JP3686463B2 - refrigerator - Google Patents

refrigerator Download PDF

Info

Publication number
JP3686463B2
JP3686463B2 JP29764995A JP29764995A JP3686463B2 JP 3686463 B2 JP3686463 B2 JP 3686463B2 JP 29764995 A JP29764995 A JP 29764995A JP 29764995 A JP29764995 A JP 29764995A JP 3686463 B2 JP3686463 B2 JP 3686463B2
Authority
JP
Japan
Prior art keywords
heat exchanger
air flow
refrigerator
airflow
blown
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29764995A
Other languages
Japanese (ja)
Other versions
JPH09113097A (en
Inventor
勝義 扇一
Original Assignee
松下冷機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 松下冷機株式会社 filed Critical 松下冷機株式会社
Priority to JP29764995A priority Critical patent/JP3686463B2/en
Publication of JPH09113097A publication Critical patent/JPH09113097A/en
Application granted granted Critical
Publication of JP3686463B2 publication Critical patent/JP3686463B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Defrosting Systems (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、冷蔵庫に関するものである。
【0002】
【従来の技術】
図4,5,6において、20は冷蔵庫本体21内の冷却室22に設置した熱交換器である。冷却室22は風路23を通じて冷蔵および冷凍室24に連通していて冷却ファン25によって、冷却室22内の冷却された気流が冷蔵および冷凍室24に送られる構成となっている。熱交換器20は、多数の並設されたフィン26と、蛇行状に曲げた冷媒管27とを組み合わせて構成されている。フィン26は短辺を横に、長辺を縦にした長方形板であり、多数の透孔28が透設してある。29は冷却室22内に流入する気流で白抜き矢印で示す。
【0003】
そして、気流29は熱交換器20の下方中央部より冷却室22内に吹き込まれ、熱交換器20の各部に接触して冷却されるのであるが、その気流29内には冷蔵および冷凍室24で含んだ湿気があってその湿気は熱交換器20に霜となって付着する。この霜の中には、塊状またはブリッジ状となってフィン26,冷媒管27に部分的に付着することが多い。この塊状になったり、ブリッジ状になって付着する霜は、フィン26および冷媒管27の表面に付着する霜に比較して大きいため、除霜加熱をしても一様に除霜されなく、遂には熱交換器20の冷却効率を劣化させる原因になる。フィン26は、この塊状の着霜,ブリッジ状の着霜を防ぐために、図6に示すように、透孔28を端部をも含めて透設していたものがあるが、塊状の着霜とかブリッジ状の着霜を充分に防ぐことができなかった。
【0004】
【発明が解決しようとする課題】
本発明が解決しようとする従来の問題点は、従来が熱交換器のフィンに単に透孔を設けたものであったため、充分に塊状とかブリッジ状の着霜が熱交換器の部分的な箇所に発生し、熱交換器全体に同じような表面着霜ができ難いということであった。
【0005】
【課題を解決するための手段】
本発明は、冷蔵庫本体内の冷却室に、多数のフィンと蛇行状の冷媒管との組み合わせで構成されている熱交換器は、その片側が上方向に上がって全体として傾斜した状態で配設され、前記上方向に上がった片側の下方に、冷蔵および冷凍室より冷却室に風路を通じて送風される気流を吹き込むようにしたものである。
【0006】
従って、冷蔵室または冷凍室で水分を含んだ気流は、熱交換器の片側の上方向に上がった部分に下から吹き込まれて、熱交換器の上方向に上がった部分から中央付近にかけて着霜する。他方、上方向に上がっていない他側においては冷媒管、特に曲がり部に液冷媒が溜まることになるので、気流拡散により上方向に上がっていない他側から熱交換器の中央付近にかけて着霜する。
【0007】
以上のように、熱交換器を傾斜して配設することにより、熱交換器には結局全体として、その両側より中央付近にかけて着霜することになり着霜の均一化が図られることになる。
【0008】
【発明の実施の形態】
本発明の請求項1記載に係る発明は、多数のフィンを縦方向に並設し、前記フィンと蛇行状に配設していて両側端に曲がり部を有する冷媒管とを組み合わせて構成した熱交換器を、その片側を上方向に上げて全体として傾斜した状態で冷蔵庫本体内の冷却室に配設し、熱交換器の前記上方向に上がった片側の下方に、冷蔵および冷凍室より冷却室に風路を通じて送風される気流を吹き込むようにしたもので、冷却室に吹き込まれる気流中の湿分が熱交換器の上方向に上がった片側より中央付近にかけて霜となって付着し、他方、傾斜して下方に位置することになる冷媒管およびその曲がり部に特に溜まる液冷媒の気流拡散による霜が、熱交換器の傾斜下方から中央付近にかけて付着させることになる。
【0009】
以上の着霜理由により熱交換器には着霜が均一化される。従って除霜加熱によって、一様に着霜を除去することが行い易い。
【0010】
また、請求項2記載に係る発明は、多数のフィンを縦方向に並設し、前記フィンと蛇行状に配設していて両側端に曲がり部を有する冷媒管とを組み合わせて構成した熱交換器を、その片側を上方向に上げて全体として傾斜した状態で冷蔵庫本体内の冷却室に配設し、冷却室に風路を通じて送風される気流の複数の吹き込み口を前記熱交換器の下方に設け、前記吹き込み口のうち、流量の多い方の気流の吹き込み口より、傾斜した熱交換器の上方向に上げた片側の下方に気流を吹き込み、前記吹き込み口のうち、流量の少ない方の気流の吹き込み口より、傾斜した熱交換器の前記傾斜により下方に位置する他側の下方に気流を吹き込むようにしたものである。
【0011】
従って、前記請求項1記載の発明における着霜理由に加えて、熱交換器の傾斜下方から中央付近にかけて流量の少ない方の気流中に含まれる湿気が霜として付着し、結局熱交換器全体に着霜することを均一化することとなり、従来のような塊状の着霜,ブリッジ状の着霜のような部分的に大きい着霜でなくて、除霜が一様に行うことができる。
【0012】
(実施の形態1)
以下、本発明による冷蔵庫の実施の形態1について、図面を参照しながら説明する。
【0013】
図1は、本発明の実施の形態1による冷蔵庫構造を簡易化した概略図である。図1,2において、1は熱交換器、2は複数のフィン、3は蛇行状に曲げた冷媒管、4は曲がり部、5は熱交換器1を傾斜するように上方向に上げた側の上方側部、6は冷蔵室等から戻ってくる湿気を含んだ気流、7は気流6を導く冷蔵室に連通している風路、8は熱交換器の傾斜角、9は冷却ファン、10は冷蔵庫本体、11は冷却室、12は仕切り板、13は熱交換器1の下部に設けた除霜用ヒータ、14は熱交換器1の側部のうち、上方に上げないで下方に位置する下方側部、15は仕切り板12と熱交換器1間との間隙である。
【0014】
以上のように構成された熱交換器について、以下にその詳細を説明する。
冷凍サイクル(図示せず)が作動し冷却運転状態になると、冷却ファン9によって冷蔵室等に冷却された気流が送られ、庫内等で湿気を含んだ気流となり、その気流6を導く風路7を通じて熱交換器1の上方側部5に水分を含んだ気流が戻ってくる。戻ってきた気流6は吹き入れられるように熱交換器1の下部や、熱交換器1と仕切り板12の間隙15に入るので、気流が流入する側の上方側部5から熱交換器1の中央付近にかけて均一的にフィン2の縁部や冷媒管3の表面に霜となって付着する。一方、気流6の流入側の熱交換器1の上方側部5を傾斜角8をもって傾斜させているため熱交換器1の他方側の下方側部14およびその冷媒管の曲がり部4には余剰な液冷媒が溜まっていくので、この気流の拡散現象による影響で熱交換器1の中央付近から下方側部14にかけてフィン2の縁部や冷媒管3の表面に均一に霜となって付着する。上記する効果により霜が形成されるので、熱交換器1には時間経過による塊状の着霜ができることが少なく従って著しい性能劣化は少ない。そして、一定の時間間隔で除霜用ヒータ13の通電を行って除霜すれば冷蔵庫庫内の温度上昇を低く抑制することができる。
【0015】
以上のように本実施の形態1による熱交換器1は、従来例のように塊状の着霜が生じることがないので、急激な熱交換器の熱交換効率の低下を防ぐだけでなく、冷蔵庫庫内の温度上昇を低く抑制することができるので省エネルギーへの効果も大きい。
【0016】
(実施の形態2)
次に、本発明による冷蔵庫の実施の形態2について、図面を参照しながら説明する。なお、実施の形態1と同一構成部分については、同一符号を付して詳細な説明は省略する。
【0017】
図3は、本発明の実施の形態2による冷蔵庫を簡易化した概略図である。図3において、複数の冷蔵室等に冷却された気流が送られ、庫内等で湿気を含んだ気流となり、気流を1箇所に合流させず各々気流を導く風路7および16を通じて熱交換器1の両側部より水分を含んだ気流が戻ってくる。戻ってきた気流のうち、気流量の多い方の多量気流6aが吹き入れ易いように上方に傾いた上方側部5の下部に入り、さらに熱交換器1と仕切り板12の間隙15に入る。熱交換器1は傾斜することにより、傾斜角8が形成される。上方側部5から熱交換器1中央付近にかけてフィン2の縁部や冷媒管3の表面に均一に霜が付着する。一方、気流量の少ない方の少量気流6bの流入側である熱交換器1の下方側部14には特に冷媒管3の曲がり部4に余剰な液冷媒が溜まっていくので、多量気流6aの拡散現象と他方の少量気流6bが下方側部14へ吹き込む影響で下方側部14から熱交換器1の中央付近にかけてフィン2の縁部や冷媒管3の表面に霜が均一に付着する。この効果により霜が形成されるので、熱交換器1には時間の経過による塊状の着霜等が少なく従って著しい性能劣化がない。そして、一定の時間間隔で除霜用ヒータ13の通電を行って除霜すれば冷蔵庫庫内の温度上昇を低く抑制することができる。
【0018】
以上のように本実施の形態2による冷蔵庫は、冷蔵室または冷凍室が多くて多温度帯の場合でも風路を1箇所に合流しなくて多量気流6aと少量気流6bの風路7,16にわけることができる。従って風路交差等による風路の複雑化の防止、さらに塊状の着霜による急激な熱交換器の熱交換効率の低下を防ぐだけでなく、冷蔵庫庫内の温度上昇を低く抑制することができるので省エネルギーへの効果も大きい。
【0019】
【発明の効果】
以上説明したように本発明は、気流を傾斜した熱交換器の上方側部より吹き入れることによる着霜と、熱交換器の下方側部の方にある冷媒管の曲がり部に液冷媒を強制的に溜め、気流拡散による着霜の効果により熱交換器に均一に着霜させることで塊状の着霜を防ぎ、熱交換器の効率の著しい劣化を防止し、除霜時間の短縮による省エネルギー効果および冷蔵庫の庫内温度上昇を低く抑制することができる。
【0020】
また、気流量の多い多量気流を熱交換器の上方側部より吹き入れることによる着霜と熱交換器の他方側の下方側部の液冷媒を冷媒管およびその曲がり部に強制的に溜め、気流拡散および他方の少量気流の吹き入れによる着霜の効果により熱交換器に均一着霜させることで部分的な塊状の着霜を防ぎ、熱交換器の効率の著しい劣化を防止し、除霜時間の短縮による省エネルギー効果および冷蔵庫の庫内温度上昇を低く抑制することができる。しかも、気流の取り込みが熱交換器の下部の1方向のみではないので、特定温度室等の複数の温度帯を持つ冷蔵室の戻り風路でも気流を1箇所に合流しなくて済むため、交差しない風路設計ができて内容積のアップ等の高効率化が図れる。
【図面の簡単な説明】
【図1】本発明による冷蔵庫の実施の形態1の構造を示す正面図
【図2】図1の冷蔵庫の側面図
【図3】本発明による冷蔵庫の実施の形態2の構造を示す正面図
【図4】従来の冷蔵庫の構造を示す正面図
【図5】同側面図
【図6】従来の冷蔵庫の熱交換器に取り付けているフィンの平面図
【符号の説明】
1 熱交換器
2 フィン
3 冷媒管
4 曲がり部
5 上方側部
6 気流
6a 多量気流
6b 少量気流
7,16 風路
8 熱交換器の傾斜角
9 冷却ファン
10 冷蔵庫本体
11 冷却室
12 仕切り板
13 除霜用ヒータ
14 下方側部
15 間隙
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a refrigerator.
[0002]
[Prior art]
4, 5, and 6, reference numeral 20 denotes a heat exchanger installed in the cooling chamber 22 in the refrigerator main body 21. The cooling chamber 22 communicates with the refrigeration and freezing chamber 24 through the air passage 23, and the cooling air flow is sent to the refrigeration and freezing chamber 24 by the cooling fan 25. The heat exchanger 20 is configured by combining a large number of fins 26 arranged in parallel and a refrigerant pipe 27 bent in a meandering manner. The fin 26 is a rectangular plate having a short side horizontally and a long side vertically, and a large number of through holes 28 are provided therethrough. 29 is an airflow flowing into the cooling chamber 22 and is indicated by a white arrow.
[0003]
The airflow 29 is blown into the cooling chamber 22 from the lower central portion of the heat exchanger 20 and is cooled by contacting each portion of the heat exchanger 20. And the moisture adheres to the heat exchanger 20 as frost. In many cases, the frost partially adheres to the fins 26 and the refrigerant pipe 27 in the form of a lump or bridge. Since the frost that adheres in the form of a lump or bridge is larger than the frost that adheres to the surfaces of the fins 26 and the refrigerant pipe 27, it is not uniformly defrosted even if defrost heating is performed. Eventually, the cooling efficiency of the heat exchanger 20 is deteriorated. In order to prevent the block-like frost formation and the bridge-like frost formation, as shown in FIG. 6, the fin 26 has a through-hole 28 including the end portion. It was not possible to sufficiently prevent bridge-like frost formation.
[0004]
[Problems to be solved by the invention]
The conventional problem to be solved by the present invention is that a conventional heat exchanger fin is simply provided with a through-hole, so that a mass or bridge-like frost formation is a part of the heat exchanger. It was difficult to form the same surface frost on the entire heat exchanger.
[0005]
[Means for Solving the Problems]
In the cooling chamber in the refrigerator body of the present invention, the heat exchanger constituted by a combination of a large number of fins and a meandering refrigerant pipe is disposed in a state where one side thereof is raised upward and inclined as a whole. The airflow blown through the air passage from the refrigeration and freezing compartment to the cooling compartment is blown into the lower side of the one side that has been raised upward.
[0006]
Therefore, the air stream containing moisture in the refrigerator compartment or freezer compartment is blown from below into the upwardly raised part of one side of the heat exchanger, and forms frost from the upwardly upward part of the heat exchanger to the vicinity of the center. To do. On the other hand, on the other side that has not risen upward, liquid refrigerant accumulates in the refrigerant pipe, particularly in the bent portion, so that frosting occurs from the other side that has not risen upward due to airflow diffusion to the vicinity of the center of the heat exchanger. .
[0007]
As described above, by disposing the heat exchanger in an inclined manner, the heat exchanger eventually forms frost from both sides to the vicinity of the center as a whole, so that the frost is made uniform. .
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The invention according to claim 1 of the present invention is a heat in which a large number of fins are juxtaposed in the vertical direction, and the fins are arranged in a meandering manner and are combined with refrigerant pipes having bent portions at both ends. The exchanger is placed in the cooling chamber inside the refrigerator body with one side raised upward and inclined as a whole, and cooled from the refrigerator and freezer compartment below the one side raised upward of the heat exchanger. The airflow blown through the air passage is blown into the chamber, and the moisture in the airflow blown into the cooling chamber adheres as frost from one side of the heat exchanger rising upward to the vicinity of the center, In addition, the frost due to the air flow diffusion of the liquid refrigerant that particularly accumulates at the bent portion of the refrigerant pipe that is inclined and lower is attached from the lower portion of the heat exchanger to the vicinity of the center.
[0009]
For the above reason for frost formation, frost formation is made uniform in the heat exchanger. Therefore, it is easy to remove frost uniformly by defrost heating.
[0010]
The invention according to claim 2 is a heat exchange in which a large number of fins are arranged in the vertical direction, and the fins are arranged in a meandering manner and are combined with refrigerant pipes having bent portions at both ends. The cooler is disposed in a cooling chamber in the refrigerator main body with one side thereof being lifted upward and inclined as a whole, and a plurality of air inlets for blowing air through the air passage to the cooling chamber are provided below the heat exchanger. The air flow is blown downward on one side raised upward from the inclined heat exchanger from the air flow blowing port with the larger flow rate among the air blowing ports. The airflow is blown from the airflow inlet to the lower side of the other side located below due to the inclination of the inclined heat exchanger.
[0011]
Therefore, in addition to the reason for frost formation in the invention of the first aspect, moisture contained in the airflow having a smaller flow rate is attached as frost from the lower slope of the heat exchanger to the vicinity of the center, and eventually the entire heat exchanger. The frost formation is made uniform, and the defrosting can be performed uniformly, not the partially large frost formation and the conventional bridge frost formation.
[0012]
(Embodiment 1)
Hereinafter, Embodiment 1 of the refrigerator according to the present invention will be described with reference to the drawings.
[0013]
FIG. 1 is a schematic diagram showing a simplified refrigerator structure according to Embodiment 1 of the present invention. 1 and 2, 1 is a heat exchanger, 2 is a plurality of fins, 3 is a refrigerant pipe bent in a meandering shape, 4 is a bent portion, and 5 is a side raised upward so that the heat exchanger 1 is inclined. 6 is an air flow including moisture returning from the refrigerator compartment, 7 is an air passage communicating with the refrigerator compartment that guides the air flow 6, 8 is an inclination angle of the heat exchanger, 9 is a cooling fan, 10 is a refrigerator body, 11 is a cooling chamber, 12 is a partition plate, 13 is a defrosting heater provided at the lower part of the heat exchanger 1, and 14 is a lower side of the heat exchanger 1 without being raised upward. A lower side portion 15, which is located, is a gap between the partition plate 12 and the heat exchanger 1.
[0014]
Details of the heat exchanger configured as described above will be described below.
When a refrigeration cycle (not shown) is activated and enters a cooling operation state, an airflow cooled by a cooling fan 9 to a refrigerating room or the like is sent to the airflow containing moisture in the interior or the like, and an air passage that guides the airflow 6 7, the air flow containing moisture returns to the upper side portion 5 of the heat exchanger 1. Since the returned airflow 6 enters the lower part of the heat exchanger 1 and the gap 15 between the heat exchanger 1 and the partition plate 12 so as to be blown in, the heat exchanger 1 has an upper side portion 5 on the side where the airflow flows in. The frost adheres uniformly to the edge of the fin 2 and the surface of the refrigerant pipe 3 in the vicinity of the center. On the other hand, since the upper side portion 5 of the heat exchanger 1 on the inflow side of the airflow 6 is inclined at an inclination angle 8, there is an excess in the lower side portion 14 on the other side of the heat exchanger 1 and the bent portion 4 of the refrigerant pipe. As the liquid refrigerant accumulates, frost is uniformly deposited on the edge of the fin 2 and the surface of the refrigerant tube 3 from the vicinity of the center of the heat exchanger 1 to the lower side portion 14 due to the influence of the diffusion phenomenon of the air flow. . Since frost is formed due to the effects described above, the heat exchanger 1 is less likely to form a block frost over time, and therefore there is little significant performance degradation. And if energization of the heater 13 for defrosting is carried out at fixed time intervals and it defrosts, the temperature rise in a refrigerator compartment can be suppressed low.
[0015]
As described above, the heat exchanger 1 according to the first embodiment does not cause massive frost formation unlike the conventional example, so that not only a rapid decrease in the heat exchange efficiency of the heat exchanger is prevented, but also the refrigerator. Since the temperature rise in the chamber can be suppressed low, the effect on energy saving is also great.
[0016]
(Embodiment 2)
Next, a second embodiment of the refrigerator according to the present invention will be described with reference to the drawings. In addition, about the same component as Embodiment 1, the same code | symbol is attached | subjected and detailed description is abbreviate | omitted.
[0017]
FIG. 3 is a schematic diagram illustrating a simplified refrigerator according to the second embodiment of the present invention. In FIG. 3, the cooled airflow is sent to a plurality of refrigerating chambers and the like, and becomes airflow including moisture in a warehouse or the like, and the heat exchanger is passed through the air passages 7 and 16 that respectively guide the airflow without joining the airflow at one place. Airflow containing moisture returns from both sides of 1. Of the returned airflow, the larger airflow 6a having the larger airflow enters the lower portion of the upper side portion 5 inclined upward so as to be easily blown, and further enters the gap 15 between the heat exchanger 1 and the partition plate 12. The heat exchanger 1 is inclined to form an inclination angle 8. From the upper side portion 5 to the vicinity of the center of the heat exchanger 1, frost uniformly adheres to the edge of the fin 2 and the surface of the refrigerant tube 3. On the other hand, since excessive liquid refrigerant accumulates particularly in the bent portion 4 of the refrigerant pipe 3 in the lower side portion 14 of the heat exchanger 1 that is the inflow side of the smaller amount of airflow 6b with the smaller airflow rate, Due to the diffusion phenomenon and the influence of the other small amount of airflow 6 b blowing into the lower side part 14, frost uniformly adheres to the edge of the fin 2 and the surface of the refrigerant pipe 3 from the lower side part 14 to the vicinity of the center of the heat exchanger 1. Since frost is formed by this effect, the heat exchanger 1 is less likely to form block frost due to the passage of time and therefore has no significant performance degradation. And if energization of the heater 13 for defrosting is carried out at fixed time intervals and it defrosts, the temperature rise in a refrigerator compartment can be suppressed low.
[0018]
As described above, in the refrigerator according to the second embodiment, the air passages 7 and 16 of the large air flow 6a and the small air flow 6b do not join the air passage at one place even in the case where there are a large number of refrigerating rooms or freezer compartments and in a multi-temperature zone. Can be divided into Therefore, it is possible not only to prevent complication of the air passage due to air passage intersections and the like, and also to prevent a sudden decrease in heat exchange efficiency of the heat exchanger due to massive frost formation, but also to suppress a temperature rise in the refrigerator cabinet to a low level. Therefore, the effect on energy saving is great.
[0019]
【The invention's effect】
As described above, in the present invention, liquid refrigerant is forced to the frost formation by blowing the airflow from the upper side portion of the inclined heat exchanger and the bent portion of the refrigerant pipe toward the lower side portion of the heat exchanger. The heat exchanger is uniformly frosted by the effect of frost formation by airflow diffusion, preventing massive frost formation, preventing significant deterioration of the efficiency of the heat exchanger, and saving energy by shortening the defrost time And the temperature rise in the refrigerator can be suppressed low.
[0020]
Also, frosting by blowing a large amount of airflow with a large air flow rate from the upper side of the heat exchanger and the liquid refrigerant on the lower side of the other side of the heat exchanger are forcibly stored in the refrigerant pipe and its bent part, By defrosting the heat exchanger uniformly by the effect of frost formation by air flow diffusion and blowing of the other small amount of air flow, preventing partial block frost formation, preventing significant deterioration of the heat exchanger efficiency, defrosting The energy saving effect by shortening time and the temperature rise in the refrigerator can be suppressed low. Moreover, since the airflow is not captured in only one direction at the bottom of the heat exchanger, the airflow does not have to be merged into one place even in the return air passage of a refrigerator room having a plurality of temperature zones such as a specific temperature chamber. It is possible to design a wind path that does not occur and to increase the efficiency such as increasing the internal volume.
[Brief description of the drawings]
1 is a front view showing the structure of a first embodiment of a refrigerator according to the present invention. FIG. 2 is a side view of the refrigerator of FIG. 1. FIG. 3 is a front view showing the structure of a second embodiment of the refrigerator according to the present invention. FIG. 4 is a front view showing the structure of a conventional refrigerator. FIG. 5 is a side view of the same. FIG. 6 is a plan view of fins attached to a heat exchanger of a conventional refrigerator.
DESCRIPTION OF SYMBOLS 1 Heat exchanger 2 Fin 3 Refrigerant tube 4 Bending part 5 Upper side part 6 Air flow 6a Large air flow 6b Small air flow 7,16 Air path 8 Inclination angle 9 of a heat exchanger Cooling fan 10 Refrigerator main body 11 Cooling chamber 12 Partition plate 13 Removal Frost heater 14 lower side 15 gap

Claims (2)

多数のフィンを縦方向に並設し、前記フィンと蛇行状に配設していて両側端に曲がり部を有する冷媒管とを組み合わせて構成した熱交換器を、その片側を上方向に上げて全体として傾斜した状態で冷蔵庫本体内の冷却室に配設し、熱交換器の前記上方向に上がった片側の下方に、冷蔵および冷凍室より冷却室に風路を通じて送風される気流を吹き込むようにした冷蔵庫。A heat exchanger comprising a plurality of fins arranged side by side in a vertical direction and a combination of the fins and a refrigerant pipe having meandering shapes and curved portions on both side ends, with one side raised upward. It is arranged in the cooling chamber in the refrigerator body in a state of being inclined as a whole, and an air flow blown through the air passage from the refrigeration and freezing chamber to the cooling chamber is blown below the one side of the heat exchanger that has been raised upward. Refrigerator. 多数のフィンを縦方向に並設し、前記フィンと蛇行状に配設していて両側端に曲がり部を有する冷媒管とを組み合わせて構成した熱交換器を、その片側を上方向に上げて全体として傾斜した状態で冷蔵庫本体内の冷却室に配設し、冷却室に風路を通じて送風される気流の複数の吹き込み口を前記熱交換器の下方に設け、前記吹き込み口のうち、流量の多い方の気流の吹き込み口より、傾斜した熱交換器の上方向に上げた片側の下方に気流を吹き込み、前記吹き込み口のうち、流量の少ない方の気流の吹き込み口より、傾斜した熱交換器の前記傾斜により下方に位置する他側の下方に気流を吹き込むようにした冷蔵庫。A heat exchanger comprising a plurality of fins arranged side by side in a vertical direction and a combination of the fins and a refrigerant pipe having meandering shapes and curved portions on both side ends, with one side raised upward. It is arranged in the cooling chamber in the refrigerator main body in a slanted state as a whole, and a plurality of air inlets for the air flow blown into the cooling chamber through the air passage are provided below the heat exchanger. The air flow is blown from one side, which is raised upward from the air flow inlet of the larger air flow, to the upper side of the inclined heat exchanger, and the heat exchanger inclined from the air flow inlet of the lower air flow among the air blowing ports. A refrigerator in which an airflow is blown downward on the other side located below due to the inclination.
JP29764995A 1995-10-20 1995-10-20 refrigerator Expired - Fee Related JP3686463B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29764995A JP3686463B2 (en) 1995-10-20 1995-10-20 refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29764995A JP3686463B2 (en) 1995-10-20 1995-10-20 refrigerator

Publications (2)

Publication Number Publication Date
JPH09113097A JPH09113097A (en) 1997-05-02
JP3686463B2 true JP3686463B2 (en) 2005-08-24

Family

ID=17849327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29764995A Expired - Fee Related JP3686463B2 (en) 1995-10-20 1995-10-20 refrigerator

Country Status (1)

Country Link
JP (1) JP3686463B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005076921A (en) * 2003-08-28 2005-03-24 Sanyo Electric Co Ltd Refrigerator
JP5531703B2 (en) * 2010-03-25 2014-06-25 パナソニック株式会社 refrigerator
CN102691517B (en) * 2012-05-30 2014-06-04 江苏科技大学 Passive air conditioning device of coal mine rescue capsule

Also Published As

Publication number Publication date
JPH09113097A (en) 1997-05-02

Similar Documents

Publication Publication Date Title
JP2008202823A (en) Refrigerator
US6857288B2 (en) Heat exchanger for refrigerator
WO2015029409A1 (en) Refrigerator
JP3686463B2 (en) refrigerator
JPH09159311A (en) Heat exchanger for refrigerator
WO2021258819A1 (en) Refrigerator
KR100374169B1 (en) Refrigerator with improved air circulation efficiency
JPH07167548A (en) Freezer and refrigerator
WO2023063165A1 (en) Refrigerator
WO2023068023A1 (en) Refrigerator
WO2023095537A1 (en) Refrigerator
JPH07294089A (en) Frosting reducer for refrigerator
JP3040198B2 (en) Refrigeration heat exchanger
CN220206106U (en) Evaporator, refrigerating device and refrigerating equipment
JP2003121085A (en) Heat exchanger, heat exchange unit, and cooling storage
KR100366451B1 (en) Evaporator combined with dual-tube and fins for refrigerator
MXPA06002415A (en) Condenser of refrigerator.
JPH0783556A (en) Frosting reducer for refrigerator
JP3345187B2 (en) refrigerator
KR19990034525A (en) Condenser of refrigerator
KR100377614B1 (en) Refrigerator with efficient air circulation system
KR0119416Y1 (en) Heat exchanger structure for refrigerator
KR100366517B1 (en) Intaking Structure of Cooling Air
KR20010077379A (en) Refrigerator
KR100597675B1 (en) Refrigerator

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050603

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080610

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090610

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090610

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090610

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100610

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100610

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110610

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees