JP3696588B2 - 電源装置 - Google Patents

電源装置 Download PDF

Info

Publication number
JP3696588B2
JP3696588B2 JP2002304489A JP2002304489A JP3696588B2 JP 3696588 B2 JP3696588 B2 JP 3696588B2 JP 2002304489 A JP2002304489 A JP 2002304489A JP 2002304489 A JP2002304489 A JP 2002304489A JP 3696588 B2 JP3696588 B2 JP 3696588B2
Authority
JP
Japan
Prior art keywords
voltage
regulator
output
power supply
supply device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002304489A
Other languages
English (en)
Other versions
JP2004140944A (ja
Inventor
克也 小山
昭二 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2002304489A priority Critical patent/JP3696588B2/ja
Priority to US10/684,534 priority patent/US7057378B2/en
Priority to EP03023690A priority patent/EP1411406B8/en
Priority to DE60323196T priority patent/DE60323196D1/de
Publication of JP2004140944A publication Critical patent/JP2004140944A/ja
Application granted granted Critical
Publication of JP3696588B2 publication Critical patent/JP3696588B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/575Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices characterised by the feedback circuit

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Continuous-Control Power Sources That Use Transistors (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Dc-Dc Converters (AREA)
  • Protection Of Static Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、エンジン制御装置に電力を供給する電源装置に係り、特に、自動車エンジンを制御するコンピュータに直流電力を供給するエンジン制御装置用の電源装置に関する。
【0002】
【従来の技術】
近年、コンパクト化、コスト削減から、マイクロコンピュータ1つ当たりの半導体ウェハのサイズが小さくなっている。しかも、クロックスピードが上がってくると、消費電流は増える。そこで、電力を満足するには、電圧を小さくして電力全体を小さくすることが必要となる。このようにマイクロコンピュータのICチップのサイズが小さくなると従来の電圧に対して耐圧が取れなくなって耐圧が小さくなっている。すなわち、マイクロコンピュータの高速化により、CPUコア電源は損失を低減するために低電圧化する傾向にある。
【0003】
一方、ADコンバータの基準電圧、デジタルI/O電源は従来同様5V電圧のまま残り、結果としてマイクロコンピュータは複数の電源を供給する必要がある。
【0004】
そこで、従来の電源装置は、スイッチングレギュレータで5Vを生成し、それを5VデジタルI/O電源とし、そこから、直列にシリーズレギュレータで3.3Vを生成してCPUコア電源としており、さらに、ADコンバータの基準電圧は、バッテリ電圧から7.8V生成リニアレギュレータを介して、5Vを生成し供給している(例えば、特許文献1参照。)。
【0005】
【特許文献1】
特開平11−265225号公報(第4〜5頁、第1図)
【0006】
【発明が解決しようとする課題】
この特許文献1では、このようにレギュレータ損失を低減するための手段を講じている。しかし、特許文献1に記載の電源装置は、複数の電源の供給を必要とするマイクロコンピュータの場合、例えば、5Vと3.3Vの2つの電圧を供給する必要がある場合は、何らかの事情で、そのマイクロコンピュータに供給する2つの電源の電圧が逆転したような場合、マイクロコンピュータ内のアイソレーションが崩れ、ラッチアップを生じる可能性がある。
【0007】
また、特許文献1に記載の電源装置は、マイクロコンピュータのシュリンク化により、内部で使われる素子の耐圧は低圧化の傾向がある。そのため、5Vと3.3V電源の電位差が大きいと素子が耐圧破壊を生じる可能性がある。
【0008】
本発明の目的は、複数の電源を生成するレギュレータにおいて、信頼性の高い電源を供給する電源装置を提供することにある。
【0009】
【課題を解決するための手段】
本発明の1つの特徴は、バッテリから供給されるバッテリ電圧を第1の電圧に変換する第1のレギュレータと,第1のレギュレータから出力される第1の電圧を第2の電圧に変換して、第2の電圧をマイクロコンピュータの第1の電源として出力する第3のレギュレータと,第1のレギュレータから出力される第1の電圧を第3の電圧に変換して、第3の電圧をマイクロコンピュータの第2の電源として出力する第2のレギュレータと,第1のレギュレータから出力される第1の電圧を第3の電圧に変換して、第3の電圧をマイクロコンピュータの第2の電源として出力する第2のレギュレータと,第3のレギュレータから出力される第2の電圧が第1の設定電圧より低下したときにオフ信号を出力し、第3のレギュレータから出力される第2の電圧が第2の設定電圧より上昇したときにオン信号を出力する第1の電圧検出手段と,第1の電圧検出手段からオフ信号が出力されると第2のレギュレータからの電圧出力を停止する手段を備えたことを特徴とするものである。
【0012】
本発明によれば、第3のレギュレータから出力される第2の電圧が第1の設定電圧より低下したときにオフ信号を出力し、第2の設定電圧より上昇したときにオン信号を出力する第1の電圧検出手段を設け、第3のレギュレータから出力される第2の電圧が第1の設定電圧より低下したときに第2のレギュレータからの電圧出力を停止する手段を備えて構成しているため、高低2つの電圧の供給を行う必要があるマイクロコンピュータの場合、何らかの事情で、マイクロコンピュータに供給する2つの電源の電圧が逆転したような場合であっても、マイクロコンピュータ内のアイソレーションが崩れるのを防止し、ラッチアップを生じるのを防ぐことができる。
【0013】
本発明のさらに1つの特徴は、バッテリから供給されるバッテリ電圧を第1の電圧に変換する第1のレギュレータと,第1のレギュレータから出力される第1の電圧を第2の電圧に変換する第3のレギュレータと,第1のレギュレータから出力される第1の電圧を第3の電圧に変換する第2のレギュレータと,第3のレギュレータから出力される第2の電圧が第1の設定電圧より低下したときにオフ信号を出力し、第3のレギュレータから出力される第2の電圧が第2の設定電圧より上昇したときにオン信号を出力する第1の電圧検出手段と,第1の電圧検出手段からオフ信号が出力されると第2のレギュレータからの電圧出力を停止する手段を備えたことを特徴とするものである。
【0014】
本発明によれば、第3のレギュレータから出力される第2の電圧が第1の設定電圧より低下したときにオフ信号を出力し、第2の設定電圧より上昇したときにオン信号を出力する第1の電圧検出手段を設け、第3のレギュレータから出力される第2の電圧が第1の設定電圧より低下したときに第2のレギュレータからの電圧出力を停止する手段を備えて構成しているため、高低2つの電圧の供給を行う必要があるマイクロコンピュータの場合、何らかの事情で、マイクロコンピュータに供給する2つの電源の電圧が逆転したような場合であっても、マイクロコンピュータ内のアイソレーションが崩れるのを防止し、ラッチアップを生じるのを防ぐことができる。
【0015】
本発明のさらに他の1つの特徴は、第1のレギュレータから出力される第1の電圧が第3の設定電圧より低下したときにオフ信号を出力し、第1のレギュレータから出力される第1の電圧を停止する第2の電圧検出手段を設けたことを特徴とするものである。
【0016】
本発明によれば、第1のレギュレータから出力される第1の電圧が第3の設定電圧より低下したときに、第1の電圧の出力を停止する第2の電圧検出手段を設けて構成しているため、第1のレギュレータから出力される第1の電圧の低下によってマイクロコンピュータの誤動作を防止することができる。
【0017】
本発明の他の特徴は、後述する実施の形態の中で記述する。
【0018】
【発明の実施の形態】
図1には、本発明に係る電源装置の第1の実施の形態が示されている。
すなわち、図1において、バッテリ1には、レギュレータ(第1のレギュレータ)2が接続されており、バッテリ1から供給されるバッテリ電圧V1がレギュレータ2に供給されるようになっている。このレギュレータ2は、バッテリ1から供給される例えば22Vのバッテリ電圧V1を所定の電圧(例えば、7.8V)に変換して出力するものである。このレギュレータ2の出力端子には、レギュレータ(第3のレギュレータ)3とレギュレータ(第2のレギュレータ)4が接続されている。
【0019】
また、このレギュレータ2の出力端子には、電圧検出器(第2の電圧検出手段)5が接続されており、この電圧検出器5の出力は、レギュレータ2に接続されている。また、レギュレータ3の出力端子には、電圧検出器(第1の電圧検出手段)6が接続されており、この電圧検出器6の出力は、レギュレータ4に接続されている。
【0020】
このレギュレータ2と、レギュレータ3と、レギュレータ4と、電圧検出器5と、電圧検出器6とによって電源装置10が構成されている。そして、この電源装置10の内部には、電源装置10の内部の異常温度を検出する過熱検出器7が設けられており、この過熱検出器7は、レギュレータ2に接続されている。そして、この電源装置10には、マイクロコンピュータ8が接続されている。
【0021】
このレギュレータ(第3のレギュレータ)3においては、レギュレータ(第1のレギュレータ)2から出力される出力電圧(第1の電圧)V2から、例えば、マイクロコンピュータのI/O電源に最適な5Vを生成し、出力電圧(第2の電圧)V3としてマイクロコンピュータ8に出力する。
また、このレギュレータ(第2のレギュレータ)4においては、レギュレータ(第1のレギュレータ)2から出力される出力電圧V2から、例えば、マイクロコンピュータのCPUコア電源に最適な3.3Vを生成し、出力電圧V4としてマイクロコンピュータ8に出力する。
【0022】
このようにレギュレータ(第1のレギュレータ)2では、バッテリ1から供給されるバッテリ電圧V1を後段のレギュレータ(第3のレギュレータ)3、および、レギュレータ(第2のレギュレータ)4の損失が小となり、且つ、レギュレータ3の目標電圧V3a、および、レギュレータ4の目標電圧V4aが出力できる電圧を生成して出力する。
【0023】
また、電圧検出器5は、レギュレータ(第1のレギュレータ)2の出力電圧を検出するもので、検出したレギュレータ2の出力電圧が予め設定した第1の設定電圧より低下したときにレギュレータ2に対しオフ信号を出力し、レギュレータ2を停止する作用を有している。また、電圧検出器5は、検出したレギュレータ2の出力電圧が予め設定した第4の設定電圧より上昇したときにレギュレータ2に対しオン信号を出力し、一旦停止したレギュレータ2を再起動する作用を有している。
【0024】
また、電圧検出器6は、レギュレータ(第3のレギュレータ)3の出力電圧を検出するもので、検出したレギュレータ3の出力電圧が予め設定した第1の設定電圧より低下したときにレギュレータ(第2のレギュレータ)4に対しオフ信号を出力し、レギュレータ4を停止する作用を有している。また、電圧検出器6は、検出したレギュレータ3の出力電圧が予め設定した第2の設定電圧より上昇したときにレギュレータ(第2のレギュレータ)4に対しオン信号を出力し、一旦停止したレギュレータ4を再起動する作用を有している。
【0025】
過熱検出器7は、電源装置10の内部の異常温度を検出するもので、電源装置10の内部の温度が予め設定した第1の設定温度に達したときにレギュレータ(第1のレギュレータ)2に対しオフ信号を出力し、レギュレータ2を停止する作用を有している。また、過熱検出器7は、電源装置10の内部の温度が下降し始め、予め設定した第2の設定温度より下降したときにレギュレータ2に対しオン信号を出力し、一旦停止したレギュレータ2を再起動する作用を有している。
【0026】
電源装置10に接続されるマイクロコンピュータ8は、近年のマイクロコンピュータの高速化により、その電源は複数有している。このマイクロコンピュータ8には、レギュレータ3から出力される出力電圧V3が、主にI/O入出力用電源(5V電圧が一般的)として入力され、レギュレータ4から出力される出力電圧V4がCPUコア電源(3.3Vが一般的であるが、将来的には2.6V、1.8Vと更に低電圧化する傾向にある)として入力されるように構成されている。
【0027】
請求項1に記載の発明においては、第1のレギュレータと第2のレギュレータとで構成してあるが、この第1のレギュレータは、図1のレギュレータ(第1のレギュレータ)2で、バッテリ1から供給されるバッテリ電圧V1から、例えば、マイクロコンピュータのI/O電源に最適な5Vを生成し、出力電圧(第1の電圧)V2としてマイクロコンピュータ8に出力する構成となっている。
【0028】
また、請求項5及び請求項6に記載の発明においては、第1のレギュレータと、第3のレギュレータと、第2のレギュレータの3つのレギュレータだ構成するものとなっているが、この第1のレギュレータは、図1のレギュレータ(第1のレギュレータ)2で、第3のレギュレータは、図1のレギュレータ(第3のレギュレータ)3で、第2のレギュレータは、図1のレギュレータ(第2のレギュレータ)4に相当するものである。また、請求項5に記載の発明における第1の電圧検出手段は、図1の電圧検出器6に相当するものである。
【0029】
また、請求項7に記載の発明における第2の電圧検出手段は、図1の電圧検出器5に相当するものである。
【0030】
図2には、図1に図示の電源装置10のレギュレータ2と、レギュレータ3と、レギュレータ4と、電圧検出器5と、電圧検出器6と、過熱検出器7の各回路の詳細が示されている。
【0031】
図2において、レギュレータ2は、降圧型スイッチングレギュレータで、このようにレギュレータ2に、スイッチングレギュレータを適用することにより、レギュレータの損失を低減することで、特に、今後のバッテリ1から供給されるバッテリ電圧V1が、例えば、42Vのような高電圧化された場合に、更に有効となる。また、このレギュレータ2から出力される出力電圧(第1の電圧)V2は、レギュレータ3に入力されるもので、直接マイクロコンピュータ8に入力していないため、精度が必要無いために、レギュレータ2で生成される出力電圧V2のリップル電圧の影響も考慮する必要がないために、安価なインダクタンス22、コンデンサ24を使用できる利点もある。
【0032】
すなわち、バッテリ1には、スイッチ素子21を介して平滑回路が接続されている。このスイッチ素子21は、バッテリ1から供給されるバッテリ電圧V1をPWM(Pulse Width Modulation)制御させて平滑回路22に出力するものである。この平滑回路22は、インダクタンス23、コンデンサ24、ダイオード25によって構成されており、スイッチ素子21でPWM制御されたバッテリ1から供給されるバッテリ電圧V1を平滑化して、出力電圧(第1の電圧)V2として一定の電圧を出力する。
【0033】
この平滑回路22の出力端子には、2つの抵抗によって構成される分圧器26を介して、OPアンプ27の正(+)入力端子が接続されている。このOPアンプ27の負(−)入力端子には、基準電圧発生回路28が接続されている。このOPアンプ27の出力端子には、コントローラ20が接続されている。このOPアンプ27は、正(+)入力端子に入力する電圧と、負(−)入力端子に入力する電圧との差分を算出して、コントローラ20に出力するものである。また、このコントローラ20は、OPアンプ27から出力される差分によって、レギュレータ2から出力される出力電圧V2が、目標電圧(例えば、7.8V)V2aになるようにスイッチ素子21のオン時間をコントロールするものである。
【0034】
このスイッチ素子21、平滑回路22、分圧器26、OPアンプ27、基準電圧発生回路28、コントローラ20によってレギュレータ2が構成されている。
【0035】
レギュレータ3は、リニアレギュレータで、レギュレータ2から出力される出力電圧(例えば、7.8V)V2から、例えば、5V電源を生成してマイクロコンピュータ8のI/O電源用の出力電圧(第2の電圧)V3として出力する。このレギュレータ3から出力される5Vの出力電圧(第2の電圧)V3は、マイクロコンピュータ8のA/Dコンバータの基準電圧にも適用可能なように、リップル電圧を低く抑えるためにも、リニアレギュレータ方式が有効である。
【0036】
このレギュレータ3は、スイッチ素子31を有している。このスイッチ素子31の入力端子には、レギュレータ2の出力端子が接続されている。このスイッチ素子31は、レギュレータ2から出力されてくる出力電圧(第1の電圧)V2をPWM(Pulse Width Modulation)制御させて、例えば、5Vの電圧を生成してマイクロコンピュータ8のI/O電源用の出力電圧(第2の電圧)V3として出力する。このスイッチ素子31の出力端子には、分圧器33を介して、OPアンプ34の正(+)入力端子が接続されている。このOPアンプ34の負(−)入力端子には、基準電圧発生回路35が接続されており、このOPアンプ34の出力端子には、スイッチ素子31が接続されている。
【0037】
そして、このOPアンプ34は、正(+)入力端子に入力するスイッチ素子31から出力される出力電圧V3を分圧器33で電圧変換した値と、負(−)入力端子に入力する基準電圧発生回路35から出力される基準電圧との差分を算出して、スイッチ素子31に出力するものである。このスイッチ素子31は、OPアンプ34から出力される差分電圧に基づくオン時間でスイッチング動作を行う。すなわち、レギュレータ3から出力される出力電圧(第2の電圧)V3は、OPアンプ34から出力される差分によって、スイッチ素子21のオン時間をコントロールして目標電圧(例えば、5V)V2aになるように制御される。
なお、32は、リニアレギュレータ3のフィードバック系を安定させるための位相補償用コンデンサである。
【0038】
このスイッチ素子31、位相補償用コンデンサ32、分圧器33、OPアンプ34、基準電圧発生回路35によってレギュレータ3が構成されている。
【0039】
レギュレータ4は、レギュレータ3から出力される出力電圧(第2の電圧)V3とは異なる電圧(例えば、3.3V)を生成するリニアレギュレータである。このレギュレータ4で生成される3.3V電源は、レギュレータ2から出力されてくる出力電圧(第1の電圧)V2から降圧するために、損失は小さく抑えられる。このため、レギュレータ4は、部品点数が少ないリニアレギュレータ方式を採用することができる。
【0040】
このレギュレータ4は、スイッチ素子41を有している。このスイッチ素子41の入力端子には、レギュレータ2の出力端子が接続されている。このスイッチ素子41は、レギュレータ2から出力されてくる出力電圧(第1の電圧)V2をPWM(Pulse Width Modulation)制御させて、例えば、3.3Vの電圧を生成してマイクロコンピュータ8のCPUコア電源用の出力電圧(第3の電圧)V4として出力する。このスイッチ素子41の出力端子には、分圧器43を介して、OPアンプ44の正(+)入力端子が接続されている。このOPアンプ44の負(−)入力端子には、基準電圧発生回路45が接続されており、このOPアンプ44の出力端子には、コントローラ46が接続されている。
【0041】
このOPアンプ44は、正(+)入力端子に入力するスイッチ素子41から出力される出力電圧V4を分割回路43で電圧変換した値と、負(−)入力端子に入力する基準電圧発生回路45から供給される基準電圧との差分を算出して、コントローラ46に出力するものである。このコントローラ46は、OPアンプ44から出力される差分によって、レギュレータ4から出力される出力電圧V4が、目標電圧(例えば、3.3V)V4aになるようにスイッチ素子41のオン時間をコントロールする機能を有している。また、このコントローラ46は、レギュレータ3から出力される出力電圧V3の値によって、スイッチ素子41の起動、停止のスイッチング動作を行う機能を有している。
なお、42は、リニアレギュレータ4のフィードバック系を安定させるための位相補償用コンデンサである。
【0042】
このスイッチ素子41、位相補償用コンデンサ42、分圧器43、OPアンプ44、基準電圧発生回路45、コントローラ46によってレギュレータ4が構成されている。
【0043】
電圧検出器5は、レギュレータ2から出力される出力電圧V2の値を監視するものである。すなわち、レギュレータ2のスイッチ素子21の出力端子には、分圧器51を介して、OPアンプ52の正(+)入力端子が接続されている。このOPアンプ52の負(−)入力端子には、基準電圧発生回路53が接続されており、このOPアンプ52の出力端子には、レギュレータ2のコントローラ20が接続されている。そして、このOPアンプ52は、正(+)入力端子に入力するスイッチ素子21から出力される出力電圧V2を分圧器51で電圧変換した値と、負(−)入力端子に入力する基準電圧発生回路53から出力される基準電圧との差分を算出して、レギュレータ2のコントローラ20に検出信号D5を出力するものである。
【0044】
このコントローラ20には、分圧器51を介してOPアンプ52の正(+)入力端子に入力される電圧値がOPアンプ52の負(−)入力端子に入力される基準電圧発生回路53から出力される基準電圧より大きくなるとオフ信号が入力され、分圧器51を介してOPアンプ52の正(+)入力端子に入力される電圧値がOPアンプ52の負(−)入力端子に入力される基準電圧発生回路53から出力される基準電圧より小さくなるとオン信号が入力される。このOPアンプ52からオフ信号を出力するときの基準電圧が第3の設定値で、OPアンプ52からオン信号を出力するときの基準電圧が第4の設定値で、この第3の設定値と第4の設定値とは、ヒステリシスを持たせてある。
【0045】
このレギュレータ2のコントローラ20は、OPアンプ52からオフ信号が出力されてくると、レギュレータ2のスイッチ素子21をオフし、OPアンプ52からオン信号が出力されてくると、レギュレータ2のスイッチ素子21をオンする機能を有している。このようにレギュレータ2から出力される出力電圧V2によってスイッチ素子21のオン・オフ制御を電圧検出器5によって行うのは、第1のレギュレータ2から出力される出力電圧(第1の電圧)V2が第3の設定電圧(基準電圧回路52から出力される基準電圧)より低下することによってマイクロコンピュータ8が誤動作するのを防止するためである。
【0046】
この分圧器51、OPアンプ52、基準電圧発生回路53によって電圧検出器5が構成されている。
【0047】
電圧検出器6は、レギュレータ3から出力される出力電圧(第2の電圧)V3の値を監視するものである。すなわち、レギュレータ3のスイッチ素子31の出力端子には、分圧器61を介して、OPアンプ62の正(+)入力端子が接続されている。このOPアンプ62の負(−)入力端子には、基準電圧発生回路63が接続されており、このOPアンプ62の出力端子には、レギュレータ4のコントローラ46が接続されている。そして、このOPアンプ62は、正(+)入力端子に入力するスイッチ素子31から出力される出力電圧V3を分圧器61で電圧変換した値と、負(−)入力端子に入力する基準電圧発生回路63から出力される基準電圧との差分を算出して、レギュレータ4のコントローラ46に検出信号D6を出力するものである。
【0048】
このレギュレータ4のコントローラ46には、分圧器61を介してOPアンプ62の正(+)入力端子に入力される電圧値がOPアンプ62の負(−)入力端子に入力される基準電圧発生回路63から出力される基準電圧より大きくなるとオフ信号が入力され、分圧器61を介してOPアンプ62の正(+)入力端子に入力される電圧値がOPアンプ62の負(−)入力端子に入力される基準電圧発生回路63から出力される基準電圧より小さくなるとオン信号が入力される。このOPアンプ62からオフ信号を出力するときの基準電圧が第1の設定値で、OPアンプ62からオン信号を出力するときの基準電圧が第2の設定値で、この第1の設定値と第2の設定値とは、ヒステリシスを持たせてある。
【0049】
このレギュレータ4のコントローラ46は、OPアンプ62からオフ信号が出力されてくると、レギュレータ4のスイッチ素子41をオフし、OPアンプ62からオン信号が出力されてくると、レギュレータ4のスイッチ素子41をオンする機能を有している。このようにレギュレータ3から出力される出力電圧V3によってレギュレータ4のスイッチ素子41のオン・オフ制御を電圧検出器6によって行うのは、レギュレータ3から出力される出力電圧(第2の電圧)V3が第1の設定電圧(基準電圧発生回路63から出力される基準電圧)より低下することによってマイクロコンピュータ8が誤動作するのを防止するためである。
【0050】
この分圧器61、OPアンプ62、基準電圧発生回路63によって電圧検出器5が構成されている。
【0051】
過熱検出器7は、電源装置10の内部の温度を監視するものである。すなわち、温度検出素子72には、定電圧発生回路71、および、定電流源73によって定電流が供給されている。この温度検出素子72は、電源装置10の内部の温度が変化すると、その温度の変化によって、その両端の電位差が変化する。そこで、電源装置10の内部の温度変化によって生じる電位差と基準電圧発生回路75とを比較器74によって比較する。この比較器74は、電源装置10の内部の温度が設定温度(第1の過熱レベル)まで温度検出素子72の両端の電位差が変化した時、検出信号D7が変化する。すなわち、比較器74から出力される検出信号D7は、Low信号からHi信号に変化する。また、電源装置10の内部の温度が設定温度(第1の過熱レベル)を超えた後、降下し、設定温度(第2の過熱レベル)より低下した時、比較器74から出力される検出信号D7は、Hi信号からLow信号に変化する。この比較器74から出力される検出信号D7は、レギュレータ2のコントローラ20に入力される。
【0052】
このレギュレータ2のコントローラ20には、比較器74からLow信号の検出信号D7出力されると、レギュレータ2のスイッチ素子21をオンし、比較器74からHi信号の検出信号D7出力されると、レギュレータ2のスイッチ素子21をオフする機能を有している。このようにレギュレータ2から出力される出力電圧V2によってスイッチ素子21のオン・オフ制御を過熱検出器7によって行うのは、電源装置10の内部の温度が異常に高くなると、電源装置10の素子が誤動作を起こしたり、破壊されたりするのを防止するためである。この比較器74からHi信号の検出信号D7を出力するときの基準電圧が設定温度(第1の過熱レベル)で、比較器74からLow信号を出力するときの設定温度(第2の過熱レベル)は、ヒステリシスを持たせることによって設定している。
【0053】
この定電圧発生回路71、温度検出素子72、定電流源73、比較器74、基準電圧発生回路75によって過熱検出器7が構成されている。
【0054】
このようにレギュレータ2のコントローラ20では、電圧検出器6から出力される検出信号D6、および、過熱検出器7から出力される検出信号D7によってレギュレータ2のスイッチ素子21の起動/停止(レギュレータ2の起動/停止)を決定される。
【0055】
なお、本実施の形態においては、基準電圧発生回路を複数有しているが、一般的には、基準電圧発生回路は1つで構成し、各部にバッファを介して供給するようになっている。
【0056】
図3には、バッテリ1から供給されるバッテリ電圧V1の起動、停止時の各レギュレータの出力電圧のタイムチャートが示されている。
図3において、まず、図3に図示のタイミングaの時点において、図3(A)に示す如く、バッテリ1からバッテリ電圧V1が供給され電源装置10が起動する。このバッテリ1からバッテリ電圧V1が供給されると、図3(B)に示す如く、レギュレータ2が起動し、バッテリ1から供給されるバッテリ電圧V1の上昇にしたがってレギュレータ2からは、出力電圧V2が目標電圧V2aになるように出力される。このレギュレータ2が起動し出力電圧V2が出力されると、図3(C)に示す如く、レギュレータ3が起動し、レギュレータ2から出力されるバッテリ電圧V2の上昇にしたがってレギュレータ3からは、出力電圧V3が目標電圧V3aになるように出力される。
【0057】
複数の電源を有するマイクロコンピュータ8では、レギュレータ3から出力される出力電圧V3、および、レギュレータ4から出力される出力電圧V4の間には、
出力電圧V3 ≧ 出力電圧V4 ………………………………(1)
という式(1)による制限が存在する。
【0058】
また、マイクロコンピュータ8によっては、
出力電圧V3〜出力電圧V4 ≦ 所定電圧 ……………………(2)
という式(2)による制限が存在する。
【0059】
いま、レギュレータ4を起動、停止させるには、式(1)及び式(2)が成立するように制御しなければならない。すなわち、レギュレータ3から出力される出力電圧V3が、図3(C)に示す如く、電圧V3b以上(レギュレータ4の目標電圧V4a以上)あることを電圧検出器6によって図3に図示のタイミングbの時点で検出すると、電圧検出器6は、検出信号D6(オン信号)によりレギュレータ4を起動する。この時点で、電圧V3bの電圧は、レギュレータ3から出力される出力電圧V3と、レギュレータ4から出力される出力電圧V4との差電圧となる。したがって、電圧V3bは、
電圧V4a ≦ 電圧V3b ≦ 所定電圧 …………………(3)
という式(3)が成り立つように設定する。
【0060】
その後、図3に図示のタイミングcの時点で、バッテリ1から供給されるバッテリ電圧V1が停止すると、バッテリ1から供給されるバッテリ電圧V1に追従して、図3(B)に示す如くレギュレータ2から出力される出力電圧V2が、また、図3(C)に示す如くレギュレータ3から出力される出力電圧V3がそれぞれ降下を開始する。
【0061】
いま、ここで、レギュレータ3から出力される出力電圧V3が、
出力電圧V3 ≦ 電圧V3b〜ヒステリシス電圧V3c ………(4)
という式(4)の条件を満足することを電圧検出器6が検出すると、電圧検出器6は、出力する検出信号D6を図3(E)に示す如くのタイミングdでHiのオン信号からLowのオフ信号に変えて出力する。この電圧検出器6からオフ信号が出力されると、レギュレータ4は、この電圧検出器6からのオフ信号によって停止される。このように電圧検出器6からのオフ信号でレギュレータ4を停止させて、レギュレータ3から出力される出力電圧V3より先にレギュレータ4から出力される出力電圧V4を降下させ、式(1)及び、式(2)の条件を満足させる。
【0062】
なお、ヒステリシス電圧V3cは、
電圧V4a ≦ 電圧V3b〜ヒステリシス電圧V3c …………(5)
という式(5)を満足する値に設定する。
【0063】
図4には、レギュレータ2から出力される出力電圧V2が異常電圧となった場合のタイムチャートが示されている。
図4において、まず、図4に図示のタイミングaの時点において、バッテリ1からバッテリ電圧V1が供給され電源装置10が起動する。このバッテリ1からバッテリ電圧V1が供給されると、図4(A)に示す如く、レギュレータ2が起動し、バッテリ1から供給されるバッテリ電圧V1の上昇にしたがってレギュレータ2からは、出力電圧V2が目標電圧V2aになるように出力される。このレギュレータ2が起動し出力電圧V2が出力されると、図4(B)に示す如く、レギュレータ3が起動し、レギュレータ2から出力されるバッテリ電圧V2の上昇にしたがってレギュレータ3からは、出力電圧V3が目標電圧V3aになるように出力される。
【0064】
このようにレギュレータ3が起動すると、レギュレータ3から出力される出力電圧V3を受けてレギュレータ4は、レギュレータ3から出力される出力電圧V3が電圧V3b以上になる図4に図示のタイミングbの時点で、電圧検出器6からオン信号(検出信号D6)が出力され、この電圧検出器6からのオン信号(検出信号D6)によって起動する。
【0065】
図4に図示のタイミングbの時点から図3に図示のタイミングcの時点は、各部正常な動作波形となっている。
いま、図4に図示のタイミングcの時点で、図4(A)に示す如く何らかの原因でレギュレータ2から出力される出力電圧V2が上昇し、図4に図示のタイミングdの時点で電圧検出器5によって過電圧(第3の設定値)を検出し、電圧(過電圧判定値)V2bに達すると、電圧検出器5からは、図4(B)に示す如く検出信号(過電圧オフ信号)D5がレギュレータ2のコントローラ20に出力される。この電圧検出器5から検出信号(過電圧オフ信号)D5が出力されると、レギュレータ2は、この電圧検出器5から出力される検出信号(過電圧オフ信号)D5によって遮断される。
【0066】
このレギュレータ2から出力される出力電圧V2の出力を停止すると、バッテリ1から供給されるバッテリ電圧V1は、電気的に遮断される。このバッテリ1から供給されるバッテリ電圧V1の遮断によって、その後、レギュレータ2から出力される出力電圧V2は、図4(A)に示す如く、下降し始め、図4に図示のタイミングeの時点で、電圧検出器5がヒステリシス電圧V2cを検出する。すなわち、図4に図示のタイミングeの時点で、電圧検出器5が、
出力電圧V2 ≦ 電圧V2b〜ヒステリシス電圧V2c ………(5)
という式(6)を満足するレギュレータ2から出力される出力電圧V2を検出すると、電圧検出器5は、検出信号(再起動電圧オン信号)D5を出力してレギュレータ2を再起動する。
【0067】
このレギュレータ2の再起動の後、レギュレータ2から出力される出力電圧V2が図4(A)に示す如く再度上昇し、図4に図示のタイミングfの時点で、電圧検出器5によって、再度、過電圧(第3の設定値)を検出し、電圧(過電圧判定値)V2bに達すると、電圧検出器5からは、図4(B)に示す如く再度、検出信号(過電圧オフ信号)D5がレギュレータ2のコントローラ20に出力される。この電圧検出器5から検出信号(過電圧オフ信号)D5が出力されると、レギュレータ2は、この電圧検出器5から出力される検出信号(過電圧オフ信号)D5によって再度遮断される。すなわち、レギュレータ2から出力される出力電圧V2の出力を停止することによって、バッテリ1から供給されるバッテリ電圧V1を電気的に遮断する。そして、レギュレータ2から出力される出力電圧V2が、図4(A)に示す如く、図4に図示のタイミングgの時点で、ヒステリシス電圧V2cまで低下すると、電圧検出器5は、検出信号(再起動電圧オン信号)D5を出力してレギュレータ2を再起動する。
【0068】
このレギュレータ2から出力される出力電圧V2が、図4に図示のタイミングdから図4に図示のタイミングgの間に示すように目標電圧V2aに安定しない場合は、以後、レギュレータ2の遮断、再起動を継続し、レギュレータ2から出力される出力電圧V2を過電圧判定値V2b以下に抑え、後段のレギュレータを損失悪化から保護する。また、電圧検出器5で検出するレギュレータ2から出力される出力電圧V2が、過電圧判定値V2bに達すると、レギュレータ2を遮断し、レギュレータ2から出力される出力電圧V2が下降し始め、レギュレータ2から出力される出力電圧V2が、図4(A)に示す如く、ヒステリシス電圧V2cに達し、電圧検出器5がヒステリシス電圧V2cを検出すると、レギュレータ2は再起動する。
【0069】
このレギュレータ2が再起動後、正常に復帰している場合(再起動後、レギュレータ2から出力される出力電圧V2が再度上昇しない場合)は、図4に図示のタイミングgの時点で、レギュレータ2から出力される出力電圧V2は、目標電圧V2aになり、以後、目標電圧V2aに安定する。
【0070】
図5には、電源装置10が過熱し、電源装置10の内部の温度が異常になった時のフローチャートが示されている。
図5において、まず、図5に図示のタイミングaの時点において、バッテリ1からバッテリ電圧V1が供給され電源装置10が起動する。このバッテリ1からバッテリ電圧V1が供給されると、図5(A)に示す如く、レギュレータ2が起動し、バッテリ1から供給されるバッテリ電圧V1の上昇にしたがってレギュレータ2からは、出力電圧V2が目標電圧V2aになるように出力される。このレギュレータ2が起動し出力電圧V2が出力されると、図5(D)に示す如く、レギュレータ3が起動し、レギュレータ2から出力されるバッテリ電圧V2の上昇にしたがってレギュレータ3からは、出力電圧V3が目標電圧V3aになるように出力される。
【0071】
このようにレギュレータ3が起動すると、レギュレータ3から出力される出力電圧V3が電圧V3b以上になる図4に図示のタイミングbの時点で、電圧検出器6からは、図5(F)に示す如く、オン信号(検出信号D6)が出力される。そして、レギュレータ4は、この電圧検出器6からのオン信号(検出信号D6)によって、図5(E)に示す如く起動し、レギュレータ4から出力される出力電圧V4が上昇する。
【0072】
図5に図示のタイミングbの時点から図5に図示のタイミングcの時点は、各部の正常な動作波形となっている。
いま、図5に図示のタイミングcの時点で、図5(B)に示す如く何らかの原因で電源装置10の内部の温度Tが第1の設定温度t1に達すると、過熱検出器7は、電源装置10の内部の温度が異常温度になったことを検出し、図5(C)に示す如く、過熱検出器7は、出力する検出信号D7(Low信号)を反転した信号(Hi信号)を出力する。この過熱検出器7から、図5(C)に示す如く反転した検出信号D7が出力されると、この検出信号D7を受けて、レギュレータ2は、停止する。レギュレータ2が停止すると、レギュレータ2から出力される出力電圧V2は、図5(A)に示す如く低下し、レギュレータ3から出力される出力電圧V3が図5(D)に示す如く追従して低下する。
【0073】
このレギュレータ3から出力される出力電圧V3が低下し、レギュレータ3から出力される出力電圧V3が、図5(D)に示す如く電圧V3b〜ヒステリシス電圧V3cまで低下すると、電圧検出器6は、レギュレータ3から出力される出力電圧V3の変動する電圧を検出し、図5(F)に示す如く検出信号D6(Hi信号)を反転した信号(Low信号)を出力する。この電圧検出器6の検出信号D6によってレギュレータ4は、停止し、レギュレータ4から出力される出力電圧V4が低下する。
【0074】
レギュレータ2を停止した後、電源装置10の内部の温度Tが降下し、図5に図示のタイミングeの時点で、図5(B)に示す如く温度t1〜t2まで低下すると、図5(C)に示す如く、過熱検出器7の検出信号D7は、Hi信号(オフ信号)からLow信号(オン信号)に反転する。この図5に図示のタイミングeの時点で、図5(C)に示す如き過熱検出器7の反転した検出信号D7を受けてレギュレータ2は、図5(A)に示す如く再起動し、レギュレータ2から出力される出力電圧V2が上昇する。
【0075】
このレギュレータ出力電圧V2の上昇に追従して、図5(D)に示す如くレギュレータ3から出力される出力電圧V3が上昇し、この出力電圧V3が電圧V3b以上なると、図5(F)に示す如く電圧検出器6の検出信号D6がHi信号(オン信号)に反転し、レギュレータ4が起動し、図5(E)に示す如くレギュレータ出力電圧V4が上昇する。
【0076】
図6には、本発明に係る電源装置の第2の実施の形態が示されている。
図6に図示の本発明に係る電源装置の第2の実施の形態が、図2に図示の電源装置の第1の実施の形態と異なる点は、図2に図示の第1の実施の形態が、レギュレータ2を降圧型スイッチングレギュレータで構成しているのに対し、図6に図示の第2の実施の形態がレギュレータ2を昇降圧型スイッチングレギュレータに置換えた点で、他は図示の第2の実施の形態の回路構成と同一であるので、ここではその説明を省略する。
【0077】
図6において、図2に対する変更点は、スイッチ素子202、ダイオード201、分圧器203、基準電圧発生回路204、比較器205を追加した点である。この追加した回路は、バッテリ1から供給されるバッテリ電圧V1が、レギュレータ2から出力される出力電圧V2の目標電圧V2aより小さい場合に動作する。このレギュレータ2から出力される出力電圧V2が目標電圧V2aより小さい場合は、分圧器203で分圧された電圧と基準電圧発生回路204から供給される基準電圧とを比較器205で比較することによって検出する。
【0078】
すなわち、
バッテリ電圧V1 ≦ 目標電圧V2a
の場合、スイッチ素子21は、オン固定となり、スイッチ素子202のPWM制御によってバッテリ1から供給されるバッテリ電圧V1を昇圧してレギュレータ2から出力される出力電圧V2を生成する。
【0079】
なお、レギュレータ2から出力される出力電圧V2は、分圧器25で分圧された電圧と基準電圧発生回路26から供給される基準電圧をOPアンプ27で差分を算出することによって供給する電流量、すなわち、スイッチ素子202のPWM量をコントロールする。
【0080】
そして、バッテリ1から供給されるバッテリ電圧V1とレギュレータ2から出力される出力電圧V2の目標電圧V2aとの関係が、
バッテリ電圧V1 > 目標電圧V2a
の場合は、降圧動作となる。
【0081】
すなわち、スイッチ素子202はオフ固定となり、図2に図示の第1の実施の形態の場合と同様にスイッチ素子21のPWM制御により、レギュレータ2から出力される出力電圧V2を降圧生成する。
【0082】
図7には、レギュレータ2を昇降圧型スイッチングレギュレータにした場合の起動、停止時のタイムチャートが示されている。
図7は、レギュレータ2を昇降圧型スイッチングレギュレータにした場合の起動、停止時の波形である。
【0083】
図7において、まず、図7に図示のタイミングaの時点において、図7(A)に示す如く、バッテリ1からバッテリ電圧V1が供給され電源装置10が起動する。このバッテリ1からバッテリ電圧V1が供給されると、図7(B)に示す如く、レギュレータ2が起動し、バッテリ1から供給されるバッテリ電圧V1の上昇にしたがってレギュレータ2から出力される出力電圧V2も上昇する。このレギュレータ2が起動し出力電圧V2が出力されると、図7(C)に示す如く、レギュレータ3が起動し、レギュレータ2から出力されるバッテリ電圧V2の上昇にしたがってレギュレータ3から出力される出力電圧V3も上昇する。
【0084】
その後、図7に図示のタイミングbの時点で、昇圧回路が動作可能電圧まで、図7(A)に示す如くバッテリ1から供給されるバッテリ電圧V1が上昇すると、昇圧レギュレータ用スイッチ素子202がPWM動作を開始し、レギュレータ2から出力される出力電圧V2は、図7(B)に示す如く、目標電圧V2aに向かって昇圧動作を開始する。この昇圧動作の開始によって、図7(C)に示す如く、レギュレータ3から出力される出力電圧V3が追従して上昇する。そして、レギュレータ3から出力される出力電圧V3が、図7(C)に示す如く、電圧V3b以上になったことを電圧検出器6が検出すると、電圧検出器6からは、検出信号D6(Hi信号)をレギュレータ4のコントローラ46に出力する。
【0085】
この電圧検出器6の検出信号D6によってレギュレータ4は、起動し、レギュレータ4から出力される出力電圧V4が上昇する。このレギュレータ4が起動すると、レギュレータ4から出力される出力電圧V4は、図7に図示のタイミングcの時点で目標電圧V4aに向かって上昇し始める。そして、バッテリ1から供給されるバッテリ電圧V1が電圧V2a以上になった時、レギュレータ2は、図7(A)に示す如く昇圧動作を停止、すなわち、スイッチ素子202を停止し、スイッチ素子21のPWM制御による降圧動作に切換える。
【0086】
図7に図示のタイミングdの時点で、図7(A)に示す如くバッテリ1から供給されるバッテリ電圧V1が低下し、バッテリ1から供給されるバッテリ電圧V1が電圧V2a以下になると、レギュレータ2は、図7(B)に示す如く降圧動作を停止し、すなわち、スイッチ素子21をオン固定とし、スイッチ素子202のPWM制御による昇圧動作を開始する。
【0087】
また、図7に図示のタイミングeの時点で、図7(A)に示す如くバッテリ1から供給されるバッテリ電圧V1が、昇圧回路動作可能電圧以下になった時、図7(B)に示す如くレギュレータ2を停止し、レギュレータ2から出力される出力電圧V2は、バッテリ1から供給されるバッテリ電圧V1に追従して低下する。
【0088】
さらに、図7に図示のタイミングfの時点で、図7(C)に示す如くレギュレータ3から出力される出力電圧V3が、電圧V3b〜ヒステリシス電圧V3c以下になったことを電圧検出器6で検出すると、電圧検出器6は、図7(E)に示す如く、電圧検出器6から検出信号D6出力される検出信号D6(Low信号)をレギュレータ4のコントローラ46に出力する。この電圧検出器6の検出信号D6によってレギュレータ4は、遮断される。
【0089】
図8には、本発明に係る電源装置の第3の実施の形態が示されている。
図8に図示の第3の実施の形態が、図1に図示の第1の実施の形態と異なる点は、図1に図示の第1の実施の形態が、レギュレータ3、および、レギュレータ4をレギュレータ2から出力される出力電圧V2に並列に接続しているのに対し、図8に図示の第3の実施の形態は、レギュレータ3の後段にレギュレータ4を接続している点で異なり、他は図1に図示の第1の実施の構成と異なるところはない。図8に図示の第3の実施の形態は、図1に図示の第1の実施と効果の点での相違はない。
【0090】
また、図1に図示の第1の実施の形態、及び、図6に図示の第2の実施の形態においては、レギュレータ2をスイッチングレギュレータで構成し、レギュレータ3及びレギュレータ4をリニアレギュレータで構成したが、この構成に限られるものではない。更に、図1に図示の第1の実施の形態、及び、図6に図示の第2の実施の形態においては、レギュレータを3個用いているが、このレギュレータは3個に限定されるものではなく、各種要求において複数のレギュレータ構成において、本発明を構成することもできる。
【0091】
【発明の効果】
本発明によれば、高低2つの電圧の供給を行う必要があるマイクロコンピュータの場合、何らかの事情で、マイクロコンピュータに供給する2つの電源の電圧が逆転したような場合であっても、マイクロコンピュータ内のアイソレーションが崩れるのを防止し、ラッチアップを生じるのを防ぐことができる。
【0092】
また、本発明によれば、第1のレギュレータから出力される第1の電圧の低下によってマイクロコンピュータの誤動作を防止することができる。
【図面の簡単な説明】
【図1】本発明に係る電源装置の第1の実施の形態を示すブロック図である。
【図2】図1に図示の電源装置の詳細回路図である。
【図3】図2に図示の電源装置の第1の実施の形態のバッテリから供給されるバッテリ電圧の起動、停止時の各レギュレータの出力電圧のタイムチャートである。
【図4】図2に図示の電源装置の第1の実施の形態のレギュレータから出力される出力電圧が異常電圧となった場合のタイムチャートである。
【図5】図2に図示の電源装置の第1の実施の形態の電源装置が過熱し、電源装置の内部の温度が異常になった時のフローチャートである。
【図6】本発明に係る電源装置の第2の実施の形態を示す回路構成図である。
【図7】図6に図示の電源装置の第2の実施の形態のレギュレータを昇降圧型スイッチングレギュレータにした場合の起動、停止時のタイムチャートである。
【図8】本発明に係る電源装置の第3の実施の形態を示すブロック図である。
【符号の説明】
1……………………バッテリ
2……………………レギュレータ
3……………………レギュレータ
4……………………レギュレータ
5……………………レギュレータ2出力電圧検出器
6……………………レギュレータ3出力電圧検出器
7……………………過熱検出器
8……………………マイクロコンピュータ

Claims (14)

  1. バッテリから供給されるバッテリ電圧を第1の電圧に変換する第1のレギュレータと,
    前記第1のレギュレータから出力される第1の電圧を第2の電圧に変換して、該第2の電圧をマイクロコンピュータの第1の電源として出力する第3のレギュレータと,
    前記第1のレギュレータから出力される第1の電圧を第3の電圧に変換して、該第3の電圧を前記マイクロコンピュータの第2の電源として出力する第2のレギュレータと,
    前記第3のレギュレータから出力される第2の電圧が第1の設定電圧より低下したときにオフ信号を出力し、前記第3のレギュレータから出力される第2の電圧が第2の設定電圧より上昇したときにオン信号を出力する第1の電圧検出手段と,
    前記第1の電圧検出手段からオフ信号が出力されると前記第2のレギュレータからの電圧出力を停止する手段を備えたことを特徴とする電源装置。
  2. バッテリから供給されるバッテリ電圧を第1の電圧に変換する第1のレギュレータと,
    前記第1のレギュレータから出力される第1の電圧を第2の電圧に変換して、該第2の電圧をマイクロコンピュータの第1の電源として出力する第3のレギュレータと,
    前記第3のレギュレータから出力される第2の電圧を第3の電圧に変換して、該第3の電圧をマイクロコンピュータの第2の電源として出力する第2のレギュレータと,
    前記第3のレギュレータから出力される第2の電圧が第1の設定電圧より低下したときにオフ信号を出力し、前記第3のレギュレータから出力される第2の電圧が第2の設定電圧より上昇したときにオン信号を出力する第1の電圧検出手段と,
    前記第1の電圧検出手段からオフ信号が出力されると前記第2のレギュレータからの電圧出力を停止する手段を備えたことを特徴とする電源装置。
  3. 請求項1又は2に記載の電源装置において,
    前記第1のレギュレータから出力される第1の電圧が第3の設定電圧より低下したときにオフ信号を出力して、前記第1のレギュレータから出力される第1の電圧を停止し、前記第1のレギュレータから出力される第1の電圧が第4の設定電圧より上昇したときにオン信号を出力して、前記第1のレギュレータから出力される第1の電圧を出力させる第2の電圧検出手段を設けたことを特徴とする電源装置。
  4. 請求項1、2又は3に記載の電源装置において,
    前記第1の設定電圧は、第2のレギュレータによって生成される第3の電圧よりも高い電圧であることを特徴とする電源装置。
  5. 請求項1、2又は3に記載の電源装置において,
    前記第1の電圧検出手段からオン信号が出力されると電圧出力が停止している前記第2のレギュレータを起動し再度バッテリから供給されるバッテリ電圧を変換して所定電圧を出力するようにしたことを特徴とする電源装置。
  6. 請求項1、2、3、4又は5に記載の電源装置において,
    記第2の設定電圧は、前記第1の設定電圧より高い電圧に設定されたものである電源装置。
  7. 請求項1、2、3、4、5又は6に記載の電源装置において,
    前記第1の設定電圧、および、前記第2の設定電圧は、第3の設定電圧より低い電圧であることを特徴とする電源装置。
  8. 請求項1、2、3、4、5、6又は7に記載の電源装置において,
    前記第2の電圧検出手段からオン信号が出力されると第1の電圧が停止している前記第 1のレギュレータを起動し再度バッテリから供給されるバッテリ電圧を変換して第1の電圧を出力するようにしたことを特徴とする電源装置。
  9. 請求項に記載の電源装置において,
    前記第1のレギュレータから出力される第1の電圧が異常時の前記第3の設定電圧に基づく第1のレギュレータの停止後、再起動する第4の設定電圧は、ヒステリシス電圧であることを特徴とする電源装置。
  10. 請求項1、2、3、4、5、6、7、8又は9に記載の電源装置において,
    電源装置1内に過熱状態を検出する過熱検出器を設け、
    前記過熱検出器によって電源装置1内が予め設定してある設定温度を検出した時に、前記第1のレギュレータからの第1の電圧の出力を停止することを特徴とする電源装置。
  11. 請求項10に記載の電源装置において,
    前記第1のレギュレータを停止した後、前記過熱検出器による電源装置1内の検出温度が予め設定してある設定温度より降下したとき、前記第1のレギュレータを再起動する手段を有することを特徴とする電源装置。
  12. 請求項11に記載の電源装置において,
    前記過熱検出器による設定温度には、ヒステリシスを持たせたことを特徴とする電源装置。
  13. 請求項1、2、3、4、5、6、7、8、9、10、11又は12に記載の電源装置において,
    記第1のレギュレータをスイッチングレギュレータで構成し、前記第2のレギュレータと前記第3のレギュレータをリニアレギュレータでそれぞれ構成したことを特徴とする電源装置。
  14. 請求項1、2、3、4、5、6、7、8、9、10、11又は12に記載の電源装置において,
    前記第1のレギュレータは昇降圧スイッチングレギュレータで構成し、前記第2のレギュレータと前記第3のレギュレータをリニアレギュレータでそれぞれ構成したことを特徴とする電源装置。
JP2002304489A 2002-10-18 2002-10-18 電源装置 Expired - Lifetime JP3696588B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002304489A JP3696588B2 (ja) 2002-10-18 2002-10-18 電源装置
US10/684,534 US7057378B2 (en) 2002-10-18 2003-10-15 Power supply unit
EP03023690A EP1411406B8 (en) 2002-10-18 2003-10-17 Power supply unit with two or more power supplies
DE60323196T DE60323196D1 (de) 2002-10-18 2003-10-17 Spannungsversorgung mit mehreren Versorgungspannungen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002304489A JP3696588B2 (ja) 2002-10-18 2002-10-18 電源装置

Publications (2)

Publication Number Publication Date
JP2004140944A JP2004140944A (ja) 2004-05-13
JP3696588B2 true JP3696588B2 (ja) 2005-09-21

Family

ID=32040863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002304489A Expired - Lifetime JP3696588B2 (ja) 2002-10-18 2002-10-18 電源装置

Country Status (4)

Country Link
US (1) US7057378B2 (ja)
EP (1) EP1411406B8 (ja)
JP (1) JP3696588B2 (ja)
DE (1) DE60323196D1 (ja)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10162274A1 (de) * 2001-12-19 2003-07-10 Philips Intellectual Property Verfahren zur Stromversorgung von Stromverbrauchern mit niedriger Versorgungsspannung
DE10338272A1 (de) * 2003-08-15 2005-03-17 Atmel Germany Gmbh Schaltungsanordnung und Verfahren zur Spannungsversorgung
JP2005190264A (ja) * 2003-12-26 2005-07-14 Orion Denki Kk 短絡保護回路
JP4328290B2 (ja) * 2004-12-28 2009-09-09 富士通マイクロエレクトロニクス株式会社 電源回路、半導体集積回路装置、電子機器及び電源回路の制御方法
US7759915B2 (en) * 2006-02-27 2010-07-20 St-Ericsson Sa System with linear and switching regulator circuits
US7592793B2 (en) * 2006-06-30 2009-09-22 System General Corp. Voltage regulator providing power from AC power source
CN1908842B (zh) * 2006-08-07 2010-10-06 崇贸科技股份有限公司 用以自交流电源提供能量的电压稳压器
JP4345845B2 (ja) 2007-05-16 2009-10-14 株式会社デンソー 電源装置
JP5224797B2 (ja) * 2007-12-12 2013-07-03 日立オートモティブシステムズ株式会社 電源制御装置及びこれを用いた機械装置
JP4479797B2 (ja) * 2008-01-23 2010-06-09 株式会社デンソー 電子制御装置
CN101507609B (zh) * 2008-02-15 2013-03-06 Ge医疗***环球技术有限公司 探测器面板和x射线成像设备
JP5090202B2 (ja) * 2008-02-19 2012-12-05 株式会社リコー 電源回路
JP4591571B2 (ja) * 2008-08-04 2010-12-01 株式会社デンソー 電源装置
EP2180587B1 (en) * 2008-10-01 2020-05-06 Rockwell Automation Limited Method and Apparatus for Power Supply
US20110307746A1 (en) * 2010-06-07 2011-12-15 Sullivan Jason A Systems and Methods for Intelligent and Flexible Management and Monitoring of Computer Systems
US8810214B2 (en) * 2010-09-30 2014-08-19 Nxp B.V. Multi-mode power supply circuit with a normal operational mode and a pass-through operational mode and a method for operating the multi-mode power supply circuit
JP5695918B2 (ja) * 2011-01-26 2015-04-08 ローム株式会社 電源装置及びこれを用いた電子機器
JP5170285B2 (ja) * 2011-05-27 2013-03-27 富士通セミコンダクター株式会社 電源装置の制御回路、電源装置及びその制御方法
CN103199708A (zh) * 2012-01-04 2013-07-10 台达电子企业管理(上海)有限公司 高压电池转换***
US8804292B2 (en) * 2012-07-16 2014-08-12 Hewlett-Packard Development Company, L.P. Protective circuitry controls power supply enablement
JP6181933B2 (ja) * 2013-02-07 2017-08-16 矢崎総業株式会社 制御装置
KR102345396B1 (ko) * 2015-04-03 2021-12-31 삼성디스플레이 주식회사 전원 관리 드라이버 및 이를 포함하는 표시 장치
WO2017173287A1 (en) 2016-04-01 2017-10-05 Lutron Electronics Co., Inc. Wireless power supply for electrical devices
JP6559901B2 (ja) * 2016-08-26 2019-08-14 日立オートモティブシステムズ株式会社 電子制御装置
JP2018148710A (ja) * 2017-03-07 2018-09-20 株式会社フジクラ 電気接続箱
FR3080229A1 (fr) * 2018-04-17 2019-10-18 Stmicroelectronics S.R.L. Systeme d'alimentation

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2616156B2 (ja) 1990-06-20 1997-06-04 日本電気株式会社 電源出力回路
JPH04259017A (ja) * 1991-02-14 1992-09-14 Brother Ind Ltd 直流電源装置
US5336985A (en) * 1992-11-09 1994-08-09 Compaq Computer Corp. Tapped inductor slave regulating circuit
JPH10144079A (ja) * 1996-11-07 1998-05-29 Mitsubishi Electric Corp 半導体記憶装置
JPH10164750A (ja) * 1996-11-26 1998-06-19 Nec Corp 出力電圧可変方式
JP3084395B2 (ja) 1997-05-15 2000-09-04 工業技術院長 半導体薄膜の堆積方法
JPH1141825A (ja) 1997-07-14 1999-02-12 Victor Co Of Japan Ltd 電源切替装置
JPH11265225A (ja) 1998-03-16 1999-09-28 Toyota Motor Corp エンジン制御装置用の電源装置
JP4184492B2 (ja) 1998-08-13 2008-11-19 セミコンダクター・コンポーネンツ・インダストリイズ・エルエルシー Dc/dcコンバータ
JP3802239B2 (ja) * 1998-08-17 2006-07-26 株式会社東芝 半導体集積回路
JP3660210B2 (ja) 2000-07-04 2005-06-15 シャープ株式会社 安定化電源装置及びそれを備えた電子機器
JP2002108465A (ja) 2000-09-27 2002-04-10 Ricoh Co Ltd 温度検知回路および加熱保護回路、ならびにこれらの回路を組み込んだ各種電子機器
US6654264B2 (en) * 2000-12-13 2003-11-25 Intel Corporation System for providing a regulated voltage with high current capability and low quiescent current
JP4651832B2 (ja) 2001-03-05 2011-03-16 富士通セミコンダクター株式会社 電源システムの過電圧保護装置

Also Published As

Publication number Publication date
US7057378B2 (en) 2006-06-06
DE60323196D1 (de) 2008-10-09
EP1411406A3 (en) 2005-08-31
EP1411406A2 (en) 2004-04-21
JP2004140944A (ja) 2004-05-13
EP1411406B1 (en) 2008-08-27
EP1411406B8 (en) 2008-10-15
US20040108842A1 (en) 2004-06-10

Similar Documents

Publication Publication Date Title
JP3696588B2 (ja) 電源装置
JP4111109B2 (ja) スイッチングレギュレータ及び電源装置
US7633274B2 (en) Step-up switching power supply with open-circuit malfunction response
JP4064296B2 (ja) スイッチング電源装置、およびスイッチング電源制御用半導体装置
JP7269359B2 (ja) 電子制御装置
JP2010022077A (ja) 電源装置
US8599521B2 (en) Switching regulator and operation control method
CN112154598B (zh) 功率转换装置
US20050127984A1 (en) Power supply circuit having a plurality of voltage conversion circuits
JP5879472B2 (ja) モーター駆動用電源回路
JP2020157907A (ja) 車載電源装置
JP5224797B2 (ja) 電源制御装置及びこれを用いた機械装置
CN111630763A (zh) 升压型开关电源电路
JP4820257B2 (ja) 昇圧コンバータ
JP2015053777A (ja) 電源制御装置
JP2005020917A (ja) スイッチング電源装置、およびスイッチング電源制御用半導体装置
JP6652035B2 (ja) 電子制御装置
JP3975828B2 (ja) 半導体装置
JP3504016B2 (ja) スイッチング電源回路
US9871456B2 (en) Voltage conversion device and method of operation
JP2005065438A (ja) 多出力電源装置の起動制御回路
JP4545526B2 (ja) 電源制御用半導体集積回路およびスイッチング電源装置
JP2011091938A (ja) 異常検出回路
JP2003324941A (ja) 電源装置
JP2004129350A (ja) 電源装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050629

R150 Certificate of patent or registration of utility model

Ref document number: 3696588

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080708

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090708

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090708

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100708

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100708

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100708

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110708

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110708

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120708

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130708

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term