JP3687000B2 - Functional film and method for producing the functional film - Google Patents

Functional film and method for producing the functional film Download PDF

Info

Publication number
JP3687000B2
JP3687000B2 JP2001336241A JP2001336241A JP3687000B2 JP 3687000 B2 JP3687000 B2 JP 3687000B2 JP 2001336241 A JP2001336241 A JP 2001336241A JP 2001336241 A JP2001336241 A JP 2001336241A JP 3687000 B2 JP3687000 B2 JP 3687000B2
Authority
JP
Japan
Prior art keywords
polymer
functional
detaching
pores
filling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001336241A
Other languages
Japanese (ja)
Other versions
JP2003138056A (en
Inventor
哲夫 筒井
和宏 隅岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu TLO Co Ltd
Original Assignee
Kyushu TLO Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu TLO Co Ltd filed Critical Kyushu TLO Co Ltd
Priority to JP2001336241A priority Critical patent/JP3687000B2/en
Publication of JP2003138056A publication Critical patent/JP2003138056A/en
Application granted granted Critical
Publication of JP3687000B2 publication Critical patent/JP3687000B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、センサー機能、分離機能、化学反応触媒機能等の各機能を有し、化学センサー、バイオセンサー、分離膜、ミクロ環境化学反応触媒膜等として用いられる機能性膜及び該機能性膜の製造方法に関する。
【0002】
【従来の技術】
従来より、ポリマーフィルムを延伸させた多孔質膜、ポリマーブレンドフィルムを部分溶解して作製した多孔質膜、円筒状の細孔を機械的に形成した膜をそれぞれ担体とした機能性膜が知られている。また、特異な分子認識能を持たせた機能性膜としては、シクロデキストリンやカリックスアレンを用いた膜(「分子認識化学」築部 浩 45-64頁 三共出版)、ゲルクロマトグラフィーとして用いられるシリカゲルやセファデックス(「分析化学」Pecsok et.al 62-88頁 東京化学同人、「入門機器分析化学」庄野利之 186-212頁 三共出版、「ペプチド合成の基礎と実験」泉屋信夫 143-193頁 丸善)等がある。
【0003】
しかしながら、上記の機能性膜の細孔径は、機能性膜の作製法に依存し、以下の課題を有していた。
ポリマーフィルムを延伸させた多孔質膜を担体とした機能性膜は、その細孔径がランダムな連続孔を有し、その連続孔の連結にも規則性がなく、均一な細孔径を有さず且つその細孔が規則的に連結されていないため、機能性物質を設計通りに担持させることができないだけでなく、分離膜、センサー、ミクロ化学反応容器等として利用すると精度に欠け不向きであるという問題点を有していた。
細孔径のそろった円筒状の細孔を有する機能性膜は、対象となる分子や微粒子のサイズ及びその形状に対応した細孔径を人工的に形成しなければならず、技術的に極めて困難であるとともに、細孔径や細孔形状の特異性から化学修飾し難いという問題点を有していた。
分子認識能を有する分子膜として用いるシクロデキストリンやカリックアレンは、van der waals力や、疎水相互作用を利用して分離能やセンシング機能を付与するものであるが、これらに機能分子を分子修飾等することは困難であり、汎用性に乏しいという問題点を有していた。
ゲルクロマトグラフィーを用いた分離方法は、セファデックスへの浸透圧の違いや、シリカゲルでの吸着速度の違いにより物質を分離することが可能であるが、その分離能はゲル内部の細孔のばらつき等に起因し、分離能が変化するばかりか、分離の際、多量の溶媒が必要であり経済性に欠けるという問題点を有していた。
【0004】
【発明が解決しようとする課題】
本発明の課題は、予め精密に設計できる細孔径を有する連続した細孔の表面を機能分子で分子修飾し、もしくは化学修飾することにより、官能基間での吸着、脱離による分子認識、または分子形状による分子認識が起こり、分離、センシング、ミクロ環境化学反応触媒等の機能を発現できる機能性膜を精密且つ簡易に作製できる機能性膜の製造方法を提供すること、および分離機能、センサー機能、ミクロ化学反応触媒の機能等が厳密に制御可能であり、分離膜としての性能が画期的に向上し、またセンサーやミクロ環境反応触媒としての吸着能の選択性や化学反応の特異性を発現できる汎用性に優れる機能性膜を提供することにある。
【0005】
【課題を解決するための手段】
本発明者らは、上記課題を解決するため鋭意検討した結果、微小体の粒径を設計するだけで予め精密に細孔径を設計できる連続細孔の表面に、分子認識能を有する機能基を導入することにより、分離、センシング、ミクロ環境化学反応触媒等の機能を発現することを見出し、本発明を完成するに至った。
【0006】
すなわち、本発明は、以下の〔1〕〜〔6〕に記載した事項により特定される。
〔1〕保持基材の上面に、球状の微小体を充填し内部に連続した空隙を有する構造体を形成する構造体形成工程と、該構造体形成工程で得られた構造体の空隙にポリマーを充填するポリマー充填工程と、該ポリマー充填工程後、保持基材及び微小体を脱離する脱離工程と、該脱離工程で微小体を脱離して形成したポリマー多孔体の細孔の表面を化学修飾する化学修飾工程と、を有することを特徴とする機能性膜の製造方法。
【0007】
これにより、均一な細孔径を有し且つ連続細孔が三次元的に形成され、その連続した空隙の内面が機能基で修飾されているため、分離機能、センサー機能、ミクロ化学反応触媒の機能等が厳密に制御可能となり、分離膜、センサー膜、ミクロ環境化学反応膜等として利用できる機能性膜を低コストで製造することができ量産性に優れる。
また、分離膜としての性能が画期的に向上し、また、センサーやミクロ環境反応触媒として利用する場合には、機能基で修飾された微小空隙内面の均質性のため、吸着能の選択性や化学反応の特異性を発現できる。
更に、得られたポリマー多孔体の均一なサイズの微小な空隙の表面を修飾することにより、均一且つ比表面積が大きい機能性膜が得られる。
【0008】
〔2〕保持基材の上面に、球状の微小体を充填し内部に連続した空隙を有する構造体を形成する構造体形成工程と、該構造体形成工程で得られた構造体の空隙にポリマーを充填するポリマー充填工程と、該ポリマー充填工程後、保持基材及び微小体を脱離する脱離工程と、該脱離工程で微小体を脱離して形成したポリマー多孔体の細孔の表面を機能分子で分子修飾する分子修飾工程と、を有することを特徴とする機能性膜の製造方法。
【0009】
これにより、分離機能、センサー機能、ミクロ化学反応触媒の機能等が厳密に制御可能となり、分離膜としての性能が画期的に向上し、またセンサーやミクロ環境反応触媒としての吸着能の選択性や化学反応の特異性を発現できる機能性膜を精密且つ簡易に製造できる。
また、予め精密に設計できる細孔径を有する連続した細孔に、分子認識能を有する機能基を導入することにより、官能基間での吸着、脱離による分子認識、または分子形状による分子認識が起こり、分離、センシング、ミクロ環境化学反応触媒等の機能を有する機能性膜を容易に得ることができる。
更に、微小な細孔表面を機能分子で修飾することにより、均一且つ比表面積が大きい分子修飾した機能性膜が得られるとともに、微小体の粒子径を変化させることにより、機能性膜の細孔径を適宜調節することができ汎用性に優れる。
【0010】
〔3〕機能分子がR−COOH、R−NH、R−OH、R−COX(但し、Rは脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素、シクロデキストリン、クラウンエーテル、カリックスアレン、ペプチド、酵素、発光色素からなる群より選ばれる少なくとも一種であり、Xはハロゲン原子を示す)から選ばれる少なくとも一種であることを特徴とする〔2〕に記載の機能性膜の製造方法。
【0011】
これにより、Rにシクロデキストリン、クラウンエーテル、カリックスアレン、ペプチド、酵素、発光色素等を用いると、これらは機能性を有するため、この部位による分子認識が起こる。
また、分離膜として利用する場合には、分離能が画期的に向上し、またセンサーやミクロ環境反応触媒として利用する場合には、機能基で修飾された微小空隙内面の均質性のため、吸着能の選択性や化学反応の特異性を発現させるという他の方法では実現が困難な課題を解決できる。
【0012】
〔4〕脱離可能な保持基材と、該保持基材の上面に形成した、脱離可能な、球状の微小体を充填し内部に連続した空隙を有する構造体と、該構造体の空隙に充填したポリマーとからなる膜形成材から、保持基材及び微小体を脱離して形成した細孔を有するポリマー多孔体であって、該ポリマー多孔体の細孔の表面を化学修飾したことを特徴とする機能性膜。
【0013】
これにより、均一な細孔径を有し且つ連続細孔が三次元的に形成され、その連続した空隙の内面が機能基で修飾されているため、分離機能、センサー機能、ミクロ化学反応触媒の機能等が厳密に制御可能となり、分離膜、センサー膜、ミクロ環境化学反応膜等として利用できる。
また、分離膜としての性能が画期的に向上し、また、センサーやミクロ環境反応触媒として利用する場合には、機能基で修飾された微小空隙内面の均質性のため、吸着能の選択性や化学反応の特異性を発現できる。
更に、得られたポリマー多孔体の均一なサイズの微小な空隙の表面を修飾することにより、均一且つ比表面積が大きい機能性膜が得られる。
【0014】
〔5〕脱離可能な保持基材と、該保持基材の上面に形成した、脱離可能な、球状の微小体を充填し内部に連続した空隙を有する構造体と、該構造体の空隙に充填したポリマーとからなる膜形成材から、保持基材及び微小体を脱離して形成した細孔を有するポリマー多孔体であって、該ポリマー多孔体の細孔の表面を機能分子で分子修飾したことを特徴とする機能性膜。
【0015】
これにより、分離機能、センサー機能、ミクロ化学反応触媒の機能等が厳密に制御可能となり、分離膜としての性能が画期的に向上し、またセンサーやミクロ環境反応触媒としての吸着能の選択性や化学反応の特異性を発現できる機能性膜を得ることができる。
また、予め精密に設計できる細孔径を有する連続した細孔に、分子認識能を有する機能基を導入することにより、官能基間での吸着、脱離による分子認識、または分子形状による分子認識が起こり、分離、センシング、ミクロ環境化学反応触媒等の機能を有する機能性膜を容易に得ることができる。
更に、微小な細孔表面を機能分子で修飾することにより、均一且つ比表面積が大きい分子修飾した機能性膜が得られるとともに、微小体の粒子径を変化させることにより、機能性膜の細孔径を適宜調節することができ汎用性に優れる。
【0016】
[6]機能分子がR−COOH、R−NH、R−OH、R−COX(但し、Rは脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素、シクロデキストリン、クラウンエーテル、カリックスアレン、ペプチド、酵素、発光色素からなる群より選ばれる少なくとも一種であり、Xはハロゲン原子を示す)から選ばれる少なくとも一種であることを特徴とする[5]に記載の機能性膜。
【0017】
これにより、Rにシクロデキストリン、クラウンエーテル、カリックスアレン、ペプチド、酵素、発光色素等を用いると、これらは機能性を有するため、この部位による分子認識が起こる。
また、分離膜として利用する場合には、分離能が画期的に向上し、またセンサーやミクロ環境反応触媒として利用する場合には、機能基で修飾された微小空隙内面の均質性のため、吸着能の選択性や化学反応の特異性を発現できる。
【0018】
【発明の実施の形態】
以下、本発明を詳細に説明する。
本発明に係る機能性膜は、保持基材の上面に、微小体を充填し内部に連続した空隙を有する構造体を形成し、該構造体の空隙にポリマーを充填して膜形成材を製造した後、保持基材及び微小体を脱離し、形成されたポリマー多孔体の細孔の表面を化学修飾することにより製造できる。
また、本発明に係る機能性膜は、保持基材の上面に、微小体を充填し内部に連続した空隙を有する構造体を形成し、該構造体の空隙にポリマーを充填して膜形成材を製造した後、保持基材及び微小体を脱離し、形成されたポリマー多孔体の細孔の表面を機能分子で分子修飾することにより製造できる。
【0019】
本発明に係る保持基材は、その上面に微小体の周期的な構造体を作製するため、構造体とポリマーを保持できる強度を有するとともに表面平滑度が高く、また構造体の空隙にポリマーを充填した後、保持基材を除去する必要があるため、エッチングが可能であればいずれであってもよい。具体的な保持基材としては、シリカガラス等のガラス、酸化チタン、シリコン等の無機材料、アルミニウム、チタン等の金属、ポリメタクリル酸メチル、ポリカーボネート、ポリスチレン等のポリマー等が挙げられるが、これらに限定されるものではない。特に、保持基材と微小体を同時にしかも容易にエッチングできる、厚さが薄いスライドガラスが好ましい。
保持基材にポリマー基板を用いる場合、保持基材に用いるポリマーの種類は、ポリマー充填工程で充填するポリマーと異なる溶解性を有するポリマーを使用する必要がある。例えば、保持基板としてポリメタクリル酸メチルを用い、ポリマー充填工程でもポリメタクリル酸メチルを使用する場合は、充填するポリマーに架橋剤を入れ硬化する必要がある。
【0020】
保持基材の厚みは100μm〜1mmが好ましい。厚みが100μmより薄くなるにつれ、取り扱いが困難になるという傾向が見られ、厚みが1mmより厚くなるにつれ、エッチング時間が長くなり、エッチング溶剤が多量に必要になり経済性に欠けるという傾向が見られる。
本発明に係る保持基材の表面粗度は、0〜1μm、好ましくは0〜100nmが好ましい。表面租度は、用いられる微小体の粒径以下が望ましいため、微小体の粒径によって適宜変更される。ここで、表面粗度が100nmより大きいと、構造体を十分形成することができるが、規則性の乱れの要因となり、細孔密度の減少をもたらすという傾向がみられる。特に、1μmより大きいとこれらの傾向が著しくなる。
【0021】
本発明に係る構造体を形成する工程において、保持基材上に枠部を立設することも可能であるが、枠部を用いないで保持基材上に微小球の分散溶液を静置するだけでも構造体を形成することができる。
本発明に係る枠部を保持基材上に立設する方法としては、圧着、シリコーングリース等で目止めをする方法、接着剤等で固定化する方法等が用いられるが、枠部を容易に保持基材から取り除くことができる点から、圧着方法が好適に用いられる。ここで、用いられる接着剤の種類は問わない。また、枠部を保持基材から取り除く方法は、圧着については、上から負荷をかけることによって枠部を固定化しているので、負荷を取り除くことにより容易に取り外すことができる。また、シリコーングリース等で目止めをする方法についても、枠部を保持基材から引き離すことにより容易に取り外すことができる。更に、接着剤等で固定化する方法については、加熱したり、あるいは枠部を破壊等して取り除くことができる。
本発明に係る枠部の形状は、円筒状、角柱状等、構造体が形成できればいずれであってもよい。
本発明に係る枠部の材質は、シリコーンゴム、ガラス、ポリエチレン、ポリエチレンテレフタレート、ポリカーボネート、ポリスチレン等が挙げられるが、これらに限定されるものではない。
【0022】
本発明に係る微小体の粒径が揃っていると、細孔径の分布が最小となり、また細孔密度の最大値が得られる。具体的には微小体の粒径は、50nm〜100μm、好ましくは100nm〜20μmである。ここで、粒径が100nmより小さくなるにつれ、微小体の沈降速度が非常に遅くなることによって、微小体が充填し難くなり、細密充填構造を有する周期的な構造体が形成されにくくなる傾向がみられ、粒径が20μmより大きくなるにつれ、微小体の作製が困難になる傾向がみられる。特に、粒径が50nmより小さいか、100μmより大きいと、これらの傾向が著しくなる。
【0023】
本発明に係る微小体の形状は、保持基材上に微小体が多数充填でき内部に空隙を有する構造体が形成できればいずれであってもよい。具体的な形状としては、球状、楕円状、円柱状、中空状、ゴルフボール状等が挙げられるが、特に、球状微小体を用いることによって最密になるため、ポリマー多孔体形成後の細孔径が最も制御され、かつ最大になるとともに、分離機能、センサー機能、ミクロ化学反応触媒機能等の能力に優れる機能性膜を得ることができ好ましい。
【0024】
本発明に係る微小体の材質は、シリカの他、有機、無機溶媒でエッチングが可能であればポリスチレン、ポリメタクリル酸メチル等のポリマー等を用いることができる。特にシリカを用いると、沈降速度が速いため、微小体間の接点を容易に得ることが可能であり、また導入したポリマーと溶解する溶媒が異なるため、選択的にシリカのみをエッチングをすることができるので好ましい。例えば、100nm〜10μmのサイズのシリカ微小球は、容易に最密充填構造を有する周期的な微小球構造体(シリカオパール)を形成する。この微小球構造体には、微小球の隙間に約26%の連続空隙が存在する。この空隙にポリマーを充填すれば、約26%の充填率でポリマーを充填した、シリカとポリマーの複合構造体ができる。この複合体をフッ化水素酸水溶液で処理し、シリカ微小球部分を取り去ると、充填率26%のポリマーと74%の空隙とからなるポリマー多孔体(ポリマー逆オパール)が得られる。このポリマー多孔体の均一なサイズの球状の微小な細孔の表面に機能分子を分子修飾し、あるいは化学修飾することにより細孔表面に機能性を持たせることにより機能性膜が得られる。
【0025】
シリカからなる微小体が多数充填される構造体は、例えば、水中にシリカ微小球を懸濁した溶液から、自然沈降法ないしは遠心力による強制沈降法により調製される。このようにして得られた周期構造を有するシリカ微小球からなる構造体は、水を除去し乾燥させるのが好ましい。乾燥後、構造体は、そのまま用いても、保持基材に用いられるポリマーの種類によっては、温度400〜800℃で焼結してから用いてもよい。尚、保持基板にポリカーボネートを用いる場合は焼結を行なうことができない。ここで、焼結温度が400℃より低くなるにつれ、構造体が固定化できにくくなる傾向がみられ、800℃を超えるにつれ、構造体が変形する傾向がみられる。
【0026】
本発明に係る微小体は、構造体の空隙にポリマーを充填した後、除去する必要があるため、微小体間の接点が必要である。この時、粒子径のそろったシリカ微小球の最密充填構造を用いると、細孔径の分布が最小となり、また細孔密度の最大値が得られる。逆に、粒子径の変化や周期構造の変化により、細孔径や細孔密度の変化が可能となる。
【0027】
本発明に係るポリマーは、保持基板及び微小体に用いるエッチング剤に耐性があり、且つポリマー多孔体からなる規則構造を維持できるだけの強度を有するとともに、細孔表面を機能分子で分子修飾でき、あるいは細孔表面を化学修飾することが可能であり、機能性膜が分離膜として使用される場合には、分離する物質の溶媒に対する耐性があればいずれであってもよい。具体的なポリマーとしては、ポリメタクリル酸メチル、ポリメタクリル酸ヒドキシエチル、ポリスチレン、ポリカーボネート、ポリウレタン、ポリアクリルアミド、ポリアクリル酸ブチル、ポリメタクリル酸、ポリアクリル酸、ポリビニルアルコール、エポキシ樹脂、UV硬化樹脂等が挙げられるが、これらに限定されるものではない。ここで、ポリアクリルアミド、メタクリル酸、アクリル酸、ポリビニルアルコール等は、ポリマー自体が機能性を有する。
【0028】
本発明に係るポリマー充填工程において、ポリマーを構造体内部の空隙に充填する方法は、ポリアクリルアミドの場合は光(ラジカル)重合、熱溶融、ポリアクリル酸ブチルの場合は光(ラジカル)重合、熱溶融、ポリメタクリル酸メチルの場合は光(ラジカル)重合、熱溶融、ポリメタクリル酸ヒドキシエチルの場合は光(ラジカル)重合、熱溶融、ポリスチレンの場合は光(ラジカル)重合、熱溶融、ポリカーボネートの場合は熱溶融、エポキシ樹脂の場合は熱重合、UV硬化樹脂の場合は光重合、ポリウレタンの場合は熱重合等がそれぞれ用いられる。例えば、ポリマーとしてポリメタクリル酸メチルを用いる場合、増粘度剤(ポリメタクリル酸メチル)としての重量分率で25%のポリマー(ポリメタクリル酸メチル)を含むモノマー(メタクリル酸メチル)を導入し、このモノマーを紫外線光源(水銀ランプ)を用いて重合する。また、エポキシ樹脂を用いる場合、硬硬化剤(ポリアミドアミン)を導入し、このポリマーを熱重合により重合する。
【0029】
本発明に係るポリマーを充填する際に用いる増粘剤としては、ポリメタクリル酸メチル、ポリメタクリル酸ヒドキシエチル、ポリスチレン、ポリカーボネート、ポリエステル等が挙げられるが、モノマーに溶解するポリマーであればこれらに限定されるものではない。
本発明に係るポリマーを充填する際に用いる硬化剤(反応開始剤)としては、ter−ブチルヒドロペルオキシド、アゾビスイソブチロニトリル、ジベンゾイルジスルフィド等が挙げられるが、これらに限定されるものではない。
本発明に係るポリマーを充填する際に用いる架橋剤としては、トリエチレングリコールジメタクリレート、ジビニルベンゼン、無水フタル酸、ジエチレントリアミン等が挙げられるが、これらに限定されるものではない。
尚、ポリマーを充填する箇所は構造体の空隙の他、構造体の側面部を包囲する形でポリマーを充填させることができる。
【0030】
保持基材及び微小体を脱離する脱離工程として行うエッチングに用いるエッチング剤としては、シリカガラスの場合はフッ化水素酸、フッ硝酸、酸化チタンの場合は熱濃硫酸、水酸化ナトリウム、シリコンの場合は王水、水酸化アルカリ、アルミニウムの場合は塩酸、希硫酸、硝酸、チタンの場合はフッ化水素酸、ポリメタクリル酸メチルの場合はトルエン、クロロホルム、ポリカーボネートの場合はクロロホルム、アセトン、DMF、ポリスチレンの場合はトルエン、クロロホルム等がそれぞれ用いられる。
本発明に係る膜形成材は、脱離可能な保持基材と、保持基材の上面に形成した、脱離可能な微小体を充填し内部に連続した空隙を有する構造体と、構造体の空隙に充填したポリマーとからなる。
【0031】
本発明に係る化学修飾工程は、機能分子を用いなくても、ポリマー多孔体の細孔の表面部位に機能をもたせることができる工程である。具体的には、多孔質ポリスチレンの細孔表面をテトラクロロエタン中で硫酸と反応させることによりスルホン化する方法等があるが、他にもアミド化、エステル化等の方法が用いられる。また、多孔質ポリブチルアクリレートを水酸化ナトリウム水溶液に浸水させることにより、細孔表面をアルカリ処理する方法等のように、酸処理あるいはアルカリ処理して化学修飾する方法等も用いられるが、これらに限定されるものではない。
【0032】
本発明に係る機能分子をポリマー多孔体の細孔表面に分子修飾する方法としては、具体的には、多孔質ポリアクリルアミドの細孔表面に、機能分子としてのギ酸ブチルを、ジシクロヘキシルカルボジイミドとDMF溶液中でウレタン化する方法、多孔質メタクリル酸の細孔表面に機能分子としてブチルアミンを、反応触媒としてパラトルエンスルホン酸を用い、脱水トルエン溶液中でアミド化する方法、多孔質アクリル酸の細孔表面に機能分子としてプロピルアミンを、反応触媒としてパラトルエンスルホン酸を用い、脱水トルエン溶液中でアミド化する方法、多孔質ポリビニルアルコールの細孔表面に、機能分子として塩化バレロイルを用い、脱水トルエン溶液中でエステル化する方法等が挙げられるが、これらの方法に限定されるものではない。
【0033】
本発明に係る分子修飾工程で用いられる機能分子は、カルボン酸(R−COOH)、アミン(R−NH、RR’NH)、過酸(R−CO(OOH))、チオカルボン酸(R−CSOH)、ジチオカルボン酸(R−CSSH)、スルホン酸(R−SOH)、スルフィン酸(R−SOH)、スルフェン酸(R−SOH)、カルボン酸塩(R−COOM:Mは金属を示す)、酸無水物(R−CO−O−CO−R’)、エステル(R−COOR’)、ハロゲン化物(R−X:Xはハロゲン原子を示す)、酸ハロゲン化物(R−COX:Xはハロゲン原子を示す)、アミド(R−CONH)、ヒドラジド(R−CO−NHNH)、イミド(R−CO−NH−OC−R’)、アミジン(R−CNH(NH))、ニトリル(R−CN)、イソシアン化物(R−NC)、シアン酸エステル(R−OCN)、イソシアン酸エステル(R−NCO)、チオシアン酸エステル(R−SCN)、イソチオシアン酸エステル(R−NCS)、アルデヒド(R−CHO)、チオアルデヒド(R−CHS)、ケトン(R−CO−R’)、チオケトン(R−CS−R’)、アルコール(R−OH)、フェノール(R−OH)、チオール(R−SH)、ヒドロペルオキシド(R−OOH)、イミン(R=NH)、ヒドラジン(R−NHNH)、エーテル(R−OR’)、スルフィド(R−SR’)、ジスルフィド(R−SSR’)、過酸化物(R−OOR’)等が挙げられ、これらの内1種又は2種以上が用いられる。但し、RまたはR’は、脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素、α,β,γ−シクロデキストリン等のシクロデキストリン、クラウンエーテル、カリックスアレン、ペプチド、酵素、発光色素等からなる群より選ばれる少なくとも一種である。尚、R、R’は異なっていても同一でも構わない。ここで、シクロデキストリン、クラウンエーテル、カリックスアレン、ペプチド、酵素、発光色素等については、その種類は問わない。また、これらはそれ自体機能性を有し、その部位による分子認識を利用している。一方、脂肪族炭化水素、脂環式炭化水素や芳香族炭化水素に見られるように機能性を有しないものは、ポリマー多孔体内の表面にアミド(−CONH)、カルボン酸(―COOH)、イミド(−CO−NH−CO−)、酸ハロゲン化物(−COX:Xはハロゲン原子を示す)、ヒドラジド(−CO−NHNH)等の部位を存在させることにより、この部位と分離される分子やセンシングされる分子との相互作用(例えば、水素結合相互作用や静電相互作用)を利用している。尚、これらの機能分子を組み合わせることによって、発色部位やフォトクロミック部位、分子認識部位などを付与することが可能である。
【0034】
脂肪族炭化水素としては、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s−ブチル基、t−ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、ビニル基、1−プロペニル基、アリル基、イソプロペニル基、1−ブテニル基、2−ブテニル基、2−ペンテニル基、エテニル基等が挙げられるが、これらに限定されるものではない。
脂環式炭化水素としては、具体的には、シクロプロピル基、シクロペンチル基、シクロヘキシル基、1−シクロヘキセニル基等が挙げられるが、これらに限定されるものではない。
芳香族炭化水素としては、具体的には、フェニル基、トリル基、キシリル基、メシチル基、クメニル基、ベンジル基、フェニルエチル基、α−メチルベンジル基、トリフェニルメチル基、スチリル基、シンナミル基、ビフェニリル基、ナフチル基、アンスリル基、フェナンスリル基等が挙げられるが、これらに限定されるものではない。
【0035】
本発明に係る機能性膜は、分子認識能、センサー機能、分離機能、化学反応触媒機能、光学機能、電子的機能等の各種機能を有し、化学センサー、バイオセンサー、分離膜等を吸着するミクロ環境反応触媒、光学部品、電子部品、ミクロ化学反応容器等として広く用いられる。
本発明のポリマーに、本発明の目的を損なわない範囲において、安定剤、紫外線吸収剤、滑剤、ブルーイング剤、顔料、着色剤、酸化防止剤、帯電防止剤等の添加剤等をブレンドしてもよい。
【0036】
【実施例】
以下、本発明を実施例により詳細に説明するが、本発明はこれらに限定されるものではない。
実施例1
図1は本発明の一実施例におけるポリマー多孔体の製造工程図である。
図1に示すように、保持基板であるカバーガラス(シリカガラス)2上に、枠部である円筒状のシリコーンゴム7を圧着した。このシリコーンゴム7内に、水中に粒径285nmの球状のシリカ製微小体(以下、シリカ微小球という。)3を懸濁させた溶液8を入れ、静置し、自然沈降法によりシリカ微小球3を沈降させ、シリカ微小球3が周期的に多数充填した構造体(以下、シリカ微小球周期構造体という。)4を調製した(図1(1))。その後、水を取り除き乾燥させ、シリコーンゴム7を取り外した(図1(2))。
次いで、上記のシリカ微小球周期構造体内4の空隙に、増粘度剤としての重量分率で20%のポリマー(ポリアクリルアミド)を含むモノマー(アクリルアミド)を導入し、このモノマーを紫外線光源(水銀ランプ)を用いて重合した(図1(3))。これにより、図2に示すような、膜形成材1が形成された。
図2は本発明の一実施例における膜形成材の拡大断面図である。
その後、保持基板およびシリカ微小球をエッチング剤である8%フッ化水素酸水溶液で溶かし、図3及び図4に示すような、ポリマー多孔体である多孔質ポリアクリルアミドを作製した(図1(4))。
図3は本発明の一実施例におけるポリマー多孔体の拡大断面図であり、図4は本発明の一実施例におけるポリマー多孔体の拡大平面図である。
このようにして得られた多孔質ポリアクリルアミドの細孔の表面に、機能分子としてギ酸ブチルを、ジシクロヘキシルカルボジイミドとDMF溶液中で、ウレタン化し、機能性膜を作製した。
【0037】
実施例2
保持基板であるカバーガラス(シリカガラス)上に、円筒状のシリコーンゴムを圧着した。このシリコーンゴム内に、水中に粒径285nmのシリカ微小球を懸濁させた溶液を入れ、静置し、自然沈降法によりシリカ微小球を沈降させ、シリカ微小球周期構造体を調製した。その後、水を取り除き乾燥させ、シリコーンゴムを取り外した。
次いで、上記のシリカ微小球周期構造体内の空隙に、増粘度剤としての重量分率で25%のポリマー(ポリメタクリル酸)を含むモノマー(メタクリル酸)を導入し、このモノマーを紫外線光源(水銀ランプ)を用いて重合した。
その後、保持基板およびシリカ微小球を、エッチング剤である8%フッ化水素酸水溶液で溶かし、ポリマー多孔体である多孔質メタクリル酸を作製した。
このようにして得られた多孔質メタクリル酸の細孔の表面に、機能分子としてブチルアミンを、反応触媒としてパラトルエンスルホン酸を用い、脱水トルエン溶液中でアミド化し、機能性膜を作製した。
【0038】
実施例3
水中に粒径285nmのシリカ微小球を懸濁させた溶液の水滴を保持基材であるシリコーン上に静置させ、シリカ微小球周期構造体を調製した。その後、水を取り除き乾燥させた。
次いで、上記のシリカ微小球周期構造体内の空隙に、増粘度剤としての重量分率で25%のポリマー(ポリアクリル酸)を含むモノマー(アクリル酸)を導入し、このモノマーを紫外線光源(水銀ランプ)を用いて重合した。
その後、保持基板をエッチング剤である王水で、シリカ微小球をエッチング剤である8%フッ化水素酸水溶液でそれぞれ溶かし、ポリマー多孔体である多孔質アクリル酸を作製した。
このようにして得られた多孔質アクリル酸の細孔の表面に、機能分子としてプロピルアミンを、反応触媒としてパラトルエンスルホン酸を用い、脱水トルエン溶液中でアミド化し、機能性膜を作製した。
【0039】
実施例4
保持基板であるカバーガラス(シリカガラス)上に、枠部である円筒状のシリコーンゴムを圧着した。このシリコーンゴム内に、水中に粒径285nmのシリカ微小球を懸濁させた溶液を入れ、静置し、自然沈降法によりシリカ微小球を沈降させ、シリカ微小球周期構造体を調製した。その後、水を取り除き乾燥させ、シリコーンゴムを取り外した。
次いで、上記のシリカ微小球周期構造体内の空隙に、真空中で加熱溶融することによってポリビニルアルコールを導入した。
その後、保持基板およびシリカ微小球を、エッチング剤である8%フッ化水素酸水溶液で溶かし、ポリマー多孔体である多孔質ポリビニルアルコールを作製した。
このようにして得られた多孔質ポリビニルアルコールの細孔の表面に、機能分子として塩化バレロイルを用い、脱水トルエン溶液中でエステル化し、機能性膜を作製した。
【0040】
実施例5
水中に粒径552nmのシリカ微小球を懸濁させた溶液から、遠心力による強制沈降法により保持基板としてのカバーガラス(シリカガラス)上にシリカ微小球周期構造体を調製した。得られたシリカ微小球周期構造体を温度400〜600℃で焼結することによって固定化を行った。
次いで、上記のシリカ微小球周期構造体内の空隙に、真空中で加熱溶融することによってポリスチレンを導入した。
その後、保持基板およびシリカ微小球を、エッチング剤である8%フッ化水素酸水溶液で溶かし、ポリマー多孔体である多孔質ポリスチレンを作製した。
このようにして得られた多孔質ポリスチレンの細孔の表面をテトラクロロエタン中で硫酸と反応させることによってスルホン化し、機能性膜を作製した。
【0041】
実施例6
保持基板であるカバーガラス(シリカガラス)上に、円筒状のシリコーンゴムを圧着した。このシリコーンゴム内に、水中に粒径285nmのシリカ微小球を懸濁させた溶液を入れ、静置し、自然沈降法によりシリカ微小球を沈降させ、シリカ微小球周期構造体を調製した。その後、水を取り除き乾燥させ、シリコーンゴムを取り外した。
次いで、上記のシリカ微小球周期構造体内の空隙に、増粘度剤としての重量分率で25%のポリマー(ポリブチルアクリレート)を含むモノマー(ブチルアクリレート)を導入し、このモノマーを紫外線光源(水銀ランプ)を用いて重合した。
その後、保持基板およびシリカ微小球を、エッチング剤である8%フッ化水素酸水溶液で溶かし、ポリマー多孔体である多孔質ポリブチルアクリレートを作製した。
このようにして得られた多孔質ポリブチルアクリレートを水酸化ナトリウム水溶液に浸水させることによって細孔表面をアルカリ処理し、機能性膜を作製した。
【0042】
評価例1
実施例1〜4はポリマー多孔体の細孔表面を機能分子により分子修飾する方法であり、実施例5は機能分子を用いないで、細孔表面をスルホン化して化学修飾する方法であり、実施例6は機能分子を用いないで、細孔表面をアルカリ処理して化学修飾する方法である。
実施例1〜6で得られた機能性膜について、走査電子顕微鏡(FE−SEM JSM−6340型 JEOL(株)製)で確認した。
その結果、実施例1〜4および実施例6の膜内部の空隙の直径は、シリカ微小球の粒子径285nmと略等しく、また球状の空隙間の細孔は約50nmの細孔径を有していることがわかる。また、実施例5の膜内部の空隙の直径は、シリカ微小球の粒子径552nmと略等しく、また球状の空隙間の細孔は約110nmの細孔径を有していることがわかる。すなわち、実施例1〜6で得られた機能性膜は、用いたポリマーの種類に依存することなく、均一な細孔径および細孔形状を有することがわかる。
また、機能性膜の上面にエタノールを置き、下面側を吸引すると、これらの溶媒が流れることが確認された。その結果、ポリマー多孔体内に連続的な細孔を有することがわかる。
【0043】
【発明の効果】
本発明の機能性膜の製造方法によれば、予め精密に設計できる細孔径を有する連続した細孔表面を機能分子で分子修飾し、もしくは化学修飾することにより、官能基間での吸着、脱離による分子認識、または分子形状による分子認識が起こり、分離、センシング、ミクロ環境化学反応触媒等の機能を発現することが可能な機能性膜を精密且つ簡易に作製できる。すなわち、分離機能、センサー機能、ミクロ化学反応触媒の機能等が厳密に制御可能となり、分離膜としての性能が画期的に向上し、またセンサーやミクロ環境反応触媒としての吸着能の選択性や化学反応の特異性を発現できる機能性膜を容易に得ることができる。更に、微小な細孔表面を機能分子等で修飾することにより、均一且つ比表面積が大きい分子修飾した機能性膜が得られるとともに、微小体の粒子径を変化させることにより、機能性膜の細孔径を適宜調節することができ汎用性に優れる。
【0044】
本発明の機能性膜によれば、均一な細孔径を有し且つ連続細孔が三次元的に形成され、その連続した細孔表面が機能基で修飾されているため、分離機能、センサー機能、ミクロ化学反応触媒の機能等が厳密に制御可能となり、分離膜、センサー膜、ミクロ環境化学反応膜等として利用できる。また、分離膜として利用する場合には、分離能が画期的に向上し、またセンサーやミクロ環境反応触媒として利用する場合には、機能基で修飾された微小空隙内面の均質性のため、吸着能の選択性や化学反応の特異性を発現させるという他の方法では実現が困難な課題を解決できる。機能分子にR−COOH、R−NH、R−OH、R−COXを用い、特にRにシクロデキストリン、クラウンエーテル、カリックスアレン、ペプチド、酵素、発光色素等を用いると、これらは機能性を有するためこの部位による分子認識が起こる。
【図面の簡単な説明】
【図1】本発明の一実施例におけるポリマー多孔体の製造工程図
【図2】本発明の一実施例における膜形成材の拡大断面図
【図3】本発明の一実施例におけるポリマー多孔体の拡大断面図
【図4】本発明の一実施例におけるポリマー多孔体の拡大平面図
【符号の説明】
1 膜形成材
2 カバーガラス
3 シリカ微小球
4 構造体
5 ポリマー
6 ポリマー多孔体
7 シリコーンゴム
8 シリカ微小球分散水溶液
[0001]
BACKGROUND OF THE INVENTION
The present invention has each function such as a sensor function, a separation function, a chemical reaction catalyst function, etc., and a functional membrane used as a chemical sensor, a biosensor, a separation membrane, a microenvironmental chemical reaction catalyst membrane, and the like. It relates to a manufacturing method.
[0002]
[Prior art]
Conventionally, there are known porous membranes obtained by stretching a polymer film, porous membranes prepared by partially dissolving a polymer blend film, and functional membranes each using a membrane in which cylindrical pores are mechanically formed. ing. In addition, functional membranes with unique molecular recognition capabilities include membranes using cyclodextrins and calixarene ("Molecular Recognition Chemistry", Hiroshi Tsukibe, pages 45-64, silica gel used for gel chromatography). Yasephedex ("Analytical Chemistry" Pecsok et.al, pages 62-88 Tokyo Chemical Doujin, "Introductory Instrumental Analytical Chemistry", Shono Toshiyuki 186-212 Sankyo Publishing, "Peptide Synthesis Fundamentals and Experiments" Izumiya Nobuo 143-193 Maruzen ) Etc.
[0003]
However, the pore diameter of the functional membrane described above depends on the method for producing the functional membrane, and has the following problems.
A functional membrane using a porous membrane obtained by stretching a polymer film as a carrier has continuous pores with random pore sizes, and there is no regularity in the connection of the continuous pores, and there is no uniform pore size. In addition, since the pores are not regularly connected, the functional substance cannot be supported as designed, and it is not suitable for use as a separation membrane, sensor, microchemical reaction vessel, etc. Had problems.
A functional membrane having cylindrical pores with uniform pore sizes must be artificially formed with a pore size corresponding to the size and shape of the target molecules and fine particles, which is extremely difficult technically. In addition, there is a problem that chemical modification is difficult due to the specificity of the pore diameter and pore shape.
Cyclodextrins and calic allenes used as molecular membranes with molecular recognition ability give separation ability and sensing function using van der waals force and hydrophobic interaction. It was difficult to do and had the problem of poor versatility.
The separation method using gel chromatography can separate substances by the difference in osmotic pressure to Sephadex and the adsorption rate on silica gel, but the separation ability is the dispersion of pores in the gel. Due to the above, there is a problem that not only the separation ability is changed but also a large amount of solvent is required at the time of separation, which is not economical.
[0004]
[Problems to be solved by the invention]
An object of the present invention is to perform molecular recognition by adsorption or desorption between functional groups by molecularly modifying or chemically modifying the surface of a continuous pore having a pore size that can be designed precisely in advance with a functional molecule, or Provide a method for producing a functional membrane that can accurately and easily produce a functional membrane capable of expressing functions such as separation, sensing, micro-environmental chemical reaction catalyst, and the like, as well as separation function and sensor function. The function of the microchemical reaction catalyst can be strictly controlled, and the performance as a separation membrane has been dramatically improved, and the selectivity of the adsorption ability and the specificity of the chemical reaction as a sensor and microenvironmental reaction catalyst are improved. An object of the present invention is to provide a functional film that can be expressed and has excellent versatility.
[0005]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors have found that a functional group having molecular recognition ability is formed on the surface of continuous pores that can be designed in advance precisely by designing the particle size of the microparticles. By introducing it, it discovered that functions, such as separation, sensing, and a microenvironmental chemical reaction catalyst, were expressed, and it came to complete this invention.
[0006]
That is, this invention is specified by the matter described in the following [1]-[6].
[1] On the upper surface of the holding substrate , Spherical fine A structure forming step of forming a structure having a small body and having continuous voids therein, a polymer filling step of filling a polymer in the voids of the structure obtained in the structure forming step, and the polymer filling step Thereafter, a desorption step of detaching the holding substrate and the microscopic body, and a chemical modification step of chemically modifying the surface of the pores of the polymer porous body formed by detaching the microscopic body in the desorption process. A method for producing a functional film characterized by the above.
[0007]
As a result, continuous pores are formed three-dimensionally with a uniform pore diameter, and the inner surface of the continuous void is modified with a functional group, so that the separation function, sensor function, and microchemical reaction catalyst function Etc. can be strictly controlled, and functional membranes that can be used as separation membranes, sensor membranes, micro-environmental chemical reaction membranes, etc. can be produced at low cost and are excellent in mass productivity.
In addition, the performance as a separation membrane has been dramatically improved, and when used as a sensor or a microenvironment reaction catalyst, the selectivity of the adsorptive capacity is ensured due to the homogeneity of the inner surface of the microvoids modified with functional groups. And the specificity of chemical reaction.
Furthermore, a functional film having a uniform and large specific surface area can be obtained by modifying the surface of a fine void having a uniform size in the obtained polymer porous body.
[0008]
[2] On the upper surface of the holding substrate , Spherical fine A structure forming step of forming a structure having a small body and having continuous voids therein, a polymer filling step of filling a polymer in the voids of the structure obtained in the structure forming step, and the polymer filling step Thereafter, a desorption step of detaching the holding substrate and the microparticles, and a molecular modification step of molecularly modifying the surfaces of the pores of the polymer porous body formed by detaching the microparticles in the desorption step with functional molecules, A method for producing a functional film, comprising:
[0009]
This makes it possible to strictly control the separation function, sensor function, microchemical reaction catalyst function, etc., dramatically improving the performance as a separation membrane, and the selectivity of adsorption capacity as a sensor or microenvironment reaction catalyst. And a functional membrane capable of expressing the specificity of chemical reaction can be manufactured precisely and easily.
In addition, by introducing functional groups with molecular recognition ability into continuous pores with pore sizes that can be designed precisely in advance, molecular recognition by adsorption and desorption between functional groups, or molecular recognition by molecular shape It is possible to easily obtain a functional membrane having functions such as separation, sensing, and microenvironmental chemical reaction catalyst.
Furthermore, by modifying the surface of the fine pores with functional molecules, a functional membrane with a uniform and large specific surface area can be obtained, and the pore size of the functional membrane can be changed by changing the particle size of the microparticles. Can be appropriately adjusted, and is excellent in versatility.
[0010]
[3] Functional molecules are R-COOH, R-NH 2 , R-OH, R-COX (where R is selected from the group consisting of aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons, cyclodextrins, crown ethers, calixarenes, peptides, enzymes, and luminescent dyes) The method for producing a functional film according to [2], wherein the functional film is at least one selected from the group consisting of at least one and X represents a halogen atom.
[0011]
Thus, when cyclodextrin, crown ether, calixarene, peptide, enzyme, luminescent dye, or the like is used for R, since these have functionality, molecular recognition by this site occurs.
In addition, when used as a separation membrane, the separation performance is dramatically improved, and when used as a sensor or a microenvironment reaction catalyst, due to the homogeneity of the inner surface of the microvoids modified with functional groups, It is possible to solve problems that are difficult to achieve by other methods of expressing the selectivity of the adsorption ability and the specificity of the chemical reaction.
[0012]
[4] Removable holding base material and removable type formed on the upper surface of the holding base material Spherical fine A polymer having pores formed by detaching a holding base material and microscopic bodies from a film-forming material comprising a structure filled with small bodies and having continuous voids therein and a polymer filled in the voids of the structure A functional film, which is a porous body, wherein the surface of pores of the polymer porous body is chemically modified.
[0013]
As a result, continuous pores are formed three-dimensionally with a uniform pore diameter, and the inner surface of the continuous void is modified with a functional group, so that the separation function, sensor function, and microchemical reaction catalyst function Can be strictly controlled, and can be used as a separation membrane, a sensor membrane, a microenvironmental chemical reaction membrane, and the like.
In addition, the performance as a separation membrane has been dramatically improved, and when used as a sensor or a microenvironment reaction catalyst, the selectivity of the adsorptive capacity is ensured due to the homogeneity of the inner surface of the microvoids modified with functional groups. And the specificity of chemical reaction.
Furthermore, a functional film having a uniform and large specific surface area can be obtained by modifying the surface of a fine void having a uniform size in the obtained polymer porous body.
[0014]
[5] Detachable holding base material and removable type formed on the upper surface of the holding base material Spherical fine A polymer having pores formed by detaching a holding base material and microscopic bodies from a film-forming material comprising a structure filled with small bodies and having continuous voids therein and a polymer filled in the voids of the structure A functional membrane, which is a porous body, wherein the pore surfaces of the polymer porous body are molecularly modified with functional molecules.
[0015]
This makes it possible to strictly control the separation function, sensor function, microchemical reaction catalyst function, etc., dramatically improving the performance as a separation membrane, and the selectivity of adsorption capacity as a sensor or microenvironment reaction catalyst. And a functional membrane capable of expressing the specificity of the chemical reaction.
In addition, by introducing functional groups with molecular recognition ability into continuous pores with pore sizes that can be designed precisely in advance, molecular recognition by adsorption and desorption between functional groups, or molecular recognition by molecular shape It is possible to easily obtain a functional membrane having functions such as separation, sensing, and microenvironmental chemical reaction catalyst.
Furthermore, by modifying the surface of the fine pores with functional molecules, a functional membrane with a uniform and large specific surface area can be obtained, and the pore size of the functional membrane can be changed by changing the particle size of the microparticles. Can be appropriately adjusted, and is excellent in versatility.
[0016]
[6] The functional molecule is R-COOH, R-NH 2 , R-OH, R-COX (where R is selected from the group consisting of aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons, cyclodextrins, crown ethers, calixarenes, peptides, enzymes, and luminescent dyes) The functional film according to [5], wherein the functional film is at least one selected from the group consisting of at least one and X represents a halogen atom.
[0017]
Thus, when cyclodextrin, crown ether, calixarene, peptide, enzyme, luminescent dye, or the like is used for R, since these have functionality, molecular recognition by this site occurs.
In addition, when used as a separation membrane, the separation performance is dramatically improved, and when used as a sensor or a microenvironment reaction catalyst, due to the homogeneity of the inner surface of the microvoids modified with functional groups, Selectivity of adsorption ability and specificity of chemical reaction can be expressed.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
The functional film according to the present invention forms a structure having fine voids and continuous voids on the upper surface of the holding substrate, and a film forming material is produced by filling the voids of the structure with a polymer. After that, it can be produced by removing the holding substrate and the fine body and chemically modifying the surface of the pores of the formed polymer porous body.
In addition, the functional film according to the present invention is a film-forming material formed by forming a structure having fine voids and continuous voids on the upper surface of the holding substrate, and filling the voids of the structure with a polymer. Can be manufactured by detaching the holding substrate and the fine body and molecularly modifying the surface of the pores of the formed polymer porous body with functional molecules.
[0019]
Since the holding base material according to the present invention produces a periodic structure of microscopic objects on the upper surface, the holding base material has a strength capable of holding the structure and the polymer and has high surface smoothness. Since it is necessary to remove the holding substrate after filling, any material may be used as long as etching is possible. Specific examples of the holding substrate include glass such as silica glass, inorganic materials such as titanium oxide and silicon, metals such as aluminum and titanium, polymers such as polymethyl methacrylate, polycarbonate, and polystyrene. It is not limited. In particular, a thin glass slide that can easily and simultaneously etch the holding substrate and the microscopic object is preferable.
When a polymer substrate is used as the holding substrate, it is necessary to use a polymer having a solubility different from that of the polymer filled in the polymer filling step as the type of polymer used for the holding substrate. For example, when polymethyl methacrylate is used as the holding substrate and polymethyl methacrylate is also used in the polymer filling step, it is necessary to add a crosslinking agent to the polymer to be filled and cure.
[0020]
The thickness of the holding substrate is preferably 100 μm to 1 mm. As the thickness becomes thinner than 100 μm, it tends to be difficult to handle, and as the thickness becomes thicker than 1 mm, the etching time becomes longer, a large amount of etching solvent is required, and there is a tendency to be less economical. .
The surface roughness of the holding substrate according to the present invention is 0 to 1 μm, preferably 0 to 100 nm. Since the surface texture is desirably equal to or smaller than the particle size of the micro object used, it is appropriately changed depending on the particle size of the micro object. Here, when the surface roughness is larger than 100 nm, the structure can be sufficiently formed, but there is a tendency that the regularity is disturbed and the pore density is decreased. In particular, when it is larger than 1 μm, these tendencies become remarkable.
[0021]
In the step of forming the structure according to the present invention, the frame portion can be erected on the holding substrate, but the microsphere dispersion solution is allowed to stand on the holding substrate without using the frame portion. Only a structure can be formed.
As a method of standing the frame portion according to the present invention on the holding substrate, there are used methods such as crimping, sealing with silicone grease, fixing with an adhesive, etc. A crimping method is preferably used because it can be removed from the holding substrate. Here, the kind of adhesive used is not ask | required. Moreover, since the frame part is fixed by applying a load from the top, the method of removing the frame part from the holding substrate can be easily removed by removing the load. Also, the method of sealing with silicone grease or the like can be easily removed by pulling the frame portion away from the holding substrate. Furthermore, the method of fixing with an adhesive or the like can be removed by heating or breaking the frame portion.
The shape of the frame according to the present invention may be any shape as long as the structure can be formed, such as a cylindrical shape or a prismatic shape.
Examples of the material for the frame according to the present invention include, but are not limited to, silicone rubber, glass, polyethylene, polyethylene terephthalate, polycarbonate, and polystyrene.
[0022]
When the particle sizes of the micro bodies according to the present invention are uniform, the distribution of the pore diameter is minimized, and the maximum value of the pore density is obtained. Specifically, the particle size of the micro object is 50 nm to 100 μm, preferably 100 nm to 20 μm. Here, as the particle diameter becomes smaller than 100 nm, the sedimentation rate of the micro bodies becomes very slow, so that the micro bodies are difficult to be filled, and it is difficult to form a periodic structure having a finely packed structure. As can be seen, as the particle size becomes larger than 20 μm, it tends to be difficult to produce microscopic objects. In particular, when the particle size is smaller than 50 nm or larger than 100 μm, these tendencies become remarkable.
[0023]
The shape of the micro body according to the present invention may be any shape as long as a large number of micro bodies can be filled on the holding substrate and a structure having voids inside can be formed. Specific shapes include a spherical shape, an elliptical shape, a cylindrical shape, a hollow shape, and a golf ball shape. , Special In addition, since the finest particles are formed by using the spherical micro-particles, the pore diameter after the formation of the polymer porous body is most controlled and maximized, and the ability of the separation function, sensor function, micro chemical reaction catalyst function, etc. is excellent. A functional film can be obtained, which is preferable.
[0024]
As the material of the microscopic material according to the present invention, in addition to silica, polymers such as polystyrene and polymethyl methacrylate can be used as long as they can be etched with an organic or inorganic solvent. In particular, when silica is used, it is possible to easily obtain a contact point between microscopic objects because the sedimentation speed is high, and because only the silica that is dissolved is different from the introduced polymer, it is possible to selectively etch only silica. It is preferable because it is possible. For example, a silica microsphere having a size of 100 nm to 10 μm easily forms a periodic microsphere structure (silica opal) having a close-packed structure. In this microsphere structure, there are approximately 26% continuous voids in the gaps between the microspheres. If this void is filled with a polymer, a composite structure of silica and polymer filled with the polymer at a filling rate of about 26% can be obtained. When this composite is treated with an aqueous hydrofluoric acid solution and the silica microspheres are removed, a polymer porous body (polymer inverse opal) composed of a polymer with a filling rate of 26% and a void of 74% is obtained. A functional film can be obtained by providing functionalities to the surface of the pores by molecularly modifying or chemically modifying the surface of the fine pores of uniform size of the polymer porous body.
[0025]
A structure filled with a large number of microparticles made of silica is prepared, for example, from a solution in which silica microspheres are suspended in water by a natural sedimentation method or a forced sedimentation method using centrifugal force. The structure composed of silica microspheres having a periodic structure thus obtained is preferably removed after removing water. After drying, the structure may be used as it is or may be used after being sintered at a temperature of 400 to 800 ° C. depending on the type of polymer used for the holding substrate. When polycarbonate is used for the holding substrate, sintering cannot be performed. Here, as the sintering temperature becomes lower than 400 ° C., the structure tends to be difficult to fix, and as the temperature exceeds 800 ° C., the structure tends to be deformed.
[0026]
Since the micro object according to the present invention needs to be removed after filling the voids of the structure with the polymer, a contact between the micro objects is necessary. At this time, if a close-packed structure of silica microspheres having a uniform particle diameter is used, the distribution of pore diameter is minimized and the maximum value of pore density is obtained. Conversely, changes in the particle diameter and the periodic structure can change the pore diameter and the pore density.
[0027]
The polymer according to the present invention is resistant to the etching agent used for the holding substrate and the microscopic body and has a strength sufficient to maintain the regular structure composed of the polymer porous body, and the pore surface can be molecularly modified with a functional molecule, or When the surface of the pore can be chemically modified and the functional membrane is used as a separation membrane, any material may be used as long as it has resistance to the solvent of the substance to be separated. Specific polymers include polymethyl methacrylate, polyhydroxyethyl methacrylate, polystyrene, polycarbonate, polyurethane, polyacrylamide, polybutyl acrylate, polymethacrylic acid, polyacrylic acid, polyvinyl alcohol, epoxy resin, UV curable resin, etc. Although it is mentioned, it is not limited to these. Here, as for polyacrylamide, methacrylic acid, acrylic acid, polyvinyl alcohol, etc., the polymer itself has functionality.
[0028]
In the polymer filling step according to the present invention, the polymer is filled in the voids inside the structure by photo (radical) polymerization, heat melting in the case of polyacrylamide, photo (radical) polymerization, heat in the case of polybutyl acrylate. Melt, photo (radical) polymerization for polymethyl methacrylate, thermal melting, photo (radical) polymerization for poly (hydroxyethyl methacrylate), thermal melting, photo (radical) polymerization, thermal melting, for polycarbonate Is used for heat melting, thermal polymerization in the case of epoxy resin, photopolymerization in the case of UV curable resin, and thermal polymerization in the case of polyurethane. For example, when polymethyl methacrylate is used as a polymer, a monomer (methyl methacrylate) containing 25% polymer (polymethyl methacrylate) in a weight fraction as a thickener (polymethyl methacrylate) is introduced. The monomer is polymerized using an ultraviolet light source (mercury lamp). When an epoxy resin is used, a hard curing agent (polyamidoamine) is introduced and this polymer is polymerized by thermal polymerization.
[0029]
Examples of the thickener used for filling the polymer according to the present invention include polymethyl methacrylate, poly (hydroxyethyl methacrylate), polystyrene, polycarbonate, polyester, and the like. It is not something.
Examples of the curing agent (reaction initiator) used when filling the polymer according to the present invention include ter-butyl hydroperoxide, azobisisobutyronitrile, dibenzoyl disulfide and the like, but are not limited thereto. Absent.
Examples of the crosslinking agent used when filling the polymer according to the present invention include, but are not limited to, triethylene glycol dimethacrylate, divinylbenzene, phthalic anhydride, diethylenetriamine, and the like.
In addition, the polymer filling portion can be filled with the polymer so as to surround the side surface of the structure in addition to the voids of the structure.
[0030]
Etching agent used for etching as a detaching process for detaching the holding substrate and micro-particles is hydrofluoric acid, hydrofluoric acid in the case of silica glass, hot concentrated sulfuric acid, sodium hydroxide, silicon in the case of titanium oxide. Aqua regia, alkali hydroxide, aluminum for hydrochloric acid, dilute sulfuric acid, nitric acid, titanium for hydrofluoric acid, polymethyl methacrylate for toluene, chloroform, polycarbonate for chloroform, acetone, DMF In the case of polystyrene, toluene, chloroform and the like are used.
The film-forming material according to the present invention includes a detachable holding substrate, a structure formed on the upper surface of the holding substrate, filled with a detachable minute body, and having continuous voids therein. It consists of a polymer filled in the voids.
[0031]
The chemical modification step according to the present invention is a step in which a function can be imparted to the surface portion of the pores of the polymer porous body without using a functional molecule. Specifically, there is a method of sulfonation by reacting the pore surface of porous polystyrene with sulfuric acid in tetrachloroethane, but other methods such as amidation and esterification are also used. In addition, a method of chemically modifying the surface of the pores by acid treatment or alkali treatment, such as a method of alkali treatment of the pore surface by immersing porous polybutyl acrylate in a sodium hydroxide aqueous solution, is also used. It is not limited.
[0032]
As a method of molecularly modifying the functional molecule according to the present invention on the pore surface of the porous polymer body, specifically, butyl formate as a functional molecule, dicyclohexylcarbodiimide and DMF solution on the pore surface of the porous polyacrylamide Urethanization method, butylamine as functional molecule on porous methacrylic acid pore surface, paratoluenesulfonic acid as reaction catalyst, amidation in dehydrated toluene solution, porous acrylic acid pore surface In the dehydrated toluene solution, propylamine is used as the functional molecule, paratoluenesulfonic acid is used as the reaction catalyst, amidation in dehydrated toluene solution, valeroyl chloride is used as the functional molecule on the pore surface of porous polyvinyl alcohol. However, it is not limited to these methods. .
[0033]
The functional molecules used in the molecular modification step according to the present invention are carboxylic acid (R—COOH), amine (R—NH). 2 , RR′NH), peracid (R—CO (OOH)), thiocarboxylic acid (R—CSOH), dithiocarboxylic acid (R—CSSH), sulfonic acid (R—SO) 3 H), sulfinic acid (R-SO 2 H), sulfenic acid (R—SOH), carboxylate (R—COOM: M represents a metal), acid anhydride (R—CO—O—CO—R ′), ester (R—COOR ′), Halide (R—X: X represents a halogen atom), acid halide (R—COX: X represents a halogen atom), amide (R—CONH 2 ), Hydrazide (R-CO-NHNH) 2 ), Imide (R—CO—NH—OC—R ′), amidine (R—CNH (NH 2 )), Nitrile (R-CN), isocyanate (R-NC), cyanate ester (R-OCN), isocyanate ester (R-NCO), thiocyanate ester (R-SCN), isothiocyanate ester (R) -NCS), aldehyde (R-CHO), thioaldehyde (R-CHS), ketone (R-CO-R '), thioketone (R-CS-R'), alcohol (R-OH), phenol (R- OH), thiol (R-SH), hydroperoxide (R-OOH), imine (R = NH), hydrazine (R-NHNH) 2 ), Ether (R—OR ′), sulfide (R—SR ′), disulfide (R—SSR ′), peroxide (R—OOR ′), etc., and one or more of these are Used. Where R or R ′ is an aliphatic hydrocarbon, alicyclic hydrocarbon, aromatic hydrocarbon, cyclodextrin such as α, β, γ-cyclodextrin, crown ether, calixarene, peptide, enzyme, luminescent dye, etc. Is at least one selected from the group consisting of R and R ′ may be different or the same. Here, the type of cyclodextrin, crown ether, calixarene, peptide, enzyme, luminescent dye, etc. is not limited. Moreover, these have functionality in themselves and utilize molecular recognition by the site. On the other hand, those having no functionality, as seen in aliphatic hydrocarbons, alicyclic hydrocarbons and aromatic hydrocarbons, may have amides (—CONH) on the surface of the polymer porous body. 2 ), Carboxylic acid (—COOH), imide (—CO—NH—CO—), acid halide (—COX: X represents a halogen atom), hydrazide (—CO—NHNH) 2 ) And the like, the interaction (for example, hydrogen bond interaction and electrostatic interaction) between the separated molecule and the molecule to be sensed is utilized. Incidentally, by combining these functional molecules, it is possible to give a coloring portion, a photochromic portion, a molecular recognition portion, and the like.
[0034]
Specific examples of the aliphatic hydrocarbon include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, s-butyl group, t-butyl group, pentyl group, isopentyl group, neopentyl group, and hexyl. Group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, vinyl group, 1-propenyl group, allyl group, isopropenyl group, 1-butenyl group, 2-butenyl group, 2-pentenyl group, Examples thereof include, but are not limited to, an ethenyl group.
Specific examples of the alicyclic hydrocarbon include, but are not limited to, a cyclopropyl group, a cyclopentyl group, a cyclohexyl group, and a 1-cyclohexenyl group.
Specific examples of the aromatic hydrocarbon include phenyl group, tolyl group, xylyl group, mesityl group, cumenyl group, benzyl group, phenylethyl group, α-methylbenzyl group, triphenylmethyl group, styryl group, cinnamyl group. , Biphenylyl group, naphthyl group, anthryl group, phenanthryl group, and the like, but are not limited thereto.
[0035]
The functional membrane according to the present invention has various functions such as molecular recognition ability, sensor function, separation function, chemical reaction catalytic function, optical function, electronic function, etc., and adsorbs chemical sensors, biosensors, separation membranes, etc. Widely used as a microenvironment reaction catalyst, optical parts, electronic parts, microchemical reaction vessels, etc
The polymer of the present invention is blended with additives such as stabilizers, UV absorbers, lubricants, bluing agents, pigments, colorants, antioxidants, antistatic agents, etc., as long as the object of the present invention is not impaired. Also good.
[0036]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to these.
Example 1
FIG. 1 is a production process diagram of a polymer porous body in one embodiment of the present invention.
As shown in FIG. 1, a cylindrical silicone rubber 7 that is a frame portion is pressure-bonded onto a cover glass (silica glass) 2 that is a holding substrate. A solution 8 in which spherical silica microparticles (hereinafter referred to as silica microspheres) 3 having a particle diameter of 285 nm are suspended in water is placed in the silicone rubber 7 and allowed to stand, and the silica microspheres are subjected to natural precipitation. 3 was settled, and a structure 4 (hereinafter referred to as a silica microsphere periodic structure) 4 in which many silica microspheres 3 were periodically filled was prepared (FIG. 1 (1)). Then, water was removed and dried, and the silicone rubber 7 was removed (FIG. 1 (2)).
Next, a monomer (acrylamide) containing a polymer (polyacrylamide) of 20% by weight as a thickener is introduced into the voids in the silica microsphere periodic structure 4 described above, and this monomer is used as an ultraviolet light source (mercury lamp). ) Was used for polymerization (FIG. 1 (3)). Thereby, the film forming material 1 as shown in FIG. 2 was formed.
FIG. 2 is an enlarged cross-sectional view of a film forming material in one embodiment of the present invention.
Thereafter, the holding substrate and the silica microspheres were dissolved in an 8% aqueous hydrofluoric acid solution as an etchant to produce a porous polyacrylamide as a polymer porous body as shown in FIGS. 3 and 4 (FIG. 1 (4). )).
FIG. 3 is an enlarged cross-sectional view of a porous polymer body in one embodiment of the present invention, and FIG. 4 is an enlarged plan view of the porous polymer body in one embodiment of the present invention.
On the surface of the pores of the porous polyacrylamide thus obtained, butyl formate as a functional molecule was urethanated in a dicyclohexyl carbodiimide and DMF solution to prepare a functional membrane.
[0037]
Example 2
Cylindrical silicone rubber was pressure-bonded onto a cover glass (silica glass) as a holding substrate. A solution in which silica microspheres having a particle size of 285 nm were suspended in water was placed in the silicone rubber, allowed to stand, and silica microspheres were allowed to settle by a natural precipitation method to prepare a silica microsphere periodic structure. Thereafter, water was removed and the silicone rubber was removed.
Next, a monomer (methacrylic acid) containing a polymer (polymethacrylic acid) of 25% by weight as a thickener is introduced into the voids in the above silica microsphere periodic structure, and this monomer is used as an ultraviolet light source (mercury). For the polymerization.
Thereafter, the holding substrate and the silica microspheres were dissolved in an 8% aqueous hydrofluoric acid solution as an etching agent to produce porous methacrylic acid as a polymer porous body.
On the surface of the pores of the porous methacrylic acid thus obtained, a functional membrane was prepared by amidating in a dehydrated toluene solution using butylamine as a functional molecule and paratoluenesulfonic acid as a reaction catalyst.
[0038]
Example 3
Water droplets of a solution in which silica microspheres having a particle size of 285 nm were suspended in water were allowed to stand on silicone as a holding substrate to prepare a silica microsphere periodic structure. Thereafter, the water was removed and dried.
Next, a monomer (acrylic acid) containing a polymer (polyacrylic acid) of 25% by weight as a thickener is introduced into the voids in the above-mentioned silica microsphere periodic structure, and this monomer is used as an ultraviolet light source (mercury). For the polymerization.
Thereafter, the holding substrate was dissolved in aqua regia as an etching agent, and the silica microspheres were dissolved in an 8% aqueous hydrofluoric acid solution as an etching agent, thereby producing porous acrylic acid as a polymer porous body.
On the surface of the pores of the porous acrylic acid thus obtained, a functional membrane was prepared by amidating in a dehydrated toluene solution using propylamine as a functional molecule and paratoluenesulfonic acid as a reaction catalyst.
[0039]
Example 4
A cylindrical silicone rubber as a frame portion was pressure-bonded onto a cover glass (silica glass) as a holding substrate. A solution in which silica microspheres having a particle size of 285 nm were suspended in water was placed in the silicone rubber, allowed to stand, and silica microspheres were allowed to settle by a natural precipitation method to prepare a silica microsphere periodic structure. Thereafter, water was removed and the silicone rubber was removed.
Next, polyvinyl alcohol was introduced into the voids in the above-mentioned silica microsphere periodic structure by heating and melting in vacuum.
Thereafter, the holding substrate and the silica microspheres were dissolved in an 8% aqueous hydrofluoric acid solution as an etching agent to produce porous polyvinyl alcohol as a polymer porous body.
The surface of the pores of the porous polyvinyl alcohol thus obtained was esterified in a dehydrated toluene solution using valeroyl chloride as a functional molecule to prepare a functional membrane.
[0040]
Example 5
From a solution in which silica microspheres having a particle size of 552 nm were suspended in water, a silica microsphere periodic structure was prepared on a cover glass (silica glass) as a holding substrate by forced precipitation using centrifugal force. Immobilization was performed by sintering the obtained silica microsphere periodic structure at a temperature of 400 to 600 ° C.
Next, polystyrene was introduced into the voids in the above-mentioned silica microsphere periodic structure by heating and melting in vacuum.
Thereafter, the holding substrate and the silica microspheres were dissolved in an 8% aqueous hydrofluoric acid solution as an etching agent to produce porous polystyrene as a polymer porous body.
The surface of the pores of the porous polystyrene thus obtained was sulfonated by reacting with sulfuric acid in tetrachloroethane to produce a functional membrane.
[0041]
Example 6
Cylindrical silicone rubber was pressure-bonded onto a cover glass (silica glass) as a holding substrate. A solution in which silica microspheres having a particle size of 285 nm were suspended in water was placed in the silicone rubber, allowed to stand, and silica microspheres were allowed to settle by a natural precipitation method to prepare a silica microsphere periodic structure. Thereafter, water was removed and the silicone rubber was removed.
Next, a monomer (butyl acrylate) containing a polymer (polybutyl acrylate) of 25% by weight as a thickener is introduced into the voids in the above-mentioned silica microsphere periodic structure, and this monomer is used as an ultraviolet light source (mercury). For the polymerization.
Thereafter, the holding substrate and the silica microspheres were dissolved in an 8% aqueous hydrofluoric acid solution as an etching agent to produce porous polybutyl acrylate as a polymer porous body.
The porous polybutyl acrylate thus obtained was immersed in an aqueous sodium hydroxide solution to alkali-treat the pore surface to produce a functional membrane.
[0042]
Evaluation Example 1
Examples 1 to 4 are methods for molecularly modifying the pore surface of a polymer porous body with functional molecules, and Example 5 is a method for chemically modifying the pore surface by sulfonation without using functional molecules. Example 6 is a method of chemically modifying a pore surface by alkali treatment without using a functional molecule.
About the functional film obtained in Examples 1-6, it confirmed with the scanning electron microscope (FE-SEM JSM-6340 type | mold JEOL Co., Ltd. product).
As a result, the diameters of the voids in the membranes of Examples 1 to 4 and Example 6 were approximately equal to the particle diameter of the silica microspheres 285 nm, and the pores between the spherical voids had a pore diameter of about 50 nm. I understand that. Further, it can be seen that the diameter of the void inside the film of Example 5 is substantially equal to the particle diameter of 552 nm of the silica microsphere, and the pores between the spherical voids have a pore diameter of about 110 nm. That is, it can be seen that the functional membranes obtained in Examples 1 to 6 have a uniform pore diameter and pore shape without depending on the type of polymer used.
Moreover, it was confirmed that these solvents would flow when ethanol was placed on the upper surface of the functional film and the lower surface side was sucked. As a result, it can be seen that the polymer porous body has continuous pores.
[0043]
【The invention's effect】
According to the method for producing a functional membrane of the present invention, adsorption or desorption between functional groups is performed by molecularly modifying or chemically modifying a continuous pore surface having a pore size that can be designed in advance with functional molecules. Molecular recognition by separation or molecular recognition by molecular shape occurs, and a functional membrane capable of expressing functions such as separation, sensing, and microenvironmental chemical reaction catalyst can be precisely and easily produced. That is, the separation function, sensor function, microchemical reaction catalyst function, etc. can be strictly controlled, the performance as a separation membrane is dramatically improved, and the selectivity of the adsorptive capacity as a sensor or microenvironment reaction catalyst A functional membrane capable of expressing the specificity of a chemical reaction can be easily obtained. Furthermore, by modifying the surface of fine pores with functional molecules, etc., it is possible to obtain a functional film with a uniform and large specific surface area, and also by changing the particle size of the microparticles, The pore diameter can be adjusted as appropriate, and the versatility is excellent.
[0044]
According to the functional membrane of the present invention, a continuous pore is formed three-dimensionally with a uniform pore diameter, and the continuous pore surface is modified with a functional group. The function of the microchemical reaction catalyst can be strictly controlled and can be used as a separation membrane, a sensor membrane, a microenvironmental chemical reaction membrane, and the like. In addition, when used as a separation membrane, the separation performance is dramatically improved, and when used as a sensor or a microenvironment reaction catalyst, due to the homogeneity of the inner surface of the microvoids modified with functional groups, It is possible to solve problems that are difficult to achieve by other methods of expressing the selectivity of the adsorption ability and the specificity of the chemical reaction. R-COOH, R-NH as functional molecules 2 , R-OH, R-COX, especially when cyclodextrin, crown ether, calixarene, peptide, enzyme, luminescent dye, etc. are used for R, these have functionality, and thus molecular recognition occurs at this site.
[Brief description of the drawings]
FIG. 1 is a process chart for producing a porous polymer body in one embodiment of the present invention.
FIG. 2 is an enlarged sectional view of a film forming material in one embodiment of the present invention.
FIG. 3 is an enlarged cross-sectional view of a porous polymer body in one embodiment of the present invention.
FIG. 4 is an enlarged plan view of a porous polymer body in one embodiment of the present invention.
[Explanation of symbols]
1 Film-forming material
2 Cover glass
3 Silica microspheres
4 Structure
5 Polymer
6 Polymer porous body
7 Silicone rubber
8 Silica microsphere dispersed aqueous solution

Claims (6)

保持基材の上面に、球状の微小体を充填し内部に連続した空隙を有する構造体を形成する構造体形成工程と、該構造体形成工程で得られた構造体の空隙にポリマーを充填するポリマー充填工程と、該ポリマー充填工程後、保持基材及び微小体を脱離する脱離工程と、該脱離工程で微小体を脱離して形成したポリマー多孔体の細孔の表面を化学修飾する化学修飾工程と、を有することを特徴とする機能性膜の製造方法。Filling the upper surface of the supporting substrate, a structure forming step of forming a structure having a void contiguous internally filled with spherical fine bodies of the polymer in the voids of the resulting structure in the structure formation process The polymer filling step, the detaching step of detaching the holding substrate and the micro-body after the polymer filling step, and the surface of the pores of the polymer porous body formed by detaching the micro-body in the detaching step are chemically And a chemical modification step of modifying the functional film. 保持基材の上面に、球状の微小体を充填し内部に連続した空隙を有する構造体を形成する構造体形成工程と、該構造体形成工程で得られた構造体の空隙にポリマーを充填するポリマー充填工程と、該ポリマー充填工程後、保持基材及び微小体を脱離する脱離工程と、該脱離工程で微小体を脱離して形成したポリマー多孔体の細孔の表面を機能分子で分子修飾する分子修飾工程と、を有することを特徴とする機能性膜の製造方法。Filling the upper surface of the supporting substrate, a structure forming step of forming a structure having a void contiguous internally filled with spherical fine bodies of the polymer in the voids of the resulting structure in the structure formation process A polymer filling step, a detaching step for detaching the holding base material and the minute body after the polymer filling step, and a pore surface of the polymer porous body formed by detaching the minute body in the detaching step And a molecular modification step of performing molecular modification with a molecule. 機能分子がR−COOH、R−NH、R−OH、R−COX(但し、Rは脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素、シクロデキストリン、クラウンエーテル、カリックスアレン、ペプチド、酵素、発光色素からなる群より選ばれる少なくとも一種であり、Xはハロゲン原子を示す)から選ばれる少なくとも一種であることを特徴とする請求項2に記載の機能性膜の製造方法。Function molecule R-COOH, R-NH 2 , R-OH, R-COX ( where, R is an aliphatic hydrocarbon, alicyclic hydrocarbon, aromatic hydrocarbon, cyclodextrins, crown ethers, calixarenes, peptides 3. The method for producing a functional film according to claim 2, wherein the functional film is at least one selected from the group consisting of an enzyme and a luminescent dye, and X represents a halogen atom. 脱離可能な保持基材と、該保持基材の上面に形成した、脱離可能な、球状の微小体を充填し内部に連続した空隙を有する構造体と、該構造体の空隙に充填したポリマーとからなる膜形成材から、保持基材及び微小体を脱離して形成した細孔を有するポリマー多孔体であって、該ポリマー多孔体の細孔の表面を化学修飾したことを特徴とする機能性膜。And removable supporting substrate, formed on the upper surface of the supporting substrate, removable, and structures having pores continuing in the inside filled with spherical fine corpuscles, filling the gap of the structure A polymer porous body having pores formed by detaching a holding substrate and micro-particles from a film-forming material made of a polymer, wherein the surface of the pores of the polymer porous body is chemically modified Functional membrane to do. 脱離可能な保持基材と、該保持基材の上面に形成した、脱離可能な、球状の微小体を充填し内部に連続した空隙を有する構造体と、該構造体の空隙に充填したポリマーとからなる膜形成材から、保持基材及び微小体を脱離して形成した細孔を有するポリマー多孔体であって、該ポリマー多孔体の細孔の表面を機能分子で分子修飾したことを特徴とする機能性膜。And removable supporting substrate, formed on the upper surface of the supporting substrate, removable, and structures having pores continuing in the inside filled with spherical fine corpuscles, filling the gap of the structure A porous polymer body having pores formed by detaching the holding substrate and micro-particles from the film-forming material comprising the polymer, and the surface of the pores of the porous polymer body has been molecularly modified with functional molecules A functional membrane characterized by 機能分子がR−COOH、R−NH、R−OH、R−COX(但し、Rは脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素、シクロデキストリン、クラウンエーテル、カリックスアレン、ペプチド、酵素、発光色素からなる群より選ばれる少なくとも一種であり、Xはハロゲン原子を示す)から選ばれる少なくとも一種であることを特徴とする請求項5に記載の機能性膜。Function molecule R-COOH, R-NH 2 , R-OH, R-COX ( where, R is an aliphatic hydrocarbon, alicyclic hydrocarbon, aromatic hydrocarbon, cyclodextrins, crown ethers, calixarenes, peptides The functional film according to claim 5, wherein the functional film is at least one selected from the group consisting of an enzyme and a luminescent dye, and X represents a halogen atom.
JP2001336241A 2001-11-01 2001-11-01 Functional film and method for producing the functional film Expired - Fee Related JP3687000B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001336241A JP3687000B2 (en) 2001-11-01 2001-11-01 Functional film and method for producing the functional film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001336241A JP3687000B2 (en) 2001-11-01 2001-11-01 Functional film and method for producing the functional film

Publications (2)

Publication Number Publication Date
JP2003138056A JP2003138056A (en) 2003-05-14
JP3687000B2 true JP3687000B2 (en) 2005-08-24

Family

ID=19151099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001336241A Expired - Fee Related JP3687000B2 (en) 2001-11-01 2001-11-01 Functional film and method for producing the functional film

Country Status (1)

Country Link
JP (1) JP3687000B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101083228B1 (en) 2004-10-07 2011-11-11 삼성코닝정밀소재 주식회사 Composition comprising calix-arene derivatives for preparing materials having nano-porosity
JP2006167855A (en) * 2004-12-15 2006-06-29 Ricoh Co Ltd Method for forming periodic structure, periodic structure, and optical element using periodic structure
JP2006349474A (en) * 2005-06-15 2006-12-28 Totoku Electric Co Ltd Optical fiber vibration sensor
WO2007086306A1 (en) * 2006-01-30 2007-08-02 Kinki University Biodegradable inverted-opal structure, method for production of the same, use of the same, and medical implant comprising the same
DE102006029622A1 (en) 2006-06-28 2008-01-03 Robert Bosch Gmbh Method for producing a component, in particular a micromechanical and / or microfluidic and / or microelectronic component and component
CN102399140B (en) * 2010-09-17 2015-04-15 联仕(上海)电子化学材料有限公司 Production method of ultra-clean and high-purity electronic grade acetic acid
TWI673154B (en) * 2014-06-20 2019-10-01 日商東京應化工業股份有限公司 Porous bismuth imide resin film production system, separator film, and porous bismuth imide resin film production method

Also Published As

Publication number Publication date
JP2003138056A (en) 2003-05-14

Similar Documents

Publication Publication Date Title
US5306561A (en) Preparation of surface-functional polymer particles
US4140653A (en) Solid support for liquid chromatography
Revzin et al. Fabrication of poly (ethylene glycol) hydrogel microstructures using photolithography
Kayaman et al. Structure and protein separation efficiency of poly (N‐isopropylacrylamide) gels: Effect of synthesis conditions
US6720007B2 (en) Polymeric microspheres
US6759488B1 (en) Molecularly imprinted polymers grafted on solid supports
JP3687000B2 (en) Functional film and method for producing the functional film
JP2003526702A5 (en)
JP2003526702A (en) Surfaces and their manufacture and use
WO2006004536A1 (en) Method for producing molecularly imprinted polymers
JP2007530760A (en) Method for producing composite absorbent material for chromatographic separation of biopolymers
US10792640B2 (en) Sorbent material for separating bio-macromolecules
JP2019034298A (en) Manufacturing method of three-dimensional regulation porous microstructure, and monolithic column manufactured by the method
KR20150137178A (en) Coating method using particle alignment
JP3686999B2 (en) Method for producing functional membrane and functional membrane
JP2003093852A (en) Method for producing separation membrane and separation membrane forming material and separation membrane obtained thereby
JPS60165547A (en) Production of packing material for liquid chromatography
Unsal et al. Monodisperse–porous particles with different polarities by “modified seeded polymerization” and their use as chromatographic packing in HPLC
EP1242490A1 (en) Single stage seed polymerisation for the production of large polymer particles with a narrow size distribution
JP2008264732A (en) Porous ion exchanger and manufacturing method thereof
TWI757039B (en) Method for producing porous microstructure
TW201934626A (en) Method for producing three-dimensional ordered porous microstructure and monolithic column produced thereby
JP3812924B2 (en) Method for producing surface porous body
US9636653B2 (en) Stamp for making a microarray of biomolecules
TWI802377B (en) Stationary phase medium for adsorption chromatography and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050524

R150 Certificate of patent or registration of utility model

Ref document number: 3687000

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090617

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090617

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090617

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090617

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090617

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100617

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100617

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110617

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110617

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120617

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120617

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120617

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130617

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130617

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees