JP3697942B2 - Ceramic processed parts and manufacturing method thereof - Google Patents

Ceramic processed parts and manufacturing method thereof Download PDF

Info

Publication number
JP3697942B2
JP3697942B2 JP13334199A JP13334199A JP3697942B2 JP 3697942 B2 JP3697942 B2 JP 3697942B2 JP 13334199 A JP13334199 A JP 13334199A JP 13334199 A JP13334199 A JP 13334199A JP 3697942 B2 JP3697942 B2 JP 3697942B2
Authority
JP
Japan
Prior art keywords
ceramic
sintered body
probe
wall thickness
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13334199A
Other languages
Japanese (ja)
Other versions
JP2000327402A (en
Inventor
俊一 衛藤
公一 寺尾
一郎 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP13334199A priority Critical patent/JP3697942B2/en
Publication of JP2000327402A publication Critical patent/JP2000327402A/en
Application granted granted Critical
Publication of JP3697942B2 publication Critical patent/JP3697942B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Measuring Leads Or Probes (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)
  • Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、セラミック焼結体に微細機械加工を施してスリットおよび/または穴を形成したセラミック加工部品とその製造方法に関する。本発明のセラミック加工部品は、薄い壁厚みで深いスリットおよび/または穴を高い寸法精度で備えることができるので、半導体関連の各種部品、特に、IC、LSI等の半導体素子を検査するための検査装置に使用されるプローブ案内部品 (プローブガイド) として有用である。
【0002】
【従来の技術】
IC、LSI等の半導体素子の電気的特性を検査する検査装置においては、検査する半導体素子に形成されている多数の電極パッドと同数の測定プローブを備えたプローブカードを用い、このプローブを電極パッドに同時に接触させて検査を行う。
【0003】
図1(A) に示すように、プローブカード1は、セラミック等の絶縁性材料から形成され、そのほぼ中央に、検査する半導体素子とほぼ同寸法か、それより大きい開口Aを備えている。この開口Aは、図示のように朝顔型に上に開いた形状とするのが普通である。プローブカード1の上面には、検査する半導体素子の電極パッドと同数の測定プローブ2が、例えば接着剤により取付けられている。
【0004】
この測定プローブは、金属 (例、タングステン) 等の導電性材料からなり、その先端は略L型に折り曲げられていて、開口Aを通してカード1の下面から突き出るようにカード1の上面に装着されている。図示していないが、プローブの他端は、カード1の上面に形成された導電パターン (例、銅箔) に、半田等で電気的に接続されている。各プローブが互いに接触しないように、先端を除いたプローブの周囲を耐熱性樹脂等の絶縁性材料で被覆してもよい。
【0005】
プローブカード1を検査する半導体素子の上に載せて押しつけ、開口Aから突き出た測定プローブ2の先端が半導体素子の電極パッド (図示せず) と接触することにより、半導体素子の電気的特性が検査される。そのためには、多数の測定プローブの全てが一度にその下の電極パッドと確実に接触しなければならない。しかし、プローブは通常は細い金属材であって、押しつけ時の撓みにより先端の位置がずれ易く、電極パッドとの確実な接触が困難となる。
【0006】
測定プローブの精密な位置合わせを容易にする手段として、図1(B) に示すように、絶縁性材料の板材に、プローブが通る貫通穴Bを、電極パッドと同じパターンで設けたプローブ案内部品3を、プローブカード1の開口Aを塞ぐように設置することができる。それにより、各プローブ2の先端は、プローブ案内部品3の貫通穴Bを通って突き出るため、撓みによる横方向の動きが制限され、電極パッドと確実に接触させることができる。
【0007】
このプローブ案内部品3には、測定プローブ2よりやや大きな径の貫通穴Bを電極パッドと同じピッチで形成する必要がある。最近のLSIは飛躍的に高密度化が進んでおり、電極パッドのピッチが100 μm以下となることも珍しくない。例えば、図1(C) に示すように、電極パッドのピッチが70μmの場合、貫通穴Bの径が60μmであると、貫通穴間の壁厚み (穴間の最小距離) は10μmとなり、壁の厚みが非常に薄くなる。このように微細で薄肉の貫通穴を、例えば、ドリル加工によりプローブ案内部品に精度よく形成する必要がある。
【0008】
従来のプローブ案内部品は、プラスチックか、またはAl2O3 、SiO2、K2O 等からなる快削性の結晶化ガラス系セラミック材料から作製されてきた。しかし、プラスチックでは、高温で検査する必要性がある場合には用いることができず、また貫通穴の十分な寸法精度を得ることができない。一方、結晶化ガラス系セラミック材料を用いた場合には、高温検査への対応は可能であるが、熱膨張係数が半導体素子に比べて非常に大きく、測定温度により位置ずれを起こすという問題がある。また、材料の強度が低いため、ドリル加工による穿孔時にカケや割れが起き易く、やはり十分な寸法精度で、上述したような微細加工を施すことは困難である。
【0009】
近年のレーザ加工技術の進歩により、セラミック材料に微小な穴あけ加工等の微細加工が行われるようになった。しかし、レーザ加工では、レーザが照射される入口側の穴の径が出口側の穴の径より大きい、先細りのテーパ形状の貫通穴が形成され、穴の入口から出口までずっと同一径の円柱状の穴あけ加工を精度よく行うことは難しい。テーパ形状の貫通穴では、プローブが斜めになり易く、先端の位置のずれが大きくなる。また、超音波加工やサンドブラスト加工等の微細加工技術でも、レーザ加工と同様に、穴の径がずっと同一の微細な穴あけ加工は困難である。
【0010】
【発明が解決しようとする課題】
前述したプローブ案内部品は、貫通穴にプローブを通してプローブの移動を制限するタイプのものであるが、図1(D) に示すように、貫通穴の代わりにスリットをプローブ案内部品に設け、このスリットにプローブを通してプローブの移動を制限することもできる。この場合も、壁厚みが非常に薄く、深いスリットを精度よく形成する必要がある。このようなスリットの形成も従来は困難である。
【0011】
上述したプローブ案内部品以外にも、半導体素子等の電子部品やその製造装置、検査装置、およびその他の関連装置には、セラミックス等の電気絶縁性材料に微細加工を施して貫通穴やスリットを形成した部品が用いられることが多い。LSIの高密度化に伴って、微細加工の高精度化および壁厚みの薄肉化の要求が強まっているが、この要求に十分に応えられるセラミック材料がなかった。
【0012】
本発明は、高精度の機械加工を施すことが可能で、穴の入口から出口まで同一径の深い貫通穴や縦長の短冊型断面形状の深いスリットを薄い壁厚みで高密度に形成することができるセラミック焼結体を利用して、飛躍的に高密度化したLSIの検査用のプローブ案内部品にも適用可能な、高精度で微細な機械加工を施し、かつ温度による精度変化の小さいセラミック加工部品を提供することを課題とする。
【0013】
【課題を解決するための手段】
本発明者らは、上記課題を解決すべく検討を重ねた結果、窒化珪素と窒化硼素の混合物を主原料 (骨材) とする焼結セラミックス材料を用いることにより、従来にない高精度で微細な機械加工 (研削加工やドリル加工) が可能となることを見出し、本発明に到達した。
【0014】
本発明により、下記▲1▼および▲2▼に規定する微細な機械加工が施されたセラミック加工部品が提供される。かかる加工精度を持ったセラミック加工部品はこれまで知られておらず、新規なものである。
【0015】
▲1▼研削加工により形成された複数のスリットを備えたセラミック焼結体からなるセラミック加工部品であって、
前記スリット間の壁厚みが5μm以上20μm未満、
前記スリットの深さ/壁厚み比が15以上、好ましくは20以上、かつ
前記スリット間のピッチ精度が±4μm以内
であることを特徴とするセラミック加工部品。
【0016】
▲2▼ドリル加工により形成された複数の穴を備えたセラミック焼結体からなるセラミック加工部品であって、
前記穴径が65μm以下、
前記穴間の壁厚みが5μm以上20μm未満、
前記穴の深さ/壁厚み比が15以上、好ましくは20以上、かつ
前記穴径と穴ピッチの精度がいずれも±4μm以内
であることを特徴とするセラミック加工部品。
【0017】
ここで、穴間の壁厚みとは穴間の最小距離を意味する。
好ましくは、前記セラミック焼結体は25℃〜600 ℃での熱膨張係数が3×10-6/℃以下のものである。このセラミック加工部品は、プローブが通る複数のスリットおよび/または穴を備えたプローブ案内部品であってもよい。
【0018】
上記の加工精度を持ったセラミック加工部品は、窒化珪素25〜60重量%と窒化硼素40〜75重量%との混合物を主原料とするセラミック焼結体により実現することができる。
【0019】
即ち、上記のセラミック加工部品は、窒化珪素25〜60重量%と窒化硼素40〜75重量%とからなる主原料粉末を焼結助剤成分と混合して原料粉末を得る工程、この原料粉末を高温加圧下で (例、ホットプレスまたはHIPにより) 焼結してセラミック焼結体を得る工程、およびこのセラミック焼結体を研削砥石またはドリルで加工する工程、を含む方法により製造することができる。特に窒化硼素の原料粉末は平均粒径1μm未満のものが好ましい。
【0020】
本発明によればまた、プローブが通る複数のスリットおよび/または穴を備えたプローブ案内部品であって、窒化珪素25〜60重量%と窒化硼素40〜75重量%との混合物を主原料とするセラミック焼結体からなり、前記スリットおよび/または穴が機械加工により形成されたものであることを特徴とするプローブ案内部品も提供される。
【0021】
【発明の実施の形態】
本発明に係るセラミック加工部品は一般に板状であって、研削砥石によるスリット加工で形成された複数のスリットおよび/またはドリルによる穴あけ加工により形成された複数の貫通穴を有し、それらの形状は次の通りである。
【0022】
1.スリット加工
壁厚み :5μm以上20μm未満
深さ/壁厚み比 :15以上
スリット間ピッチ精度:±4μm以内
即ち、壁厚みが5〜20μmと薄く、かつ深さ/壁厚み比が15以上と非常に深いスリットが、スリット間ピッチ精度±4μm以内の高精度で形成されている。かかるスリットを有するセラミック加工部品はこれまで知られていなかった。
【0023】
スリットの幅は特に制限されず、例えば、スリット内にプローブを保持することができるように、プローブの太さよりやや大きいスリット幅とすることができる。壁厚みが薄く、かつ精度よくスリット加工ができるため、高密度にプローブを保持することができ、かつプローブの位置合わせの精度が向上し、検査装置の信頼性が高まる。
【0024】
2.穴あけ加工
穴径 :65μm以下
穴間の壁厚み :5μm以上20μm未満
穴の深さ/壁厚み比 :15以上
穴径と穴ピッチの精度 :±4μm以内
穴あけ加工の場合も、穴径が65μm以下と微細で、穴間の壁厚み (穴間の最小距離) が5〜20μmと非常に薄く、かつ穴の深さ/壁厚みの比が15以上という深い貫通穴を、穴径と穴ピッチの精度がいずれも±4μm以内の高精度で形成されており、かかる貫通穴を有するセラミック加工部品はやはり新規である。
【0025】
貫通穴の穴径は、例えば、プローブが通るように、プローブ径よりやや大きめに設定する。例えば、径が50μmの穴は、現在入手可能な最小の超硬ドリルである50μmドリルを用いて穴あけ加工することにより形成できる。穴間の壁厚みが薄く、かつ精度よく穴加工ができるため、高密度にプローブを保持することができ、かつプローブの位置合わせの精度が向上し、検査装置の信頼性が高まる。
【0026】
なお、スリットの幅や貫通穴の径は、セラミック加工部品の厚み方向で変化せずに一定である (即ち、テーパがついていない) ことが好ましいが、テーパ付きのスリットまたは貫通穴とすることもできる。その場合は、径および壁厚みは平均値 (中間値) が上記の規定を満たせばよい。
【0027】
上述した形状および精度のスリットまたは貫通穴を有するセラミック加工部品は、窒化珪素(Si3N4) 25〜60重量%と窒化硼素 (BN) 40〜75重量%との混合物を主原料 (骨材) とするセラミック焼結体のスリット加工または穴あけ加工により製造することができる。この製造方法について次に説明する。
【0028】
まず、窒化珪素25〜60重量%と窒化硼素40〜75重量%とからなる主原料粉末を、焼結助剤成分と混合して原料粉末を調製する。この混合は、例えば、湿式ボールミル等により行うことができる。
【0029】
窒化硼素は六方晶系低圧相のもの(hBN) でよい。窒化硼素は、被削性に優れるものの強度特性が悪い。従って、焼結体中に粗大な窒化硼素が存在すると、それが破壊起点となって、加工時のカケ、割れ発生要因となる。このような粗大な窒化硼素粒子を形成しないためには、原料粉末を微粉にすることが有効である。主原料粉末、特に窒化硼素の原料粉末は平均粒径1μm未満のものを使用することが望ましい。
【0030】
焼結助剤は、窒化珪素や窒化硼素の焼結に従来より使用されているものから選択することができる。好ましい焼結助剤は酸化アルミニウム (アルミナ) 、酸化マグネシウム、酸化イットリウム (イットリア) 、およびランタノイド金属の酸化物から得られた1種もしくは2種以上であり、より好ましくはアルミナとイットリアの混合物、もしくはこれにさらに酸化マグネシウムを添加した混合物である。焼結助剤成分の配合量は、窒化珪素と窒化硼素とからなる主原料粉末の1〜15重量%、特に3〜10重量%の範囲とすることが望ましい。配合量が少なすぎては焼結が不十分となって焼結体の強度が低下し、配合量が多すぎると強度の低い粒界ガラス層が増加して焼結体の強度低下を招く。
【0031】
原料粉末を高温加圧下で焼結させ、焼結体とする。この焼結は、例えば、ホットプレスより行うことができる。ホットプレスは、窒素雰囲気中で行うが、加圧窒素中で行ってもよい。ホットプレス温度は1700〜1950℃の範囲内がよい。温度が低すぎると焼結が不十分となり、高すぎると主原料の熱分解が起こるようになる。加圧力は20〜50 MPaの範囲内が適当である。ホットプレスの持続時間は温度や寸法にもよるが、通常は1〜4時間程度である。高温加圧焼結は、HIP (ホットアイソスタティクプレス) により行うこともできる。この場合の焼結条件も、当業者であれば適宜設定できる。
【0032】
得られた焼結体は、焼結助剤の種類や量を適切に選択すれば、25℃〜600 ℃での熱膨張係数が3×10-6/℃以下となる。この焼結体に、適当な研削砥石またはドリルを用いてスリット加工もしくは穴あけ加工を施し、前述した形状の複数のスリットまたは貫通穴を形成する。この焼結体は被削性に優れ、かつ高強度であるため、前述した精度でスリットまたは貫通穴を形成することが可能となる。
【0033】
こうして製造されたセラミック加工部品の用途は特に制限されないが、例えば、上述した半導体素子の検査装置に使用されるプローブカードに装着するプローブ案内部品として有用である。その場合、スリットまたは貫通穴の径は、これに通すプローブの直径より2〜5μm程度大きくすることが好ましい。
【0034】
【実施例】
(実施例1)
平均粒径0.5 μm、純度99%の六方晶窒化硼素(hBN) 粉末と、平均粒径0.2 μmの窒化珪素粉末とを表1に示す割合で混合した。この混合粉末 (主原料粉末) に対して、焼結助剤として、2重量%のアルミナと6重量%のイットリアを加え、エチルアルコールを溶媒としてボールミル混合を行った。得られたスラリーを乾燥させて原料粉末を得た。
【0035】
この原料粉末を黒鉛製のダイスに充填し、窒素雰囲気中30 MPaの圧力を加えながら1800℃で1時間ホットプレス焼結を行って、65×65mm、厚み10 mm の正方形のセラミック焼結体を得た。
【0036】
この焼結体の曲げ破壊強度を3点曲げ試験で測定した。また、被削性を評価するため、超硬-K10種工具を用いて、研削速度18 m/min、送り速度0.03 mm/rev 、切込0.1 mmの条件で旋削試験を行い、5分後の被削材の表面粗さと工具の逃げ面摩耗幅 (工具の摩耗の程度を示す) を測定した。さらに、この焼結体の熱膨張係数を室温 (25℃) 〜600 ℃の範囲で測定した。これらの測定結果を表1に一緒に示す。
【0037】
この焼結体に、研削砥石 (レジンボンドダイヤモンド砥石#200 、厚み40μm、外径50 mm)を用いたスリット加工により、図2に示す形状のスリット (幅=40μm、壁厚み=15μm、深さ=300 μm、深さ/壁厚み比=20) を100 個形成した。スリット加工は可能であるが、精度が不十分 (ピッチ精度が±4μmを超える) か、割れおよび/または欠け (チッピング) が発生した場合を△、十分な精度でスリット加工が可能で、割れや欠けが発生しない場合を○と評価した。結果を表1に併せて示す。
【0038】
(実施例2)
実施例1と同様にしてセラミック焼結体を作製し、厚さ300 μmの薄板状に切り出した後、直径50μmの超硬ドリル (材質SKH9) を用いて、図1(C) に示すように、壁厚み10μmで縦30列、横20列 (合計600 個) の穴あけ加工を行った。穴の直径は60μm、深さは300 μmであり、壁厚み/深さ比は30となる。
【0039】
得られた貫通穴の穴径と穴ピッチの精度を測定し、この精度が±4μm以内で、割れや欠けがない場合を○、穴あけ加工は可能であるものの、精度が不十分か、割れや欠けが発生した場合を△、穴あけ加工が不可能な場合を×と評価した。この結果も表1に併記する。主原料の Si3N4:BNの重量比が40:60である焼結体を穴あけ加工した場合の表面を示す電子顕微鏡写真の1例を図3に示す。
【0040】
(比較例1)
比較のために、従来の快削性結晶化ガラス系セラミック材料について、実施例1および2と同様のスリット加工および穴あけ加工を施したところ、材料の強度が弱く、微細加工を施すと、図4に示すように、欠け (チッピング) が発生し、精度よくきれいに穴あけ加工することができなかった。このセラミック材料の各種特性や加工結果も表1に併記する。
【0041】
【表1】

Figure 0003697942
【0042】
表1からわかるように、窒化珪素:窒化硼素の重量比が25:75〜60:40の範囲内である混合物を主原料 (骨材) とする焼結体からなるセラミック材料を用いると、割れや欠けを生ずることなく、薄い壁厚みで微細かつ深いスリットや貫通穴を機械加工により形成することができる。また、この材料の熱膨張係数は従来の結晶化ガラス系セラミック材料に比べて著しく小さい。
【0043】
本発明に係る窒化珪素/窒化硼素焼結体 (本発明例) と、上記の結晶化ガラスセラミック (従来例) で、十分な精度 (スリット間のピッチ精度または穴径と穴ピッチの精度が±4μm以下) で割れや欠けを生ずることなく安定に加工できる壁厚みの範囲は次の通りである。
【0044】
【表2】
Figure 0003697942
【0045】
本発明のセラミック材料は、従来では不可能であった薄い壁厚みで高精度の微細なスリット加工および穴あけ加工を施すことができ、また熱膨張係数が従来材の 1/5〜1/3 と小さい。従って、測定温度により位置ずれを起こすことがほとんどなく、温度を変化させた測定にも安定して対応可能である。
【0046】
【発明の効果】
本発明によれば、薄い壁厚みで、幅または直径の小さい深いスリットまたは貫通穴を精度よく形成することができるので、高密度にプローブを所定位置に保持することができるプローブ案内部品を作製することが可能となる。また、このスリットや貫通穴をまっすぐにテーパをつけずに形成できることと、セラミック焼結体の熱膨張係数が比較的小さく、シリコンに近似していて、測定温度による位置ずれが起きにくいことから、プローブの位置合わせの精度が向上し、検査装置の信頼性が著しく高まる。その結果、LSIの高密度化に対応可能な高密度で、かつ高精度の半導体素子の検査装置が実現できる。
【図面の簡単な説明】
【図1】図1(A) は従来のプローブカードの断面を示す略式説明図、図1(B) はプローブ案内部品を備えたプローブカードの断面を示す略式説明図、図1(C) はプローブ案内部品の貫通穴の上面 (左図) および断面 (右図)を示す略式説明図、図1(D) はスリットを備えたプローブ案内部品の略式説明図である。
【図2】実施例で形成したスリットの形状を示す説明図である。
【図3】本発明のセラミックの穴あけ加工後の表面を示す電子顕微鏡写真である。
【図4】従来のセラミックの穴あけ加工後の表面を示す電子顕微鏡写真である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a ceramic processed part in which slits and / or holes are formed by subjecting a ceramic sintered body to micromachining and a method for manufacturing the same. Since the ceramic processed component of the present invention can be provided with deep slits and / or holes with a thin wall thickness and high dimensional accuracy, it is an inspection for inspecting various semiconductor-related components, particularly semiconductor elements such as IC and LSI. It is useful as a probe guide component (probe guide) used in the apparatus.
[0002]
[Prior art]
In an inspection apparatus for inspecting electrical characteristics of semiconductor elements such as IC and LSI, a probe card having the same number of measurement probes as many electrode pads formed on the semiconductor element to be inspected is used. The test is performed by contacting them simultaneously.
[0003]
As shown in FIG. 1 (A), the probe card 1 is formed of an insulating material such as ceramic, and has an opening A at substantially the same center as or larger than the semiconductor element to be inspected. As shown in the figure, the opening A is usually shaped like a morning glory that opens upward. On the upper surface of the probe card 1, as many measuring probes 2 as electrode pads of semiconductor elements to be inspected are attached by, for example, an adhesive.
[0004]
This measurement probe is made of a conductive material such as metal (eg, tungsten), and its tip is bent into a substantially L shape, and is attached to the upper surface of the card 1 so as to protrude from the lower surface of the card 1 through the opening A. Yes. Although not shown, the other end of the probe is electrically connected to a conductive pattern (eg, copper foil) formed on the upper surface of the card 1 with solder or the like. You may coat | cover the circumference | surroundings of the probe except the front-end | tip with insulating materials, such as heat resistant resin, so that each probe may not contact mutually.
[0005]
The probe card 1 is placed on the semiconductor element to be inspected and pressed, and the tip of the measurement probe 2 protruding from the opening A comes into contact with the electrode pad (not shown) of the semiconductor element, thereby inspecting the electrical characteristics of the semiconductor element. Is done. For this purpose, all of the multiple measurement probes must be surely in contact with the underlying electrode pads at once. However, the probe is usually a thin metal material, and the position of the tip tends to shift due to bending when pressed, making it difficult to reliably contact the electrode pad.
[0006]
As a means for facilitating precise positioning of the measurement probe, as shown in FIG. 1 (B), a probe guide component in which a through hole B through which the probe passes is provided in the same pattern as the electrode pad on the insulating material plate. 3 can be installed so as to block the opening A of the probe card 1. Thereby, since the tip of each probe 2 protrudes through the through hole B of the probe guide part 3, the lateral movement due to the bending is limited, and the electrode pad can be reliably brought into contact.
[0007]
In the probe guide part 3, it is necessary to form through holes B having a slightly larger diameter than the measurement probe 2 at the same pitch as the electrode pads. Recent LSIs have dramatically increased in density, and it is not uncommon for the pitch of electrode pads to be 100 μm or less. For example, as shown in FIG. 1 (C), when the electrode pad pitch is 70 μm and the diameter of the through hole B is 60 μm, the wall thickness between the through holes (minimum distance between the holes) is 10 μm. The thickness of becomes very thin. Thus, it is necessary to form such a fine and thin through hole in the probe guide component with high accuracy by, for example, drilling.
[0008]
Conventional probe guide parts have been made of plastic or a free-cutting crystallized glass-based ceramic material made of Al 2 O 3 , SiO 2 , K 2 O or the like. However, plastic cannot be used when it is necessary to inspect at high temperature, and sufficient dimensional accuracy of the through hole cannot be obtained. On the other hand, when a crystallized glass-based ceramic material is used, it is possible to cope with high-temperature inspection, but there is a problem that the coefficient of thermal expansion is much larger than that of a semiconductor element and the position is shifted depending on the measurement temperature. . Further, since the strength of the material is low, cracks and cracks are likely to occur during drilling, and it is difficult to perform the fine processing as described above with sufficient dimensional accuracy.
[0009]
With recent advances in laser processing technology, fine processing such as micro-drilling has been performed on ceramic materials. However, in laser processing, a tapered through-hole with a tapered diameter is formed in which the diameter of the hole on the inlet side irradiated with the laser is larger than the diameter of the hole on the outlet side. It is difficult to drill holes with high accuracy. In the tapered through hole, the probe tends to be inclined, and the displacement of the tip position becomes large. In addition, even with fine processing techniques such as ultrasonic processing and sandblasting, it is difficult to perform fine drilling with the same hole diameter, as in laser processing.
[0010]
[Problems to be solved by the invention]
The probe guide component described above is of the type that restricts the movement of the probe through the probe through the through hole. As shown in FIG. 1 (D), a slit is provided in the probe guide component instead of the through hole. It is also possible to limit the movement of the probe through the probe. Also in this case, the wall thickness is very thin and it is necessary to form a deep slit with high accuracy. Such slits are also difficult to form conventionally.
[0011]
In addition to the probe guide components described above, through-holes and slits are formed in electronic parts such as semiconductor elements and their manufacturing equipment, inspection equipment, and other related equipment by finely processing ceramics and other electrically insulating materials. Often used parts are used. Along with the higher density of LSIs, there is an increasing demand for higher precision of microfabrication and thinner wall thickness, but there has been no ceramic material that can fully meet this requirement.
[0012]
The present invention can perform high-precision machining, and can form deep through-holes with the same diameter from the entrance to the exit of the holes and deep slits having a vertically long strip-shaped cross section with a thin wall thickness and high density. Ceramic processing with high precision and fine machining that can be applied to probe guide parts for LSI inspections that are dramatically increased in density by using ceramic sintered bodies that can be used, and with small changes in accuracy due to temperature It is an object to provide parts.
[0013]
[Means for Solving the Problems]
As a result of repeated investigations to solve the above problems, the present inventors have used a sintered ceramic material whose main raw material (aggregate) is a mixture of silicon nitride and boron nitride, and has achieved high precision and fineness that has never been achieved. And found that it is possible to perform simple machining (grinding and drilling).
[0014]
According to the present invention, there is provided a ceramic processed part subjected to fine machining as defined in the following (1) and (2). Ceramic processed parts having such processing accuracy have not been known so far and are novel.
[0015]
(1) A ceramic processed part comprising a ceramic sintered body having a plurality of slits formed by grinding,
The wall thickness between the slits is 5 μm or more and less than 20 μm,
A ceramic processed part, wherein the slit depth / wall thickness ratio is 15 or more, preferably 20 or more, and the pitch accuracy between the slits is within ± 4 μm.
[0016]
(2) A ceramic processed part made of a ceramic sintered body having a plurality of holes formed by drilling,
The hole diameter is 65 μm or less,
The wall thickness between the holes is 5 μm or more and less than 20 μm,
A ceramic processed part, wherein the hole depth / wall thickness ratio is 15 or more, preferably 20 or more, and the hole diameter and hole pitch accuracy are both within ± 4 μm.
[0017]
Here, the wall thickness between the holes means the minimum distance between the holes.
Preferably, the ceramic sintered body has a thermal expansion coefficient of 3 × 10 −6 / ° C. or less at 25 ° C. to 600 ° C. The ceramic workpiece may be a probe guide component with a plurality of slits and / or holes through which the probe passes.
[0018]
The ceramic processed part having the above-described processing accuracy can be realized by a ceramic sintered body mainly composed of a mixture of 25 to 60% by weight of silicon nitride and 40 to 75% by weight of boron nitride.
[0019]
That is, the above-mentioned ceramic processed part is obtained by mixing a main raw material powder composed of 25 to 60% by weight of silicon nitride and 40 to 75% by weight of boron nitride with a sintering aid component to obtain a raw material powder. It can be produced by a method including a step of obtaining a ceramic sintered body by sintering under high temperature and pressure (eg, by hot pressing or HIP) and a step of processing the ceramic sintered body with a grinding wheel or a drill. . In particular, the boron nitride raw material powder preferably has an average particle size of less than 1 μm.
[0020]
According to the present invention, there is also provided a probe guide component having a plurality of slits and / or holes through which the probe passes, and the main raw material is a mixture of 25 to 60% by weight of silicon nitride and 40 to 75% by weight of boron nitride. There is also provided a probe guide component made of a ceramic sintered body, wherein the slit and / or hole is formed by machining.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
The ceramic processed part according to the present invention is generally plate-shaped, and has a plurality of slits formed by slitting with a grinding wheel and / or a plurality of through holes formed by drilling with a drill, and their shapes are It is as follows.
[0022]
1.Slit processed wall thickness: 5 μm or more and less than 20 μm Depth / wall thickness ratio: 15 or more Pitch accuracy between slits: within ± 4 μm, that is, wall thickness is as thin as 5-20 μm and depth / wall thickness ratio is 15 or more Very deep slits are formed with high accuracy within a pitch accuracy of ± 4 μm. A ceramic processed part having such a slit has not been known so far.
[0023]
The width of the slit is not particularly limited. For example, the slit width may be slightly larger than the thickness of the probe so that the probe can be held in the slit. Since the wall thickness is thin and slitting can be performed with high accuracy, the probe can be held at a high density, the accuracy of probe alignment is improved, and the reliability of the inspection apparatus is increased.
[0024]
2. Drilling hole diameter: 65μm or less Wall thickness between holes: 5μm or more and less than 20μm hole depth / wall thickness ratio: 15 or more Hole diameter and hole pitch accuracy: Hole diameter is within ± 4μm Deep through-holes that are as fine as 65 μm or less, the wall thickness between holes (minimum distance between holes) is 5 to 20 μm, and the hole depth / wall thickness ratio is 15 or more. The pitch accuracy is formed with high accuracy within ± 4 μm, and the ceramic processed part having such a through hole is also novel.
[0025]
The hole diameter of the through hole is set to be slightly larger than the probe diameter so that the probe passes, for example. For example, a hole having a diameter of 50 μm can be formed by drilling using a 50 μm drill which is the smallest carbide drill available at present. Since the wall thickness between the holes is thin and the holes can be drilled with high accuracy, the probe can be held at a high density, the accuracy of the probe alignment is improved, and the reliability of the inspection apparatus is increased.
[0026]
Note that the width of the slit and the diameter of the through hole are preferably constant (that is, not tapered) without changing in the thickness direction of the ceramic processed part, but may be a tapered slit or a through hole. it can. In that case, the average value (intermediate value) of the diameter and wall thickness should satisfy the above-mentioned regulations.
[0027]
Ceramic processed parts having slits or through-holes of the shape and accuracy described above are made of a mixture of 25-60% by weight of silicon nitride (Si 3 N 4 ) and 40-75% by weight of boron nitride (BN). The ceramic sintered body can be manufactured by slitting or drilling. This manufacturing method will be described next.
[0028]
First, a raw material powder is prepared by mixing a main raw material powder composed of 25 to 60% by weight of silicon nitride and 40 to 75% by weight of boron nitride with a sintering aid component. This mixing can be performed by, for example, a wet ball mill.
[0029]
Boron nitride may be in the hexagonal low-pressure phase (hBN). Boron nitride is excellent in machinability but has poor strength characteristics. Therefore, if coarse boron nitride is present in the sintered body, it becomes a starting point for fracture, and causes cracks and cracks during processing. In order not to form such coarse boron nitride particles, it is effective to make the raw material powder fine. It is desirable to use a main raw material powder, particularly a boron nitride raw material powder having an average particle size of less than 1 μm.
[0030]
The sintering aid can be selected from those conventionally used for sintering silicon nitride and boron nitride. Preferred sintering aids are one or more obtained from aluminum oxide (alumina), magnesium oxide, yttrium oxide (yttria), and lanthanoid metal oxides, more preferably a mixture of alumina and yttria, or This is a mixture in which magnesium oxide is further added. The blending amount of the sintering aid component is desirably in the range of 1 to 15% by weight, particularly 3 to 10% by weight, based on the main raw material powder composed of silicon nitride and boron nitride. If the blending amount is too small, the sintering is insufficient and the strength of the sintered body is lowered. If the blending amount is too large, the grain boundary glass layer having a low strength is increased and the strength of the sintered body is lowered.
[0031]
The raw material powder is sintered under high temperature and pressure to obtain a sintered body. This sintering can be performed, for example, by hot pressing. Hot pressing is performed in a nitrogen atmosphere, but may be performed in pressurized nitrogen. The hot press temperature is preferably in the range of 1700-1950 ° C. If the temperature is too low, sintering will be insufficient, and if it is too high, thermal decomposition of the main raw material will occur. The pressure is suitably in the range of 20-50 MPa. The duration of hot pressing is usually about 1 to 4 hours, although it depends on the temperature and dimensions. High-temperature pressure sintering can also be performed by HIP (hot isostatic press). The sintering conditions in this case can also be set as appropriate by those skilled in the art.
[0032]
The obtained sintered body has a thermal expansion coefficient of 3 × 10 −6 / ° C. or less at 25 ° C. to 600 ° C. if the kind and amount of the sintering aid are appropriately selected. The sintered body is subjected to slit processing or drilling using an appropriate grinding wheel or drill to form a plurality of slits or through holes having the above-described shape. Since this sintered body is excellent in machinability and has high strength, it is possible to form slits or through holes with the above-described accuracy.
[0033]
The use of the ceramic processed part manufactured in this way is not particularly limited. For example, it is useful as a probe guide part to be attached to a probe card used in the above-described semiconductor element inspection apparatus. In that case, the diameter of the slit or the through hole is preferably about 2 to 5 μm larger than the diameter of the probe passing therethrough.
[0034]
【Example】
(Example 1)
Hexagonal boron nitride (hBN) powder having an average particle size of 0.5 μm and purity of 99% and silicon nitride powder having an average particle size of 0.2 μm were mixed in the ratio shown in Table 1. To this mixed powder (main raw material powder), 2% by weight of alumina and 6% by weight of yttria were added as sintering aids, and ball mill mixing was performed using ethyl alcohol as a solvent. The obtained slurry was dried to obtain a raw material powder.
[0035]
This raw material powder is filled into a graphite die and hot press-sintered at 1800 ° C for 1 hour while applying a pressure of 30 MPa in a nitrogen atmosphere to obtain a 65 x 65 mm square ceramic sintered body with a thickness of 10 mm. Obtained.
[0036]
The bending fracture strength of this sintered body was measured by a three-point bending test. Also, in order to evaluate machinability, a turning test was conducted using a carbide-K10 tool with a grinding speed of 18 m / min, a feed rate of 0.03 mm / rev, and a cutting depth of 0.1 mm. The surface roughness of the work material and the flank wear width of the tool (indicating the degree of tool wear) were measured. Furthermore, the thermal expansion coefficient of this sintered body was measured in the range of room temperature (25 ° C.) to 600 ° C. These measurement results are shown together in Table 1.
[0037]
By slitting this sintered body using a grinding wheel (resin bond diamond wheel # 200, thickness 40 μm, outer diameter 50 mm), a slit having the shape shown in FIG. 2 (width = 40 μm, wall thickness = 15 μm, depth) = 300 μm, depth / wall thickness ratio = 20) 100 were formed. Slit processing is possible, but when accuracy is insufficient (pitch accuracy exceeds ± 4μm) or cracking and / or chipping (chipping) occurs, slit processing is possible with sufficient accuracy. The case where no chipping occurred was evaluated as ◯. The results are also shown in Table 1.
[0038]
(Example 2)
A ceramic sintered body was prepared in the same manner as in Example 1, cut into a thin plate having a thickness of 300 μm, and then using a carbide drill (material SKH9) having a diameter of 50 μm as shown in FIG. 1 (C). In addition, drilling was performed in 30 rows and 20 rows (600 pieces in total) with a wall thickness of 10 μm. The diameter of the hole is 60 μm, the depth is 300 μm, and the wall thickness / depth ratio is 30.
[0039]
Measure the accuracy of the hole diameter and hole pitch of the obtained through-hole, and if this accuracy is within ± 4μm and there is no crack or chipping, drilling is possible, but the accuracy is insufficient, The case where chipping occurred was evaluated as Δ, and the case where drilling was impossible was evaluated as ×. The results are also shown in Table 1. FIG. 3 shows an example of an electron micrograph showing the surface when a sintered body having a weight ratio of Si 3 N 4 : BN of the main material of 40:60 is drilled.
[0040]
(Comparative Example 1)
For comparison, the conventional free-cutting crystallized glass-based ceramic material was subjected to slitting and drilling similar to those in Examples 1 and 2, and the strength of the material was weak. As shown in FIG. 3, chipping occurred and it was not possible to drill holes accurately and accurately. Various characteristics and processing results of this ceramic material are also shown in Table 1.
[0041]
[Table 1]
Figure 0003697942
[0042]
As can be seen from Table 1, when a ceramic material made of a sintered body whose main raw material (aggregate) is a mixture having a weight ratio of silicon nitride: boron nitride in the range of 25:75 to 60:40 is cracked. Fine and deep slits and through-holes can be formed by machining with a thin wall thickness without causing any chipping. In addition, the thermal expansion coefficient of this material is significantly smaller than that of a conventional crystallized glass-based ceramic material.
[0043]
The silicon nitride / boron nitride sintered body according to the present invention (example of the present invention) and the above-mentioned crystallized glass ceramic (conventional example) have sufficient accuracy (pitch accuracy between slits or accuracy of hole diameter and hole pitch is ± The range of wall thickness that can be stably processed without cracking or chipping at 4 μm or less is as follows.
[0044]
[Table 2]
Figure 0003697942
[0045]
The ceramic material of the present invention can be subjected to high-precision fine slitting and drilling with a thin wall thickness, which was impossible in the past, and has a thermal expansion coefficient of 1/5 to 1/3 that of the conventional material. small. Therefore, there is almost no displacement due to the measurement temperature, and it is possible to stably cope with the measurement with the temperature changed.
[0046]
【The invention's effect】
According to the present invention, a deep slit or a through-hole having a small wall thickness and a small width or diameter can be formed with high precision, and thus a probe guide component capable of holding a probe in a predetermined position at a high density is produced. It becomes possible. In addition, the slits and through holes can be formed straight without tapering, and the thermal expansion coefficient of the ceramic sintered body is relatively small, approximating that of silicon, and misalignment due to measurement temperature is unlikely to occur. The accuracy of probe alignment is improved, and the reliability of the inspection apparatus is remarkably increased. As a result, it is possible to realize a high-density and high-accuracy semiconductor element inspection apparatus that can cope with higher density of LSIs.
[Brief description of the drawings]
FIG. 1 (A) is a schematic explanatory view showing a cross section of a conventional probe card, FIG. 1 (B) is a schematic explanatory view showing a cross section of a probe card having a probe guide component, and FIG. FIG. 1 (D) is a schematic explanatory view of a probe guide component having a slit, showing an upper surface (left view) and a cross-section (right view) of the through hole of the probe guide component.
FIG. 2 is an explanatory view showing the shape of a slit formed in an example.
FIG. 3 is an electron micrograph showing the surface of the ceramic of the present invention after drilling.
FIG. 4 is an electron micrograph showing the surface of a conventional ceramic after drilling.

Claims (7)

窒化珪素25〜60重量%と窒化硼素40〜75重量%との混合物を主原料とするセラミック焼結体に研削加工により複数のスリットを形成したセラミック加工部品であって、
前記スリットの壁厚みが5μm以上20μm未満、
前記スリットの深さ/壁厚み比が15以上、かつ
前記スリット間のピッチ精度が±4μm以内
であることを特徴とするセラミック加工部品。
A ceramic processed part in which a plurality of slits are formed by grinding a ceramic sintered body mainly composed of a mixture of 25 to 60% by weight of silicon nitride and 40 to 75% by weight of boron nitride,
The wall thickness of the slit is 5 μm or more and less than 20 μm,
A ceramic processed part, wherein the slit depth / wall thickness ratio is 15 or more, and the pitch accuracy between the slits is within ± 4 μm.
窒化珪素25〜60重量%と窒化硼素40〜75重量%との混合物を主原料とするセラミック焼結体にドリル加工により複数の穴を形成したセラミック加工部品であって、
前記穴径が65μm以下、
前記穴間の壁厚みが5μm以上20μm未満、
前記穴の深さ/壁厚み比が15以上、かつ
前記穴径と穴ピッチ精度が±4μm以内
であることを特徴とするセラミック加工部品。
A ceramic processed part in which a plurality of holes are formed by drilling in a ceramic sintered body mainly composed of a mixture of 25 to 60% by weight of silicon nitride and 40 to 75% by weight of boron nitride,
The hole diameter is 65 μm or less,
The wall thickness between the holes is 5 μm or more and less than 20 μm,
A ceramic processed part, wherein the hole depth / wall thickness ratio is 15 or more, and the hole diameter and hole pitch accuracy are within ± 4 μm.
前記セラミック焼結体の25〜600℃での熱膨張係数が3×10-6/℃以下である、請求項1または2記載のセラミック加工部品。The ceramic processed part according to claim 1 or 2, wherein the ceramic sintered body has a thermal expansion coefficient at 25 to 600 ° C of 3 × 10 -6 / ° C or less. 窒化珪素25〜60重量%と窒化硼素40〜75重量%との混合物とからなる主原料粉末を焼結助剤成分と混合して原料粉末を得る工程、この原料粉末を高温加圧下に焼結してセラミック焼結体を得る工程、およびこのセラミック焼結体を研削砥石またはドリルで加工する工程、を含むことを特徴とする請求項1ないし3のいずれか1項に記載のセラミック加工部品の製造方法。  A process of obtaining a raw material powder by mixing a main raw material powder composed of a mixture of 25 to 60% by weight of silicon nitride and 40 to 75% by weight of boron nitride with a sintering aid component, and sintering this raw material powder under high temperature and pressure The ceramic processed part according to any one of claims 1 to 3, further comprising a step of obtaining a ceramic sintered body and a step of processing the ceramic sintered body with a grinding wheel or a drill. Production method. 前記窒化硼素の原料粉末が平均粒径1μm未満である、請求項4記載のセラミック加工部品の製造方法。  The method for producing a ceramic processed part according to claim 4, wherein the boron nitride raw material powder has an average particle size of less than 1 µm. プローブが通る複数のスリットおよび/または穴を備えたプローブ案内部品であって、窒化珪素25〜60重量%と窒化硼素40〜75重量%との混合物を主原料とするセラミック焼結体からなり、前記スリットおよび/または穴が機械加工により形成されたものであることを特徴とするプローブ案内部品。  A probe guide component having a plurality of slits and / or holes through which a probe passes, comprising a ceramic sintered body mainly composed of a mixture of silicon nitride 25-60 wt% and boron nitride 40-75 wt%, A probe guide component, wherein the slit and / or the hole are formed by machining. プローブが通る複数のスリットおよび/または穴を備えたプローブ案内部品であって、請求項1ないし3のいずれか1項に記載のセラミック加工部品からなることを特徴とするプローブ案内部品。  A probe guide component comprising a plurality of slits and / or holes through which a probe passes, the probe guide component comprising the ceramic processed component according to any one of claims 1 to 3.
JP13334199A 1999-05-13 1999-05-13 Ceramic processed parts and manufacturing method thereof Expired - Lifetime JP3697942B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13334199A JP3697942B2 (en) 1999-05-13 1999-05-13 Ceramic processed parts and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13334199A JP3697942B2 (en) 1999-05-13 1999-05-13 Ceramic processed parts and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2000327402A JP2000327402A (en) 2000-11-28
JP3697942B2 true JP3697942B2 (en) 2005-09-21

Family

ID=15102468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13334199A Expired - Lifetime JP3697942B2 (en) 1999-05-13 1999-05-13 Ceramic processed parts and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3697942B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101852040B1 (en) * 2016-07-28 2018-04-26 한국세라믹기술원 Machinable ceramic composite material and manufacturing method of the same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7256591B2 (en) 2001-11-29 2007-08-14 Fujitsu Limited Probe card, having cantilever-type probe and method
TWI276618B (en) 2003-09-25 2007-03-21 Sumitomo Metal Ind Machinable ceramic
JP6698395B2 (en) * 2016-03-24 2020-05-27 デンカ株式会社 Probe guide member and manufacturing method thereof
JP7042555B2 (en) * 2017-02-01 2022-03-28 株式会社フェローテックマテリアルテクノロジーズ Ceramic biomaterials and methods for manufacturing ceramic biomaterials
KR102419954B1 (en) * 2017-10-20 2022-07-12 가부시키가이샤 페로텍 머티리얼 테크놀로지즈 Sockets for inspection of ceramics, probe guide elements, probe cards and packages
JP7148446B2 (en) * 2019-03-20 2022-10-05 株式会社フェローテックマテリアルテクノロジーズ Zygote and method for producing the zygote

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101852040B1 (en) * 2016-07-28 2018-04-26 한국세라믹기술원 Machinable ceramic composite material and manufacturing method of the same

Also Published As

Publication number Publication date
JP2000327402A (en) 2000-11-28

Similar Documents

Publication Publication Date Title
EP0773201B1 (en) Sintered ceramic bodies and ceramic metal working tools
JP5506246B2 (en) Ceramic member, probe holder, and method for manufacturing ceramic member
JP3697942B2 (en) Ceramic processed parts and manufacturing method thereof
EP1518844B1 (en) Machinable ceramic
EP1057799A2 (en) Edged ceramic member, a punch for manufacturing a lead frame, a method of manufacturing lead frames and a method of manufacturing an edged ceramic member
JP4400360B2 (en) Free-cutting ceramics, manufacturing method thereof, and probe guide parts
US8806969B2 (en) Ceramic member, probe holder, and method of manufacturing ceramic member
JP4089261B2 (en) Free-cutting ceramics, manufacturing method thereof, and probe guide parts
EP2594544B1 (en) Ceramic member, and method of producing probe holder and ceramic member
JP6698395B2 (en) Probe guide member and manufacturing method thereof
JP2007031229A (en) Method of manufacturing aluminum nitride substrate and aluminum nitride substrate
Hall et al. Fracture resistance of highly textured alumina
JP4371158B2 (en) Black-based free-cutting ceramics and their production and use
JP4066591B2 (en) Probe guide
EP0255023B1 (en) Zirconia toughening of glass-ceramic materials
JP4970712B2 (en) Aluminum nitride sintered body, aluminum nitride production method, and aluminum nitride evaluation method
US4981823A (en) Beryllium oxide based ceramics
TW202130603A (en) Machinable ceramic composite and method for preparing the same
JP3890915B2 (en) Free-cutting ceramics and manufacturing method thereof
JP7373651B2 (en) Ceramics, probe guide components, probe cards and package inspection sockets
JP2010083749A (en) Free-cutting ceramic composite material
JP6864513B2 (en) Composite sintered body
EP0252598A2 (en) Sintered ceramic material containing refractory material
Benson Effects of Glaze Variables on the Mechanical Strength of Whitewares
JP2002187777A (en) Ceramic joint body for guide rail, guide rail using the same and manufacturing method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050627

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110715

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110715

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110715

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110715

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110715

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120715

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120715

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120715

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130715

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term