JP3695614B2 - 半導体メモリ装置の冗長用ヒューズ回路 - Google Patents

半導体メモリ装置の冗長用ヒューズ回路 Download PDF

Info

Publication number
JP3695614B2
JP3695614B2 JP33595996A JP33595996A JP3695614B2 JP 3695614 B2 JP3695614 B2 JP 3695614B2 JP 33595996 A JP33595996 A JP 33595996A JP 33595996 A JP33595996 A JP 33595996A JP 3695614 B2 JP3695614 B2 JP 3695614B2
Authority
JP
Japan
Prior art keywords
circuit
node
signal
fuse
redundant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33595996A
Other languages
English (en)
Other versions
JPH09185897A (ja
Inventor
昇勳 李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of JPH09185897A publication Critical patent/JPH09185897A/ja
Application granted granted Critical
Publication of JP3695614B2 publication Critical patent/JP3695614B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C17/00Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/70Masking faults in memories by using spares or by reconfiguring
    • G11C29/78Masking faults in memories by using spares or by reconfiguring using programmable devices
    • G11C29/84Masking faults in memories by using spares or by reconfiguring using programmable devices with improved access time or stability

Landscapes

  • For Increasing The Reliability Of Semiconductor Memories (AREA)
  • Dram (AREA)
  • Static Random-Access Memory (AREA)
  • Techniques For Improving Reliability Of Storages (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は半導体メモリ装置の冗長回路に関するもので、特に、外部クロックに同期して動作し、高速アドレス指定が可能な同期型(synchronous) DRAM、SRAM等の同期型半導体メモリ装置の冗長回路に採用されるヒューズ回路に関するものである。
【0002】
【従来の技術】
よく知られているように、半導体メモリ装置は行方向と列方向にマトリックス配列された多数のメモリセルを持っており、一般的には複数のアレイ形態で集積される。高集積化によってメモリセルアレイが高密度化されると、各メモリセルに割当てられる単位面積は減少し、その分不良率も上がる。そこで歩留りを上げるために、冗長技術が採用されている。すなわち、予め余分の冗長セル(スペアセル)を設けておき、不良セルに置換してリペアするものである。たとえば、カラム冗長(列冗長)の場合には、不良セルのカラムアドレスをデコーディンする際に冗長セルのカラムアドレスを代替指定し、列単位でリペアが行われる。
【0003】
この冗長に際して、入力アドレスが不良セルを指定するアドレスかどうかを識別するために、冗長回路においてヒューズ回路が使用される。これには大きく分けて、図1に示すようなダイナミック型ヒューズ回路と、図3に示すようなスタティック型ヒューズ回路がある。
【0004】
図1のヒューズ回路は、クロックCLKに同期する同期型半導体メモリ装置、あるいは非同期型メモリ装置(この装置でもローアドレスはローアドレスストローブ信号RASに同期して発生される)の両方で、ローアドレスをデコーディングするロー冗長回路に使用される。一方、図3のヒューズ回路は、同じく非同期型と同期型のメモリ装置の両方で、ローあるいはカラムアドレスをデコーディングするローあるいはカラム冗長回路に使用される。
【0005】
図1を参照すれば、ダイナミック型ヒューズ回路は、同期型メモリの場合であれば外部クロックCLK(非同期型メモリの場合はRAS信号)が低レベルを維持する期間にノードND1を高レベル(たとえばVcc)にプリチャージするプリチャージ回路となる2つのPMOSトランジスタ1−1,1−2及びインバータ3−1と、ノードND1に並列接続された複数のヒューズf1〜fnと、これらヒューズf1〜fnと接地Vssとの間に設けられ、各ゲートにそれぞれノーマルメモリセルのローアドレス信号A1,/A1〜Am,/Am(“/”は反転の意味)を受けて導通する複数のNMOSトランジスタ2−1〜2−nを使用したスイッチ回路と、ノードND1の信号をバッファリング(あるいは増幅)して冗長セルに対するアドレシング(addressing)、すなわち冗長セルのローアドレス信号発生のための冗長ローアドレシング信号REDnを出力する縦列インバータ3−2,3−3を使用した出力駆動回路と、を備えている。
【0006】
図2には、上記ダイナミック型ヒューズ回路の動作タイミングを図示してある。まず、図1のヒューズ回路に対応した冗長セルが不良セルの代わりに使用される場合、複数のヒューズf1〜fnのうち、不良セルのアドレスに相当するヒューズを切断する。たとえば、不良セルのローアドレス信号A1,A2,…,Am=“0,1,…,1”とすれば、A2,A=“1”、そしてA1=“0”なら/A1=“1”なので、その“1”すなわち高レベル入力該当のヒューズf2,f3,…,f(n−1)が切断される。つまり、不良セルを指定するアドレスの論理“1”になるアドレス信号に対応したヒューズを切断する。これにより、アドレスが入力されてもノードND1がVssへ接地されずにノードND1の高レベルが保たれることになる。またこのとき、ノードND1は、インバータ3−1及びPMOSトランジスタ1−2によって高レベルを維持する。
【0007】
図2の信号波形に示すように、クロックCLK(あるいはRAS信号)が低レベル(論理ロウ)の際にPMOSトランジスタ1−1がターンオンし、ノードND1が高レベル(論理ハイ)、この例ではVccレベルにプリチャージされる。この後に、クロックCLKが高レベルになって、アクセスのために不良セルのローアドレス信号A1,/A1〜Am,/Am(=repaired address:RA)がNMOSトランジスタ2−1〜2−nの各ゲートにされると、この場合には、該アドレスに応じてオンするNMOSトランジスタ2−1〜2−nにつながるヒューズf1〜fnが切断されているのでノードND1は高レベルを維持する。したがって、当該冗長セルのローアドレス指定を示す冗長ローアドレシング信号REDnが高レベル出力され、これにより当該冗長セルの冗長ワードラインが駆動される。
【0008】
この逆に、図1のヒューズ回路に対応した冗長セルが選択されない場合にはヒューズf1〜fnが切断されず、したがって、クロックCLKが高レベルになって不良ではないノーマルメモリセルを指定するローアドレス信号A1,/A1〜Am,/Am(=unrepaired address:URA)が入力されれば、NMOSトランジスタ2−1〜2−nのいずれかがターンオンしてノードND1が低レベル(Vss)になるので、出力駆動回路3−2、3−3からは低レベルのロー冗長アドレシング信号REDnが出力される。この場合には当該冗長セルの冗長ワードラインは選択されない。
【0009】
図3を参照すれば、スタティック型ヒューズ回路は、ノードND2に各ゲートが接続されて接地接続を制御するNMOSトランジスタ17−1〜17−mによる接地接続制御用のスイッチ回路と、これらNMOSトランジスタ17−1〜17−mのそれぞれに1対ずつ並列接続された複数のヒューズf1〜fnと、これら各ヒューズf1〜fnにそれぞれ接続され、ノードND2に従い導通してアドレス信号A1,/A1,A2,/A2,…,Am,/Amを伝送する複数のCMOS伝達ゲート11−1,12−1,11−2,12−2,…,11−n,12−nと、マスターヒューズfm、PMOSトランジスタ14、NMOSトランジスタ16−1,16−2、及びインバータ14−1,14−2,14−3,14−4からなる伝達ゲート制御回路と、ヒューズf1〜fnの各対ごとの出力を論理演算し、それらが全て高レベルであれば高レベルのローあるいはカラム冗長アドレシング信号REDn(すなわち、当該冗長セルのビットラインあるいはワードラインの駆動のためのローあるいはカラムアドレス信号を発生することを示す信号)を出力し、1つでも低レベルであれば低レベルの冗長アドレシング信号REDnを出力する出力ロジック回路14−5,18−1〜18−m,19−1〜19−m’と、を備えている。CMOS伝達ゲートをなすPMOSトランジスタ11−1〜11−nのゲートはノードND2に接続され、またそのNMOSトランジスタ12−1〜12−nのゲートはノードND2の電圧を反転させるインバータ14−4により制御される。
【0010】
このスタティック型ヒューズ回路に対応した冗長セルが不良セルの代わりに選択される場合は、上述のダイナミック型ヒューズ回路とは反対に、アドレス信号A1,/A1,A2,/A2,…,Am,/Amの中で‘0’の値をもつ信号に相当するヒューズf1〜fnを切断する。たとえば、ローアドレスA1,A2,…,Am=“0,1,…,1”であれば、ヒューズf1,f4,…,fnが切断される。すなわち、不良セルを指定するアドレスの論理“0”のアドレス信号が入力される伝達ゲートに接続したヒューズを切断する。マスターヒューズfmは、このスタティック型ヒューズ回路に対応した冗長セルが使用されないときにアドレス信号の相補対(たとえばA1と/A1)が相互に衝突することを防止するために設けられており、該マスターヒューズfmを切断することでノードND2が低レベルになって当該ヒューズ回路が動作する。
【0011】
このスタティック型ヒューズ回路に対応した冗長セルが使用されない場合は、ヒューズf1〜fn(スレイブヒューズ)及びマスターヒューズfmの両方とも切断されずにおかれ、チップの内部電源電圧VINT(あるいは高レベルの制御信号)が供給されれば伝達ゲート制御回路のPMOSトランジスタ14がターンオンしてノードND2が高レベルになる。しがって、伝達ゲート11−1〜11−n、12−1〜12−nがターンオフする一方、スイッチ回路のトランジスタ17−1〜17−mがターンオンし、出力ロジック回路の入力がすべて低レベルとなって冗長アドレシング信号REDnは低レベル出力される。
【0012】
図4は、図3のスタティック型ヒューズ回路に対応した冗長セルが使用される場合の動作タイミングを示している。この場合、スレイブヒューズf1〜fnの半数とマスターヒューズfmが切断状態にある。すなわち、たとえば上記同様に不良セルのアドレスA1,A2,…,Am=“0,1,…,1”とすれば、スレイブヒューズf1,f4,…,fn及びマスターヒューズfmが切断され、残りのヒューズf2,f3,…,f(n−1)はつながった状態にある。
【0013】
図4に示すように内部電源電圧VINT が低レベルのときには、伝達ゲート制御回路のNMOSトランジスタ16−1,16−2のターンオンでノードND2は低レベルになり、したがって伝達ゲートがターンオンすると共にスッチ用NMOSトランジスタ17−1,17−2,…,17−mがターンオフとなり得るが、これはメモリ動作前である。
【0014】
一方、内部電源電圧VINT が高レベル(適正レベルで供給)になれば、伝達ゲート制御回路のNMOSトランジスタ16−1がターンオフする。しかしこの場合、マスターヒューズfmが切断された状態にあるのでインバータ14−2及びNMOSトランジスタ16−2のラッチによって、ノードND2は低レベルのままとされる。したがって、伝達ゲート11−1〜11−n,12−1〜12−nはターンオンで、NMOSトランジスタ17−1〜17−m)はターンオフとなる。
【0015】
そして、正常なノーマルメモリセル(normal)を指定するアドレス(URA)、たとえば“1,0,…,0が入力された場合は、非切断のヒューズを通じて低レベルのアドレスビットが出力されるので、出力ロジック回路18−1〜18−m,19−1〜19−m’,14−5から低レベルの冗長アドレシング信号REDnが出力される。
【0016】
一方、不良セル(defective) を指定するアドレス(RA)、上記の例でいえば“0,1,…,1が入力された場合は、低レベルのアドレス信号は一切伝達されず、高レベルのアドレス信号/A1,A2,…,Amだけがヒューズを通して出力されるので、この結果、出力ロジック回路18−1〜18−m,19−1〜19−m,14−5は高レベルの冗長アドレシング信号REDnを出力する。
【0017】
【発明が解決しようとする課題】
上記のようなダイナミック型ヒューズ回路は、レイアウト面積が小さくてすみ集積性に優れるが、一方で、動作特性上、アドレスのリセットに応じてノードND1のプリチャージを遂行しなければならないので、アドレスのリセット時間が非常に短かったり存在しないようなアドレスの高速入力が可能とされたメモリ装置への適用には、限界がある。
【0018】
また、上記のようなスタティック型ヒューズ回路は、ダイナミック型ヒューズ回路のようにアドレスリセットでプリチャージする必要がなく、したがってアドレス指定を高速にした半導体メモリ装置(同期型DRAM、SRAM等)に適しているが、一方で、そのレイアウト面積がダイナミック型ヒューズ回路に比べて大きくなるため、集積性に劣るという短所をもつ。
【0019】
そこで、高速アドレス指定が可能な半導体メモリ装置の冗長回路として適し且つレイアウト面積が小さく集積性に優れる冗長用ヒューズ回路の提供を本発明の目的とする。
【0020】
【課題を解決するための手段】
この目的のために本発明では、レイアウト面積が小さくてすむダイナミック型ヒューズ回路を同期型メモリの冗長回路に適するように改良する。そしてさらに、そのようなダイナミック型ヒューズ回路をカラム冗長にも適用可能にするものである。
【0021】
すなわち、本発明の冗長用ヒューズ回路は、冗長アドレシング信号の論理状態を決定する第1のノードと、この第1のノードと第2のノードとの間に並列に設けられた複数のヒューズと、これらヒューズに直列接続され、アドレス信号に応じてオンオフする第1のスイッチ回路と、アドレス入力に関した制御信号が第1状態の時に前記第1のノードをプリチャージするプリチャージ回路と、前記制御信号が第2状態の時に前記第2のノードからの電流路を形成する第2のスイッチ回路と、冗長アドレシング信号を発生するために、前記制御信号が前記第2状態の時に前記第1のノードの論理状態を出力端へ伝達する導通状態になり、前記制御信号が前記第1状態の時に非導通状態になる転送回路と、を備えることを特徴とする。
【0022】
この冗長用ヒューズ回路では、転送回路の伝達出力をラッチするラッチ回路をさらに備えるのが好ましい。第1のスイッチ回路は、それぞれヒューズと直列接続され、各ゲート電極にそれぞれアドレス信号を受けるMOSトランジスタで構成することができ、第2のスイッチ回路は、第2のノードと接地との間に設けられ、ゲート電極に制御信号を受けるMOSトランジスタで構成することができる。また、転送回路は、制御信号により制御されるCMOS伝達ゲートで構成することができる。制御信号は同期式メモリの同期クロックにすることが可能である。
【0023】
あるいは、本発明の冗長用ヒューズ回路は、冗長アドレシング信号の論理状態を決定する第1のノードと、メモリ動作状態に関した第1の制御信号に応じ、冗長が行われる場合にマスター信号を発生するマスター信号発生回路と、前記マスター信号及びアドレス入力に関した第2の制御信号に従い前記第1のノードをプリチャージするプリチャージ回路と、前記第1のノードと第2のノードとの間に並列に設けられた複数のヒューズと、これらヒューズに直列接続され、アドレス信号に応じてオンオフする第1のスイッチ回路と、前記第2の制御信号に従い前記第2のノードからの電流路を形成する第2のスイッチ回路と、前記マスター信号に従い前記第1のノードからの電流路を形成する第3のスイッチ回路と、前記第2の制御信号に従い前記第1のノードの論理状態を出力端へ伝達する転送回路と、を備えることを特徴とする。
【0024】
この冗長用ヒューズ回路では、転送回路の伝達出力をラッチするラッチ回路をさらに備えるのが好ましく、また、第1の制御信号に従いラッチ回路の初期化を行う第4のスイッチ回路をさらに備えるとよい。この第4のスイッチ回路は、ラッチ回路の入力端と接地との間に設けられて第1の制御信号により制御されるMOSトランジスタで構成することができる。マスター信号発生回路は、第1の制御信号に従い相補的にオンオフする第1のMOSトランジスタ及び第2のMOSトランジスタと、これら第1のMOSトランジスタと第2のMOSトランジスタとの間に直列接続されたマスターヒューズと、前記第2のMOSトランジスタと並列に設けられ、前記マスターヒューズが切断されたときにマスター信号を一定論理に固定する第3のMOSトランジスタと、を有してなるものとすることができる。プリチャージ回路は、マスター信号により制御されプリチャージ電圧を供給する第1のMOSトランジスタと、この第1のMOSトランジスタに直列接続され、第2の制御信号により制御されて第1のノードへプリチャージ電圧を提供する第2のMOSトランジスタと、を有してなるものとすることができる。さらにプリチャージ回路は、第2のMOSトランジスタに並列接続され、第1のノードの反転論理で制御される第3のMOSトランジスタを有するものとしてもよい。第1のスイッチ回路は、それぞれヒューズと直列接続され、アドレス信号によりそれぞれ制御されるMOSトランジスタで構成することができ、第2のスイッチ回路は、第2のノードと接地との間に設けられ、第2の制御信号により制御されるMOSトランジスタで構成することができる。また、第3のスイッチ回路は、第1のノードと接地との間に設けられ、マスター信号により制御されるMOSトランジスタで構成することができる。転送回路は、第2の制御信号により制御されるCMOS伝達ゲートで構成することができる。この場合の第2の制御信号も同期式メモリの同期クロックとすることが可能である。
【0025】
【発明の実施の形態】
図5にはヒューズ回路の第1実施形態、図6にはその動作タイミングを示してある。
【0026】
この図5に示すヒューズ回路は、第1のノードND11と電源電圧Vccが印加される電源ノードND12との間に設けられ、制御信号としてのクロック信号CLKが低レベル(Vss)になるときにPMOSトランジスタ21−1が導通して第1のノードND11を高レベル(プリチャージ電圧)にプリチャージするプリチャージ回路10と、第1のノードND11に並列接続された複数のヒューズf1〜fnと、第2のノードND13とヒューズf1〜fnとの間に設けられ、それぞれアドレス信号A1,/A1,A2,/A2,…,Am,/Amに応答して各ヒューズf1〜fnを第2のノードND13へ接続する第1のスイッチ回路20と、第2のノードND13と接地Vssが印加される接地ノードND14との間に設けられ、クロック信号CLKの高レベルに応答して導通する第2のスイッチ回路30と、第1のノードND11と出力ノードND15との間に設けられ、クロック信号CLKの高レベルに応答して導通する転送回路40と、出力ノードND15に設けられたラッチ回路50と、ラッチ回路50の出力をドライブして冗長アドレシング信号REDnを出力する出力駆動回路60と、を備えている。このうちラッチ回路40は、転送回路40のオフで第1のノードND11と出力ノードND15の間の連絡が断たれた場合にその直前の状態をラッチし、これに従い出力駆動回路60が冗長アドレシング信号REDnを出力する。
【0027】
図1に比べると分かるように、この実施形態は、従来の回路構成(10,f1〜fn,20,60)に加えて、接地接続制御用の第2のスイッチ回路30、転送回路40、及びラッチ回路50を設けた構成をもつ。具体的には、第2のスイッチ回路30は、第1のスイッチ回路20をなす各NMOSトランジスタ22−1〜22−nへ共通に接続したドレインとVssへ接続したソースとを有し、クロック信号CLKでゲート制御されるNMOSトランジスタ25−1から構成されている。また転送回路40は、第1のノードND11と出力ノードND15との間に設けられてオンオフするCMOS伝達ゲート21−3,21−3とインバータ23−4とから構成され、クロック信号CLKによりNMOSゲート25−2が制御され且つインバータ23−4で反転したクロック信号CLKによりPMOSゲート21−3が制御される。そしてラッチ回路50は、出力ノードND15を入力側とするインバータ23−2と、出力ノードND15を出力側とするインバータ23−5と、の対向並列接続から構成されている。
【0028】
このヒューズ回路に対応した冗長セルが使用される場合、複数のヒューズf1〜fnのうち、不良セルアドレスの論理ハイビットに相当するヒューズが切断される。たとえば、不良セルのアドレス信号A1,A2,…,Am=“0,1,…,1”であれば、このうち“1”を受けるNMOSトランジスタ22−2,22−3,….22−(n−1)に接続したヒューズf2,f3,…,f(n−1)を切断する。すなわち、不良セルを指定するアドレス入力に応じて第1のノードND11の接地接続を断つためである。
【0029】
これとは反対に、不良の無い場合や図5のヒューズ回路に対応した冗長セルが使用されない場合は、ヒューズf1〜fnのいずれも切断されない。
【0030】
この第1実施形態のヒューズ回路において、クロック信号CLKが低レベルである場合は、プリチャージ回路10のPMOSトランジスタ21−1がターンオンし、第1のノードND11は高レベルのVccレベルにプリチャージされる。これは従来同様である。
【0031】
クロック信号CLKが高レベルになり、これに同期して正常なノーマルメモリセルのアドレス信号A1,/A1〜Am,/Am(URA)が入力される場合は、これに応じてオンする第1のスイッチ回路20のトランジスタ22−1〜22−nにつながる切断されてないヒューズf1〜fnが少なくとも1つ存在するので、第1のノードND11は低レベル(Vss)になる。そして、このときには転送回路40のトランジスタ21−3,25−2がクロック信号CLKに従いターンオンするので、第1のノードND11の論理状態が転送されて出力ノードND15は低レベルになる。その結果、出力駆動回路60からは低レベル(非活性状態)の冗長アドレシング信号REDnが出力される。
【0032】
続いてクロック信号CLKが低レベルへ遷移すると、このメモリはクロック信号CLKの低レベル遷移に際するアドレスリセットのないタイミングであるが(図6)、プリチャージ回路10のトランジスタ21−1がターンオンする一方、第2のスイッチ回路30のトランジスタ25−1がターンオフするので、第1のノードND11のプリチャージが実行される。またこのとき、転送回路40のトランジスタ21−3,25−2もクロック信号CLKに従いターンオフするので、第1のノードND11のプリチャージ高レベルが出力ノードND15へ伝達されることは防止される。
【0033】
また本例では、出力ノードND15の状態をラッチするラッチ回路50が設けられ、クロック信号CLKが低レベルになったときでも、その直前の高レベル時の論理状態が維持されるようになっており、したがって、低レベルの冗長アドレシング信号REDnが継続して出力される。これにより、当該冗長セルのワードラインあるいはビットラインは駆動されない。
【0034】
一方、クロック信号CLKが高レベルになり、当該ヒューズ回路に対応した冗長セルでリペアされる不良セルのアドレス信号A1,/A1〜Am,/Am(RA)が入力される場合は、当該アドレス信号中の“1”になるビットに応じてオンする第1のスイッチ回路20のトランジスタ22−1〜22−nにつながるヒューズf1〜fnが切断されているので、第2のスイッチ回路30がオンして接地接続されても第1のノードND11の高レベルが保持される。そして、プリチャージ回路10のトランジスタ21−2及び転送回路40がターンオンするので、第1のノードND11の高レベルは出力ノードND15へ伝達され、その結果、出力駆動回路60は高レベルの冗長アドレシング信号REDnを出力し、当該冗長セルのワードラインあるいはビットラインが駆動される。
【0035】
このように出力駆動回路60が高レベル(活性状態)の冗長アドレシング信号REDnを出力している状態で、アドレスリセットされることなくクロック信号CL)が低レベルへ遷移すると、プリチャージ回路10のトランジスタ21−1がターンオンする一方、第2のスイッチ回路20のトランジスタ25−1がターンオフするので、第1のノードND11のプリチャージが遂行される。またこのとき、転送回路40のトランジスタ21−3,25−2がターンオフしているので、第1のノードND11と出力ノードND15とは電気的に分離される。したがって、出力ノードND15は第1のノードND11の電圧変化に影響されることはない。
【0036】
さらに、出力ノードND15の状態はクロック信号CLKの低レベル期間でもラッチ回路50により維持されるので、出力駆動回路60から高レベルの冗長アドレシング信号REDnが継続出力される。すなわち、当該冗長セルのワードラインあるいはビットラインの駆動が継続される。つまり、この例のヒューズ回路は、ロー冗長、カラム冗長のどちらへも適用可能である。
【0037】
第1のノードND11がプリチャージされ、そして出力ノードND15が‘高レベルである状態で、クロック信号CLKが高レベルに遷移し、正常なノーマルメモリセルのアドレス(URA)が第1のスイッチ回路20に入力されると、切断されていないヒューズf1〜fn、第1のスイッチ回路20のトランジスタ22−1〜22−n、そして第2のスイッチ回路30のトランジスタ25−1を通じる接地ルートが形成されるため、第1のノードND11は低レベルになる。また、転送回路40が導通することにより、その第1のノードND11の低レベルが転送されて出力ノードND15が低レベルになる。この結果、冗長アドレシング信号REDnは低レベルになり、当該冗長セルのワードラインあるいはビットラインは非駆動状態とされる。
【0038】
以上のように、第1実施形態によると、アドレスリセットがなくともクロック信号CLKの低レベル遷移に応じてプリチャージが行われ、しかも、次のクロックまで前クロックの冗長アドレシング信号REDnの状態が維持される。したがって、高速アドレシングの半導体メモリ装置に適しており、且つ高速アドレス指定のメモリ装置における冗長ヒューズ回路のレイアウト面積減少に貢献する。
【0039】
図7は、ヒューズ回路の第2実施形態を示している。この例のヒューズ回路は、図5の構成に加えてマスター制御回路100及び2つのさらなるスイッチ回路110,180を有し、そして若干異なる構成のプリチャージ回路120を有している。
【0040】
マスターヒューズfmを備えたマスター制御回路100は、入力信号として内部電源電圧VINT が印加されると、マスターヒューズfmがつながっていればVccレベルのマスター信号を発生し、マスターヒューズfmが切断されていればVssレベルのマスター信号を発生する。第3のスイッチ回路110は、マスター制御回路100によるマスター信号に応じてオンオフし、第1のノードND21と接地ノードND23との間を接続する。また、第4のスイッチ回路180は、内部電源電圧VINT の入力に応答し、VINT の発生前に導通して出力ノードND25を接地させる。
【0041】
第1のノードND21と電源ノードND22との間に設けられるプリチャージ回路120は、マスター制御回路100からのマスター信号とクロック信号CLKの両方に応じて、マスター信号及びクロック信号ともに低レベルのときに第1のノードND21をプリチャージする。
【0042】
第1のノードND21に並列接続された複数のスレイブヒューズf1〜fnと第2のノードND24との間に設けられた第1のスイッチ回路130は、アドレス信号A1,/A1,A2,/A2,…,Am,/Amに応じて各スレイブヒューズと第2のノードND24とを電気的に接続する。そして、接地ノードND23と第2のノードND24との間に設けられた第2のスイッチ回路140は、クロック信号CLKに応答して接地ノードND23と第2のノードND24とを電気的に接続する。
【0043】
第1のノードND21と出力ノードND25との間に設けられる転送回路150は、クロック信号CLKに応答して第1のノードND21と出力ノードND25とを電気的に接続する。そして、出力ノードND25に接続されたラッチ回路160は、第1のノードND21から伝送された信号をラッチし、出力駆動回路170がラッチ回路160の出力に従い冗長アドレシング信号REDnを出力する。
【0044】
この第2実施形態のヒューズ回路に対応した冗長セルが使用されない場合、マスターヒューズfmとスレイブヒューズf1〜fnは、全部つながったままである。したがって、マスターヒューズfmが切られていないので、チップの内部電源電圧VINT (あるいは高レベルの制御信号)が供給されるとマスター制御回路100は高レベルのマスター信号を発生し、プリチャージ回路180のPMOSトランジスタ31−3はターンオフ、第3のスイッチ回路110のNMOSトランジスタ35−4はターンオンとなる。これにより、第1のノードND21はVssの低レベルになる。またこの場合、クロック信号CLKが高レベルになってもPMOSトランジスタ31−3がオフのままなので第1のノードND21へVccは提供されず、したがって、冗長アドレシング信号REDnは論理ロウの非活性状態を維持する。
【0045】
一方、このヒューズ回路に対応した冗長セルが使用される場合には、まず、スレイブヒューズf1〜fnの半数とマスターヒューズfmが切断される。たとえば、不良セルのアドレスA1,A2,…,Am=“0,1,…,1”であれば、スレイブヒューズf1,f4,…,fnとマスターヒューズfmを切断する。
【0046】
この状態の回路に、内部電源電圧VINT が供給されると、PMOSトランジスタ34がオンしてもマスターヒューズfmが切断されているのでトランジスタ36−2によりマスター制御回路100の低レベル出力が保たれ、したがって、プリチャージ回路120のトランジスタ31−3はオン、第3のスイッチ回路110はオフとなり、クロック信号CLKに従う動作が可能となる。このときにクロック信号CLKが低レベルであれば、プリチャージ回路120のトランジスタ31−1がターンオンし且つ第2のスイッチ回路140のトランジスタ35−1がターンオフするので、第1のノードND21は高レベルにプリチャージされる。また、クロック信号CLKの低レベルに応じ、転送回路150のトランジスタ31−3,35−2はターンオフしているので、第1のノードND21と出力ノードND25とが電気的に分離される。そして、内部電源電圧VINT の印加前に第4のスイッチ回路180のトランジスタ35−3がターンオンして初期化が行われるので、出力ノードND25は必ず最初に低レベルで、その結果、出力駆動回路170はから低レベルの冗長アドレシング信号REDnが出力される。
【0047】
続いてアドレスがリセットされることなくクロック信号CLKが高レベルへ遷移すると、第2のスイッチ回路140のトランジスタ35−1及び転送回路150のトランジスタ31−3,35−2がターンオンするので、アドレス入力に応じた第1のノードND21の状態が出力ノードND25へ伝達され、ラッチ回路160にラッチされる。
【0048】
このときに、当該ヒューズ回路によるリペア対象の不良セルアドレス(RA)が入力される場合、第1のノードND21はVssへの接続経路が断たれて高レベルを維持し、これが出力ノードND25に伝達される結果、冗長アドレシング信号REDnは高レベルの活性状態になる。一方、正常なノーマルメモリセルを選択するアドレス(URA)が入力される場合は、第1のノードND21はVssへ接地されて低レベルとなり、これが出力ノードND25に伝達される結果、冗長アドレシング信号REDnは低レベルの非活性状態になる。
【0049】
高レベルのクロック信号CLKに応答して出力駆動回路170が低レベルの冗長アドレシング信号REDnを出力している状態から、アドレスがリセットされることなくクロック信号CLKが再び低レベルに遷移すると、転送回路150により第1のノードND21と出力ノードND25とが電気的に分離されたうえで、第2のスイッチ回路140がオフすると共にプリチャージ回路120がオンとなるので、第1のノードND21がプリチャージされる。しかしながらこのときに、直前のクロック信号CLKの高レベル時の出力ノードND25の状態をラッチ回路160がラッチしているので、出力駆動回路170は、低レベルの冗長アドレシング信号REDnを継続出力することになる。したがって、当該冗長セルのワードラインあるいはビットラインが駆動されることはない。
【0050】
また、クロック信号CLKの低レベル時に第1のノードND21及び出力ノードND25が高レベルにある状態から、該当不良セルのアドレス(RA)ではない他のアドレス(URA)が第1のスイッチ回路130に入力された場合、クロック信号CLKが高レベルへ遷移すると、第1のスイッチ回路130及びヒューズf1〜fnを通じた接地経路ができるために第1のノードND21は低レベルとなり、これが、導通した転送回路150を通じて出力ノードND25へ伝えられる。その結果、迅速に冗長アドレシング信号REDnが低レベルへ遷移することになる。したがって、当該冗長セルのワードラインあるいはビットラインの駆動は抑止される。
【図面の簡単な説明】
【図1】従来のダイナミック型ヒューズ回路を示した回路図。
【図2】図1の回路における信号波形図。
【図3】従来のスタティック型ヒューズ回路を示した回路図。
【図4】図3の回路における信号波形図。
【図5】本発明によるヒューズ回路の第1実施形態を示した回路図。
【図6】図5の回路における信号波形図。
【図7】 本発明によるヒューズ回路の第2実施形態を示した回路図。
【符号の説明】
10,120 プリチャージ回路
20,130 第1のスイッチ回路
30,140 第2のスイッチ回路
40,150 転送回路
50,160 ラッチ回路
60,170 出力駆動回路
100 マスター制御回路
110 第3のスイッチ回路
180 第4のスイッチ回路(初期化回路)
f1〜fn スレイブヒューズ
fm マスターヒューズ

Claims (20)

  1. 不良セルに代わる冗長セルを駆動するための冗長アドレシング信号を出力する半導体メモリ装置の冗長用ヒューズ回路において、
    冗長アドレシング信号の論理状態を決定する第1のノードと、この第1のノードと第2のノードとの間に並列に設けられた複数のヒューズと、これらヒューズに直列接続され、アドレス信号に応じてオンオフする第1のスイッチ回路と、アドレス入力に関した制御信号が第1状態の時に前記第1のノードをプリチャージするプリチャージ回路と、前記制御信号が第2状態の時に前記第2のノードからの電流路を形成する第2のスイッチ回路と、冗長アドレシング信号を発生するために、前記制御信号が前記第2状態の時に前記第1のノードの論理状態を出力端へ伝達する導通状態になり、前記制御信号が前記第1状態の時に非導通状態になる転送回路と、を備えることを特徴とする冗長用ヒューズ回路。
  2. 転送回路の伝達出力をラッチするラッチ回路をさらに備える請求項1記載の冗長用ヒューズ回路。
  3. 第1のスイッチ回路は、それぞれヒューズと直列接続され、各ゲート電極にそれぞれアドレス信号を受けるMOSトランジスタで構成される請求項1又は請求項2記載の冗長用ヒューズ回路。
  4. 第2のスイッチ回路は、第2のノードと接地との間に設けられ、ゲート電極に制御信号を受けるMOSトランジスタで構成される請求項1〜3のいずれか1項に記載の冗長用ヒューズ回路。
  5. 転送回路は、制御信号により制御されるCMOS伝達ゲートで構成される請求項1〜4のいずれか1項に記載の冗長用ヒューズ回路。
  6. 不良セルを指定するアドレスにおける高レベルとなるアドレス信号に対応するヒューズを切断する請求項1〜5のいずれか1項に記載の冗長用ヒューズ回路。
  7. 制御信号が同期クロックである請求項1〜6のいずれか1項に記載の冗長用ヒューズ回路。
  8. 不良セルに代わる冗長セルを駆動するための冗長アドレシング信号を出力する半導体メモリ装置の冗長用ヒューズ回路において、
    冗長アドレシング信号の論理状態を決定する第1のノードと、メモリ動作状態に関した第1の制御信号に応じ、冗長が行われる場合にマスター信号を発生するマスター信号発生回路と、前記マスター信号及びアドレス入力に関した第2の制御信号に従い前記第1のノードをプリチャージするプリチャージ回路と、前記第1のノードと第2のノードとの間に並列に設けられた複数のヒューズと、これらヒューズに直列接続され、アドレス信号に応じてオンオフする第1のスイッチ回路と、前記第2の制御信号に従い前記第2のノードからの電流路を形成する第2のスイッチ回路と、前記マスター信号に従い前記第1のノードからの電流路を形成する第3のスイッチ回路と、前記第2の制御信号に従い前記第1のノードの論理状態を出力端へ伝達する転送回路と、を備えることを特徴とする冗長用ヒューズ回路。
  9. 転送回路の伝達出力をラッチするラッチ回路をさらに備える請求項8記載の冗長用ヒューズ回路。
  10. 第1の制御信号に従いラッチ回路の初期化を行う第4のスイッチ回路をさらに備える請求項9記載の冗長用ヒューズ回路。
  11. 第4のスイッチ回路は、ラッチ回路の入力端と接地との間に設けられて第1の制御信号により制御されるMOSトランジスタで構成される請求項10記載の冗長用ヒューズ回路。
  12. マスター信号発生回路は、第1の制御信号に従い相補的にオンオフする第1のMOSトランジスタ及び第2のMOSトランジスタと、これら第1のMOSトランジスタと第2のMOSトランジスタとの間に直列接続されたマスターヒューズと、前記第2のMOSトランジスタと並列に設けられ、前記マスターヒューズが切断されたときにマスター信号を一定論理に固定する第3のMOSトランジスタと、を有してなる請求項8〜11のいずれか1項に記載の冗長用ヒューズ回路。
  13. プリチャージ回路は、マスター信号により制御されプリチャージ電圧を供給する第1のMOSトランジスタと、この第1のMOSトランジスタに直列接続され、第2の制御信号により制御されて第1のノードへプリチャージ電圧を提供する第2のMOSトランジスタと、を有してなる請求項8〜12のいずれか1項に記載の冗長用ヒューズ回路。
  14. プリチャージ回路は、第2のMOSトランジスタに並列接続され、第1のノードの反転論理で制御される第3のMOSトランジスタをさらに有する請求項13記載の冗長用ヒューズ回路。
  15. 第1のスイッチ回路は、それぞれヒューズと直列接続され、アドレス信号によりそれぞれ制御されるMOSトランジスタで構成される請求項8〜14のいずれか1項に記載の冗長用ヒューズ回路。
  16. 第2のスイッチ回路は、第2のノードと接地との間に設けられ、第2の制御信号により制御されるMOSトランジスタで構成される請求項8〜15のいずれか1項に記載の冗長用ヒューズ回路。
  17. 第3のスイッチ回路は、第1のノードと接地との間に設けられ、マスター信号により制御されるMOSトランジスタで構成される請求項8〜16のいずれか1項に記載の冗長用ヒューズ回路。
  18. 転送回路は、第2の制御信号により制御されるCMOS伝達ゲートで構成される請求項8〜17のいずれか1項に記載の冗長用ヒューズ回路。
  19. 不良セルを指定するアドレスにおける高レベルとなるアドレス信号に対応するヒューズを切断する請求項8〜18のいずれか1項に記載の冗長用ヒューズ回路。
  20. 第2の制御信号が同期クロックである請求項8〜19のいずれか1項に記載の冗長用ヒューズ回路。
JP33595996A 1995-12-18 1996-12-16 半導体メモリ装置の冗長用ヒューズ回路 Expired - Fee Related JP3695614B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1019950051503A KR0173946B1 (ko) 1995-12-18 1995-12-18 동기형 반도체 메모리 장치의 컬럼 리던던시 회로
KR1995P51503 1995-12-18

Publications (2)

Publication Number Publication Date
JPH09185897A JPH09185897A (ja) 1997-07-15
JP3695614B2 true JP3695614B2 (ja) 2005-09-14

Family

ID=19441104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33595996A Expired - Fee Related JP3695614B2 (ja) 1995-12-18 1996-12-16 半導体メモリ装置の冗長用ヒューズ回路

Country Status (6)

Country Link
US (1) US5862087A (ja)
EP (1) EP0780764B1 (ja)
JP (1) JP3695614B2 (ja)
KR (1) KR0173946B1 (ja)
DE (1) DE69627799T2 (ja)
TW (1) TW308690B (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW446946B (en) * 1999-10-08 2001-07-21 Vanguard Int Semiconduct Corp Redundant decoder with fuse-controlled transistor
US6757852B1 (en) 2000-07-05 2004-06-29 Freescale Semiconductor, Inc. Self resetting high speed redundancy circuit and method thereof
US6636102B1 (en) * 2001-01-31 2003-10-21 National Semiconductor Corporation Polyfuse trim read cell
JP4614775B2 (ja) * 2005-01-14 2011-01-19 パナソニック株式会社 電気ヒューズ回路
KR100648282B1 (ko) * 2005-01-25 2006-11-23 삼성전자주식회사 반도체 메모리 장치의 결함 어드레스 저장 회로
JP4620480B2 (ja) * 2005-02-02 2011-01-26 ルネサスエレクトロニクス株式会社 半導体装置
US7068554B1 (en) * 2005-02-09 2006-06-27 International Business Machines Corporation Apparatus and method for implementing multiple memory redundancy with delay tracking clock
KR100790819B1 (ko) * 2006-07-20 2008-01-02 삼성전자주식회사 반도체 집적 회로 및 그의 제조 방법
JP5082334B2 (ja) 2006-08-18 2012-11-28 富士通セミコンダクター株式会社 電気ヒューズ回路、メモリ装置及び電子部品
KR101009337B1 (ko) * 2008-12-30 2011-01-19 주식회사 하이닉스반도체 반도체 메모리 장치
KR101204665B1 (ko) * 2010-03-31 2012-11-26 에스케이하이닉스 주식회사 퓨즈회로
TWI482165B (zh) * 2011-09-13 2015-04-21 Ind Tech Res Inst 在三維晶片堆疊後可修補記憶體的技術
US9053889B2 (en) * 2013-03-05 2015-06-09 International Business Machines Corporation Electronic fuse cell and array
US9082511B2 (en) 2013-06-07 2015-07-14 Elite Semiconductor Memory Technology Inc. Redundancy evaluation circuit for semiconductor device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6337899A (ja) * 1986-07-30 1988-02-18 Mitsubishi Electric Corp 半導体記憶装置
US4689494A (en) * 1986-09-18 1987-08-25 Advanced Micro Devices, Inc. Redundancy enable/disable circuit
JP2519468B2 (ja) * 1987-08-26 1996-07-31 松下電子工業株式会社 半導体集積回路
JPH02310898A (ja) * 1989-05-25 1990-12-26 Nec Corp メモリ回路
JP2600435B2 (ja) * 1990-05-08 1997-04-16 松下電器産業株式会社 冗長救済回路
KR0131721B1 (ko) * 1994-06-08 1998-04-15 김주용 반도체 소자의 컬럼 리던던시 장치
US5495446A (en) * 1994-09-30 1996-02-27 Sgs-Thomson Microelectronics, Inc. Pre-charged exclusionary wired-connected programmed redundant select
JPH08111098A (ja) * 1994-10-12 1996-04-30 Nec Corp メモリ回路
US5574689A (en) * 1995-07-11 1996-11-12 Micron Technology, Inc. Address comparing for non-precharged redundancy address matching

Also Published As

Publication number Publication date
DE69627799D1 (de) 2003-06-05
US5862087A (en) 1999-01-19
KR0173946B1 (ko) 1999-04-01
TW308690B (ja) 1997-06-21
EP0780764B1 (en) 2003-05-02
EP0780764A3 (en) 1999-04-14
JPH09185897A (ja) 1997-07-15
KR970051355A (ko) 1997-07-29
EP0780764A2 (en) 1997-06-25
DE69627799T2 (de) 2004-03-25

Similar Documents

Publication Publication Date Title
US5602796A (en) Word line driver in a semiconductor memory device
JP2501993B2 (ja) 半導体記憶装置
JP3695614B2 (ja) 半導体メモリ装置の冗長用ヒューズ回路
KR100258975B1 (ko) 반도체 메모리장치
JP2560020B2 (ja) 半導体記憶装置
EP1328944B1 (en) Area efficient method for programming electrical fuses
KR100332331B1 (ko) 다이나믹 감지 증폭기 및 디지탈 데이타 출력 신호 발생 방법
US6762972B2 (en) Synchronous semiconductor memory device and method of processing data thereof
JPS5984397A (ja) Mos論理レベルを規定するバツフア回路
US5959904A (en) Dynamic column redundancy driving circuit for synchronous semiconductor memory device
US4658382A (en) Dynamic memory with improved dummy cell circuitry
JP3800463B2 (ja) 同期型半導体メモリ装置
US6229755B1 (en) Wordline driving apparatus in semiconductor memory devices
US6392956B2 (en) Semiconductor memory that enables high speed operation
US4724422A (en) Redundant decoder
US6314038B1 (en) Semiconductor memory device for reducing parasitic resistance of the I/O lines
US5901098A (en) Ground noise isolation circuit for semiconductor memory device and method thereof
US6252808B1 (en) Semiconductor memory device having improved row redundancy scheme and method for curing defective cell
JP2630274B2 (ja) 半導体記憶装置
US6337580B2 (en) Semiconductor integrated circuit having transistors for cutting-off subthreshold current
US6285606B1 (en) Semiconductor memory device
KR100207532B1 (ko) 반도체 메모리장치의 로우 어드레스 체인회로
KR100316180B1 (ko) 반도체기억소자의x-디코더회로
KR0167679B1 (ko) 듀얼 커런트패스를 구비하는 로우어드레스버퍼
KR100432576B1 (ko) 데이터 출력 버퍼 회로를 갖는 반도체 메모리 장치

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040902

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041112

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20050214

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20050217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050623

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080708

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090708

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100708

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110708

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120708

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130708

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees