JP3687724B2 - 流量計用のヒータ - Google Patents

流量計用のヒータ Download PDF

Info

Publication number
JP3687724B2
JP3687724B2 JP10852399A JP10852399A JP3687724B2 JP 3687724 B2 JP3687724 B2 JP 3687724B2 JP 10852399 A JP10852399 A JP 10852399A JP 10852399 A JP10852399 A JP 10852399A JP 3687724 B2 JP3687724 B2 JP 3687724B2
Authority
JP
Japan
Prior art keywords
heater
wiring
flow
wiring pattern
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10852399A
Other languages
English (en)
Other versions
JP2000298135A (ja
Inventor
剛史 藤原
昌 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp filed Critical Omron Corp
Priority to JP10852399A priority Critical patent/JP3687724B2/ja
Publication of JP2000298135A publication Critical patent/JP2000298135A/ja
Application granted granted Critical
Publication of JP3687724B2 publication Critical patent/JP3687724B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、流量計用のヒータに関するものである。
【0002】
【従来の技術】
熱を使った流量計として現在普及しているものとしては、熱線風速計がある。この熱線風速計は、非常に細い白金線に電流を通電して加熱し、その白金線の周囲に測定対象の流体が流れるようにする。すると、その流体が通過する際に白金線の熱を吸熱し温度低下を招く。この低下率は、流量(流速)が速いほど大きくなる。そして、温度が変化すると抵抗値が変わるため、係る抵抗値の変化から温度の変化量ひいては流量(流速)を検出するようになっている。
【0003】
また、上述の熱線風速計をシリコン等の半導体技術を用いて応用した例として、図1に示すように、凹部1aを備えた半導体基板1の上に絶縁膜2を形成し、その上にヒータとして白金やニッケルの配線パターン3を備え、その配線パターン3上に保護膜4が形成されたものがある。これは、具体的には例えば特開昭62−2438号公報等により開示されている。
【0004】
熱を使った流量計として現在普及している流量計のもう一つの形態としては、3線抵抗線風速計がある。これはヒータの両側(流れに対して上流側と下流側)に熱感知用の測温抵抗体を設置した構成となっている。
【0005】
係る構成の流速センサは、ヒータに電流を流して加熱した状態で、気体の流れの中に置くと、ヒータの上方空間は加熱されて暖かくなっているので、下流側の測温抵抗体はその暖かくなった空気が気体の流れに沿って移動してくるので温度が上昇する。この一対の測温抵抗体の温度の変化の程度に応じて電気抵抗値も変化するので、その変化から空気の流量及びまたは方向を測定するようになっている。
【0006】
そして、この3線抵抗線風速計もシリコン等の半導体技術を用いて応用した例が有る。すなわち、例えば特開昭60−142268号公報に開示された流速センサのように、図2に示すごとく半導体基板5に熱的に絶縁する凹部5aを介して絶縁膜6が形成されており、この絶縁膜6上の表面中央部にヒータ7を設けるとともに、そのヒータ7の両側に熱感知用の測温抵抗体(上流側と下流側)8を設ける。さらにそのヒータ7,測温抵抗体8の保護として基板上面に保護膜9が形成されて構成されている。なお、測定原理は、上記したものと同様である。
【0007】
【発明が解決しようとする課題】
しかしながら、上記した従来の熱線風速計(流量計)では、ヒータの周囲の温度分布が均一にならないという問題があった。すなわち、例えば図1のような熱線風速計においては、一般に図3に示すようにヒータの配線パターン3の中央部を中心とする円弧状の温度分布が生じる。
【0008】
この現象はフーリエの法則を用いて説明することができる。すなわち、フーリエの法則によれば単位面積当たりの伝熱量は次式で表される。
q=−λ・α
λ:熱伝導率
α:温度勾配
右辺に−の符号がついているのは温度勾配に対して逆向きに熱が伝わるためである。上式によれば、配線パターン(ヒータ)3の端部は、その外側の温度は周囲温度と同じなため温度勾配が大きくなるので伝熱量が大きくなる。一方、中央部は端部がある程度熱を持っているので温度勾配が小さくなり熱が逃げにくくなっているのでこのような分布が生じる。そして図3のような温度分布が生じた結果、被測定物である気体や液体との熱的なやり取りが不均一になり、測定誤差を生じる。
【0009】
上述の熱線風速計に対して3線抵抗線風速計では、図4のように有風時と無風時におけるヒータから発生した熱の温度分布の変化を見ているので、ヒータ上部の流体の温度分布が問題となる。
【0010】
例えば図2のような3線抵抗線風速計においても、ヒータ配線に図3と同様な温度分布が生じ、その結果ヒータ上部の流体にも温度分布が生じ測定誤差が生じる。
【0011】
係る問題(ヒータ配線の温度分布が円弧状になる)を解決するため、従来、例えば特開平3−248017号に示すようにヒータ配線上に絶縁膜を介して金属膜を配置したり、特公平8−30709号に示されるようにヒータ配線の長さ方向端部を大きくしたものがある。
【0012】
しかし、前者のものでは別途金属膜を蒸着しなければならず工程数が増加するという新たな問題を生じる。また、後者のものでは、ヒータ配線がセンサチップ上に占める面積が増大し、センサチップの小型化に限界があるという新たな間題を生じる。
【0013】
本発明は、上記した背景に鑑みてなされたもので、その目的とするところは、上記した問題を解決し、ヒータ配線の形状を変えることにより従来に比べてヒータ配線の占有面積を増大させずに、ヒータの温度分布状態の直線性が良好となるような流量計用のヒータを提供することにある。
【0014】
【課題を解決するための手段】
上記した目的を達成するために、本発明に係る流量計用のヒータは、ヒータ配線と、このヒータ配線を支持する基板とを備え、前記ヒータ配線の周囲には空間が存在するようにした流量計用のヒータにおいて、前記ヒータ配線は、前記ヒータ配線の配置方向に対して傾斜方向に伸びる同一長さの配線パターンを所定回数折り返すように接続し、隣接する前記配線パターンのなす線分を流体の流れ方向に対して等しい角度で山および谷を形成するように連続した三角形状に形成され、前記ヒータ配線の配置方向は、前記流体の流れを垂直に横切る方向に形成され、前記隣接する配線パターンで挟まれる三角形の領域内に、三角形状のスリットを設けた。
【0015】
斜め方向に延びる各配線パターンに基づき、その周囲に円弧状の等温曲線の温度分布となる。よって、その傾斜角度や長さなどを調整することにより、各配線パターンの温度分布を重畳することにより、ヒータ配線全体の温度分布の境界が、配線パターンの配置方向に沿ってほぼ平行になり、温度分布の直線性が良好となる。さらに、ヒータ配線を構成する隣接する配線パターンで挟まれる三角形の領域に三角形状のスリット(実施の形態では、「スリット18」に相当)を設けたため、配線パターンの間の熱絶縁が良くなり、より良好な温度分布を得ることができる。
【0027】
【発明の実施の形態】
図5,図6は、本発明の原理・作用を説明するための一形態を示している。本形態では、矩形状のシリコン基板10の上面に凹部11が形成され、その凹部11を覆うようにしてシリコン基板10の上面に絶縁膜12が成膜されている。この絶縁膜12の表面(凹部11に対向する領域)に、ヒータ配線13がパターニングされている。さらに、ヒータ配線13を覆うようにして、絶縁膜12の表面を保護膜14で被覆している。
【0028】
つまり、凹部11を設けたことから、絶縁膜12は、その周囲の4辺でシリコン基板10の外周囲に接合され、ピンと張った状態となる。そして、ヒータ配線13が形成された部分は、凹部11に対向するので、シリコン基板10の表面から離反しており、熱絶縁される。
【0029】
また、保護膜14は、実際には絶縁膜と同様の材質で製造することができ、例えば、SiO2膜等を用いることができる。そして、SiO2膜等は、熱伝導率が低いので、その絶縁膜12,保護膜14を介して熱が伝導するのも抑制される。よって、上記凹部11による熱絶縁の効果と相乗的に作用する。
【0030】
さらに、ヒータ配線13の両端に対応する保護膜14の部分は除去させるとともに、端子電極15が設けられる。そしてこの端子電極15は、その裏面側で前記ヒータ配線13と電気的に導通されており、これにより、その端子電極15を介してヒータ配線13は外部装置と導通される。係る基本構成は、従来のマイクロヒータ(フローセンサ)と同様である。
【0031】
ここで本形態では、ヒータ配線13の両端を凹部11を挟んで対向するシリコン基板10の一対の対辺にそれぞれ設け、ヒータ配線13が凹部11を横断するようにした。このヒータ配線13の配置方向は、測定対象の気体の流れ方向と直交するようにする。
【0032】
さらに、ヒータ配線13は、複数回折り返すようにしている。つまり、図7に示すように、流体の流れ方向(矢印方向:X方向)と平行な第1配線パターン13aと、その第1配線パーターン13aの端部同士を接続し、流体の流れ方向と垂直な方向(Y方向)に伸びる第2配線パターン13bを備えている。そして、第1配線パターン13aの幅を細くして抵抗値を上げ、第2配線パターン13bの幅を太くして抵抗値を下げた構造としている。
【0033】
係る構成をとると、細い部分(第1配線パターン13a)は抵抗値が高いのでよく発熱し、太い部分(第2配線パターン13b)は抵抗値が低いのであまり発熱しない。つまり、流体の流れに対して垂直な部分はあまり発熱しないので、実質的にヒータ配線がないとみなすことができる。また、流体の流れに対して平行な部分は良く発熱するため、当該部分にはヒータ配線が存在するといえる。
【0034】
よって、ヒータ配線13を熱的(実質的な機能の点)に着目してみると、図8に示すように、第1配線パターン13aのみが機能し、流れに対して平行に複数のヒータ配線(第1配線パターン13a)を備えた構造とみなせる。
【0035】
そして、隣接する第1配線パターン13a間に存在する絶縁膜12,保護膜14は、一般に熱伝導率の低いSiO2膜等で構成されているので、各々のヒータ(第1配線パターン13a)はそれぞれ流れ方向に対して垂直方向は熱的にある程度絶縁されているといえる。そのため第1配線パターン13aにおける発熱温度と、絶縁膜12等の熱絶縁性とを加味して第1配線パターン13a間の距離(第2配線パターン13bの長さ)を適度に調整することにより、各々の第1配線パターン13aに基づく流れに対して垂直方向の温度分布を全て等しくすることが可能となる。
【0036】
その結果、ヒータ配線全体では各第1配線パターン13aに基づく温度分布が重畳された状態となり、図9のような温度分布になる。つまり、各第1配線パターン13aに基づく温度分布(等温曲線)L1が重畳されて形成されるヒータ配線全体の温度分布の境界Lが、そのY方向(配置方向)に沿ってほぼ平行になり、温度分布の直線性が良好となる。
【0037】
そして、図3にあるような温度分布に対し、本形態では流れの垂直方向に対する直線性が大幅に良くなっており、測定精度が向上する。つまり等温曲線が垂直方向でほぼ直線/平行となる。
【0038】
また、ヒータ配線13のパターン形状としては、上記したものに限ることはなく、例えば図10に示すように、ヒータ配線の配置方向、つまり測定対象の流体の流れ(矢印で示す方向)と直交する方向に対して角度を持たせて傾斜する複数の配線パターン13′aを連続させ、全体として三角波状にしたヒータ配線13′を構成するようにしてもよい。
【0039】
この場合に、図5,図6に示した本形態と同様に、各配線パターン13′aに基づく温度分布を重畳した状態でヒータ全体として流れに直交する方向(ヒータ配線の配置方向)の温度分布の直線性が良好になるように、その長さ、角度、ヒータ内の絶縁性を適宜設定する。
【0040】
そして、上記した形態並びに変形例は、ヒータ配線13,13′に通電して発熱させた状態で流体中に配置することにより、その温度(抵抗値)の変化から、流体の流量・流速を検出するといったフローセンサ等の流量計として使用することができる。
【0041】
図11は、本発明の好適な一実施の形態の前提となる構成の一形態を示している。本形態は、上述した図5,図6に示す形態を基本とし、ヒータ配線13を構成する第1配線パターン13a間に存在する絶縁膜12,保護膜14の部分に、スリット17を設けている。これにより、隣接する第1配線パターン13a間、つまり、流体の流れの方向と直交する方向の熱絶縁が良好となる。
【0042】
上記の図5,図6に示した形態の作用効果でも説明したように、第1配線パターン13aの距離は、第1配線パターン間材料の熱絶緑性とヒータ発熱温度により決まる。すなわち、ヒータの発熱温度が高かったり、熱絶縁があまり大きくないような材料を使用した場合には、第1配線パターン間距離をかなり大きくしなければならず、その結果、チップサイズが大きくなってしまう。
【0043】
これに対し、本形態では、絶縁膜12,保護膜14にスリット17を設けることにより、熱絶縁性を向上させることができる。よって、第1配線パターン13a間の距離も短くしてチップサイズの小型化を図ることができる。なお、その他の構成並びに作用効果は、上記の図5,図6に示した実施の形態と同様であるので、対応する部材に同一符号を付し、その詳細な説明を省略する。
【0044】
図12は、本発明の好適な一実施の形態を示している。本実施の形態は、上述した前提となるスリットを設ける形態に対し、上述した図5,図6に示した形態の変形例である三角波状のヒータ配線13′を用いたものに適用したものである。すなわち、図12に示すように接続された2本の配線パターン13′aで挟まれる領域に、平面が三角形状のスリット18を設けることにより、熱絶縁性を高めることができる。なお、その他の構成並びに作用効果は、上記した各形態及び変形例と同様であるので、対応する部材に同一符号を付し、その詳細な説明を省略する。
【0045】
図13は、他の形態の要部であるヒータ配線13″を示している。同図に示すように、上記した各形態及び変形例では、ヒータ配線13,13′が直列接続だったものを並列接続するようにしている。
【0046】
すなわち、流体の流れと平行で幅を広くした第1配線パターン13aを複数本平行に配置し、各第1配線パターン13aの両端をそれぞれ接続するようにして流体の流れと直交し幅を狭くした2本の第2配線パターン13bで接続するようにしている。
【0047】
なお、図示省略するが、上記した各形態と同様に、係るヒータ配線13″を、シリコン基板の上に成膜された絶縁膜上にパターン形成し、その上を保護膜で覆うようにしている。
【0048】
係る構成にすると、たとえヒータ配線13″の一箇所以上が断線したとしても、多くの場合は端子電極15,15間を電流が流れることができ、ヒータとしての機能を失わないので信頼性が向上するという効果が発揮する。なお、その他の構成並びに作用効果は、上記した各形態及び変形例と同様であるので、その詳細な説明を省略する。
【0049】
図14,図15は、別の形態を示している。本形態では、上記した各形態と相違して、3線抵抗線流量センサに本発明のヒータを用いた例を示している。
【0050】
同図に示すように、まず係る流量センサの構成を説明すると、シリコン基板10の上面には凹部11を設け、その凹部11を覆うように絶縁膜12をシリコン基板10の上面に形成する。そして、絶縁膜12の表面の凹部11に対向する領域のうち、中央部分を横断するようにしてヒータ配線13をパターニングして形成する。この点は、図5,図6に示した形態と同様である。つまり、流れと平行な方向に伸びる幅を細くした第1配線パターン13aと、それと直交する幅の太い第2配線パターン13bを備えたパターン形状となっている。
【0051】
そして、このヒータ配線13を中心とし、流体の流れ方向の上流側と下流側にそれぞれ上流側測温抵抗体19と、下流側測温抵抗体20をそれぞれ配置する。これら両測温抵抗体19,20も、凹部11の上方に配置する。
【0052】
さらに、両測温抵抗体19,20は、複数回折り返され、その両端部は、凹部11の非形成部分であるシリコン基板10の外周囲のうち、同一辺側に位置している。そして、係る両端部には端子電極22,23が形成され、外部装置と導通されるようになっている。なお、ヒータ配線13の両側にそれぞれ上流側,下流側測温抵抗体19,20を設ける構成並びに各測温抵抗体19,20の構造等は、従来と同様であるので、詳細な説明を省略する。
【0053】
ここで、本形態では、ヒータ配線13の折り返し部分、つまり、第2配線パターン13bの外側近傍にスリット25を設け、絶縁膜12,保護膜14を上下に貫通させるようにした。このスリット25は、帯状で第2配線パターン13bと平行になるように形成している。
【0054】
係る構成にすると、ヒータ配線13を所定パターン形状にしたことから、温度分布が均一になるのは、上記した各形態の通りである。そして、本形態のように3線抵抗線流量センサの場合、その測定原理は図3に示したように有風時における気体の温度分布の偏りをヒータに対して上流と下流の測温抵抗体で測定することになる。したがって、ヒータ配線13に通電することにより発生した熱が、絶縁膜12,保護膜14を介して測温抵抗体に伝わるのを抑制するほど、純粋に気体の流れに基づく温度変化を検出できるので精度良く流量・流速を測定することができる。
【0055】
そして、折り返しの部分(第2配線パターン13b)は、上流側,下流側測温抵抗体19,20との距離が一番近いので、その間にスリット25を設けることにより、熱絶縁性を高め、ヒータ配線13により発生した熱が絶縁膜12,保護膜14を介して測温抵抗体に伝わるのを可及的に抑制する。よって、高精度な測定が可能となる。なお、その他の構成並びに作用効果は、上記した各形態と同様であるので、その詳細な説明を省略する。なおまた、上記した形態では測温体に抵抗線を用いているが、これはサーモパイルやダイオードを用いることももちろんできる。
【0056】
また、スリット25を設ける図14に示す形態においても、上記した図5,図6に示した形態の変形例である三角波状のヒータ配線13′を用いたものにも適用できる。すなわち、図16,図17に示すように、図14に示した形態におけるヒータ線13に替えて、ヒータ配線13′を設ける。そして、そのヒータ配線13′の折り返し部分、つまり、接続された2本の配線パターン13′aの頂点の外側に、スリット25を設け、上記頂点側から絶縁膜12等を介して両測温抵抗体19,20側に熱伝達するのを抑制する。なお、その他の構成並びに作用効果は、上記した各形態及び変形例と同様であるので、対応する部材に同一符号を付し、その詳細な説明を省略する。
【0057】
さらには、図示省略するが、図13に示す形態のヒータ配線13″に対しても、この図14に示した形態のように、第1配線パターン間にスリットを設けることができるのはもちろんである。
【0058】
図18は、さらに別の形態を示している。本形態では、上記した図14に示した形態に、図11に示した形態におけるヒータの特徴、つまり、第1配線パターン13a間にスリット17を設けた構成を組み合わせたものである。このようにすると、それぞれの形態の効果が相乗的に機能し、熱絶縁性を高め、高精度な測定を可能にするとともに、チップサイズも小型化できる。
【0059】
なお、その他の構成並びに作用効果は、上記した各形態及び変形例と同様であるので、対応する部材に同一符号を付し、その詳細な説明を省略する。もちろん、図19に示す変形例のように、三角波状の斜めヒータ配線13′においても、図18に示す形態と同様の特徴を適用することができる。
【0060】
さらには、図示省略するが、図13に示す形態のヒータ配線13″に対しても、この図18に示す形態のように、所定位置にスリットを設けることができるのはもちろんである。
【0061】
図20はヒータ配線のさらに別のパターンを示している。この例では、幅が細く発熱量の多い第1配線パターン26aと幅が太く発熱量が小さい第2配線パターン26bを有し、それらを交互に直線状に接続する。そして流れ方向に対して直交方向に延びるようにしている。この場合、熱的には図21(a)に示すように細い第1配線パターン26aが断続的に1列に並んだ形状となり、同図(b)に示すようにパターン間隔等を適宜に設定すると、ヒータ配線全体の温度分布Lの直線性が得られる。そして、このヒータ配線も上記した各形態及び変形例のヒータ配線に変えて実現できる。
【0062】
なお、上記した各形態並びに変形例では、いずれもシリコン等の半導体技術を用いたマイクロヒータ,流量センサに適用した例を示したが、本発明はこれに限ることはなく、半導体技術を用いないヒータ・流量センサにおいても同様な構成を採ることができる。
【0063】
【発明の効果】
以上のように、本発明に係る流量計用のヒータでは、ヒータ配線の形状を変えることにより従来に比べてヒータ配線の占有面積を増大させずに、ヒータの温度分布状態の直線性が良好になる(従来のように、温度分布が円弧状にならない)。よって、流量計に用いることで、測定精度を向上させることができる。さらに、スリットを設けることにより、ヒータ間の熱絶縁が良くなり、より良好な温度分布を得ることができる。
【図面の簡単な説明】
【図1】 (a)は、従来例を示す平面図である。
(b)は、図(a)におけるa−a線矢視断面図である。
【図2】 (a)は、3線抵抗線風速計(流量計)の従来例を示す平面図である。
(b)は、図(a)におけるb−b線矢視断面図である。
【図3】 問題点を説明する図である。
【図4】 3線抵抗線風速計の動作原理を説明する図である。
【図5】 本発明の原理・作用を説明するための一形態を示す平面図である。
【図6】 図5におけるc−c線矢視断面図である。
【図7】 形態の要部を示す図である。
【図8】 実施の形態の動作原理を説明する図である。
【図9】 実施の形態の動作原理を説明する図である。
【図10】 実施の形態の変形例の要部を示す図である。
【図11】 本発明の好適な一実施の形態の前提となる構成の一形態を示す平面図である。
【図12】 本発明の好適な一実施の形態を示す平面図である。
【図13】 他の形態の要部を示す図である。
【図14】 別の形態を示す平面図である。
【図15】 図14におけるd−d線矢視断面図である。
【図16】 図14に示す形態の変形例を示す平面図である。
【図17】 図15におけるe−e線矢視断面図である。
【図18】 さらに別の形態を示す平面図である。
【図19】 その変形例を示す平面図である。
【図20】 他の例を示す図である。
【図21】 図20の動作原理を示す図である。
【符号の説明】
10 シリコン基板
11 凹部
12 絶縁膜
13,13′,13″ ヒータ配線
13a 第1配線パターン
13b 第2配線パターン
13′a 配線パターン
14 保護膜
15 端子電極
17 スリット
18 スリット
19 上流側測温抵抗体
20 下流側測温抵抗体
22,23 端子電極
25 スリット
26 ヒータ配線
26a 第1配線パターン
26b 第2配線パターン

Claims (1)

  1. ヒータ配線と、このヒータ配線を支持する基板とを備え、前記ヒータ配線の周囲には空間が存在するようにした流量計用のヒータにおいて、
    前記ヒータ配線は、前記ヒータ配線の配置方向に対して傾斜方向に伸びる同一長さの配線パターンを所定回数折り返すように接続し、隣接する前記配線パターンのなす線分を流体の流れ方向に対して等しい角度で山および谷を形成するように連続した三角形状に形成され、
    前記ヒータ配線の配置方向は、前記流体の流れを垂直に横切る方向に形成され、
    前記隣接する配線パターンで挟まれる三角形の領域内に、三角形状のスリットを設けたことを特徴とする流量計用のヒータ。
JP10852399A 1999-04-15 1999-04-15 流量計用のヒータ Expired - Lifetime JP3687724B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10852399A JP3687724B2 (ja) 1999-04-15 1999-04-15 流量計用のヒータ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10852399A JP3687724B2 (ja) 1999-04-15 1999-04-15 流量計用のヒータ

Publications (2)

Publication Number Publication Date
JP2000298135A JP2000298135A (ja) 2000-10-24
JP3687724B2 true JP3687724B2 (ja) 2005-08-24

Family

ID=14486972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10852399A Expired - Lifetime JP3687724B2 (ja) 1999-04-15 1999-04-15 流量計用のヒータ

Country Status (1)

Country Link
JP (1) JP3687724B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020143903A (ja) * 2019-03-04 2020-09-10 ミネベアミツミ株式会社 流体センサ

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003035580A (ja) * 2001-07-19 2003-02-07 Denso Corp フローセンサ
JP5109777B2 (ja) * 2002-12-13 2012-12-26 株式会社デンソー フローセンサ
NL1025617C2 (nl) * 2003-05-13 2004-11-18 Berkin Bv Massadebietmeter.
JP2004361271A (ja) * 2003-06-05 2004-12-24 Hitachi Ltd 熱式空気流量計
JP5145990B2 (ja) * 2008-02-07 2013-02-20 株式会社デンソー 空気流量センサ
WO2015008324A1 (ja) * 2013-07-16 2015-01-22 株式会社日立製作所 流量センサおよびそれを用いた真空吸着装置およびチップマウンタ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020143903A (ja) * 2019-03-04 2020-09-10 ミネベアミツミ株式会社 流体センサ
JP7235218B2 (ja) 2019-03-04 2023-03-08 ミネベアミツミ株式会社 流体センサ

Also Published As

Publication number Publication date
JP2000298135A (ja) 2000-10-24

Similar Documents

Publication Publication Date Title
JP3364115B2 (ja) 感熱式流量検出素子
JP5315304B2 (ja) 熱式流量計
JP6669957B2 (ja) 流量センサ
JPS62211513A (ja) 質量媒体流を測定するための測定ゾンデ
JP3687724B2 (ja) 流量計用のヒータ
JP4271888B2 (ja) 流速検出器
JP3460749B2 (ja) 検出装置
JP3706358B2 (ja) 気体流量・温度測定素子
JP3193872B2 (ja) 熱式空気流量計
JP4798961B2 (ja) ヒータデバイス及びこれを用いた気体センサ装置
JP3589083B2 (ja) 感熱式フロ−センサ
JP2000283813A (ja) 感熱式フロ−センサ
US6250150B1 (en) Sensor employing heating element with low density at the center and high density at the end thereof
JP2562076B2 (ja) 流速センサ
JP2001153707A (ja) フローセンサ
JP2007101561A (ja) 流速検出器
JP2000275078A (ja) 薄膜ヒータ
JP2020064071A (ja) 流量センサ
JP4258084B2 (ja) フローセンサおよびその製造方法
JP3316740B2 (ja) 流量検出素子
JP4258080B2 (ja) フローセンサ
JPH0612493Y2 (ja) マイクロブリッジフローセンサ
JPH0812097B2 (ja) 流速センサ
JP2550435B2 (ja) 流速センサ
JP2002286519A (ja) 熱式流速センサ

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050518

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050531

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080617

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090617

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090617

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100617

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100617

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110617

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110617

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120617

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130617

Year of fee payment: 8

EXPY Cancellation because of completion of term