JP2003138056A - Functional membrane and method for producing the functional membrane - Google Patents

Functional membrane and method for producing the functional membrane

Info

Publication number
JP2003138056A
JP2003138056A JP2001336241A JP2001336241A JP2003138056A JP 2003138056 A JP2003138056 A JP 2003138056A JP 2001336241 A JP2001336241 A JP 2001336241A JP 2001336241 A JP2001336241 A JP 2001336241A JP 2003138056 A JP2003138056 A JP 2003138056A
Authority
JP
Japan
Prior art keywords
polymer
functional
pores
base material
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001336241A
Other languages
Japanese (ja)
Other versions
JP3687000B2 (en
Inventor
Tetsuo Tsutsui
哲夫 筒井
Kazuhiro Sumioka
和宏 隅岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu TLO Co Ltd
Original Assignee
Kyushu TLO Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu TLO Co Ltd filed Critical Kyushu TLO Co Ltd
Priority to JP2001336241A priority Critical patent/JP3687000B2/en
Publication of JP2003138056A publication Critical patent/JP2003138056A/en
Application granted granted Critical
Publication of JP3687000B2 publication Critical patent/JP3687000B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a functional membrane which can precisely and simply prepare a functional membrane capable of causing molecular recognition by adsorption and desorption among functional groups or by the molecular shape by subjecting the surface of open pores having a pore diameter capable of precisely being designed beforehand to molecular modification with a functional molecule or the like to exhibit functions of separation, sensing, a microenvironmental chemical reaction catalyst and the like, and a functional membrane having excellent general-purpose properties which can strictly control various functions and can exhibit the selectivity of separability and adsorbability and specificity of chemical reaction. SOLUTION: The method for producing a functional membrane comprises a structure-forming step of forming a structure 4 filled with microbodies 3 and having open voids in the interior on the upper surface of a holding substrate 2, a polymer- filling step of filling a polymer 5 in the voids of the structure 4 obtained in the structure-forming step, an elimination step of eliminating the holding substrate 2 and the microbodies 3 after the polymer-filling step, and a molecular modification step of subjecting the surface of the pores of a polymer porous body 6 formed by the elimination of the microbodies 3 in the elimination step to molecular modification with a functional molecule.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、センサー機能、分
離機能、化学反応触媒機能等の各機能を有し、化学セン
サー、バイオセンサー、分離膜、ミクロ環境化学反応触
媒膜等として用いられる機能性膜及び該機能性膜の製造
方法に関する。
TECHNICAL FIELD The present invention has various functions such as a sensor function, a separation function, and a chemical reaction catalyst function, and is used as a chemical sensor, a biosensor, a separation membrane, a microenvironmental chemical reaction catalyst membrane, and the like. The present invention relates to a film and a method for producing the functional film.

【0002】[0002]

【従来の技術】従来より、ポリマーフィルムを延伸させ
た多孔質膜、ポリマーブレンドフィルムを部分溶解して
作製した多孔質膜、円筒状の細孔を機械的に形成した膜
をそれぞれ担体とした機能性膜が知られている。また、
特異な分子認識能を持たせた機能性膜としては、シクロ
デキストリンやカリックスアレンを用いた膜(「分子認
識化学」築部 浩 45-64頁 三共出版)、ゲルクロマ
トグラフィーとして用いられるシリカゲルやセファデッ
クス(「分析化学」Pecsok et.al 62-88頁 東京化学同
人、「入門機器分析化学」庄野利之 186-212頁 三共
出版、「ペプチド合成の基礎と実験」泉屋信夫 143-19
3頁 丸善)等がある。
2. Description of the Related Art Conventionally, a porous film obtained by stretching a polymer film, a porous film prepared by partially dissolving a polymer blend film, and a film having mechanically formed cylindrical pores function as carriers. Reproductive membranes are known. Also,
As a functional membrane having a unique molecular recognition ability, a membrane using cyclodextrin or calixarene (“Molecular Recognition Chemistry” Hiroshi Tsukibe, pp. 45-64, Sankyo Publishing Co., Ltd.), silica gel or Sephaph used for gel chromatography. Decks ("Analytical Chemistry" Pecsok et.al pp. 62-88 Tokyo Kagaku Dojin, "Introductory Instrument Analytical Chemistry" Toshiyuki Shono 186-212 Sankyo Publishing, "Basics and Experiments of Peptide Synthesis" Nobuo Izumiya 143-19
Page 3 Maruzen) etc.

【0003】しかしながら、上記の機能性膜の細孔径
は、機能性膜の作製法に依存し、以下の課題を有してい
た。ポリマーフィルムを延伸させた多孔質膜を担体とし
た機能性膜は、その細孔径がランダムな連続孔を有し、
その連続孔の連結にも規則性がなく、均一な細孔径を有
さず且つその細孔が規則的に連結されていないため、機
能性物質を設計通りに担持させることができないだけで
なく、分離膜、センサー、ミクロ化学反応容器等として
利用すると精度に欠け不向きであるという問題点を有し
ていた。細孔径のそろった円筒状の細孔を有する機能性
膜は、対象となる分子や微粒子のサイズ及びその形状に
対応した細孔径を人工的に形成しなければならず、技術
的に極めて困難であるとともに、細孔径や細孔形状の特
異性から化学修飾し難いという問題点を有していた。分
子認識能を有する分子膜として用いるシクロデキストリ
ンやカリックアレンは、van der waals力や、疎水相
互作用を利用して分離能やセンシング機能を付与するも
のであるが、これらに機能分子を分子修飾等することは
困難であり、汎用性に乏しいという問題点を有してい
た。ゲルクロマトグラフィーを用いた分離方法は、セフ
ァデックスへの浸透圧の違いや、シリカゲルでの吸着速
度の違いにより物質を分離することが可能であるが、そ
の分離能はゲル内部の細孔のばらつき等に起因し、分離
能が変化するばかりか、分離の際、多量の溶媒が必要で
あり経済性に欠けるという問題点を有していた。
However, the pore diameter of the above-mentioned functional film has the following problems depending on the method for producing the functional film. A functional film using a porous film obtained by stretching a polymer film as a carrier has continuous pores whose pore diameter is random,
There is no regularity in the connection of the continuous pores, and since the pores do not have a uniform pore size and the pores are not regularly connected, not only can the functional substance not be supported as designed, When used as a separation membrane, a sensor, a microchemical reaction container, etc., it lacked accuracy and was unsuitable. A functional membrane having cylindrical pores with uniform pore diameters must be artificially formed to have a pore diameter corresponding to the size and shape of the target molecule or fine particle, which is technically extremely difficult. In addition, there is a problem that chemical modification is difficult due to the peculiarities of pore diameter and pore shape. Cyclodextrin and calicarene, which are used as molecular membranes with molecular recognition ability, impart van der waals force or hydrophobic interaction to provide separation ability and sensing function. It is difficult to do so, and there is a problem that the versatility is poor. The separation method using gel chromatography can separate substances by the difference in the osmotic pressure to Sephadex and the difference in the adsorption rate on silica gel. Due to such factors, not only the separability changes but also a large amount of solvent is required at the time of separation, resulting in a lack of economy.

【0004】[0004]

【発明が解決しようとする課題】本発明の課題は、予め
精密に設計できる細孔径を有する連続した細孔の表面を
機能分子で分子修飾し、もしくは化学修飾することによ
り、官能基間での吸着、脱離による分子認識、または分
子形状による分子認識が起こり、分離、センシング、ミ
クロ環境化学反応触媒等の機能を発現できる機能性膜を
精密且つ簡易に作製できる機能性膜の製造方法を提供す
ること、および分離機能、センサー機能、ミクロ化学反
応触媒の機能等が厳密に制御可能であり、分離膜として
の性能が画期的に向上し、またセンサーやミクロ環境反
応触媒としての吸着能の選択性や化学反応の特異性を発
現できる汎用性に優れる機能性膜を提供することにあ
る。
SUMMARY OF THE INVENTION The object of the present invention is to modify the surface of continuous pores having a pore size that can be precisely designed in advance with a functional molecule to chemically or chemically modify the surface of the pores so that the functional groups are We provide a method for producing functional membranes that allows precise and easy production of functional membranes that exhibit functions such as separation, sensing, and microenvironmental chemical reaction catalysts that occur due to molecular recognition by adsorption or desorption or molecular shape. In addition, the separation function, the sensor function, the function of the micro chemical reaction catalyst, etc. can be strictly controlled, the performance as a separation membrane is dramatically improved, and the adsorption capacity as a sensor or a microenvironmental reaction catalyst is improved. An object of the present invention is to provide a versatile functional film capable of expressing selectivity and specificity of chemical reaction.

【0005】[0005]

【課題を解決するための手段】本発明者らは、上記課題
を解決するため鋭意検討した結果、微小体の粒径を設計
するだけで予め精密に細孔径を設計できる連続細孔の表
面に、分子認識能を有する機能基を導入することによ
り、分離、センシング、ミクロ環境化学反応触媒等の機
能を発現することを見出し、本発明を完成するに至っ
た。
Means for Solving the Problems As a result of intensive studies to solve the above problems, the present inventors have found that the surface of continuous pores can be precisely designed by simply designing the particle diameter of the fine particles. The inventors have found that the introduction of a functional group having a molecular recognition ability causes the functions of separation, sensing, microenvironmental chemical reaction catalyst, etc. to be exhibited, and have completed the present invention.

【0006】すなわち、本発明は、以下の[1]〜
[6]に記載した事項により特定される。 [1]保持基材の上面に、微小体を充填し内部に連続し
た空隙を有する構造体を形成する構造体形成工程と、該
構造体形成工程で得られた構造体の空隙にポリマーを充
填するポリマー充填工程と、該ポリマー充填工程後、保
持基材及び微小体を脱離する脱離工程と、該脱離工程で
微小体を脱離して形成したポリマー多孔体の細孔の表面
を化学修飾する化学修飾工程と、を有することを特徴と
する機能性膜の製造方法。
That is, the present invention provides the following [1]-
It is specified by the items described in [6]. [1] A structure forming step of filling microscopic bodies on the upper surface of a holding substrate to form a structure having continuous voids inside, and filling the voids of the structure obtained in the structure forming step with a polymer And a desorption step of desorbing the holding base material and the fine particles after the polymer filling step, and the surface of the pores of the polymer porous body formed by desorbing the fine particles in the desorption step. A method for producing a functional film, comprising: a chemical modification step of modifying.

【0007】これにより、均一な細孔径を有し且つ連続
細孔が三次元的に形成され、その連続した空隙の内面が
機能基で修飾されているため、分離機能、センサー機
能、ミクロ化学反応触媒の機能等が厳密に制御可能とな
り、分離膜、センサー膜、ミクロ環境化学反応膜等とし
て利用できる機能性膜を低コストで製造することができ
量産性に優れる。また、分離膜としての性能が画期的に
向上し、また、センサーやミクロ環境反応触媒として利
用する場合には、機能基で修飾された微小空隙内面の均
質性のため、吸着能の選択性や化学反応の特異性を発現
できる。更に、得られたポリマー多孔体の均一なサイズ
の微小な空隙の表面を修飾することにより、均一且つ比
表面積が大きい機能性膜が得られる。
As a result, continuous pores having a uniform pore diameter are formed three-dimensionally, and the inner surface of the continuous voids is modified with a functional group, so that the separation function, the sensor function, and the microchemical reaction. The functions of the catalyst can be strictly controlled, and functional membranes that can be used as separation membranes, sensor membranes, microenvironmental chemical reaction membranes, etc. can be manufactured at low cost and are excellent in mass productivity. In addition, the performance as a separation membrane is remarkably improved, and when used as a sensor or a catalyst for microenvironmental reaction, the selectivity of the adsorption capacity is due to the homogeneity of the inner surface of the micropores modified with functional groups. And the specificity of chemical reactions can be expressed. Furthermore, by modifying the surface of minute voids of uniform size of the obtained polymer porous body, a functional film having a uniform and large specific surface area can be obtained.

【0008】〔2〕保持基材の上面に、微小体を充填し
内部に連続した空隙を有する構造体を形成する構造体形
成工程と、該構造体形成工程で得られた構造体の空隙に
ポリマーを充填するポリマー充填工程と、該ポリマー充
填工程後、保持基材及び微小体を脱離する脱離工程と、
該脱離工程で微小体を脱離して形成したポリマー多孔体
の細孔の表面を機能分子で分子修飾する分子修飾工程
と、を有することを特徴とする機能性膜の製造方法。
[2] A structure forming step of forming fine particles on the upper surface of the holding substrate to form a structure having continuous voids therein, and the structure voids obtained in the structure forming step. A polymer filling step of filling the polymer, and a desorption step of desorbing the holding base material and the microparticles after the polymer filling step,
And a molecular modification step of molecularly modifying the surface of the pores of the polymer porous body formed by desorbing the fine particles in the desorption step with a functional molecule.

【0009】これにより、分離機能、センサー機能、ミ
クロ化学反応触媒の機能等が厳密に制御可能となり、分
離膜としての性能が画期的に向上し、またセンサーやミ
クロ環境反応触媒としての吸着能の選択性や化学反応の
特異性を発現できる機能性膜を精密且つ簡易に製造でき
る。また、予め精密に設計できる細孔径を有する連続し
た細孔に、分子認識能を有する機能基を導入することに
より、官能基間での吸着、脱離による分子認識、または
分子形状による分子認識が起こり、分離、センシング、
ミクロ環境化学反応触媒等の機能を有する機能性膜を容
易に得ることができる。更に、微小な細孔表面を機能分
子で修飾することにより、均一且つ比表面積が大きい分
子修飾した機能性膜が得られるとともに、微小体の粒子
径を変化させることにより、機能性膜の細孔径を適宜調
節することができ汎用性に優れる。
As a result, the separation function, the sensor function, the function of the microchemical reaction catalyst, etc. can be strictly controlled, the performance as a separation membrane is remarkably improved, and the adsorption capacity as a sensor or a microenvironmental reaction catalyst is improved. It is possible to precisely and easily manufacture a functional film capable of expressing the selectivity of the above and the specificity of the chemical reaction. Further, by introducing a functional group having a molecular recognition ability into continuous pores having a pore size that can be precisely designed in advance, molecular recognition by adsorption or desorption between functional groups or molecular recognition by molecular shape can be performed. Happening, separation, sensing,
A functional film having a function such as a microenvironmental chemical reaction catalyst can be easily obtained. Furthermore, by modifying the surface of minute pores with functional molecules, a functional film with uniform and large specific surface area can be obtained, and by changing the particle size of the microparticles, the pore size of the functional film can be changed. Can be adjusted appropriately and is excellent in versatility.

【0010】〔3〕機能分子がR−COOH、R−NH
、R−OH、R−COX(但し、Rは脂肪族炭化水
素、脂環式炭化水素、芳香族炭化水素、シクロデキスト
リン、クラウンエーテル、カリックスアレン、ペプチ
ド、酵素、発光色素からなる群より選ばれる少なくとも
一種であり、Xはハロゲン原子を示す)から選ばれる少
なくとも一種であることを特徴とする〔2〕に記載の機
能性膜の製造方法。
[3] Functional molecules are R-COOH, R-NH
2 , R-OH, R-COX (where R is selected from the group consisting of aliphatic hydrocarbon, alicyclic hydrocarbon, aromatic hydrocarbon, cyclodextrin, crown ether, calixarene, peptide, enzyme, and luminescent dye) And X is a halogen atom), the method for producing a functional film according to [2].

【0011】これにより、Rにシクロデキストリン、ク
ラウンエーテル、カリックスアレン、ペプチド、酵素、
発光色素等を用いると、これらは機能性を有するため、
この部位による分子認識が起こる。また、分離膜として
利用する場合には、分離能が画期的に向上し、またセン
サーやミクロ環境反応触媒として利用する場合には、機
能基で修飾された微小空隙内面の均質性のため、吸着能
の選択性や化学反応の特異性を発現させるという他の方
法では実現が困難な課題を解決できる。
Thus, R is cyclodextrin, crown ether, calixarene, peptide, enzyme,
When a luminescent dye is used, these have functionality,
Molecular recognition occurs at this site. Further, when used as a separation membrane, the separation ability is remarkably improved, and when used as a sensor or a microenvironmental reaction catalyst, because of the homogeneity of the inner surface of the micropore modified with a functional group, It is possible to solve problems that are difficult to achieve by other methods such as expressing the selectivity of adsorption ability and the specificity of chemical reaction.

【0012】[4]脱離可能な保持基材と、該保持基材
の上面に形成した、脱離可能な微小体を充填し内部に連
続した空隙を有する構造体と、該構造体の空隙に充填し
たポリマーとからなる膜形成材から、保持基材及び微小
体を脱離して形成した細孔を有するポリマー多孔体であ
って、該ポリマー多孔体の細孔の表面を化学修飾したこ
とを特徴とする機能性膜。
[4] Releasable holding base material, structure formed on the upper surface of the holding base material and having a continuous void inside, filled with removable fine particles, and void of the structure A polymer porous body having pores formed by desorbing a holding base material and microscopic bodies from a film-forming material composed of a polymer filled in, and chemically modifying the surface of the pores of the polymer porous body. Characteristic functional membrane.

【0013】これにより、均一な細孔径を有し且つ連続
細孔が三次元的に形成され、その連続した空隙の内面が
機能基で修飾されているため、分離機能、センサー機
能、ミクロ化学反応触媒の機能等が厳密に制御可能とな
り、分離膜、センサー膜、ミクロ環境化学反応膜等とし
て利用できる。また、分離膜としての性能が画期的に向
上し、また、センサーやミクロ環境反応触媒として利用
する場合には、機能基で修飾された微小空隙内面の均質
性のため、吸着能の選択性や化学反応の特異性を発現で
きる。更に、得られたポリマー多孔体の均一なサイズの
微小な空隙の表面を修飾することにより、均一且つ比表
面積が大きい機能性膜が得られる。
As a result, continuous pores having a uniform pore diameter are formed three-dimensionally, and the inner surface of the continuous voids is modified with a functional group, so that the separation function, sensor function, microchemical reaction The function of the catalyst can be strictly controlled, and it can be used as a separation membrane, a sensor membrane, a microenvironmental chemical reaction membrane, and the like. In addition, the performance as a separation membrane is remarkably improved, and when used as a sensor or a catalyst for microenvironmental reaction, the selectivity of the adsorption capacity is due to the homogeneity of the inner surface of the micropores modified with functional groups. And the specificity of chemical reactions can be expressed. Furthermore, by modifying the surface of minute voids of uniform size of the obtained polymer porous body, a functional film having a uniform and large specific surface area can be obtained.

【0014】[5]脱離可能な保持基材と、該保持基材
の上面に形成した、脱離可能な微小体を充填し内部に連
続した空隙を有する構造体と、該構造体の空隙に充填し
たポリマーとからなる膜形成材から、保持基材及び微小
体を脱離して形成した細孔を有するポリマー多孔体であ
って、該ポリマー多孔体の細孔の表面を機能分子で分子
修飾したことを特徴とする機能性膜。
[5] Releasable holding base material, structure formed on the upper surface of the holding base material and having a continuous void inside, filled with removable fine particles, and void of the structure A polymer porous body having pores formed by desorbing a holding base material and microscopic bodies from a film forming material composed of a polymer filled in a polymer, and the surface of the pores of the polymer porous body is molecularly modified with a functional molecule. A functional film characterized in that

【0015】これにより、分離機能、センサー機能、ミ
クロ化学反応触媒の機能等が厳密に制御可能となり、分
離膜としての性能が画期的に向上し、またセンサーやミ
クロ環境反応触媒としての吸着能の選択性や化学反応の
特異性を発現できる機能性膜を得ることができる。ま
た、予め精密に設計できる細孔径を有する連続した細孔
に、分子認識能を有する機能基を導入することにより、
官能基間での吸着、脱離による分子認識、または分子形
状による分子認識が起こり、分離、センシング、ミクロ
環境化学反応触媒等の機能を有する機能性膜を容易に得
ることができる。更に、微小な細孔表面を機能分子で修
飾することにより、均一且つ比表面積が大きい分子修飾
した機能性膜が得られるとともに、微小体の粒子径を変
化させることにより、機能性膜の細孔径を適宜調節する
ことができ汎用性に優れる。
As a result, the separation function, the sensor function, the function of the microchemical reaction catalyst, etc. can be strictly controlled, the performance as a separation membrane is remarkably improved, and the adsorption ability as a sensor or a microenvironmental reaction catalyst is improved. It is possible to obtain a functional membrane capable of exhibiting the selectivity of and the specificity of the chemical reaction. Further, by introducing a functional group having a molecular recognition ability into continuous pores having a pore size that can be precisely designed in advance,
Molecular recognition by adsorption or desorption between functional groups or molecular recognition by molecular shape occurs, and a functional membrane having functions such as separation, sensing, and microenvironmental chemical reaction catalyst can be easily obtained. Furthermore, by modifying the surface of minute pores with functional molecules, a functional film with uniform and large specific surface area can be obtained, and by changing the particle size of the microparticles, the pore size of the functional film can be changed. Can be adjusted appropriately and is excellent in versatility.

【0016】[6]機能分子がR−COOH、R−NH
、R−OH、R−COX(但し、Rは脂肪族炭化水
素、脂環式炭化水素、芳香族炭化水素、シクロデキスト
リン、クラウンエーテル、カリックスアレン、ペプチ
ド、酵素、発光色素からなる群より選ばれる少なくとも
一種であり、Xはハロゲン原子を示す)から選ばれる少
なくとも一種であることを特徴とする[5]に記載の機
能性膜。
[6] The functional molecule is R-COOH, R-NH
2 , R-OH, R-COX (where R is selected from the group consisting of aliphatic hydrocarbon, alicyclic hydrocarbon, aromatic hydrocarbon, cyclodextrin, crown ether, calixarene, peptide, enzyme, and luminescent dye) And X is a halogen atom), the functional film according to [5].

【0017】これにより、Rにシクロデキストリン、ク
ラウンエーテル、カリックスアレン、ペプチド、酵素、
発光色素等を用いると、これらは機能性を有するため、
この部位による分子認識が起こる。また、分離膜として
利用する場合には、分離能が画期的に向上し、またセン
サーやミクロ環境反応触媒として利用する場合には、機
能基で修飾された微小空隙内面の均質性のため、吸着能
の選択性や化学反応の特異性を発現できる。
As a result, R is cyclodextrin, crown ether, calixarene, peptide, enzyme,
When a luminescent dye is used, these have functionality,
Molecular recognition occurs at this site. Further, when used as a separation membrane, the separation ability is remarkably improved, and when used as a sensor or a microenvironmental reaction catalyst, because of the homogeneity of the inner surface of the micropore modified with a functional group, The selectivity of adsorption ability and the specificity of chemical reaction can be expressed.

【0018】[0018]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明に係る機能性膜は、保持基材の上面に、微小体を
充填し内部に連続した空隙を有する構造体を形成し、該
構造体の空隙にポリマーを充填して膜形成材を製造した
後、保持基材及び微小体を脱離し、形成されたポリマー
多孔体の細孔の表面を化学修飾することにより製造でき
る。また、本発明に係る機能性膜は、保持基材の上面
に、微小体を充填し内部に連続した空隙を有する構造体
を形成し、該構造体の空隙にポリマーを充填して膜形成
材を製造した後、保持基材及び微小体を脱離し、形成さ
れたポリマー多孔体の細孔の表面を機能分子で分子修飾
することにより製造できる。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below.
The functional film according to the present invention forms a structure on the upper surface of a holding substrate, which is filled with microscopic bodies to form a structure having continuous voids inside, and a polymer is filled into the voids of the structure to produce a film forming material. After that, the holding base material and the fine particles are detached, and the surface of the pores of the formed polymer porous body is chemically modified, whereby it can be produced. In addition, the functional film according to the present invention is a film forming material in which a microstructure is filled on the upper surface of a holding substrate to form a structure having continuous voids inside, and the voids of the structure are filled with a polymer. Can be produced by removing the holding base material and the fine particles, and molecularly modifying the surface of the pores of the formed polymer porous body with a functional molecule.

【0019】本発明に係る保持基材は、その上面に微小
体の周期的な構造体を作製するため、構造体とポリマー
を保持できる強度を有するとともに表面平滑度が高く、
また構造体の空隙にポリマーを充填した後、保持基材を
除去する必要があるため、エッチングが可能であればい
ずれであってもよい。具体的な保持基材としては、シリ
カガラス等のガラス、酸化チタン、シリコン等の無機材
料、アルミニウム、チタン等の金属、ポリメタクリル酸
メチル、ポリカーボネート、ポリスチレン等のポリマー
等が挙げられるが、これらに限定されるものではない。
特に、保持基材と微小体を同時にしかも容易にエッチン
グできる、厚さが薄いスライドガラスが好ましい。保持
基材にポリマー基板を用いる場合、保持基材に用いるポ
リマーの種類は、ポリマー充填工程で充填するポリマー
と異なる溶解性を有するポリマーを使用する必要があ
る。例えば、保持基板としてポリメタクリル酸メチルを
用い、ポリマー充填工程でもポリメタクリル酸メチルを
使用する場合は、充填するポリマーに架橋剤を入れ硬化
する必要がある。
Since the holding substrate according to the present invention has a periodical structure of minute bodies formed on its upper surface, it has strength enough to hold the structure and the polymer and has high surface smoothness.
Further, since it is necessary to remove the holding base material after filling the voids of the structure with the polymer, any structure may be used as long as it can be etched. Specific examples of the holding substrate include glass such as silica glass, inorganic materials such as titanium oxide and silicon, metals such as aluminum and titanium, polymers such as polymethylmethacrylate, polycarbonate and polystyrene, and the like. It is not limited.
In particular, a slide glass having a thin thickness is preferable, which can simultaneously and easily etch the holding substrate and the minute body. When a polymer substrate is used as the holding base material, the type of polymer used for the holding base material needs to be a polymer having a different solubility from the polymer to be filled in the polymer filling step. For example, when polymethylmethacrylate is used as the holding substrate and polymethylmethacrylate is also used in the polymer filling step, it is necessary to add a crosslinking agent to the filled polymer and cure it.

【0020】保持基材の厚みは100μm〜1mmが好
ましい。厚みが100μmより薄くなるにつれ、取り扱
いが困難になるという傾向が見られ、厚みが1mmより
厚くなるにつれ、エッチング時間が長くなり、エッチン
グ溶剤が多量に必要になり経済性に欠けるという傾向が
見られる。本発明に係る保持基材の表面粗度は、0〜1
μm、好ましくは0〜100nmが好ましい。表面租度
は、用いられる微小体の粒径以下が望ましいため、微小
体の粒径によって適宜変更される。ここで、表面粗度が
100nmより大きいと、構造体を十分形成することが
できるが、規則性の乱れの要因となり、細孔密度の減少
をもたらすという傾向がみられる。特に、1μmより大
きいとこれらの傾向が著しくなる。
The thickness of the holding substrate is preferably 100 μm to 1 mm. As the thickness becomes thinner than 100 μm, it tends to be difficult to handle, and as the thickness becomes thicker than 1 mm, the etching time becomes longer, a large amount of etching solvent is required, and the economy tends to be poor. . The surface roughness of the holding substrate according to the present invention is 0 to 1.
μm, preferably 0 to 100 nm. Since the surface roughness is preferably equal to or smaller than the particle size of the fine particles used, it is appropriately changed depending on the particle size of the fine particles. Here, if the surface roughness is larger than 100 nm, the structure can be sufficiently formed, but it tends to cause disorder of the regularity, resulting in a decrease in the pore density. In particular, if it is larger than 1 μm, these tendencies become remarkable.

【0021】本発明に係る構造体を形成する工程におい
て、保持基材上に枠部を立設することも可能であるが、
枠部を用いないで保持基材上に微小球の分散溶液を静置
するだけでも構造体を形成することができる。本発明に
係る枠部を保持基材上に立設する方法としては、圧着、
シリコーングリース等で目止めをする方法、接着剤等で
固定化する方法等が用いられるが、枠部を容易に保持基
材から取り除くことができる点から、圧着方法が好適に
用いられる。ここで、用いられる接着剤の種類は問わな
い。また、枠部を保持基材から取り除く方法は、圧着に
ついては、上から負荷をかけることによって枠部を固定
化しているので、負荷を取り除くことにより容易に取り
外すことができる。また、シリコーングリース等で目止
めをする方法についても、枠部を保持基材から引き離す
ことにより容易に取り外すことができる。更に、接着剤
等で固定化する方法については、加熱したり、あるいは
枠部を破壊等して取り除くことができる。本発明に係る
枠部の形状は、円筒状、角柱状等、構造体が形成できれ
ばいずれであってもよい。本発明に係る枠部の材質は、
シリコーンゴム、ガラス、ポリエチレン、ポリエチレン
テレフタレート、ポリカーボネート、ポリスチレン等が
挙げられるが、これらに限定されるものではない。
In the step of forming the structure according to the present invention, it is possible to erect the frame portion on the holding base material.
The structure can be formed by simply leaving the dispersion solution of the microspheres on the holding substrate without using the frame. As a method of standing the frame portion according to the present invention on the holding substrate, pressure bonding,
A method of sealing with silicone grease or the like and a method of fixing with an adhesive or the like are used, but the crimping method is preferably used because the frame portion can be easily removed from the holding base material. Here, the type of adhesive used is not limited. Further, in the method of removing the frame part from the holding base material, in crimping, since the frame part is fixed by applying a load from above, the frame part can be easily removed by removing the load. Also, as for the method of sealing with silicone grease or the like, it can be easily removed by pulling the frame portion away from the holding base material. Further, regarding the method of fixing with an adhesive or the like, it can be removed by heating or by breaking the frame portion. The shape of the frame portion according to the present invention may be any shape such as a cylindrical shape or a prismatic shape as long as the structure can be formed. The material of the frame portion according to the present invention is
Examples thereof include, but are not limited to, silicone rubber, glass, polyethylene, polyethylene terephthalate, polycarbonate, polystyrene and the like.

【0022】本発明に係る微小体の粒径が揃っている
と、細孔径の分布が最小となり、また細孔密度の最大値
が得られる。具体的には微小体の粒径は、50nm〜1
00μm、好ましくは100nm〜20μmである。こ
こで、粒径が100nmより小さくなるにつれ、微小体
の沈降速度が非常に遅くなることによって、微小体が充
填し難くなり、細密充填構造を有する周期的な構造体が
形成されにくくなる傾向がみられ、粒径が20μmより
大きくなるにつれ、微小体の作製が困難になる傾向がみ
られる。特に、粒径が50nmより小さいか、100μ
mより大きいと、これらの傾向が著しくなる。
If the particle diameters of the microparticles according to the present invention are uniform, the distribution of pore diameters becomes minimum and the maximum value of pore density is obtained. Specifically, the particle size of the fine particles is 50 nm to 1
It is 00 μm, preferably 100 nm to 20 μm. Here, as the particle size becomes smaller than 100 nm, the sedimentation speed of the fine particles becomes very slow, so that it becomes difficult to fill the fine particles and it becomes difficult to form a periodic structure having a close-packed structure. It can be seen that as the particle size becomes larger than 20 μm, it tends to be difficult to manufacture microscopic bodies. Especially if the particle size is smaller than 50nm or 100μ
If it is larger than m, these tendencies become remarkable.

【0023】本発明に係る微小体の形状は、保持基材上
に微小体が多数充填でき内部に空隙を有する構造体が形
成できればいずれであってもよい。具体的な形状として
は、球状、楕円状、円柱状、中空状、ゴルフボール状等
が挙げられるが、これらに限定されるものではない。特
に、球状微小体を用いることによって最密になるため、
ポリマー多孔体形成後の細孔径が最も制御され、かつ最
大になるとともに、分離機能、センサー機能、ミクロ化
学反応触媒機能等の能力に優れる機能性膜を得ることが
でき好ましい。
The shape of the fine particles according to the present invention may be any shape as long as a large number of fine particles can be filled on the holding substrate to form a structure having voids inside. Specific shapes include, but are not limited to, spherical, elliptical, cylindrical, hollow, and golf ball shapes. In particular, since it becomes the densest by using spherical microscopic bodies,
It is preferable that the pore size after the formation of the polymer porous body is most controlled and maximized, and a functional membrane having excellent capabilities such as a separation function, a sensor function, and a microchemical reaction catalyst function can be obtained.

【0024】本発明に係る微小体の材質は、シリカの
他、有機、無機溶媒でエッチングが可能であればポリス
チレン、ポリメタクリル酸メチル等のポリマー等を用い
ることができる。特にシリカを用いると、沈降速度が速
いため、微小体間の接点を容易に得ることが可能であ
り、また導入したポリマーと溶解する溶媒が異なるた
め、選択的にシリカのみをエッチングをすることができ
るので好ましい。例えば、100nm〜10μmのサイ
ズのシリカ微小球は、容易に最密充填構造を有する周期
的な微小球構造体(シリカオパール)を形成する。この
微小球構造体には、微小球の隙間に約26%の連続空隙
が存在する。この空隙にポリマーを充填すれば、約26
%の充填率でポリマーを充填した、シリカとポリマーの
複合構造体ができる。この複合体をフッ化水素酸水溶液
で処理し、シリカ微小球部分を取り去ると、充填率26
%のポリマーと74%の空隙とからなるポリマー多孔体
(ポリマー逆オパール)が得られる。このポリマー多孔
体の均一なサイズの球状の微小な細孔の表面に機能分子
を分子修飾し、あるいは化学修飾することにより細孔表
面に機能性を持たせることにより機能性膜が得られる。
As the material of the fine particles according to the present invention, besides silica, a polymer such as polystyrene or polymethylmethacrylate can be used as long as it can be etched with an organic or inorganic solvent. In particular, when silica is used, it is possible to easily obtain a contact point between microparticles because the sedimentation speed is fast. Also, since the solvent introduced and the solvent that dissolves are different, it is possible to selectively etch only silica. It is preferable because it is possible. For example, silica microspheres having a size of 100 nm to 10 μm easily form a periodic microsphere structure (silica opal) having a close-packed structure. In this microsphere structure, about 26% of continuous voids are present in the spaces between the microspheres. If you fill this space with polymer, it will be about 26
A composite structure of silica and polymer filled with polymer at a filling rate of% is produced. When this composite is treated with an aqueous solution of hydrofluoric acid and the silica microspheres are removed, the filling rate is 26%.
A polymer porous body (polymer inverse opal) consisting of% polymer and 74% voids is obtained. A functional film is obtained by functionally modifying the surface of the micropores of uniform size and spherical micropores of the polymer porous body with a functional molecule or by chemically modifying it.

【0025】シリカからなる微小体が多数充填される構
造体は、例えば、水中にシリカ微小球を懸濁した溶液か
ら、自然沈降法ないしは遠心力による強制沈降法により
調製される。このようにして得られた周期構造を有する
シリカ微小球からなる構造体は、水を除去し乾燥させる
のが好ましい。乾燥後、構造体は、そのまま用いても、
保持基材に用いられるポリマーの種類によっては、温度
400〜800℃で焼結してから用いてもよい。尚、保
持基板にポリカーボネートを用いる場合は焼結を行なう
ことができない。ここで、焼結温度が400℃より低く
なるにつれ、構造体が固定化できにくくなる傾向がみら
れ、800℃を超えるにつれ、構造体が変形する傾向が
みられる。
The structure filled with a large number of fine particles of silica is prepared, for example, from a solution in which silica microspheres are suspended in water, by a natural sedimentation method or a forced sedimentation method by centrifugal force. The structure composed of silica microspheres having a periodic structure thus obtained is preferably dried by removing water. After drying, the structure can be used as is,
Depending on the type of polymer used for the holding substrate, it may be used after sintering at a temperature of 400 to 800 ° C. When polycarbonate is used for the holding substrate, sintering cannot be performed. Here, as the sintering temperature becomes lower than 400 ° C., it tends to become difficult to fix the structure, and as it exceeds 800 ° C., the structure tends to deform.

【0026】本発明に係る微小体は、構造体の空隙にポ
リマーを充填した後、除去する必要があるため、微小体
間の接点が必要である。この時、粒子径のそろったシリ
カ微小球の最密充填構造を用いると、細孔径の分布が最
小となり、また細孔密度の最大値が得られる。逆に、粒
子径の変化や周期構造の変化により、細孔径や細孔密度
の変化が可能となる。
In the fine body according to the present invention, it is necessary to fill the voids of the structure with the polymer and then remove the polymer. Therefore, a contact between the fine bodies is necessary. At this time, if a close-packed structure of silica microspheres having a uniform particle size is used, the distribution of pore size is minimized and the pore density is maximized. On the contrary, it is possible to change the pore diameter and the pore density by changing the particle diameter and the periodic structure.

【0027】本発明に係るポリマーは、保持基板及び微
小体に用いるエッチング剤に耐性があり、且つポリマー
多孔体からなる規則構造を維持できるだけの強度を有す
るとともに、細孔表面を機能分子で分子修飾でき、ある
いは細孔表面を化学修飾することが可能であり、機能性
膜が分離膜として使用される場合には、分離する物質の
溶媒に対する耐性があればいずれであってもよい。具体
的なポリマーとしては、ポリメタクリル酸メチル、ポリ
メタクリル酸ヒドキシエチル、ポリスチレン、ポリカー
ボネート、ポリウレタン、ポリアクリルアミド、ポリア
クリル酸ブチル、ポリメタクリル酸、ポリアクリル酸、
ポリビニルアルコール、エポキシ樹脂、UV硬化樹脂等
が挙げられるが、これらに限定されるものではない。こ
こで、ポリアクリルアミド、メタクリル酸、アクリル
酸、ポリビニルアルコール等は、ポリマー自体が機能性
を有する。
The polymer according to the present invention is resistant to the etching agent used for the holding substrate and the minute body, has a strength sufficient to maintain an ordered structure composed of a polymer porous body, and the surface of the pore is molecularly modified with a functional molecule. Alternatively, the surface of the pores can be chemically modified, and when the functional membrane is used as a separation membrane, any material may be used as long as it has resistance to the solvent of the substance to be separated. Specific polymers include polymethylmethacrylate, polyhydroxyethylmethacrylate, polystyrene, polycarbonate, polyurethane, polyacrylamide, butylpolyacrylate, polymethacrylic acid, polyacrylic acid,
Examples thereof include, but are not limited to, polyvinyl alcohol, epoxy resin, and UV curable resin. Here, the polymer itself of polyacrylamide, methacrylic acid, acrylic acid, polyvinyl alcohol, etc. has functionality.

【0028】本発明に係るポリマー充填工程において、
ポリマーを構造体内部の空隙に充填する方法は、ポリア
クリルアミドの場合は光(ラジカル)重合、熱溶融、ポ
リアクリル酸ブチルの場合は光(ラジカル)重合、熱溶
融、ポリメタクリル酸メチルの場合は光(ラジカル)重
合、熱溶融、ポリメタクリル酸ヒドキシエチルの場合は
光(ラジカル)重合、熱溶融、ポリスチレンの場合は光
(ラジカル)重合、熱溶融、ポリカーボネートの場合は
熱溶融、エポキシ樹脂の場合は熱重合、UV硬化樹脂の
場合は光重合、ポリウレタンの場合は熱重合等がそれぞ
れ用いられる。例えば、ポリマーとしてポリメタクリル
酸メチルを用いる場合、増粘度剤(ポリメタクリル酸メ
チル)としての重量分率で25%のポリマー(ポリメタ
クリル酸メチル)を含むモノマー(メタクリル酸メチ
ル)を導入し、このモノマーを紫外線光源(水銀ラン
プ)を用いて重合する。また、エポキシ樹脂を用いる場
合、硬硬化剤(ポリアミドアミン)を導入し、このポリ
マーを熱重合により重合する。
In the polymer filling step according to the present invention,
The method for filling the voids inside the structure with a polymer is as follows: photopolymerization (radical) polymerization, heat melting in the case of polyacrylamide, photo (radical) polymerization, heat melting in the case of polybutyl acrylate, heat fusion, Light (radical) polymerization, heat melting, light (radical) polymerization in the case of poly (hydroxyethyl methacrylate), heat melting, light (radical) polymerization in the case of polystyrene, heat melting, heat melting in the case of polycarbonate, epoxy resin Thermal polymerization, photopolymerization in the case of UV curable resin, thermal polymerization in the case of polyurethane are used. For example, when polymethylmethacrylate is used as the polymer, a monomer (methylmethacrylate) containing 25% polymer (polymethylmethacrylate) in a weight fraction as a thickener (polymethylmethacrylate) is introduced, and The monomer is polymerized using an ultraviolet light source (mercury lamp). When an epoxy resin is used, a hard curing agent (polyamide amine) is introduced and the polymer is polymerized by thermal polymerization.

【0029】本発明に係るポリマーを充填する際に用い
る増粘剤としては、ポリメタクリル酸メチル、ポリメタ
クリル酸ヒドキシエチル、ポリスチレン、ポリカーボネ
ート、ポリエステル等が挙げられるが、モノマーに溶解
するポリマーであればこれらに限定されるものではな
い。本発明に係るポリマーを充填する際に用いる硬化剤
(反応開始剤)としては、ter−ブチルヒドロペルオ
キシド、アゾビスイソブチロニトリル、ジベンゾイルジ
スルフィド等が挙げられるが、これらに限定されるもの
ではない。本発明に係るポリマーを充填する際に用いる
架橋剤としては、トリエチレングリコールジメタクリレ
ート、ジビニルベンゼン、無水フタル酸、ジエチレント
リアミン等が挙げられるが、これらに限定されるもので
はない。尚、ポリマーを充填する箇所は構造体の空隙の
他、構造体の側面部を包囲する形でポリマーを充填させ
ることができる。
Examples of the thickener used when filling the polymer according to the present invention include polymethylmethacrylate, poly (hydroxyethylmethacrylate), polystyrene, polycarbonate, polyester, etc. It is not limited to. Examples of the curing agent (reaction initiator) used when filling the polymer according to the present invention include ter-butyl hydroperoxide, azobisisobutyronitrile, and dibenzoyl disulfide, but are not limited thereto. Absent. Examples of the cross-linking agent used when filling the polymer according to the present invention include, but are not limited to, triethylene glycol dimethacrylate, divinylbenzene, phthalic anhydride and diethylenetriamine. The polymer can be filled not only with the voids of the structure but also with the side surface of the structure surrounding the polymer.

【0030】保持基材及び微小体を脱離する脱離工程と
して行うエッチングに用いるエッチング剤としては、シ
リカガラスの場合はフッ化水素酸、フッ硝酸、酸化チタ
ンの場合は熱濃硫酸、水酸化ナトリウム、シリコンの場
合は王水、水酸化アルカリ、アルミニウムの場合は塩
酸、希硫酸、硝酸、チタンの場合はフッ化水素酸、ポリ
メタクリル酸メチルの場合はトルエン、クロロホルム、
ポリカーボネートの場合はクロロホルム、アセトン、D
MF、ポリスチレンの場合はトルエン、クロロホルム等
がそれぞれ用いられる。本発明に係る膜形成材は、脱離
可能な保持基材と、保持基材の上面に形成した、脱離可
能な微小体を充填し内部に連続した空隙を有する構造体
と、構造体の空隙に充填したポリマーとからなる。
As the etching agent used in the desorption process for desorbing the holding base material and the fine particles, hydrofluoric acid, hydrofluoric nitric acid in the case of silica glass, hot concentrated sulfuric acid, hydroxylation in the case of titanium oxide are used. Sodium and silicon, aqua regia, alkali hydroxide, hydrochloric acid, dilute sulfuric acid and nitric acid for aluminum, hydrofluoric acid for titanium, toluene and chloroform for polymethylmethacrylate,
For polycarbonate, chloroform, acetone, D
In the case of MF and polystyrene, toluene and chloroform are used, respectively. The film forming material according to the present invention includes a detachable holding base material, a structure formed on the upper surface of the holding base material and having a continuous void inside, which is filled with the detachable fine body, It consists of a polymer filling the voids.

【0031】本発明に係る化学修飾工程は、機能分子を
用いなくても、ポリマー多孔体の細孔の表面部位に機能
をもたせることができる工程である。具体的には、多孔
質ポリスチレンの細孔表面をテトラクロロエタン中で硫
酸と反応させることによりスルホン化する方法等がある
が、他にもアミド化、エステル化等の方法が用いられ
る。また、多孔質ポリブチルアクリレートを水酸化ナト
リウム水溶液に浸水させることにより、細孔表面をアル
カリ処理する方法等のように、酸処理あるいはアルカリ
処理して化学修飾する方法等も用いられるが、これらに
限定されるものではない。
The chemical modification step according to the present invention is a step in which the surface portion of the pores of the polymer porous material can have a function without using a functional molecule. Specifically, there is a method of sulfonation by reacting the surface of the pores of porous polystyrene with sulfuric acid in tetrachloroethane, but other methods such as amidation and esterification are also used. Further, a method of chemically modifying by acid treatment or alkali treatment, such as a method of subjecting the surface of pores to alkali treatment by immersing porous polybutyl acrylate in an aqueous solution of sodium hydroxide, is also used. It is not limited.

【0032】本発明に係る機能分子をポリマー多孔体の
細孔表面に分子修飾する方法としては、具体的には、多
孔質ポリアクリルアミドの細孔表面に、機能分子として
のギ酸ブチルを、ジシクロヘキシルカルボジイミドとDM
F溶液中でウレタン化する方法、多孔質メタクリル酸の
細孔表面に機能分子としてブチルアミンを、反応触媒と
してパラトルエンスルホン酸を用い、脱水トルエン溶液
中でアミド化する方法、多孔質アクリル酸の細孔表面に
機能分子としてプロピルアミンを、反応触媒としてパラ
トルエンスルホン酸を用い、脱水トルエン溶液中でアミ
ド化する方法、多孔質ポリビニルアルコールの細孔表面
に、機能分子として塩化バレロイルを用い、脱水トルエ
ン溶液中でエステル化する方法等が挙げられるが、これ
らの方法に限定されるものではない。
The molecular modification of the functional molecule according to the present invention on the surface of the pores of the polymer porous body is carried out by specifically adding butyl formate as the functional molecule on the surface of the pores of the porous polyacrylamide with dicyclohexylcarbodiimide. And DM
Method of urethanization in F solution, method of butylamine as functional molecule on the surface of pores of porous methacrylic acid, and method of amidation in dehydrated toluene using para-toluenesulfonic acid as reaction catalyst, Using propylamine as a functional molecule on the pore surface and para-toluene sulfonic acid as a reaction catalyst, amidation in a dehydrated toluene solution, and valeroyl chloride as a functional molecule on the pore surface of porous polyvinyl alcohol, dehydrated toluene Examples of the method include esterification in a solution, but the method is not limited to these.

【0033】本発明に係る分子修飾工程で用いられる機
能分子は、カルボン酸(R−COOH)、アミン(R−
NH、RR’NH)、過酸(R−CO(OOH))、
チオカルボン酸(R−CSOH)、ジチオカルボン酸
(R−CSSH)、スルホン酸(R−SOH)、スル
フィン酸(R−SOH)、スルフェン酸(R−SO
H)、カルボン酸塩(R−COOM:Mは金属を示
す)、酸無水物(R−CO−O−CO−R’)、エステ
ル(R−COOR’)、ハロゲン化物(R−X:Xはハ
ロゲン原子を示す)、酸ハロゲン化物(R−COX:X
はハロゲン原子を示す)、アミド(R−CONH)、
ヒドラジド(R−CO−NHNH)、イミド(R−C
O−NH−OC−R’)、アミジン(R−CNH(NH
))、ニトリル(R−CN)、イソシアン化物(R−
NC)、シアン酸エステル(R−OCN)、イソシアン酸
エステル(R−NCO)、チオシアン酸エステル(R−
SCN)、イソチオシアン酸エステル(R−NCS)、
アルデヒド(R−CHO)、チオアルデヒド(R−CH
S)、ケトン(R−CO−R’)、チオケトン(R−C
S−R’)、アルコール(R−OH)、フェノール(R−
OH)、チオール(R−SH)、ヒドロペルオキシド(R−
OOH)、イミン(R=NH)、ヒドラジン(R−NHN
)、エーテル(R−OR’)、スルフィド(R−S
R’)、ジスルフィド(R−SSR’)、過酸化物(R
−OOR’)等が挙げられ、これらの内1種又は2種以
上が用いられる。但し、RまたはR’は、脂肪族炭化水
素、脂環式炭化水素、芳香族炭化水素、α,β,γ−シ
クロデキストリン等のシクロデキストリン、クラウンエ
ーテル、カリックスアレン、ペプチド、酵素、発光色素
等からなる群より選ばれる少なくとも一種である。尚、
R、R’は異なっていても同一でも構わない。ここで、
シクロデキストリン、クラウンエーテル、カリックスア
レン、ペプチド、酵素、発光色素等については、その種
類は問わない。また、これらはそれ自体機能性を有し、
その部位による分子認識を利用している。一方、脂肪族
炭化水素、脂環式炭化水素や芳香族炭化水素に見られる
ように機能性を有しないものは、ポリマー多孔体内の表
面にアミド(−CONH)、カルボン酸(―COO
H)、イミド(−CO−NH−CO−)、酸ハロゲン化
物(−COX:Xはハロゲン原子を示す)、ヒドラジド
(−CO−NHNH)等の部位を存在させることによ
り、この部位と分離される分子やセンシングされる分子
との相互作用(例えば、水素結合相互作用や静電相互作
用)を利用している。尚、これらの機能分子を組み合わ
せることによって、発色部位やフォトクロミック部位、
分子認識部位などを付与することが可能である。
Machine used in the molecular modification step according to the present invention
The functional molecules include carboxylic acid (R-COOH) and amine (R-COOH).
NHTwo, RR'NH), peracid (R-CO (OOH)),
Thiocarboxylic acid (R-CSOH), dithiocarboxylic acid
(R-CSH), sulfonic acid (R-SOThreeH), Sul
Finic acid (R-SOTwoH), sulfenic acid (R-SO
H), carboxylate (R-COOM: M is a metal
), Acid anhydride (R-CO-O-CO-R '), ester
(R-COOR '), halide (R-X: X is
Rogen atom), acid halide (R-COX: X
Represents a halogen atom), amide (R-CONHTwo),
Hydrazide (R-CO-NHNHTwo), Imide (RC)
O-NH-OC-R '), amidine (R-CNH (NH
Two)), Nitrile (R-CN), isocyanide (R-
NC), cyanate ester (R-OCN), isocyanic acid
Ester (R-NCO), thiocyanate ester (R-
SCN), isothiocyanate (R-NCS),
Aldehyde (R-CHO), thioaldehyde (R-CH
S), ketone (R-CO-R '), thioketone (R-C)
S-R '), alcohol (R-OH), phenol (R-
OH), thiol (R-SH), hydroperoxide (R-
OOH), imine (R = NH), hydrazine (R-NHN
H Two), Ether (R-OR '), sulfide (RS)
R '), disulfide (R-SSR'), peroxide (R
-OOR ') and the like, and one or more of these can be used.
The above is used. However, R or R'is an aliphatic hydrocarbon
Elementary, alicyclic hydrocarbon, aromatic hydrocarbon, α, β, γ-si
Cyclodextrins such as clodextrin, crown ether
Ether, calixarene, peptide, enzyme, luminescent dye
It is at least one selected from the group consisting of still,
R and R'may be different or the same. here,
Cyclodextrin, crown ether, calixa
For lens, peptides, enzymes, luminescent dyes, etc.
The kind does not matter. Also, they have functionality in their own right,
It utilizes molecular recognition by the site. Meanwhile, aliphatic
Found in hydrocarbons, cycloaliphatic hydrocarbons and aromatic hydrocarbons
Those that do not have the functionality like
Amide (-CONHTwo), Carboxylic acid (--COO
H), imide (-CO-NH-CO-), acid halogenation
(-COX: X represents a halogen atom), hydrazide
(-CO-NHNHTwo) Etc.
Molecules that are separated from this site or that are sensed
Interaction with (such as hydrogen-bonding interactions and electrostatic interactions).
Are used). In addition, combining these functional molecules
By making it, the coloring part and the photochromic part,
It is possible to add a molecular recognition site or the like.

【0034】脂肪族炭化水素としては、具体的には、メ
チル基、エチル基、プロピル基、イソプロピル基、ブチ
ル基、イソブチル基、s−ブチル基、t−ブチル基、ペ
ンチル基、イソペンチル基、ネオペンチル基、ヘキシル
基、ヘプチル基、オクチル基、ノニル基、デシル基、ウ
ンデシル基、ドデシル基、ビニル基、1−プロペニル
基、アリル基、イソプロペニル基、1−ブテニル基、2
−ブテニル基、2−ペンテニル基、エテニル基等が挙げ
られるが、これらに限定されるものではない。脂環式炭
化水素としては、具体的には、シクロプロピル基、シク
ロペンチル基、シクロヘキシル基、1−シクロヘキセニ
ル基等が挙げられるが、これらに限定されるものではな
い。芳香族炭化水素としては、具体的には、フェニル
基、トリル基、キシリル基、メシチル基、クメニル基、
ベンジル基、フェニルエチル基、α−メチルベンジル
基、トリフェニルメチル基、スチリル基、シンナミル
基、ビフェニリル基、ナフチル基、アンスリル基、フェ
ナンスリル基等が挙げられるが、これらに限定されるも
のではない。
Specific examples of the aliphatic hydrocarbon include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, s-butyl group, t-butyl group, pentyl group, isopentyl group, neopentyl group. Group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, vinyl group, 1-propenyl group, allyl group, isopropenyl group, 1-butenyl group, 2
Examples thereof include -butenyl group, 2-pentenyl group, ethenyl group and the like, but are not limited thereto. Specific examples of the alicyclic hydrocarbon include, but are not limited to, a cyclopropyl group, a cyclopentyl group, a cyclohexyl group, a 1-cyclohexenyl group, and the like. As the aromatic hydrocarbon, specifically, a phenyl group, a tolyl group, a xylyl group, a mesityl group, a cumenyl group,
Examples thereof include, but are not limited to, a benzyl group, a phenylethyl group, an α-methylbenzyl group, a triphenylmethyl group, a styryl group, a cinnamyl group, a biphenylyl group, a naphthyl group, an anthryl group, and a phenanthryl group.

【0035】本発明に係る機能性膜は、分子認識能、セ
ンサー機能、分離機能、化学反応触媒機能、光学機能、
電子的機能等の各種機能を有し、化学センサー、バイオ
センサー、分離膜等を吸着するミクロ環境反応触媒、光
学部品、電子部品、ミクロ化学反応容器等として広く用
いられる。本発明のポリマーに、本発明の目的を損なわ
ない範囲において、安定剤、紫外線吸収剤、滑剤、ブル
ーイング剤、顔料、着色剤、酸化防止剤、帯電防止剤等
の添加剤等をブレンドしてもよい。
The functional film according to the present invention comprises a molecular recognition function, a sensor function, a separation function, a chemical reaction catalyst function, an optical function,
It has various functions such as electronic functions and is widely used as a chemical sensor, a biosensor, a microenvironmental reaction catalyst for adsorbing a separation membrane, an optical component, an electronic component, a microchemical reaction container, and the like. The polymer of the present invention is blended with additives such as stabilizers, ultraviolet absorbers, lubricants, bluing agents, pigments, colorants, antioxidants, antistatic agents, etc. within a range not impairing the object of the present invention. Good.

【0036】[0036]

【実施例】以下、本発明を実施例により詳細に説明する
が、本発明はこれらに限定されるものではない。 実施例1 図1は本発明の一実施例におけるポリマー多孔体の製造
工程図である。図1に示すように、保持基板であるカバ
ーガラス(シリカガラス)2上に、枠部である円筒状の
シリコーンゴム7を圧着した。このシリコーンゴム7内
に、水中に粒径285nmの球状のシリカ製微小体(以
下、シリカ微小球という。)3を懸濁させた溶液8を入
れ、静置し、自然沈降法によりシリカ微小球3を沈降さ
せ、シリカ微小球3が周期的に多数充填した構造体(以
下、シリカ微小球周期構造体という。)4を調製した
(図1(1))。その後、水を取り除き乾燥させ、シリ
コーンゴム7を取り外した(図1(2))。次いで、上
記のシリカ微小球周期構造体内4の空隙に、増粘度剤と
しての重量分率で20%のポリマー(ポリアクリルアミ
ド)を含むモノマー(アクリルアミド)を導入し、この
モノマーを紫外線光源(水銀ランプ)を用いて重合した
(図1(3))。これにより、図2に示すような、膜形
成材1が形成された。図2は本発明の一実施例における
膜形成材の拡大断面図である。その後、保持基板および
シリカ微小球をエッチング剤である8%フッ化水素酸水
溶液で溶かし、図3及び図4に示すような、ポリマー多
孔体である多孔質ポリアクリルアミドを作製した(図1
(4))。図3は本発明の一実施例におけるポリマー多
孔体の拡大断面図であり、図4は本発明の一実施例にお
けるポリマー多孔体の拡大平面図である。このようにし
て得られた多孔質ポリアクリルアミドの細孔の表面に、
機能分子としてギ酸ブチルを、ジシクロヘキシルカルボ
ジイミドとDMF溶液中で、ウレタン化し、機能性膜を作
製した。
EXAMPLES The present invention will now be described in detail with reference to examples, but the present invention is not limited thereto. Example 1 FIG. 1 is a manufacturing process drawing of a polymer porous body in one example of the present invention. As shown in FIG. 1, a cylindrical silicone rubber 7 as a frame was pressure-bonded onto a cover glass (silica glass) 2 as a holding substrate. A solution 8 in which spherical silica microparticles (hereinafter referred to as silica microspheres) 3 having a particle diameter of 285 nm are suspended in water is placed in the silicone rubber 7 and allowed to stand, and the silica microspheres are prepared by a natural sedimentation method. 3 was allowed to settle, and a structure (hereinafter referred to as silica microsphere periodic structure) 4 in which a large number of silica microspheres 3 were periodically packed was prepared (FIG. 1 (1)). After that, the water was removed and dried, and the silicone rubber 7 was removed (FIG. 1 (2)). Then, a monomer (acrylamide) containing a polymer (polyacrylamide) at a weight fraction of 20% as a viscosity increasing agent is introduced into the voids in the above-mentioned silica microsphere periodic structure 4 and this monomer is used as an ultraviolet light source (mercury lamp). ) Was used for polymerization (FIG. 1 (3)). Thereby, the film forming material 1 as shown in FIG. 2 was formed. FIG. 2 is an enlarged cross-sectional view of a film forming material according to an embodiment of the present invention. After that, the holding substrate and the silica microspheres were dissolved in an 8% hydrofluoric acid aqueous solution as an etching agent to prepare porous polyacrylamide as a polymer porous body as shown in FIGS. 3 and 4 (FIG. 1).
(4)). FIG. 3 is an enlarged cross-sectional view of the polymer porous body according to one embodiment of the present invention, and FIG. 4 is an enlarged plan view of the polymer porous body according to one embodiment of the present invention. On the surface of the pores of the porous polyacrylamide thus obtained,
Butyl formate as a functional molecule was made into urethane with dicyclohexylcarbodiimide and DMF solution to prepare a functional film.

【0037】実施例2 保持基板であるカバーガラス(シリカガラス)上に、円
筒状のシリコーンゴムを圧着した。このシリコーンゴム
内に、水中に粒径285nmのシリカ微小球を懸濁させ
た溶液を入れ、静置し、自然沈降法によりシリカ微小球
を沈降させ、シリカ微小球周期構造体を調製した。その
後、水を取り除き乾燥させ、シリコーンゴムを取り外し
た。次いで、上記のシリカ微小球周期構造体内の空隙
に、増粘度剤としての重量分率で25%のポリマー(ポ
リメタクリル酸)を含むモノマー(メタクリル酸)を導
入し、このモノマーを紫外線光源(水銀ランプ)を用い
て重合した。その後、保持基板およびシリカ微小球を、
エッチング剤である8%フッ化水素酸水溶液で溶かし、
ポリマー多孔体である多孔質メタクリル酸を作製した。
このようにして得られた多孔質メタクリル酸の細孔の表
面に、機能分子としてブチルアミンを、反応触媒として
パラトルエンスルホン酸を用い、脱水トルエン溶液中で
アミド化し、機能性膜を作製した。
Example 2 A cylindrical silicone rubber was pressure-bonded onto a cover glass (silica glass) which was a holding substrate. A solution in which silica microspheres having a particle size of 285 nm were suspended in water was placed in the silicone rubber, and the solution was allowed to stand, and the silica microspheres were allowed to settle by a natural sedimentation method to prepare a silica microsphere periodic structure. Then, the water was removed and the product was dried and the silicone rubber was removed. Then, a monomer (methacrylic acid) containing 25% by weight of a polymer (polymethacrylic acid) as a thickener is introduced into the voids in the above-mentioned silica microsphere periodic structure, and this monomer is used as an ultraviolet light source (mercury). Lamp) was used for the polymerization. Then, the holding substrate and silica microspheres
Dissolve in an 8% hydrofluoric acid aqueous solution that is an etching agent,
Porous methacrylic acid, which is a polymer porous body, was produced.
On the surface of the pores of the thus obtained porous methacrylic acid, butylamine was used as a functional molecule and paratoluenesulfonic acid was used as a reaction catalyst, and amidation was performed in a dehydrated toluene solution to prepare a functional film.

【0038】実施例3 水中に粒径285nmのシリカ微小球を懸濁させた溶液
の水滴を保持基材であるシリコーン上に静置させ、シリ
カ微小球周期構造体を調製した。その後、水を取り除き
乾燥させた。次いで、上記のシリカ微小球周期構造体内
の空隙に、増粘度剤としての重量分率で25%のポリマ
ー(ポリアクリル酸)を含むモノマー(アクリル酸)を
導入し、このモノマーを紫外線光源(水銀ランプ)を用
いて重合した。その後、保持基板をエッチング剤である
王水で、シリカ微小球をエッチング剤である8%フッ化
水素酸水溶液でそれぞれ溶かし、ポリマー多孔体である
多孔質アクリル酸を作製した。このようにして得られた
多孔質アクリル酸の細孔の表面に、機能分子としてプロ
ピルアミンを、反応触媒としてパラトルエンスルホン酸
を用い、脱水トルエン溶液中でアミド化し、機能性膜を
作製した。
Example 3 A silica microsphere periodic structure was prepared by allowing water droplets of a solution of silica microspheres having a particle size of 285 nm to be suspended in water to stand on silicone as a holding substrate. After that, the water was removed and the product was dried. Then, a monomer (acrylic acid) containing a polymer (polyacrylic acid) at a weight fraction of 25% as a thickener is introduced into the voids in the above-mentioned silica microsphere periodic structure, and this monomer is used as an ultraviolet light source (mercury). Lamp) was used for the polymerization. Then, the holding substrate was dissolved with aqua regia as an etching agent, and the silica microspheres were dissolved with an 8% aqueous solution of hydrofluoric acid as an etching agent to prepare porous acrylic acid as a polymer porous body. On the surface of the pores of the thus obtained porous acrylic acid, propylamine was used as a functional molecule and paratoluenesulfonic acid was used as a reaction catalyst, and amidation was performed in a dehydrated toluene solution to prepare a functional film.

【0039】実施例4 保持基板であるカバーガラス(シリカガラス)上に、枠
部である円筒状のシリコーンゴムを圧着した。このシリ
コーンゴム内に、水中に粒径285nmのシリカ微小球
を懸濁させた溶液を入れ、静置し、自然沈降法によりシ
リカ微小球を沈降させ、シリカ微小球周期構造体を調製
した。その後、水を取り除き乾燥させ、シリコーンゴム
を取り外した。次いで、上記のシリカ微小球周期構造体
内の空隙に、真空中で加熱溶融することによってポリビ
ニルアルコールを導入した。その後、保持基板およびシ
リカ微小球を、エッチング剤である8%フッ化水素酸水
溶液で溶かし、ポリマー多孔体である多孔質ポリビニル
アルコールを作製した。このようにして得られた多孔質
ポリビニルアルコールの細孔の表面に、機能分子として
塩化バレロイルを用い、脱水トルエン溶液中でエステル
化し、機能性膜を作製した。
Example 4 On a cover glass (silica glass) which was a holding substrate, a cylindrical silicone rubber which was a frame was pressure-bonded. A solution in which silica microspheres having a particle size of 285 nm were suspended in water was placed in the silicone rubber, and the solution was allowed to stand, and the silica microspheres were allowed to settle by a natural sedimentation method to prepare a silica microsphere periodic structure. Then, the water was removed and the product was dried and the silicone rubber was removed. Then, polyvinyl alcohol was introduced into the voids in the silica microsphere periodic structure by heating and melting in a vacuum. After that, the holding substrate and the silica microspheres were dissolved in an 8% hydrofluoric acid aqueous solution as an etching agent to prepare a porous polyvinyl alcohol as a polymer porous body. On the surface of the pores of the thus obtained porous polyvinyl alcohol, valeroyl chloride was used as a functional molecule, and esterification was performed in a dehydrated toluene solution to prepare a functional film.

【0040】実施例5 水中に粒径552nmのシリカ微小球を懸濁させた溶液
から、遠心力による強制沈降法により保持基板としての
カバーガラス(シリカガラス)上にシリカ微小球周期構
造体を調製した。得られたシリカ微小球周期構造体を温
度400〜600℃で焼結することによって固定化を行
った。次いで、上記のシリカ微小球周期構造体内の空隙
に、真空中で加熱溶融することによってポリスチレンを
導入した。その後、保持基板およびシリカ微小球を、エ
ッチング剤である8%フッ化水素酸水溶液で溶かし、ポ
リマー多孔体である多孔質ポリスチレンを作製した。こ
のようにして得られた多孔質ポリスチレンの細孔の表面
をテトラクロロエタン中で硫酸と反応させることによっ
てスルホン化し、機能性膜を作製した。
Example 5 A silica microsphere periodic structure was prepared on a cover glass (silica glass) as a holding substrate from a solution prepared by suspending silica microspheres having a particle size of 552 nm in water by a forced sedimentation method by centrifugal force. did. Immobilization was performed by sintering the obtained silica microsphere periodic structure at a temperature of 400 to 600 ° C. Next, polystyrene was introduced into the voids in the silica microsphere periodic structure by heating and melting in a vacuum. After that, the holding substrate and the silica microspheres were dissolved in an 8% aqueous solution of hydrofluoric acid, which was an etching agent, to prepare porous polystyrene that was a polymer porous body. The surface of the pores of the thus obtained porous polystyrene was sulfonated by reacting with sulfuric acid in tetrachloroethane to prepare a functional film.

【0041】実施例6 保持基板であるカバーガラス(シリカガラス)上に、円
筒状のシリコーンゴムを圧着した。このシリコーンゴム
内に、水中に粒径285nmのシリカ微小球を懸濁させ
た溶液を入れ、静置し、自然沈降法によりシリカ微小球
を沈降させ、シリカ微小球周期構造体を調製した。その
後、水を取り除き乾燥させ、シリコーンゴムを取り外し
た。次いで、上記のシリカ微小球周期構造体内の空隙
に、増粘度剤としての重量分率で25%のポリマー(ポ
リブチルアクリレート)を含むモノマー(ブチルアクリ
レート)を導入し、このモノマーを紫外線光源(水銀ラ
ンプ)を用いて重合した。その後、保持基板およびシリ
カ微小球を、エッチング剤である8%フッ化水素酸水溶
液で溶かし、ポリマー多孔体である多孔質ポリブチルア
クリレートを作製した。このようにして得られた多孔質
ポリブチルアクリレートを水酸化ナトリウム水溶液に浸
水させることによって細孔表面をアルカリ処理し、機能
性膜を作製した。
Example 6 A cylindrical silicone rubber was pressure-bonded onto a cover glass (silica glass) which was a holding substrate. A solution in which silica microspheres having a particle size of 285 nm were suspended in water was placed in the silicone rubber, and the solution was allowed to stand, and the silica microspheres were allowed to settle by a natural sedimentation method to prepare a silica microsphere periodic structure. Then, the water was removed and the product was dried and the silicone rubber was removed. Next, a monomer (butyl acrylate) containing 25% by weight of a polymer (polybutyl acrylate) as a thickener is introduced into the voids in the above-mentioned silica microsphere periodic structure, and this monomer is used as an ultraviolet light source (mercury). Lamp) was used for the polymerization. After that, the holding substrate and the silica microspheres were dissolved in an 8% hydrofluoric acid aqueous solution as an etching agent to prepare a porous polybutyl acrylate as a polymer porous body. The porous polybutyl acrylate thus obtained was immersed in an aqueous solution of sodium hydroxide to treat the surface of the pores with an alkali to prepare a functional film.

【0042】評価例1 実施例1〜4はポリマー多孔体の細孔表面を機能分子に
より分子修飾する方法であり、実施例5は機能分子を用
いないで、細孔表面をスルホン化して化学修飾する方法
であり、実施例6は機能分子を用いないで、細孔表面を
アルカリ処理して化学修飾する方法である。実施例1〜
6で得られた機能性膜について、走査電子顕微鏡(FE
−SEMJSM−6340型 JEOL(株)製)で確
認した。その結果、実施例1〜4および実施例6の膜内
部の空隙の直径は、シリカ微小球の粒子径285nmと
略等しく、また球状の空隙間の細孔は約50nmの細孔
径を有していることがわかる。また、実施例5の膜内部
の空隙の直径は、シリカ微小球の粒子径552nmと略
等しく、また球状の空隙間の細孔は約110nmの細孔
径を有していることがわかる。すなわち、実施例1〜6
で得られた機能性膜は、用いたポリマーの種類に依存す
ることなく、均一な細孔径および細孔形状を有すること
がわかる。また、機能性膜の上面にエタノールを置き、
下面側を吸引すると、これらの溶媒が流れることが確認
された。その結果、ポリマー多孔体内に連続的な細孔を
有することがわかる。
Evaluation Example 1 Examples 1 to 4 are methods of molecularly modifying the pore surface of a polymer porous body with a functional molecule, and Example 5 is a chemical modification by sulfonating the pore surface without using a functional molecule. Example 6 is a method of chemically treating the surface of pores with an alkali without using a functional molecule. Example 1
For the functional film obtained in No. 6, scanning electron microscope (FE
-SEM JSM-6340 type manufactured by JEOL Corporation). As a result, the diameters of the voids inside the membranes of Examples 1 to 4 and Example 6 were approximately equal to the particle diameter of silica microspheres of 285 nm, and the pores between the spherical voids had a pore diameter of about 50 nm. You can see that Further, it can be seen that the diameter of the voids inside the membrane of Example 5 is approximately equal to the particle diameter of the silica microspheres of 552 nm, and the pores between the spherical voids have a pore diameter of about 110 nm. That is, Examples 1 to 6
It can be seen that the functional film obtained in (2) has a uniform pore diameter and pore shape, regardless of the type of polymer used. Also, place ethanol on top of the functional membrane,
It was confirmed that these solvents flow when the lower surface side is sucked. As a result, it can be seen that the polymer porous body has continuous pores.

【0043】[0043]

【発明の効果】本発明の機能性膜の製造方法によれば、
予め精密に設計できる細孔径を有する連続した細孔表面
を機能分子で分子修飾し、もしくは化学修飾することに
より、官能基間での吸着、脱離による分子認識、または
分子形状による分子認識が起こり、分離、センシング、
ミクロ環境化学反応触媒等の機能を発現することが可能
な機能性膜を精密且つ簡易に作製できる。すなわち、分
離機能、センサー機能、ミクロ化学反応触媒の機能等が
厳密に制御可能となり、分離膜としての性能が画期的に
向上し、またセンサーやミクロ環境反応触媒としての吸
着能の選択性や化学反応の特異性を発現できる機能性膜
を容易に得ることができる。更に、微小な細孔表面を機
能分子等で修飾することにより、均一且つ比表面積が大
きい分子修飾した機能性膜が得られるとともに、微小体
の粒子径を変化させることにより、機能性膜の細孔径を
適宜調節することができ汎用性に優れる。
According to the method for producing a functional film of the present invention,
By molecularly modifying or chemically modifying a continuous pore surface with a pore size that can be precisely designed beforehand with functional molecules, molecular recognition by adsorption or desorption between functional groups, or molecular recognition by molecular shape occurs. , Separation, sensing,
A functional film capable of exhibiting a function such as a microenvironmental chemical reaction catalyst can be manufactured precisely and easily. That is, separation function, sensor function, function of micro chemical reaction catalyst, etc. can be strictly controlled, the performance as a separation membrane is remarkably improved, and selectivity of adsorption ability as a sensor or a microenvironmental reaction catalyst is improved. A functional film capable of expressing the specificity of a chemical reaction can be easily obtained. Furthermore, by modifying the surface of minute pores with functional molecules, etc., a functional film with uniform and large specific surface area can be obtained, and by changing the particle size of the microparticles, the functional film can be made finer. It has excellent versatility because the pore size can be adjusted appropriately.

【0044】本発明の機能性膜によれば、均一な細孔径
を有し且つ連続細孔が三次元的に形成され、その連続し
た細孔表面が機能基で修飾されているため、分離機能、
センサー機能、ミクロ化学反応触媒の機能等が厳密に制
御可能となり、分離膜、センサー膜、ミクロ環境化学反
応膜等として利用できる。また、分離膜として利用する
場合には、分離能が画期的に向上し、またセンサーやミ
クロ環境反応触媒として利用する場合には、機能基で修
飾された微小空隙内面の均質性のため、吸着能の選択性
や化学反応の特異性を発現させるという他の方法では実
現が困難な課題を解決できる。機能分子にR−COO
H、R−NH、R−OH、R−COXを用い、特にR
にシクロデキストリン、クラウンエーテル、カリックス
アレン、ペプチド、酵素、発光色素等を用いると、これ
らは機能性を有するためこの部位による分子認識が起こ
る。
According to the functional membrane of the present invention, continuous pores having a uniform pore diameter are formed three-dimensionally, and the surface of the continuous pores is modified with a functional group, so that the separation function is improved. ,
The sensor function, the function of the microchemical reaction catalyst, etc. can be strictly controlled, and it can be used as a separation membrane, a sensor membrane, a microenvironmental chemical reaction membrane, and the like. Further, when used as a separation membrane, the separation ability is remarkably improved, and when used as a sensor or a microenvironmental reaction catalyst, because of the homogeneity of the inner surface of the micropore modified with a functional group, It is possible to solve problems that are difficult to achieve by other methods such as expressing the selectivity of adsorption ability and the specificity of chemical reaction. R-COO for functional molecules
Using H, R-NH 2, R -OH, the R-COX, in particular R
When cyclodextrin, crown ether, calixarene, peptide, enzyme, luminescent dye, etc. are used for the above, since these have functionality, molecular recognition by this site occurs.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例におけるポリマー多孔体の製
造工程図
FIG. 1 is a process drawing of a polymer porous body according to an embodiment of the present invention.

【図2】本発明の一実施例における膜形成材の拡大断面
FIG. 2 is an enlarged sectional view of a film forming material according to an embodiment of the present invention.

【図3】本発明の一実施例におけるポリマー多孔体の拡
大断面図
FIG. 3 is an enlarged cross-sectional view of a polymer porous body according to an embodiment of the present invention.

【図4】本発明の一実施例におけるポリマー多孔体の拡
大平面図
FIG. 4 is an enlarged plan view of a polymer porous body according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 膜形成材 2 カバーガラス 3 シリカ微小球 4 構造体 5 ポリマー 6 ポリマー多孔体 7 シリコーンゴム 8 シリカ微小球分散水溶液 1 film forming material 2 cover glass 3 Silica microspheres 4 structures 5 polymer 6 Polymer porous body 7 Silicone rubber 8 Silica microsphere dispersion solution

フロントページの続き Fターム(参考) 4F074 AA50 AC32 AE06 CB04 CB13 CB22 CC25X CC30Z CC37Y CC45 CC50 CC62 CD17 DA24 DA43 DA59 4G069 AA01 AA12 BA02C BA14A BA14B BA22A BE06A BE08A BE14A BE33A EA08 EB05 FA01 FB49 FC03 Continued front page    F-term (reference) 4F074 AA50 AC32 AE06 CB04 CB13                       CB22 CC25X CC30Z CC37Y                       CC45 CC50 CC62 CD17 DA24                       DA43 DA59                 4G069 AA01 AA12 BA02C BA14A                       BA14B BA22A BE06A BE08A                       BE14A BE33A EA08 EB05                       FA01 FB49 FC03

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 保持基材の上面に、微小体を充填し内部
に連続した空隙を有する構造体を形成する構造体形成工
程と、該構造体形成工程で得られた構造体の空隙にポリ
マーを充填するポリマー充填工程と、該ポリマー充填工
程後、保持基材及び微小体を脱離する脱離工程と、該脱
離工程で微小体を脱離して形成したポリマー多孔体の細
孔の表面を化学修飾する化学修飾工程と、を有すること
を特徴とする機能性膜の製造方法。
1. A structure-forming step of forming microstructures on the upper surface of a holding substrate to form a structure having continuous voids therein, and a polymer in the voids of the structure obtained in the structure-forming step. A polymer filling step of filling the polymer, a desorption step of desorbing the holding base material and the fine particles after the polymer filling step, and a surface of the pores of the polymer porous body formed by desorbing the fine particles in the desorption step. A method for producing a functional film, comprising: a chemical modification step of chemically modifying
【請求項2】 保持基材の上面に、微小体を充填し内部
に連続した空隙を有する構造体を形成する構造体形成工
程と、該構造体形成工程で得られた構造体の空隙にポリ
マーを充填するポリマー充填工程と、該ポリマー充填工
程後、保持基材及び微小体を脱離する脱離工程と、該脱
離工程で微小体を脱離して形成したポリマー多孔体の細
孔の表面を機能分子で分子修飾する分子修飾工程と、を
有することを特徴とする機能性膜の製造方法。
2. A structure-forming step of forming microstructures on the upper surface of a holding substrate to form a structure having continuous voids therein, and a polymer in the voids of the structure obtained in the structure-forming step. A polymer filling step of filling the polymer, a desorption step of desorbing the holding base material and the fine particles after the polymer filling step, and a surface of the pores of the polymer porous body formed by desorbing the fine particles in the desorption step. And a molecular modification step of modifying the molecule with a functional molecule.
【請求項3】 機能分子がR−COOH、R−NH
R−OH、R−COX(但し、Rは脂肪族炭化水素、脂
環式炭化水素、芳香族炭化水素、シクロデキストリン、
クラウンエーテル、カリックスアレン、ペプチド、酵
素、発光色素からなる群より選ばれる少なくとも一種で
あり、Xはハロゲン原子を示す)から選ばれる少なくと
も一種であることを特徴とする請求項2に記載の機能性
膜の製造方法。
3. The functional molecule is R—COOH, R—NH 2 ,
R-OH, R-COX (where R is an aliphatic hydrocarbon, an alicyclic hydrocarbon, an aromatic hydrocarbon, a cyclodextrin,
The functionality according to claim 2, which is at least one selected from the group consisting of crown ethers, calixarene, peptides, enzymes, and luminescent dyes, and X is at least one selected from the group consisting of halogen atoms). Membrane manufacturing method.
【請求項4】 脱離可能な保持基材と、該保持基材の上
面に形成した、脱離可能な微小体を充填し内部に連続し
た空隙を有する構造体と、該構造体の空隙に充填したポ
リマーとからなる膜形成材から、保持基材及び微小体を
脱離して形成した細孔を有するポリマー多孔体であっ
て、該ポリマー多孔体の細孔の表面を化学修飾したこと
を特徴とする機能性膜。
4. A releasable holding base material, a structure formed on the upper surface of the holding base material, which has a continuous void inside and which is filled with the detachable microscopic body, and a void in the structure body. A polymer porous body having pores formed by desorbing a holding base material and microscopic bodies from a film forming material composed of a filled polymer, characterized in that the surface of the pores of the polymer porous body is chemically modified. And functional film.
【請求項5】 脱離可能な保持基材と、該保持基材の上
面に形成した、脱離可能な微小体を充填し内部に連続し
た空隙を有する構造体と、該構造体の空隙に充填したポ
リマーとからなる膜形成材から、保持基材及び微小体を
脱離して形成した細孔を有するポリマー多孔体であっ
て、該ポリマー多孔体の細孔の表面を機能分子で分子修
飾したことを特徴とする機能性膜。
5. A detachable holding base material, a structure formed on an upper surface of the holding base material and having a continuous void inside, filled with a detachable fine body, and a void in the structure body. A polymer porous body having pores formed by desorbing a holding base material and microscopic bodies from a film forming material composed of a filled polymer, and the surface of the pores of the polymer porous body is molecularly modified with a functional molecule. A functional film characterized in that
【請求項6】 機能分子がR−COOH、R−NH
R−OH、R−COX(但し、Rは脂肪族炭化水素、脂
環式炭化水素、芳香族炭化水素、シクロデキストリン、
クラウンエーテル、カリックスアレン、ペプチド、酵
素、発光色素からなる群より選ばれる少なくとも一種で
あり、Xはハロゲン原子を示す)から選ばれる少なくと
も一種であることを特徴とする請求項5に記載の機能性
膜。
6. The functional molecule is R—COOH, R—NH 2 ,
R-OH, R-COX (where R is an aliphatic hydrocarbon, an alicyclic hydrocarbon, an aromatic hydrocarbon, a cyclodextrin,
6. The functionality according to claim 5, which is at least one selected from the group consisting of crown ethers, calixarene, peptides, enzymes, and luminescent dyes, and X is at least one selected from the group consisting of halogen atoms). film.
JP2001336241A 2001-11-01 2001-11-01 Functional film and method for producing the functional film Expired - Fee Related JP3687000B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001336241A JP3687000B2 (en) 2001-11-01 2001-11-01 Functional film and method for producing the functional film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001336241A JP3687000B2 (en) 2001-11-01 2001-11-01 Functional film and method for producing the functional film

Publications (2)

Publication Number Publication Date
JP2003138056A true JP2003138056A (en) 2003-05-14
JP3687000B2 JP3687000B2 (en) 2005-08-24

Family

ID=19151099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001336241A Expired - Fee Related JP3687000B2 (en) 2001-11-01 2001-11-01 Functional film and method for producing the functional film

Country Status (1)

Country Link
JP (1) JP3687000B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006167855A (en) * 2004-12-15 2006-06-29 Ricoh Co Ltd Method for forming periodic structure, periodic structure, and optical element using periodic structure
JP2006349474A (en) * 2005-06-15 2006-12-28 Totoku Electric Co Ltd Optical fiber vibration sensor
JPWO2007086306A1 (en) * 2006-01-30 2009-06-18 学校法人近畿大学 Biodegradable inverted-opal structure, method for producing and using the same, and medical implant comprising the biodegradable inverted-opal structure
JP2009541080A (en) * 2006-06-28 2009-11-26 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Component manufacturing method, in particular micromechanical component and / or microfluidic component and / or microelectronic component manufacturing method and component
KR101083228B1 (en) 2004-10-07 2011-11-11 삼성코닝정밀소재 주식회사 Composition comprising calix-arene derivatives for preparing materials having nano-porosity
JP2012062299A (en) * 2010-09-17 2012-03-29 Shanghai Huayi Microelectric Material Co Ltd Method for producing high-purity electronic grade acetic acid
KR20170012341A (en) * 2014-06-20 2017-02-02 도쿄 오카 고교 가부시키가이샤 Porous imide resin film production system, separator, and porous imide resin film production method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101083228B1 (en) 2004-10-07 2011-11-11 삼성코닝정밀소재 주식회사 Composition comprising calix-arene derivatives for preparing materials having nano-porosity
JP2006167855A (en) * 2004-12-15 2006-06-29 Ricoh Co Ltd Method for forming periodic structure, periodic structure, and optical element using periodic structure
JP2006349474A (en) * 2005-06-15 2006-12-28 Totoku Electric Co Ltd Optical fiber vibration sensor
JPWO2007086306A1 (en) * 2006-01-30 2009-06-18 学校法人近畿大学 Biodegradable inverted-opal structure, method for producing and using the same, and medical implant comprising the biodegradable inverted-opal structure
JP2009541080A (en) * 2006-06-28 2009-11-26 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Component manufacturing method, in particular micromechanical component and / or microfluidic component and / or microelectronic component manufacturing method and component
US8529781B2 (en) 2006-06-28 2013-09-10 Robert Bosch Gmbh Method for producing a component, in particular a micromechanical and/or microfluidic and/or microelectronic component, and component
JP2012062299A (en) * 2010-09-17 2012-03-29 Shanghai Huayi Microelectric Material Co Ltd Method for producing high-purity electronic grade acetic acid
KR20170012341A (en) * 2014-06-20 2017-02-02 도쿄 오카 고교 가부시키가이샤 Porous imide resin film production system, separator, and porous imide resin film production method

Also Published As

Publication number Publication date
JP3687000B2 (en) 2005-08-24

Similar Documents

Publication Publication Date Title
Fujimoto et al. Preparation of unsymmetrical microspheres at the interfaces
Yu et al. Current status and future developments in preparation and application of nonspherical polymer particles
Song et al. Cross-linked, monodisperse, micron-sized polystyrene particles by two-stage dispersion polymerization
Rohr et al. Photografting and the control of surface chemistry in three-dimensional porous polymer monoliths
JP6073957B2 (en) Solid support with grafted chain
US7459197B2 (en) Reversibly adaptive rough micro- and nano-structures
US7431888B2 (en) Photoinitiated grafting of porous polymer monoliths and thermoplastic polymers for microfluidic devices
US4140653A (en) Solid support for liquid chromatography
EP1226196B1 (en) New molecularly imprinted polymers grafted on solid supports
CN106512875B (en) Janus type multi-stage porous SiO2Microballoon and its preparation method and application
Lan et al. Janus particles with varying configurations for emulsion stabilization
US5306561A (en) Preparation of surface-functional polymer particles
JP2003526702A5 (en)
JP2003526702A (en) Surfaces and their manufacture and use
JP2009518501A (en) Production method of polymer beads
Oh et al. Semipermeable microcapsules with a block-polymer-templated nanoporous membrane
Roy et al. Low-temperature (below T g) thermal bonding of COC microfluidic devices using UV photografted HEMA-modified substrates: high strength, stable hydrophilic, biocompatible surfaces
JP2003138056A (en) Functional membrane and method for producing the functional membrane
JP2003093852A (en) Method for producing separation membrane and separation membrane forming material and separation membrane obtained thereby
US20170282154A1 (en) Sorbent material for separating bio-macromolecules
JP2019034298A (en) Manufacturing method of three-dimensional regulation porous microstructure, and monolithic column manufactured by the method
Roy et al. Fabrication of smart COC chips: Advantages of N-vinylpyrrolidone (NVP) monomer over other hydrophilic monomers
Biffis et al. Physical forms of MIPs
JP3686999B2 (en) Method for producing functional membrane and functional membrane
JPS60165547A (en) Production of packing material for liquid chromatography

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050524

R150 Certificate of patent or registration of utility model

Ref document number: 3687000

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090617

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090617

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090617

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090617

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090617

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100617

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100617

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110617

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110617

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120617

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120617

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120617

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130617

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130617

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees