charging and discharging are repeated. In addition to becoming a danger, there is a risk of fire. In short, a secondary battery using lithium metal for the negative electrode has a short life and high danger.
[0003]
For this reason, a method of using a carbon material, particularly crystalline carbon, without using lithium metal for the negative electrode has been studied and implemented. In other words, crystalline carbon such as graphite forms a secondary battery by absorbing lithium ions during charging and releasing lithium ions during discharging. In particular, when crystalline carbon is used, the discharge curve is flat. In addition, the charge / discharge efficiency is excellent, and the problem when lithium metal is used is solved, resulting in a very good negative electrode.
As an electrode using this carbon material, a) a powder of carbon material such as graphite bound with a binder such as Teflon. (B) A resin film is fired at 2000 ° C. or more to form a crystalline graphite film (Japanese Patent Laid-Open No. 4-79154).
[0004]
[Problems to be solved by the invention]
However, it is difficult to say that the above electrodes are still sufficient. That is, in the configuration of (i) which is usually used, the binder is interposed, so that the density of the carbon material cannot be made sufficiently high, and the internal resistance of the electrode material is also high, which is sufficient per unit electrode volume. Large capacity is difficult to obtain, and because the internal resistance is high, the polarization is large and the Coulomb efficiency is likely to be low. Furthermore, the deterioration of the binder accompanying repeated charging / discharging is likely to cause a decrease in strength and collapse of the electrode material, and the cycle life is also short.
The configuration of b) does not include a binder and solves the problem of b). However, since the resin that makes up the entire film is baked, the decomposition shrinkage is large.Therefore, if not managed strictly, quality variations such as film strength and surface shape are likely to increase, and the film has stable performance. It is difficult to obtain.
Since the electrode for a secondary battery is an extremely thin electrode, it needs to be handled with great care when it is made into a film. Therefore, it has a high strength, yet has little damage and deterioration due to repeated charging and has a long life. Things are required.
[0005]
[Means for Solving the Problems]
The present invention has been completed as a result of intensive studies in view of the above problems, and is a film-like electrode made of carbon, which has good charge / discharge efficiency, has a flat discharge curve, and has high strength and long life. The present invention provides a film electrode for a lithium ion secondary battery.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
The film-like electrode for a lithium ion secondary battery of the present invention is composed of crystalline carbon, and the crystalline carbon film obtained from an organic polymer substance on the surface of powdery or fibrous crystalline carbon as the structure. Is formed, and the films are connected to each other. At this time, fine vacancies are formed in the film-like crystalline carbon, and when charging / discharging as a secondary battery, lithium ions are present in the powdery or fibrous crystalline carbon in which crystals are well developed through the vacancies. Simultaneously with the doping, lithium ion is also doped into the film-like crystalline carbon. At this time, the film-like crystalline carbon contributes to the strength of the film. By adopting this structure, even a thin film has a high strength, and is a film-like electrode for a lithium ion secondary battery having a long life with little deterioration due to repeated doping and dedoping. As compared with the case using the binder, the internal resistance is reduced and the ion doping is easy.
[0007]
The weight ratio between the powdery and fibrous crystalline carbon and the film-like crystalline carbon is arbitrary, and may be set as appropriate so that it can be formed as a film. The range of ˜98% by weight, more preferably 50 to 95% by weight is suitable. When the amount of powdery crystalline carbon is 40% by weight or less, the crystalline carbon obtained by firing the polymer substance increases, and although the performance as an electrode does not change, it has a stable quality of strength and surface shape. It is difficult to obtain a good film. On the other hand, if it is 98% by weight or more, the strength as a film is weak, and destruction due to repeated doping and dedoping tends to occur.
[0008]
Furthermore, another reason for the high strength and long service life is as follows. That is, the film-like electrode for a lithium ion secondary battery of the present invention uses two different forms of crystalline carbon as crystalline carbon, unlike a single form of film. Therefore, the expansion and contraction when lithium (alkali metal) is inserted into or desorbed from the material is absorbed and relaxed between the two forms of materials, and as a result, the electrode is unlikely to be destroyed and the lifetime is increased. It is done.
[0009]
As the powdery and fibrous crystalline carbon used in the present invention, any carbon material may be used as long as the lattice spacing d (002) has a structure of approximately 3.4 angstroms or less. Vapor-phase pyrolytic graphite, natural graphite, quiche graphite, artificial graphite, graphite whisker, graphite fiber, etc. are preferably used, but in addition to this, amorphous carbon such as carbon black and petroleum coke is put in a non-oxidizing atmosphere. Graphitized at a firing temperature of approximately 2000 ° C or higher, or graphitized at a baking temperature of approximately 2000 ° C or higher in a non-oxidizing atmosphere such as a mesophase, pitch, resin, or oligomer. These can be used alone or in combination, but are preferably capable of being uniformly dispersed in the film and having a stable structure Powdery, fibrous graphite having are preferred.
Here, with regard to amorphous carbon such as carbon black and petroleum coke, these materials can be directly baked with an organic polymer material at 2000 ° C. or more to be crystallized together to form the carbon electrode of the present invention. it can.
[0010]
Any film-like crystalline carbon used in the present invention may be used as long as the crystal structure is close to powdery or fibrous carbon and contributes to the strength of the film. In addition, organic polymer substances such as pitches, asphalts, oligomers, and mesophases, alone or in combination, are calcined at about 2000 ° C. or more in a non-oxidizing atmosphere and graphitized. Due to the presence of the crystalline carbon, in addition to good performance as the negative electrode of the electrode, a film-like electrode having high strength and a long life can be obtained.
[0011]
Next, a method for producing a film electrode for a lithium ion secondary battery according to the present invention will be described. After mixing the powdery or fibrous crystalline carbon and the organic polymer material, extrusion molding, wet processing is performed. It is formed into a film by a method, a press method or the like. When mixing here, you may add amorphous carbon substances, such as carbon black and petroleum coke, as another raw material. These amorphous carbons become crystalline carbon after firing. Furthermore, a wax, a plasticizer, a solvent, or the like may be added as a molding aid. Next, after performing infusibilization treatment as necessary, firing is performed at approximately 2000 ° C. or higher in a non-oxidizing atmosphere to carbonize the organic polymer substance to crystalline carbon to obtain a desired film-like electrode. . At this time, many fine pores are formed in the film by decomposition of the organic polymer substance or evaporation of wax, solvent, or the like. Here, when a thermoplastic organic polymer substance is used as the organic polymer substance, it is mixed by applying heat, and when an organic polymer substance of a type soluble in a solvent is used, it is dissolved in the solvent and mixed. When using a thermosetting organic polymer material, it is important to mix and mold in a soft state before curing.
[0012]
【Example】
Example 1
Crystalline carbon (powdered natural graphite, average particle size 6 μm) 60 parts by weight Organic polymer substance (polyvinyl chloride, average degree of polymerization 800) 40 parts by weight Methyl ethyl ketone 100 parts by weight The kneaded material was poured into a stainless steel dish. Thereafter, methyl ethyl ketone was evaporated at room temperature to obtain a film material of a mixture of natural graphite and polyvinyl chloride. The film material was first infusibilized by holding at 220 ° C. for 10 hours in an air atmosphere, and then heated to 2200 ° C. at a rate of 3 ° C./min in an argon gas atmosphere. Holding for 3 hours, a film electrode having a thickness of 120 μm was obtained. The composition of this film was 92.7% by weight of crystalline carbon (natural graphite) and 7.3% by weight of crystalline carbon obtained from polyvinyl chloride, and was obtained from polyvinyl chloride on the surface of natural graphite. It is a structure in which a film of crystalline carbon is coated and this film is connected.
Next, charge / discharge evaluation was performed using the film-like electrode. The electrolyte was evaluated by an EC / DEC = 1/1 solution containing 1M lithium perchlorate, and a three-electrode cell using a metal lithium plate as a counter electrode and a reference electrode. The current density was 50 mA / g, charge / discharge was performed between 0 and 2 V of the lithium electrode potential, and the discharge capacity and charge / discharge efficiency (Coulomb efficiency) were measured. The results are shown in Table 1.
[0013]
Example 2
Crystalline carbon (petroleum coke baked at 2600 ° C) 60 parts by weight (average particle size 10 µm)
Organic polymer substance (coal tar pitch / softening point 100 ° C.) 40 parts by weight The above materials were heated and mixed with a mixer, and the kneaded product was formed into a film with an extruder. The film material was first infusibilized by holding at 250 ° C. for 10 hours in an air atmosphere, and then heated to 2000 ° C. at a rate of 5 ° C./min in an argon gas atmosphere. Holding for 3 hours, a film electrode having a thickness of 75 μm was obtained. The composition of this film was 78.0% by weight of powdery crystalline carbon and 22.0% by weight of crystalline carbon obtained from coal tar pitch, and the structure was the same as in Example 1. Next, the same evaluation as in Example 1 was performed using the film electrode.
[0014]
Example 3
Crystalline carbon (graphite whisker, average length 10 μm) 50 parts by weight Amorphous carbon (carbon black) 10 parts by weight Organic polymer substance (polyvinyl chloride, average degree of polymerization 1000) 40 parts by weight methyl ethyl ketone 100 parts by weight After mixing with a mixer, the kneaded product was poured into a stainless steel dish. Thereafter, methyl ethyl ketone was evaporated at room temperature to obtain a film material of a mixture of graphite whisker, carbon black and polyvinyl chloride. The film material was first infusibilized by holding at 220 ° C. for 10 hours in an air atmosphere, and then heated to 2500 ° C. at a rate of 2 ° C./min in an argon gas atmosphere. Holding for 3 hours, a film electrode having a thickness of 85 μm was obtained. The composition of this film is 77.4% by weight of crystalline carbon (graphite whisker), 15.3% by weight of crystalline carbon obtained from carbon black, and 7.3% of crystalline carbon obtained from polyvinyl chloride. The structure is weight%, and the structure of crystalline carbon obtained from polyvinyl chloride is formed on the surface of powdery crystalline carbon obtained from fibrous crystalline carbon (graphite whisker) and carbon black. This is a structure in which the films are connected. Next, the same evaluation as in Example 1 was performed using the film electrode.
[0015]
Comparative Example 1
Organic polymer substance (polyvinyl chloride, average polymerization degree 1000) 40 parts by weight Methyl ethyl ketone 100 parts by weight After the above materials were prepared in the same manner as in Example 1, the temperature was increased at 2500 ° C. at a rate of 2 ° C./min in an argon gas atmosphere. Firing was performed to obtain a film electrode. The composition of this film was 100% by weight of crystalline carbon obtained from polyvinyl chloride. Next, evaluation similar to Example 1 was performed using this film-like electrode.
[0016]
Comparative Example 2
Crystalline carbon (powdered natural graphite, average particle size 6 μm) 90 parts by weight Polyvinylidene fluoride 10 parts by weight N-methylpyrrolidone 50 parts by weight The above materials are mixed in a mixer, and this kneaded product is placed in a stainless steel dish. I poured it. Thereafter, N-methylpyrrolidone was evaporated at room temperature to obtain a film electrode having a thickness of 120 μm made of natural graphite and polyvinylidene fluoride.
[0017]
For each of Examples 1, 2, 3 and Comparative Examples 1 and 2, the discharge capacity and charge / discharge efficiency were measured, and the life due to repeated charge / discharge was determined. The film strength was determined based on the ease of handling. The results are shown in Table 1. The unit is discharge capacity mAh / g and charge / discharge efficiency is%.
[0018]
[Table 1]
Figure 0003698516
[0019]
【The invention's effect】
As described above, the film electrode for the lithium ion secondary battery of the present invention has the following various characteristics.
1) Unlike single-material films, powdered or fibrous crystalline carbon is coated with film-like crystalline carbon obtained from organic polymer substances and is sterically connected to provide strength. In addition, the deterioration of crystalline carbon due to repeated charge and discharge is small. Therefore, the material is less likely to collapse and the life is extended. Moreover, since the organic binder used for the conventional electrode is not included, the capacity per unit volume is increased.
2) Since it is made by mixing crystalline carbon without shrinkage and organic polymer material, it is easy to mold and baked, and it is hard to cause distortion inside the film. The surface state of the obtained film is good, and variations in strength and the like are reduced, and the electrode has stable performance.

Claims (2)

結晶質炭素の表面を有機高分子物質から得られた結晶質炭素の皮膜で覆って連結されて成ることを特徴とするリチウムイオン2次電池用のフィルム状電極。 A film-like electrode for a lithium ion secondary battery , characterized in that the surface of crystalline carbon is covered and connected with a film of crystalline carbon obtained from an organic polymer material. 少なくとも結晶質炭素と有機高分子物質とを混練し、フィルム状に成形後、有機高分子物質が結晶質炭素となる温度で焼成して成るリチウムイオン2次電池用のフィルム状電極の製造法。A method for producing a film-like electrode for a lithium ion secondary battery, wherein at least crystalline carbon and an organic polymer substance are kneaded, formed into a film, and then fired at a temperature at which the organic polymer substance becomes crystalline carbon.
JP08459597A 1997-03-18 1997-03-18 Film electrode and manufacturing method thereof Expired - Fee Related JP3698516B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08459597A JP3698516B2 (en) 1997-03-18 1997-03-18 Film electrode and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08459597A JP3698516B2 (en) 1997-03-18 1997-03-18 Film electrode and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH10261403A JPH10261403A (en) 1998-09-29
JP3698516B2 true JP3698516B2 (en) 2005-09-21

Family

ID=13835046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08459597A Expired - Fee Related JP3698516B2 (en) 1997-03-18 1997-03-18 Film electrode and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3698516B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100830247B1 (en) * 2000-05-24 2008-05-16 리테크, 엘.엘.씨. Lithium-ion electrochemical cell and battery
JP5406447B2 (en) * 2007-12-11 2014-02-05 大阪ガスケミカル株式会社 Method for producing negative electrode active material sheet for lithium ion secondary battery
JP5516929B2 (en) * 2008-11-25 2014-06-11 独立行政法人産業技術総合研究所 Carbon nanotube material for negative electrode and lithium ion secondary battery using the same as negative electrode

Also Published As

Publication number Publication date
JPH10261403A (en) 1998-09-29

Similar Documents

Publication Publication Date Title
JP3541913B2 (en) Non-aqueous electrolyte secondary battery
TWI243498B (en) Composite graphite particles and production method thereof, and cathode material of lithium ion secondary battery and lithium ion secondary battery using this
US20100035149A1 (en) Carbon material and a process for its manufacture
JPH08227714A (en) Carbon material for negative electrode of lithium ion secondary battery and manufacture thereof
WO2000033404A1 (en) Lithium secondary cell and method for manufacturing the same
US20030152835A1 (en) Carbon fibre containing negative electrode for lithium battery
JPH05325967A (en) Lithium secondary battery negative electrode material and manufacture thereof
JPH1012217A (en) Negative electrode for lithium ion secondary battery
JPWO2014088084A1 (en) Method for producing slurry for negative electrode of lithium ion secondary battery
JP4792618B2 (en) Carbonaceous particles for negative electrode of lithium secondary battery, manufacturing method thereof, negative electrode of lithium secondary battery and lithium secondary battery
KR101553957B1 (en) Method for preparing electrode active material for rechargeable lithium battery, electrode active material for rechargeable lithium battery, and rechargeable lithium battery
JP2003173774A (en) Anode material for lithium ion secondary battery and its manufacturing method and lithium ion secondary battery using same anode material
JPH07335216A (en) Nonaqueous electrolytic secondary battery
JP2000251890A (en) Negative electrode for nonaqueous electrolyte secondary battery, and secondary battery using the same
JP2000231933A (en) Lithium ion secondary battery
JP3698516B2 (en) Film electrode and manufacturing method thereof
JP2000268878A (en) Lithium ion secondary battery
JP3915072B2 (en) Negative electrode material for lithium ion secondary battery, method for producing the same, and battery using the same
JP5636786B2 (en) A negative electrode material for a lithium secondary battery, a negative electrode for a lithium secondary battery using the same, and a lithium secondary battery.
JP3268770B2 (en) Non-aqueous secondary battery
JPH09289012A (en) Film electrode and manufacture thereof
JPH08306359A (en) Anode material for lithium secondary battery and its manufacture
JP3939842B2 (en) Negative electrode material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery using the negative electrode material
JPH0973903A (en) Negative electrode material for lithium secondary battery and manufacture thereof
JP3628822B2 (en) Film electrode and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050705

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080715

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110715

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110715

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110715

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120715

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees