JP3890915B2 - Free-cutting ceramics and manufacturing method thereof - Google Patents

Free-cutting ceramics and manufacturing method thereof Download PDF

Info

Publication number
JP3890915B2
JP3890915B2 JP2001106053A JP2001106053A JP3890915B2 JP 3890915 B2 JP3890915 B2 JP 3890915B2 JP 2001106053 A JP2001106053 A JP 2001106053A JP 2001106053 A JP2001106053 A JP 2001106053A JP 3890915 B2 JP3890915 B2 JP 3890915B2
Authority
JP
Japan
Prior art keywords
powder
sintering aid
mass
silicon nitride
boron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001106053A
Other languages
Japanese (ja)
Other versions
JP2002356374A (en
Inventor
俊一 衛藤
忠久 荒堀
靖樹 吉富
邦昭 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Industries Ltd
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2001106053A priority Critical patent/JP3890915B2/en
Publication of JP2002356374A publication Critical patent/JP2002356374A/en
Application granted granted Critical
Publication of JP3890915B2 publication Critical patent/JP3890915B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Ceramic Products (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、良好な被削性と高強度を併せ持ち、かつ低熱膨張性のセラミックス焼結体からなる快削性セラミックスに関する。本発明のセラミックスは、半導体製造装置部材や半導体検査装置部材、ならびに回路基板等に好適である。
【0002】
【従来の技術】
セラミックス材料は、機械的特性や高温特性に優れることから、半導体製造装置や半導体検査装置、ならびに回路基板向けの絶縁性構造用部材に適用できる。しかし、セラミックスは焼結時の収縮が大きいため、所望の形状、寸法を高精度で得るには研削加工が必要であり、その際にセラミックスの難加工性が問題になる。
【0003】
セラミックスの加工性を改善するため、セラミックスやガラスマトリックスに劈開性を持つ別のセラミックス、例えば、マイカや窒化硼素、を分散させた快削性セラミックスと呼ばれる材料が知られている。しかし、高精度の微細加工を可能にする加工性を確保するには、高強度と良好な被削性の両立が必要であるが、従来の快削性セラミックスには、それらが両立した、優れた加工性を持つものが少ない。また、従来の加工性に優れたセラミックスのほとんどは、コストが高く、単純形状しか作製できない、加圧焼成を利用した方法により製造されるものである。ガラスマトリックスにマイカを分散させた、常圧焼成可能な快削性セラミックスも知られているが、これは熱膨張性が大きく、使用温度環境の変化によって加工寸法精度に狂いを生じるという問題があった。
【0004】
加工性が良好なセラミックスとして、特公平5−85504 号公報に記載されているような、窒化珪素粉末と窒化硼素粉末との混合物に、窒化珪素に対して1〜10重量%の焼結助剤(アルミナおよびイットリア)を配合した粉末組成物を焼結したセラミックスがある。しかし、この公報に開示されたセラミックスは、常圧焼成した場合には微細加工に必要な十分な強度が得られず、平均粒径が10μmと原料粒度の粗いことに起因して加工表面粗度が大きいため、超硬工具による数十ミクロンレベルの微細加工は不可能であった。
【0005】
常圧焼成による窒化珪素と窒化硼素との複合材料の製造方法として、特開平1−131062号公報に記載されているような、焼結助剤を添加せずに原料粉末を作製して焼成したセラミックスがある。しかし、このような方法で得たセラミックス材料は、焼結助剤が無いため、焼結が不十分で、強度が不足しているため、前記のようなミクロンレベルの微細加工は不可能であった。
【0006】
【発明が解決しようとする課題】
近年の半導体高集積化にともなって、その製造装置、検査装置、さらには回路基板等に用いられるセラミックスにも、ミクロンレベルの穴、スリットなどの微細加工を高精度に実施できることが求められてきている。従来材では、それに耐えうる高強度と被削性を合わせ持ったセラミックスがないことから、そのようなセラミックスと、それを低コストで複雑形状も作製できる常圧焼成によって作製する方法の提供が望まれていた。
【0007】
本発明は、低コストで複雑形状も作製できる常圧焼成により製造可能で、超硬工具にて容易に加工できる被削性と、穿孔などの機械加工時に割れや欠けを起こさない高強度とを併せ持ち、かつ使用温度環境が変動しても寸法の狂いが生じにくい低熱膨張性を有する快削性セラミックスと、その製造方法とを提供することを課題とする。
【0008】
【課題を解決するための手段】
本発明者らは、窒化珪素と窒化硼素を主成分とし、焼結助剤を配合した、熱膨張性の低いセラミックスについて、常圧焼成で加工性に優れたセラミックスを製造すべく検討を重ねた。その結果、原料の窒化珪素粉末と窒化硼素粉末の表面に不可避的に存在する酸化物、即ち、それぞれ珪素酸化物および硼素酸化物、が焼結助剤と反応して、これらの酸化物と焼結助剤との反応物(これを、上記主成分に対して、本発明では副成分という)からなる粒界ガラス相を形成し、この副成分の粒界ガラス相で主成分が結合されることにより焼結が起こることに着目した。ここで、粒界ガラス相とは、結晶質、非晶質およびそれらの中間的な状態のいずれをも含むものとする。そして、粉末表面の酸化物の量をある程度多くした上で、焼結助剤を比較的多量に配合した場合には、常圧焼成でも高強度のセラミックスが得られ、このセラミックスは被削性にも優れていることを見出した。
【0009】
これについては次のように考えられる。主成分の原料(主原料)となる粉末表面に存在する酸化物 (硼素酸化物および珪素酸化物) は、粉末の表面全体を覆う酸化物層を形成している。この酸化物層を反応成分として焼結反応に関与させることにより、粉末の結合剤となる粒界ガラス相が、粉末の表面全体を覆い、かつ焼結体全体に均一に分布するように生成する。それに加えて、焼結反応の反応成分である酸化物と焼結助剤をそれぞれ十分な量で存在させることにより、常圧焼成でも、主成分の窒化物を粒界ガラス相で強固かつ緻密に結合することが可能となり、高強度のセラミックス体になる。また、粒界ガラス相が均一に分布することで、高強度を保持するとともに被削性も改善され、特に加工面の表面粗さが小さくなる。
【0010】
ここに、本発明は、窒化珪素および窒化硼素からなる主成分と、珪素酸化物、硼素酸化物および焼結助剤の反応物である副成分とから構成されるセラミックスであって、前記主成分が窒化珪素40〜85質量%および窒化硼素15〜60質量%からなり、前記焼結助剤の量が焼結助剤と主成分との合計量に対して16〜31質量%であり、曲げ強度が200 MPa 以上、25〜300 ℃での熱膨張係数が4×10-6/℃以下であることを特徴とする、快削性セラミックスである。
【0011】
本発明の快削性セラミックスは、超硬−K10種工具を用いた研削速度18 m/min、送り速度0.03 mm/rev 、切り込み0.1 mmの条件での5分間の旋削試験での工具逃げ面摩耗幅が0.2 mm以下、被削材の表面粗さがRmax 5μm以下、と優れた被削性を示し、かつ上記のように高強度であるため、加工性に優れ、ミクロンレベルの穴、スリットなどの微細加工を精度よく施すことができる。
【0012】
本発明によればまた、表面に珪素の酸化物層を有する粉末を含む、珪素酸化物含有量が 0.5〜10質量%の窒化珪素粉末と、表面に硼素の酸化物層を有する粉末を含む、硼素酸化物含有量が2〜15質量%の窒化硼素粉末と、焼結助剤とを混合する工程と、得られた混合粉末を所定の形状に加圧成形する工程と、得られた成形体を不活性雰囲気中で焼成する工程とを含み、混合工程における窒化珪素粉末と窒化硼素粉末の割合が、粉末中の窒化珪素分と窒化硼素分の合計量に対して窒化珪素が40〜85質量%、窒化硼素が15〜60質量%であり、焼結助剤の量が窒化珪素分および窒化硼素分の合計量と焼結助剤との総和に基づいて16〜31質量%であることを特徴とする快削性セラミックスの製造方法も提供される。
【0013】
この方法の好適態様においては、前記窒化珪素粉末の平均粒径が5μm以下であり、前記窒化硼素粉末の平均粒径が0.5 μm以下である。また、前記焼成工程は、好ましくは常圧焼成により行う。
【0014】
【発明の実施の形態】
以下に、本発明のセラミックスとその製造方法について、より具体的に説明する。
【0015】
本発明のセラミックスは、主原料の窒化硼素と窒化珪素の各粉末を焼結助剤と一緒に常圧焼成することにより製造される。原料の窒化硼素粉末は、六方晶系のもの(h−BN)がよい。
【0016】
窒化硼素および窒化珪素の粉末はいずれも、硼素および珪素が易酸化性元素であるため、表面が不可避的に酸化されており、表面にそれぞれ硼素酸化物および珪素酸化物からなる酸化物層を有する。この粉末表面の酸化物層が、前述したように焼成中に焼結反応に関与して、硼素酸化物と珪素酸化物と焼結助剤との反応物からなるガラス質の粒界相を形成し、この副成分である粒界ガラス相により主成分の窒化物が焼結された、本発明のセラミックスとなる。
【0017】
このように、主原料の窒化物粉末の表面の酸化物層を焼結成分として積極的に利用するため、本発明では、これらの原料粉末の酸化物層の量、即ち、酸化物の含有量、が特定範囲内のものを使用することが好ましい。
【0018】
具体的には、本発明で用いる原料粉末のうち、窒化硼素粉末は、硼素酸化物の含有量が2〜15質量%、好ましくは5〜12質量%であり、窒化珪素粉末は、珪素酸化物の含有量が 0.5〜10質量%、好ましくは1〜5質量%である。原料粉末の酸化物の含有量が少なすぎると、常圧焼成では焼結が不十分となり、焼結体の緻密化が不足し、強度の低いセラミックスとなる。原料粉末の酸化物の含有量が多すぎると、焼結体の粒界ガラス層が多くなりすぎ、やはり強度低下を起こす。
【0019】
原料粉末の平均粒径は、窒化硼素粉末が好ましくは0.5 μm以下、より好ましくは0.1 μm以下であり、窒化珪素粉末は好ましくは5μm以下、より好ましくは1μm以下である。平均粒径が大きすぎる原料粉末を使用すると、焼結体の微細組織が粗くなり、強度低下を起こすとともに、加工後の表面租度が大きくなって、微細加工に不都合をきたす。
【0020】
窒化硼素と窒化珪素の各粉末は、酸化物含有量と平均粒径が上記範囲であれば、市販のもの使用してもよい。また、表面酸化物層をふやす目的で、微細な窒化硼素粉末または窒化珪素粉末を酸化性雰囲気で熱処理した粉末を使用することもできる。この熱処理は、例えば、粉末を大気中 800〜1000℃の温度に加熱することにより実施できる
粉末の酸化物含有量は、例えば酸素窒素分析装置により分析することができる。市販の窒化硼素および窒化珪素の粉末について純度表示がある場合、不純物のほとんどが酸化物であるとみなすことができる。
【0021】
一般に、窒化硼素および窒化珪素の各粉末の酸化物含有量は、粉末の表面積に依存するので、粉末の平均粒径が小さくなるほど粉末の酸化物含有量は増大する傾向がある。従って、特に粉末の平均粒径が比較的大きい時は、市販品では粉末の酸化物含有量が不足することがあるので、必要であれば、酸化性雰囲気中で粉末を熱処理して、その酸化物含有量を上記のように調整する。
【0022】
上記のような酸化物含有量と平均粒径を有する、主原料の窒化珪素粉末と窒化硼素粉末を、その酸化物を除外した窒化珪素分と窒化硼素分の合計量を100 質量%として、窒化珪素40〜85質量%および窒化硼素15〜60質量%となるような割合で混合する。この割合は、好ましくは窒化珪素50〜70質量%、窒化硼素30〜50質量%である。窒化硼素の割合が少なすぎると、被削性が低下して、超硬工具での加工ができなくなり、多すぎると、強度不足から微細加工時に割れや欠けを発生する。
【0023】
焼結助剤の配合量は、窒化珪素粉末中の窒化珪素分と窒化硼素粉末中の窒化硼素分との合計量 (即ち、粉末中の酸化物を除外した、窒化珪素+窒化硼素の合計量) と焼結助剤との総和 (窒化珪素+窒化硼素+焼結助剤の総和) に基づく質量%で、焼結助剤の割合が16〜31質量%の範囲となるようにする。焼結助剤の割合は好ましくは16〜25質量%である。焼結助剤の配合量が16質量%より少ないと、常圧焼成した場合には、特に窒化珪素の焼結が不十分となり、焼結体の強度が低下する。焼結助剤の配合量が多すぎると、強度の低い粒界ガラス層が増加して、焼結体の強度低下を招くとともに、未反応の助剤単層が析出し、被削性も劣化する。
【0024】
上記基準で16質量%以上という焼結助剤の配合量は、従来技術で使用される量に比べて多量である。加圧焼成の場合、このような多量の焼結助剤の配合は、焼結体の強度に悪影響があるので使用されない。しかし、常圧焼成では、焼結助剤を16質量%以上配合する方が高強度の焼結体が得られる。窒化珪素/窒化硼素系セラミックスにおいて、このような多量に焼結助剤を配合し、なおかつ高強度を有するものはこれまで知られていなかった。但し、後述するように、焼成工程を加圧焼成により行う場合には、焼結助剤の割合は上記基準で10質量%以上であればよく、より少ない焼結助剤でも十分に焼結できる。
【0025】
前述したように、主原料の粉末中の酸化物は焼結反応成分であるので、本発明では、この酸化物を除外した窒化珪素分および窒化硼素分の合計量を基準にして、焼結助剤の配合量を決める。
【0026】
なお、焼成は不活性雰囲気中で行うため、焼成中に窒化珪素や窒化硼素の実質的な酸化は起こらない。従って、焼成後には、主成分 (窒化珪素+窒化硼素) と焼結助剤との合計量に対して上記の量で焼結助剤を含有するセラミックスが得られることになる。
【0027】
焼結助剤は、窒化珪素や窒化硼素の焼結に従来から使用されているものから選択することができる。好ましい焼結助剤は、酸化アルミニウム(アルミナ)、酸化マグネシウム(マグネシア)、酸化イットリウム(イットリア)、およびランタノイド金属の酸化物、ならびにスピネルなどの複合酸化物、から選ばれた1種もしくは2種以上であり、より好ましくはアルミナとイットリアの混合物、もしくはこれにさらにマグネシアを添加した混合物である。
【0028】
本発明のような窒化珪素と窒化硼素との複合材料の焼結では、窒化硼素粉末の表面の硼素酸化物と、窒化珪素粉末の表面の珪素酸化物と、添加した焼結助剤とが反応して、液相を生成し、焼結が行われる。各粉末の酸化物の含有量と好ましくは平均粒径、ならびに焼結助剤の配合量を上記のように設定することにより、焼結反応に関与する成分の分布と量が最適化され、常圧焼成により高強度で被削性に優れた焼結体となる。
【0029】
上記のような割合で2種類の原料粉末と焼結助剤とを混合して混合粉末を調製した後、この混合粉末を加圧成形し、得られた成形体を不活性雰囲気中で焼成して、本発明のセラミックスを製造する。これらの混合、成形、および焼成の各工程の操作それ自体は、任意の適当な方法に従って実施すればよい。次に、その方法の1例を説明するが、例示した方法に制限されるものではない。
【0030】
混合工程は乾式混合により行うことも可能であるが、次の成形工程における成形を容易にするために少量のバインダ (通常は有機樹脂) を含有させることが望ましいので、湿式ボールミル等で湿式混合することが有利である。湿式混合により得られた粉末スラリーにバインダを加えてから、スプレードライ法により乾燥して、少量のバインダを含有する混合粉末を得る。湿式粉砕の液体媒質は有機溶媒、例えば、アルコール類が好ましい。バインダとしては各種の樹脂が使用できる。バインダの添加量は、一般に焼結助剤も含めた粉末合計量に対して1〜5質量%とごく少量でよい。
【0031】
上記の混合粉末を、例えばCIP (冷間静水圧加圧)等により加圧成形する。得られた成形体を不活性雰囲気下で焼成する。焼成温度は、一般に1700〜1950℃の範囲内、好ましくは1700〜1800℃の範囲内である。焼成温度が低すぎると緻密化せず、高すぎると、窒化珪素の分解や、焼結助剤ならびに硼素酸化物や珪素酸化物の揮発が起こり、焼結に悪影響を及ぼす。バインダを使用した場合には、焼成前に脱バインダのための低温加熱を実施してもよい。この低温加熱は、原料粉末の酸化が避けられる温度であるなら、大気中で実施してもよい。
【0032】
焼成は常圧焼成とすることが好ましい。本発明では、前述したように原料粉末の酸化物量や焼結助剤の量の適正化により、常圧焼成でも十分に高強度で被削性に優れた焼結体となる。それにより、低コストで複雑形状のセラミックスを製造することが可能となる。
【0033】
しかし、焼成はHIP (熱間静水圧加圧) やホットプレスなどの加圧焼成により行うことも可能であり、それにより曲げ強度がさらに向上した焼結体が得られる。例えば、上記粉末を黒鉛製モールドに充填し、熱間で加圧しながら焼成することもできる。この場合、加圧力は20〜50 Mpaの範囲内が適当である。この場合には、前述したように、焼結助剤の割合を前記基準で10〜31質量%と、常圧焼成の場合より低減させることができる。加圧焼成の場合の好ましい焼結助剤の割合は、前記基準で10〜15質量%である。
【0034】
常圧焼成と加圧焼成のいずれでも、高強度で被削性も良好な、微細加工可能な焼結体が得られ、これに超硬工具を用いて微細な穴あけ加工かスリット加工を施した場合、割れや欠けのない加工を精度よく施すことができ、工具の過度の摩耗や破損も防止される。
【0035】
【実施例】
以下の実施例、比較例において、%は特に指定のない限り質量%である。
(実施例1、2)
平均粒径0.05μm、硼素酸化物含有量8%の六方晶窒化硼素(h-BN)粉末と、平均粒径0.2 μm、珪素酸化物含有量 2.3%の窒化珪素(Si3N4) 粉末とを、表1の主成分組成に示すSi3N4 : BN重量比となるような割合で混合した。この粉末混合物に、粉末中の窒化珪素分+窒化硼素分の合計量と焼結助剤との総和を基準とする比率で5%のアルミナと16%のイットリアとを加え、エチルアルコールを液体媒体とする湿式ボールミル混合を行ってスラリーを作製した。得られたスラリーに、バインダとしてアクリル樹脂を粉末合計量に対して3%の量で加えて溶解させてから、スラリーをスプレードライ法により乾燥・造粒を行って、混合粉末を得た。
【0036】
この混合粉末を、120 mm平方の金型に充填し、1500 kgf/cm2で冷間静水圧加圧により加圧成形して成形体を得た。得られた成形体を、大気中600 ℃に加熱して脱バインダを行った後、窒素雰囲気中1750℃で4時間の常圧焼成を行って、厚さ約15 mm のセラミックス焼結体を得た。
【0037】
この焼結体に対して、下記の試験を行った。これらの試験結果も表1に併せて示す。
曲げ強度
焼結体から30×40×360 mmサイズの試験片を切り出し、3点曲げ試験で破壊強度を測定し、曲げ強度を求めた。
【0038】
被削性
超硬−K10種工具を用いて、研削速度18 m/min、送り速度0.03 mm/rev 、切り込み0.1 mmの条件で旋削試験を行い、5分後の被削材の表面粗さと工具の逃げ面摩耗幅(工具の摩耗の程度を示す)を測定した。
【0039】
熱膨張係数
押棒式熱膨張計により、焼結体の熱膨張係数を室温(25℃)〜300 ℃の範囲で測定した。
【0040】
加工性
加工性は穴あけ加工およびスリット加工の両方で評価した。
穴あけ加工では、焼結体を厚さ300 μmの薄板状に切り出した試験片に、直径50μmの超硬ドリル (材質SKH9)を使用して、璧厚み10μmで縦30列、横20列(合計600 個)の貫通穴をあけた。穴の直径は60μm、深さは300 μmであった。
【0041】
得られた貫通穴の穴径と穴ピッチの精度を測定し、この精度が±4μm以内で、割れや欠けがない場合を○、穴あけ加工は可能であるものの、精度が不十分か、割れや欠けが発生した場合を△、ドリルが折れるなどして穴あけ加工が不可能な場合を×と評価した。
【0042】
スリット加工では、焼結体を 500μm厚みに切り出した試験片に、研削砥石(レジンボンドダイヤモンド砥石#200 、厚み40μm、外径50 mm )を用いて、スリット(幅=40μm、壁厚み=15μm、深さ=300 μm)を100 個形成した。
【0043】
スリット加工は可能であるが、精度が不十分、(ピッチ精度が±4 μmを超える)か、割れおよぴ/欠け(チッピング)が発生した場合を△、十分な精度でスリット加工が可能で、割れや欠けが発生しない場合を○と評価した。
【0044】
(実施例3)
窒化珪素粉末を、平均粒径1.0 μm、珪素酸化物含有量4.7 %のものに変更した以外は実施例1と同様にして、焼結体を作製して、試験を実施した。
【0045】
(実施例4、5)
焼結助剤の配合量を、実施例1に記載の総和を基準とする比率で、実施例4ではアルミナ5%、イットリア11%に変更し、実施例5ではアルミナ6%、イットリア20%に変更した以外は、実施例1と同様にして焼結体を作製し、試験を実施した。
【0046】
(比較例1、2)
主原料 (窒化珪素と窒化硼素の粉末) の配合比率を、酸化物を除外した比率で、表1に記載のように変更し、比較例2では焼結助剤の配合量を、実施例1に記載の総和を基準とする比率で、アルミナ10%、イットリア21%に変更した以外は、実施例1と同様にして焼結体を作製し、試験を実施した。
【0047】
(比較例3)
窒化硼素粉末を、平均粒径1.0 μm、硼素酸化物含有量 1.0%のものに変更し、焼結助剤の配合量を比較例2と同様に変更した以外は、実施例1と同様にして焼結体を作製し、試験を実施した。
【0048】
(比較例4、5)
焼結助剤の配合量を、実施例1に記載の総和を基準とする比率で、比較例4ではアルミナ11%、イットリア25%に変更し、比較例5ではアルミナ2%、イットリア7%に変更した以外は、実施例1と同様にして焼結体を作製し、試験を実施した。
【0049】
【表1】

Figure 0003890915
【0050】
表1から分かるように、焼成工程を常圧焼成により行ったにもかかわらず、本発明に従った実施例で得られたセラミックス焼結体は、被削性に優れ、曲げ強度も十分に高かった。そのため、スリット加工と穴あけ加工のいずれにおいても、割れや欠けを生じることなく高精度な微細加工を行うことができた。また、高温での寸法精度誤差の少ない低熱膨張の材料であることも確認できた。
【0051】
これに対し、比較例に示すように、主成分の窒化硼素と窒化珪素の配合比率やその酸化物含有量、または焼結助剤の配合量が本発明の範囲外であると、曲げ強度または被削性のいずれかが悪化し、穴あけ加工時に欠けや割れの発生や工具破損が起こったり、スリット加工時に欠けや割れが発生し、微細加工に不都合を生じた。
【0052】
図1には、実施例1をベースにして (即ち、窒化珪素:窒化硼素の質量比=68:32、粉末の酸化物含有量と平均粒径は実施例1に同じ) 、焼結助剤の配合量だけを変化させた場合の焼結体の曲げ強度と焼結助剤添加量との関係を示し、図2は、この場合の焼結体の熱膨張係数と焼結助剤の配合量との関係を示す。表2には、この場合の焼結体の被削性と焼結助剤の配合量との関係を示す。表2の焼結助剤の配合量のうち、11%の例は、アルミナ4%、イットリア7%であり、その他は上記実施例または比較例の場合と同じである。
【0053】
【表2】
Figure 0003890915
【0054】
図1から、曲げ強度は、焼結助剤の量が20%前後で最大となり、特に焼結助剤が少なすぎると、良好な曲げ強度が得られないことがわかる。図2からわかるように、熱膨張係数は、焼結助剤の量が多くなると増大する傾向がある。表2からは、被削性について、焼結助剤が多すぎると、工具の摩耗幅と被削剤の加工面粗さがいずれも悪化することがわかる。図1、2および表2の結果を総合すると、焼結助剤の量が15〜25%の範囲内で焼結体の強度と被削性の両方が特によい結果となる。
【0055】
【発明の効果】
本発明により、常圧焼成されるセラミックス材料により、微細加工を可能にする高強度と優れた被削性を兼ね備え、かつ25〜300 ℃での熱膨張係数が小さい、快削性セラミックスを提供することが可能なる。
【0056】
本発明の快削性セラミックスは、薄い壁厚みで幅または直径の小さい深いスリットまたは貫通穴を精度良く形成する必要がある、半導体製造装置部材、半導体検査装置ジグ、回路基板等に適用できる。このセラミックスは、熱膨張係数が小さいため、使用環境の温度変化による位置ずれがおきにくく、加工部品使用の際の信頼性が高まる。
【図面の簡単な説明】
【図1】焼結助剤の添加量と焼結体の3点曲げ強度との関係を示すグラフ。
【図2】焼結助剤の添加量と焼結体の25〜300 ℃における熱膨張係数との関係を示すグラフ。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a free-cutting ceramic made of a ceramic sintered body having both good machinability and high strength and low thermal expansion. The ceramic of the present invention is suitable for semiconductor manufacturing apparatus members, semiconductor inspection apparatus members, circuit boards, and the like.
[0002]
[Prior art]
Ceramic materials are excellent in mechanical characteristics and high temperature characteristics, and therefore can be applied to semiconductor manufacturing apparatuses, semiconductor inspection apparatuses, and insulating structural members for circuit boards. However, since ceramics have a large shrinkage during sintering, grinding is necessary to obtain a desired shape and dimensions with high accuracy, and in this case, the difficulty of processing ceramics becomes a problem.
[0003]
In order to improve the workability of ceramics, there is known a material called free-cutting ceramics in which ceramics or another ceramic having a cleaving property in a glass matrix, for example, mica or boron nitride is dispersed. However, in order to secure the workability that enables high-precision micromachining, it is necessary to achieve both high strength and good machinability. There are few things with high workability. Further, most of the conventional ceramics excellent in workability are manufactured by a method using pressure firing, which is expensive and can only produce a simple shape. A free-cutting ceramic that can be fired at normal pressure is also known, in which mica is dispersed in a glass matrix. It was.
[0004]
As a ceramic having good workability, a sintering aid of 1 to 10% by weight based on silicon nitride is added to a mixture of silicon nitride powder and boron nitride powder as described in JP-B-5-85504. There are ceramics obtained by sintering a powder composition containing (alumina and yttria). However, the ceramic disclosed in this publication cannot obtain sufficient strength necessary for fine processing when fired at normal pressure, and the surface roughness of the processed surface is due to the average particle size of 10 μm and the raw material particle size being coarse. Therefore, it is impossible to perform microfabrication at a level of several tens of microns with a carbide tool.
[0005]
As a method for producing a composite material of silicon nitride and boron nitride by atmospheric pressure firing, as described in JP-A-1-131062, a raw material powder was prepared and fired without adding a sintering aid. There are ceramics. However, since the ceramic material obtained by such a method has no sintering aid, the sintering is insufficient and the strength is insufficient. It was.
[0006]
[Problems to be solved by the invention]
As semiconductors have been highly integrated in recent years, it has been demanded that fine processing such as micron-level holes and slits can be carried out with high precision in ceramics used in manufacturing apparatuses, inspection apparatuses, and circuit boards. Yes. Since there is no ceramic with high strength and machinability that can withstand conventional materials, it is hoped to provide such a ceramic and a method for producing it by atmospheric pressure firing that can produce complex shapes at low cost. It was rare.
[0007]
The present invention can be manufactured by atmospheric pressure firing that can produce complicated shapes at low cost, and has machinability that can be easily processed with a carbide tool and high strength that does not cause cracking or chipping during machining such as drilling. It is an object of the present invention to provide a free-cutting ceramic having low thermal expansion and having a low thermal expansion property, and a method for producing the same, even if the temperature of use varies.
[0008]
[Means for Solving the Problems]
The present inventors have repeatedly studied to produce ceramics having excellent workability by firing at normal pressure, with regard to ceramics having low thermal expansion, which are mainly composed of silicon nitride and boron nitride and blended with a sintering aid. . As a result, oxides inevitably present on the surfaces of the raw material silicon nitride powder and boron nitride powder, that is, silicon oxide and boron oxide, react with the sintering aid, respectively, and these oxides and sintering are caused. A grain boundary glass phase composed of a reaction product with a binder (this is referred to as a subcomponent in the present invention with respect to the above main component) is formed, and the main component is bonded by the grain boundary glass phase of this subcomponent. We focused on the fact that sintering occurs. Here, the grain boundary glass phase includes any of crystalline, amorphous, and an intermediate state thereof. And, when the amount of oxide on the powder surface is increased to some extent and a relatively large amount of sintering aid is blended, high strength ceramics can be obtained even under normal pressure firing, and these ceramics have improved machinability. Also found it to be excellent.
[0009]
This is considered as follows. Oxides (boron oxide and silicon oxide) present on the surface of the powder serving as the main ingredient (main ingredient) form an oxide layer covering the entire surface of the powder. By causing this oxide layer to be involved in the sintering reaction as a reaction component, a grain boundary glass phase that becomes a powder binder is generated so as to cover the entire surface of the powder and to be uniformly distributed throughout the sintered body. . In addition, the oxides and sintering aids, which are the reaction components of the sintering reaction, are present in sufficient amounts, so that the main component nitride can be firmly and densely formed in the grain boundary glass phase even under normal pressure firing. Bonding is possible, and a high-strength ceramic body is obtained. In addition, since the grain boundary glass phase is uniformly distributed, high strength is maintained and machinability is improved, and the surface roughness of the processed surface is particularly reduced.
[0010]
Here, the present invention is a ceramic comprising a main component composed of silicon nitride and boron nitride and a subcomponent which is a reaction product of silicon oxide, boron oxide and a sintering aid, wherein the main component Comprising 40 to 85% by mass of silicon nitride and 15 to 60% by mass of boron nitride, the amount of the sintering aid is 16 to 31% by mass with respect to the total amount of the sintering aid and the main component, and bending It is a free-cutting ceramic characterized by a strength of 200 MPa or more and a thermal expansion coefficient at 25 to 300 ° C. of 4 × 10 −6 / ° C. or less.
[0011]
The free-cutting ceramics of the present invention are tool flank wear in a 5-minute turning test using a carbide-K10 type tool with a grinding speed of 18 m / min, a feed rate of 0.03 mm / rev and a cutting depth of 0.1 mm. Excellent machinability with a width of 0.2 mm or less and a work surface roughness of Rmax 5 μm or less, and high strength as described above. Excellent workability, micron level holes, slits, etc. Can be precisely processed.
[0012]
The present invention also includes a silicon nitride powder having a silicon oxide content of 0.5 to 10% by mass, including a powder having a silicon oxide layer on the surface, and a powder having a boron oxide layer on the surface. A step of mixing boron nitride powder having a boron oxide content of 2 to 15% by mass with a sintering aid, a step of pressure-molding the obtained mixed powder into a predetermined shape, and an obtained molded body And the ratio of silicon nitride powder and boron nitride powder in the mixing step is 40 to 85 mass% of silicon nitride with respect to the total amount of silicon nitride and boron nitride in the powder. And boron nitride is 15 to 60% by mass, and the amount of the sintering aid is 16 to 31% by mass based on the total amount of silicon nitride and boron nitride and the sintering aid. Also provided is a method for producing a free-cutting ceramic that is characterized.
[0013]
In a preferred embodiment of this method, the silicon nitride powder has an average particle size of 5 μm or less, and the boron nitride powder has an average particle size of 0.5 μm or less. The firing step is preferably performed by atmospheric pressure firing.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the ceramic of the present invention and the manufacturing method thereof will be described more specifically.
[0015]
The ceramic of the present invention is produced by firing each powder of boron nitride and silicon nitride as main raw materials together with a sintering aid at normal pressure. The raw material boron nitride powder is preferably hexagonal (h-BN).
[0016]
Both boron nitride and silicon nitride powders are unavoidably oxidized because boron and silicon are easily oxidizable elements, and have oxide layers made of boron oxide and silicon oxide, respectively. . As described above, the oxide layer on the powder surface participates in the sintering reaction during firing, and forms a glassy grain boundary phase composed of a reaction product of boron oxide, silicon oxide, and a sintering aid. In addition, the ceramic of the present invention is obtained by sintering the main component nitride by the grain boundary glass phase as the subcomponent.
[0017]
Thus, in order to positively utilize the oxide layer on the surface of the main raw material nitride powder as a sintering component, in the present invention, the amount of the oxide layer of these raw material powders, that is, the oxide content It is preferable to use those having a specific range.
[0018]
Specifically, among the raw material powders used in the present invention, the boron nitride powder has a boron oxide content of 2 to 15% by mass, preferably 5 to 12% by mass, and the silicon nitride powder is a silicon oxide. Is 0.5 to 10% by mass, preferably 1 to 5% by mass. When the content of the oxide in the raw material powder is too small, the sintering under normal pressure becomes insufficient, the densification of the sintered body is insufficient, and the ceramic becomes low in strength. When the content of the oxide in the raw material powder is too large, the grain boundary glass layer of the sintered body becomes too large, which also causes a decrease in strength.
[0019]
The average particle diameter of the raw material powder is preferably 0.5 μm or less, more preferably 0.1 μm or less for boron nitride powder, and preferably 5 μm or less, more preferably 1 μm or less for silicon nitride powder. When the raw material powder having an average particle size that is too large is used, the fine structure of the sintered body becomes rough, causing a decrease in strength and increasing the surface texture after processing, which is inconvenient for fine processing.
[0020]
Commercially available boron nitride and silicon nitride powders may be used as long as the oxide content and the average particle diameter are in the above ranges. For the purpose of facilitating the surface oxide layer, it is also possible to use a powder obtained by heat-treating fine boron nitride powder or silicon nitride powder in an oxidizing atmosphere. This heat treatment can be carried out, for example, by heating the powder to a temperature of 800 to 1000 ° C. in the atmosphere, and the oxide content of the powder can be analyzed by, for example, an oxygen nitrogen analyzer. If there is a purity indication for commercially available boron nitride and silicon nitride powders, most of the impurities can be considered to be oxides.
[0021]
In general, since the oxide content of each powder of boron nitride and silicon nitride depends on the surface area of the powder, the oxide content of the powder tends to increase as the average particle size of the powder decreases. Therefore, especially when the average particle size of the powder is relatively large, commercially available products may lack the oxide content of the powder. Therefore, if necessary, the powder may be heat treated in an oxidizing atmosphere to The product content is adjusted as described above.
[0022]
The main raw material silicon nitride powder and boron nitride powder having the above oxide content and average particle size are nitrided with the total amount of silicon nitride and boron nitride excluding the oxide being 100% by mass. Mixing is performed so that silicon is 40 to 85% by mass and boron nitride is 15 to 60% by mass. This proportion is preferably 50 to 70% by mass of silicon nitride and 30 to 50% by mass of boron nitride. If the ratio of boron nitride is too small, the machinability deteriorates and machining with a cemented carbide tool becomes impossible, and if it is too large, cracking and chipping occur during fine processing due to insufficient strength.
[0023]
The compounding amount of the sintering aid is the total amount of silicon nitride in the silicon nitride powder and boron nitride in the boron nitride powder (that is, the total amount of silicon nitride + boron nitride excluding oxides in the powder) ) And the sintering aid (mass% based on silicon nitride + boron nitride + sintering aid) so that the ratio of the sintering aid is in the range of 16 to 31 mass%. The proportion of the sintering aid is preferably 16 to 25% by mass. When the blending amount of the sintering aid is less than 16 % by mass, particularly when sintered at normal pressure, the silicon nitride is not sufficiently sintered and the strength of the sintered body is lowered. If the amount of the sintering aid is too large, the low-strength grain boundary glass layer will increase, leading to a decrease in strength of the sintered body, and an unreacted auxiliary single layer will be deposited, resulting in deterioration of machinability. To do.
[0024]
The blending amount of the sintering aid of 16 % by mass or more based on the above standard is larger than the amount used in the prior art. In the case of pressure firing, such a large amount of a sintering aid is not used because it adversely affects the strength of the sintered body. However, in the normal pressure firing, a higher strength sintered body can be obtained by adding 16 mass% or more of a sintering aid. In the silicon nitride / boron nitride based ceramics, there has been heretofore not known a compound containing such a large amount of sintering aid and having high strength. However, as will be described later, when the firing step is performed by pressure firing, the ratio of the sintering aid may be 10% by mass or more on the basis of the above, and even a smaller amount of the sintering aid can be sufficiently sintered. .
[0025]
As described above, since the oxide in the main raw material powder is a sintering reaction component, in the present invention, the sintering aid is based on the total amount of silicon nitride and boron nitride excluding this oxide. Decide the amount of agent.
[0026]
Note that since firing is performed in an inert atmosphere, substantial oxidation of silicon nitride or boron nitride does not occur during firing. Therefore, after firing, a ceramic containing the sintering aid in the above amount relative to the total amount of the main components (silicon nitride + boron nitride) and the sintering aid is obtained.
[0027]
The sintering aid can be selected from those conventionally used for sintering silicon nitride and boron nitride. Preferred sintering aids are one or more selected from aluminum oxide (alumina), magnesium oxide (magnesia), yttrium oxide (yttria), lanthanoid metal oxides, and composite oxides such as spinel. More preferably, it is a mixture of alumina and yttria, or a mixture obtained by further adding magnesia.
[0028]
In the sintering of a composite material of silicon nitride and boron nitride as in the present invention, boron oxide on the surface of the boron nitride powder, silicon oxide on the surface of the silicon nitride powder, and the added sintering aid react. Thus, a liquid phase is generated and sintering is performed. By setting the oxide content and preferably the average particle size of each powder and the blending amount of the sintering aid as described above, the distribution and amount of the components involved in the sintering reaction are optimized. A sintered body having high strength and excellent machinability is obtained by pressure firing.
[0029]
After mixing the two kinds of raw material powder and the sintering aid at the above ratio to prepare a mixed powder, this mixed powder is pressure-molded, and the resulting molded body is fired in an inert atmosphere. Thus, the ceramic of the present invention is manufactured. The operations of the mixing, molding, and firing steps may be performed according to any appropriate method. Next, an example of the method will be described, but the method is not limited to the exemplified method.
[0030]
The mixing process can be performed by dry mixing, but it is desirable to contain a small amount of binder (usually organic resin) to facilitate molding in the next molding process, so wet mixing is performed using a wet ball mill or the like. It is advantageous. A binder is added to the powder slurry obtained by wet mixing, and then dried by a spray drying method to obtain a mixed powder containing a small amount of the binder. The liquid medium for wet grinding is preferably an organic solvent, for example, alcohols. Various resins can be used as the binder. In general, the amount of the binder added may be as small as 1 to 5% by mass with respect to the total amount of powder including the sintering aid.
[0031]
The above mixed powder is pressure-molded by, for example, CIP (cold isostatic pressing). The obtained molded body is fired under an inert atmosphere. The firing temperature is generally in the range of 1700 to 1950 ° C, preferably in the range of 1700 to 1800 ° C. If the firing temperature is too low, densification does not occur, and if it is too high, decomposition of silicon nitride and volatilization of the sintering aid and boron oxide and silicon oxide occur, which adversely affects the sintering. When a binder is used, low temperature heating for removing the binder may be performed before firing. This low-temperature heating may be performed in the atmosphere if the temperature is such that oxidation of the raw material powder is avoided.
[0032]
The firing is preferably atmospheric pressure firing. In the present invention, as described above, by optimizing the amount of oxide of the raw material powder and the amount of sintering aid, a sintered body having sufficiently high strength and excellent machinability can be obtained even under normal pressure firing. Thereby, it becomes possible to manufacture a ceramic having a complicated shape at low cost.
[0033]
However, the firing can also be performed by pressure firing such as HIP (hot isostatic pressing) or hot press, thereby obtaining a sintered body with further improved bending strength. For example, the powder can be filled in a graphite mold and fired while being hot pressed. In this case, the pressure is suitably in the range of 20-50 Mpa. In this case, as described above, the ratio of the sintering aid can be reduced to 10 to 31% by mass on the basis of the above, compared with the case of normal pressure firing. A preferable ratio of the sintering aid in the case of pressure firing is 10 to 15% by mass on the basis of the above.
[0034]
A sintered body with high strength and good machinability that can be finely processed is obtained by either normal pressure firing or pressure firing, and this is subjected to fine drilling or slitting using a carbide tool. In this case, machining without cracks or chips can be performed with high accuracy, and excessive wear and breakage of the tool can be prevented.
[0035]
【Example】
In the following examples and comparative examples,% is mass% unless otherwise specified.
(Examples 1 and 2)
Hexagonal boron nitride (h-BN) powder with an average particle size of 0.05 μm and boron oxide content of 8%, and silicon nitride (Si 3 N 4 ) powder with an average particle size of 0.2 μm and silicon oxide content of 2.3% Were mixed at a ratio such that the Si 3 N 4 : BN weight ratio shown in the main component composition of Table 1 was obtained. To this powder mixture, 5% alumina and 16% yttria are added in a ratio based on the total amount of silicon nitride + boron nitride in the powder and the sintering aid, and ethyl alcohol is added to the liquid medium. A slurry was prepared by performing wet ball mill mixing. An acrylic resin as a binder was added to the obtained slurry in an amount of 3% based on the total amount of the powder and dissolved, and then the slurry was dried and granulated by a spray drying method to obtain a mixed powder.
[0036]
The mixed powder was filled in a 120 mm square mold and pressed by cold isostatic pressing at 1500 kgf / cm 2 to obtain a molded body. The obtained compact was heated to 600 ° C. in the atmosphere to remove the binder, and then fired at 1750 ° C. in a nitrogen atmosphere for 4 hours to obtain a ceramic sintered body having a thickness of about 15 mm. It was.
[0037]
The following tests were performed on this sintered body. These test results are also shown in Table 1.
Bending strength A test piece of 30x40x360 mm size was cut out from the sintered body, and the breaking strength was measured by a three-point bending test to obtain the bending strength.
[0038]
Machinability <br/> using carbide -K10 or tools, grinding rate 18 m / min, subjected to turning test under the conditions of feed rate 0.03 mm / rev, cuts 0.1 mm, after 5 minutes of the workpiece The surface roughness and the flank wear width of the tool (indicating the degree of tool wear) were measured.
[0039]
Thermal expansion coefficient The thermal expansion coefficient of the sintered body was measured in the range of room temperature (25C) to 300C by a push rod type thermal dilatometer.
[0040]
Processability <br/> workability was evaluated in both the drilling and slitting.
In the drilling process, using a cemented carbide drill (material SKH9) with a diameter of 50 μm on a test piece obtained by cutting the sintered body into a thin plate with a thickness of 300 μm, 30 rows in length and 20 rows in total with a thickness of 10 μm (total) 600 holes) were drilled. The hole diameter was 60 μm and the depth was 300 μm.
[0041]
Measure the accuracy of the hole diameter and hole pitch of the obtained through-hole, and if this accuracy is within ± 4μm and there is no crack or chipping, drilling is possible, but the accuracy is insufficient, The case where chipping occurred was evaluated as Δ, and the case where drilling was impossible due to breakage of the drill was evaluated as ×.
[0042]
In the slit processing, a test piece obtained by cutting a sintered body to a thickness of 500 μm is used with a grinding wheel (resin bond diamond wheel # 200, thickness 40 μm, outer diameter 50 mm), and slit (width = 40 μm, wall thickness = 15 μm, 100 depths = 300 μm) were formed.
[0043]
Slit processing is possible, but accuracy is insufficient (pitch accuracy exceeds ± 4 μm) or cracks / chips (chipping) occur △, slit processing with sufficient accuracy The case where no cracks or chipping occurred was evaluated as ◯.
[0044]
Example 3
A sintered body was produced and tested in the same manner as in Example 1 except that the silicon nitride powder was changed to one having an average particle size of 1.0 μm and a silicon oxide content of 4.7%.
[0045]
(Examples 4 and 5)
The blending amount of the sintering aid is changed to a ratio based on the sum total described in Example 1, with 5% alumina and 11% yttria in Example 4, and 6% alumina and 20% yttria in Example 5. A sintered body was produced and tested in the same manner as in Example 1 except for the change.
[0046]
(Comparative Examples 1 and 2)
The mixing ratio of the main raw materials (silicon nitride and boron nitride powder) was changed as shown in Table 1 with the ratio excluding oxides. In Comparative Example 2, the mixing amount of the sintering aid was changed to Example 1. A sintered body was prepared and tested in the same manner as in Example 1 except that the ratio was changed to 10% alumina and 21% yttria in the ratio based on the sum described in 1.
[0047]
(Comparative Example 3)
The boron nitride powder was changed to one having an average particle diameter of 1.0 μm and a boron oxide content of 1.0%, and the amount of the sintering aid was changed in the same manner as in Comparative Example 2, and the same as in Example 1. A sintered body was produced and tested.
[0048]
(Comparative Examples 4 and 5)
In the comparative example 4, the blending amount of the sintering aid was changed to 11% alumina and yttria 25% in the comparative example 4, and in the comparative example 5, the alumina 2% and yttria 7%. A sintered body was produced and tested in the same manner as in Example 1 except for the change.
[0049]
[Table 1]
Figure 0003890915
[0050]
As can be seen from Table 1, the sintered ceramics obtained in the examples according to the present invention are excellent in machinability and have sufficiently high bending strength even though the firing step is performed by atmospheric pressure firing. It was. Therefore, in both slit processing and drilling processing, high-precision fine processing could be performed without causing cracks or chipping. It was also confirmed that this is a low thermal expansion material with little dimensional accuracy error at high temperatures.
[0051]
On the other hand, as shown in the comparative example, if the blending ratio of the main components boron nitride and silicon nitride, the oxide content thereof, or the blending amount of the sintering aid is outside the range of the present invention, the bending strength or Any of the machinability deteriorated, chipping or cracking or tool breakage occurred during drilling, or chipping or cracking occurred during slit processing, resulting in inconvenience for fine processing.
[0052]
FIG. 1 shows a sintering aid based on Example 1 (ie, silicon nitride: boron nitride mass ratio = 68: 32, powder oxide content and average particle size are the same as in Example 1). FIG. 2 shows the relationship between the bending strength of the sintered body and the addition amount of the sintering aid when only the blending amount is changed. FIG. 2 shows the thermal expansion coefficient of the sintered body and the blending of the sintering aid in this case. The relationship with quantity is shown. Table 2 shows the relationship between the machinability of the sintered body and the blending amount of the sintering aid in this case. Of the blending amounts of the sintering aids in Table 2, 11% is 4% alumina and 7% yttria, and the others are the same as in the above examples or comparative examples.
[0053]
[Table 2]
Figure 0003890915
[0054]
As can be seen from FIG. 1, the bending strength becomes maximum when the amount of the sintering aid is around 20%, and particularly when the amount of the sintering aid is too small, good bending strength cannot be obtained. As can be seen from FIG. 2, the thermal expansion coefficient tends to increase as the amount of the sintering aid increases. From Table 2, it can be seen that when the amount of sintering aid is too much for the machinability, the wear width of the tool and the machined surface roughness of the machining agent both deteriorate. 1 and 2 and Table 2 together, both the strength and machinability of the sintered body are particularly good when the amount of the sintering aid is in the range of 15 to 25%.
[0055]
【The invention's effect】
The present invention provides a free-cutting ceramic having both high strength that enables fine machining and excellent machinability, and having a low thermal expansion coefficient at 25 to 300 ° C., by a ceramic material fired at atmospheric pressure. It becomes possible.
[0056]
The free-cutting ceramics of the present invention can be applied to semiconductor manufacturing apparatus members, semiconductor inspection apparatus jigs, circuit boards, and the like that need to accurately form deep slits or through-holes with a small wall thickness and a small width or diameter. Since this ceramic has a small coefficient of thermal expansion, it is difficult for the position shift due to a temperature change in the use environment, and the reliability when using a processed part is increased.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the amount of sintering aid added and the three-point bending strength of a sintered body.
FIG. 2 is a graph showing the relationship between the amount of sintering aid added and the thermal expansion coefficient of a sintered body at 25 to 300 ° C.

Claims (4)

窒化珪素および窒化硼素からなる主成分と、珪素酸化物、硼素酸化物および焼結助剤の反応物である副成分とから構成されるセラミックスであって、前記主成分が窒化珪素40〜85質量%および窒化硼素15〜60質量%からなり、前記焼結助剤の量が焼結助剤と主成分との合計量に対して16〜31質量%であり、曲げ強度が200 MPa 以上、25〜300 ℃での熱膨張係数が4×10-6/℃以下であることを特徴とする、快削性セラミックス。A ceramic composed of a main component composed of silicon nitride and boron nitride and a subcomponent which is a reaction product of silicon oxide, boron oxide and a sintering aid, wherein the main component is 40 to 85 mass silicon nitride. And boron nitride 15 to 60% by mass, the amount of the sintering aid is 16 to 31% by mass with respect to the total amount of the sintering aid and the main component, and the bending strength is 200 MPa or more, 25 A free-cutting ceramic characterized by a coefficient of thermal expansion at ˜300 ° C. of 4 × 10 −6 / ° C. or less. 快削性セラミックスの製造方法であって、表面に珪素の酸化物層を有する粉末を含む、珪素酸化物含有量が 0.5〜10質量%の窒化珪素粉末と、表面に硼素の酸化物層を有する粉末を含む、硼素酸化物含有量が2〜15質量%の窒化硼素粉末と、焼結助剤とを混合する工程と、得られた混合粉末を所定の形状に加圧成形する工程と、得られた成形体を不活性雰囲気中で焼成する工程とを含み、混合工程における窒化珪素粉末と窒化硼素粉末の割合が、粉末中の窒化珪素分と窒化硼素分の合計量に対して窒化珪素が40〜85質量%、窒化硼素が15〜60質量%であり、焼結助剤の量が窒化珪素分および窒化硼素分の合計量と焼結助剤との総和に基づいて16〜31質量%であることを特徴とする方法。A method for producing a free-cutting ceramic, comprising a silicon nitride powder having a silicon oxide content of 0.5 to 10% by mass, including a powder having a silicon oxide layer on the surface, and a boron oxide layer on the surface A step of mixing a boron nitride powder containing boron oxide with a boron oxide content of 2 to 15% by mass and a sintering aid, a step of pressure-molding the obtained mixed powder into a predetermined shape, and Firing the molded body in an inert atmosphere, and the ratio of the silicon nitride powder and the boron nitride powder in the mixing step is such that the silicon nitride is contained in the total amount of silicon nitride and boron nitride in the powder. 40 to 85% by mass, boron nitride is 15 to 60% by mass, and the amount of sintering aid is 16 to 31% by mass based on the total amount of silicon nitride and boron nitride and the sintering aid A method characterized in that 前記窒化珪素粉末の平均粒径が5μm以下であり、前記窒化硼素粉末の平均粒径が0.5 μm以下である請求項2記載の方法。  The method according to claim 2, wherein the silicon nitride powder has an average particle size of 5 µm or less, and the boron nitride powder has an average particle size of 0.5 µm or less. 焼成を常圧焼成により行う請求項2または3記載の方法。  The method according to claim 2 or 3, wherein the firing is performed by atmospheric pressure firing.
JP2001106053A 2001-03-28 2001-04-04 Free-cutting ceramics and manufacturing method thereof Expired - Fee Related JP3890915B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001106053A JP3890915B2 (en) 2001-03-28 2001-04-04 Free-cutting ceramics and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001093544 2001-03-28
JP2001-93544 2001-03-28
JP2001106053A JP3890915B2 (en) 2001-03-28 2001-04-04 Free-cutting ceramics and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2002356374A JP2002356374A (en) 2002-12-13
JP3890915B2 true JP3890915B2 (en) 2007-03-07

Family

ID=26612410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001106053A Expired - Fee Related JP3890915B2 (en) 2001-03-28 2001-04-04 Free-cutting ceramics and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3890915B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010137440A1 (en) 2009-05-28 2010-12-02 日本発條株式会社 Ceramic member, probe holder, and method for producing ceramic member
WO2012008502A1 (en) 2010-07-14 2012-01-19 日本発條株式会社 Ceramic member, and method of producing probe holder and ceramic member

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7026904B2 (en) * 2018-08-01 2022-03-01 株式会社フェローテックマテリアルテクノロジーズ Ceramic antibacterial materials, antibacterial parts, manufacturing methods of antibacterial parts and ceramic composite materials

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010137440A1 (en) 2009-05-28 2010-12-02 日本発條株式会社 Ceramic member, probe holder, and method for producing ceramic member
WO2012008502A1 (en) 2010-07-14 2012-01-19 日本発條株式会社 Ceramic member, and method of producing probe holder and ceramic member
JP2012020901A (en) * 2010-07-14 2012-02-02 Nhk Spring Co Ltd Ceramic member, probe holder, and method of producing ceramic member
US9238593B2 (en) 2010-07-14 2016-01-19 Nhk Spring Co., Ltd. Ceramic member, probe holder, and manufacturing method of ceramic member

Also Published As

Publication number Publication date
JP2002356374A (en) 2002-12-13

Similar Documents

Publication Publication Date Title
EP1561737B1 (en) Silicon carbide matrix composite material, process for producing the same and process for producing part of silicon carbide matrix composite material
KR100233386B1 (en) High strength porous silicon nitride body and process for producing the same
JP5487099B2 (en) Wear-resistant member, wear-resistant device, and method for manufacturing wear-resistant member
JPH0647505B2 (en) Whisker reinforced ceramics and cladding / hot isostatic pressing method for them
EP0175041B1 (en) Silicon nitride sintered bodies and a method for their production
JP4890968B2 (en) Low thermal expansion ceramic joined body and manufacturing method thereof
JP5087339B2 (en) Method for producing free-cutting ceramics
WO2014126178A1 (en) Cutting tool
JP3890915B2 (en) Free-cutting ceramics and manufacturing method thereof
US7964296B2 (en) High-volume, fully dense silicon nitride monolith and method of making by simultaneously joining and hot pressing a plurality of RBSN parts
JP2008069031A (en) Silicon nitride sintered compact and method of manufacturing the same
JP4716855B2 (en) Sialon cutting tool and tool equipped therewith
JPH1036174A (en) Sintered ceramic material and sintering of the same material and high-speed machining of the same material
US6420294B1 (en) Titanium diboride sintered body with silicon nitride as a sintering aid and a method for manufacture thereof
TW202130603A (en) Machinable ceramic composite and method for preparing the same
JP4089261B2 (en) Free-cutting ceramics, manufacturing method thereof, and probe guide parts
JP2006305708A (en) Sialon throw-away tip, and cutting tool
JP3537241B2 (en) Method for producing silicon nitride sintered body
JP2017173179A (en) Probe guide member and method for manufacturing the same
JP4542747B2 (en) Manufacturing method of high strength hexagonal boron nitride sintered body
KR101649551B1 (en) SiC-TiN ceramic composites
JPH06191953A (en) Aluminum nitride sintered compact
KR101565845B1 (en) MANUFACTURING METHOD FOR MACHINABLE SiC CERAMICS AND SiC CERAMICS MANUFACTURED BY THE METHOD
JP2001302339A (en) Member for precise measuring instrument and manufacturing method thereof
JP3449450B2 (en) Protection tube for measuring molten metal temperature

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061127

R150 Certificate of patent or registration of utility model

Ref document number: 3890915

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061019

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091215

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091215

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091215

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091215

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091215

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131215

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees