WO2023095537A1 - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
WO2023095537A1
WO2023095537A1 PCT/JP2022/040184 JP2022040184W WO2023095537A1 WO 2023095537 A1 WO2023095537 A1 WO 2023095537A1 JP 2022040184 W JP2022040184 W JP 2022040184W WO 2023095537 A1 WO2023095537 A1 WO 2023095537A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerating
cooler
chamber
refrigeration
cooling
Prior art date
Application number
PCT/JP2022/040184
Other languages
French (fr)
Japanese (ja)
Inventor
晃一 西村
元康 市場
航 安部
朋幸 栗田
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2023095537A1 publication Critical patent/WO2023095537A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors

Definitions

  • This disclosure relates to refrigerators.
  • Patent Document 1 discloses a refrigerator. This refrigerator performs heat exchange in a refrigerating cycle using a multi-flow type refrigerator having a flat tube inside which a plurality of channels through which a refrigerant flows are formed.
  • the present disclosure provides a refrigerator capable of improving cooling efficiency.
  • a refrigerator is a refrigerator comprising at least a refrigerating compartment and a refrigerating cooling compartment, wherein the refrigerating cooling compartment comprises a refrigerating cooler for cooling the refrigerating compartment, the refrigerating cooler comprising: The refrigerating chamber and the refrigerating cooling chamber are separated by a partition wall, and the partition wall includes a suction port that communicates between the refrigerating chamber and the refrigerating cooling chamber, The suction port is formed such that the height of the upper end thereof is equal to or higher than the height of the lower end of the front surface of the cooler for refrigeration.
  • the refrigerator according to the present disclosure can improve cooling efficiency.
  • FIG. 1 is a side cross-sectional view showing an outline of a refrigerator according to Embodiment 1.
  • FIG. FIG. 2 is a schematic front view showing the outline of the refrigerator according to Embodiment 1.
  • FIG. 5 is a plan view showing the cooler for refrigeration according to Embodiment 1;
  • FIG. 6 is a front view showing the cooler for refrigeration according to Embodiment 1;
  • FIG. 7 is a side cross-sectional view showing the vicinity of the suction port of Embodiment 1.
  • FIG. 1 is a schematic cross-sectional view showing the outline of a refrigerator according to the present invention.
  • the refrigerator 1 has a box-shaped main body 10 .
  • An upper partition plate 11 and a lower partition plate 12 are provided at two locations in the vertical direction of the main body 10 to divide the interior of the main body 10 into three spaces, one above the other.
  • the space above the upper partition plate 11 serves as a refrigerator compartment 13
  • the space between the upper partition plate 11 and the lower partition plate 12 serves as a freezer compartment 14
  • the space below the lower partition plate 12 serves as a vegetable compartment 15.
  • a low-temperature chamber 16 whose temperature is lower than that of the refrigerating chamber 13 is provided below the refrigerating chamber 13 .
  • a shelf board 17 for placing food is provided inside the refrigeration compartment 13 .
  • an ice making compartment 18 for storing ice is provided inside the freezer compartment 14.
  • a side-opening door 20 for the refrigerator compartment is provided on the front surface of the refrigerator compartment 13 so as to be freely opened and closed.
  • a freezer compartment drawer door 21 is provided on the front surface of the freezer compartment 14 so as to be freely opened and closed, and inside the freezer compartment drawer door 21, a freezer drawer case 22 for storing food is provided inside.
  • a vegetable compartment drawer door 23 is provided at the front opening of the vegetable compartment 15 so that it can be opened and closed. Inside the vegetable compartment drawer door 23, a vegetable compartment drawer case 24 for storing food is provided. is provided.
  • a cooling chamber 30 for refrigerating is provided on the back side of the refrigerating chamber 13 of the refrigerator 1 .
  • a refrigerating chamber duct 31 extending above the refrigerating chamber 13 is connected above the cooling chamber 30 for refrigerating.
  • the refrigerator compartment 13 and the cooling compartment for refrigeration 30 are separated by a partition wall 85 extending in the vertical direction.
  • a refrigerating cooler 32 is accommodated in the refrigerating cooling chamber 30 .
  • the refrigerating cooler 32 is a microchannel cooler.
  • a microchannel cooler is, for example, a cooler composed of flat perforated tubes and fins.
  • a flat perforated tube is a flat tube in which a plurality of channels through which a coolant flows are formed.
  • a refrigerating fan 33 is arranged above the refrigerating cooler 32 in the refrigerating cooling chamber 30 .
  • a centrifugal fan for example, is used as the cooling fan 33 .
  • the centrifugal fan is a fan that draws in cool air that has passed through the refrigerating cooler 32 from the central portion of one side in the axial direction of the rotating blades and blows it out in the centrifugal direction. Also, the centrifugal fan draws cold air from the rear of the cooling chamber 30 for refrigeration and blows it out in the centrifugal direction. By using a centrifugal fan, it is possible to secure air volume even in narrow ducts. Further, as shown in FIG.
  • the cooling fan 33 is provided above the upper surface 16 a of the low temperature chamber 16 .
  • the cooling fan 33 is prevented from exchanging heat with the low-temperature room 16 . Therefore, it is possible to prevent the cooling fan 33 from being cooled by heat exchange with the low-temperature room 16 mainly when the cooling fan 33 is not driven. Therefore, dew condensation, frost formation, and freezing of the refrigerating fan 33 can be suppressed, and the reliability of the refrigerating fan 33 is improved.
  • Cold air is sucked from the refrigerating cooling chamber 30 by the refrigerating fan 33 , so that the air flows from the refrigerating chamber 13 into the refrigerating cooling chamber 30 through the substantially rectangular suction port 87 provided in the partition wall 85 . . A detailed configuration around the suction port 87 will be described later.
  • the centrifugal fan draws cold air from the rear of the cooling chamber 30 for refrigeration, but may be configured to draw cold air from the front of the cooling chamber 30 for refrigeration.
  • the cooling fan 33 may be, for example, an axial fan.
  • the axial fan is inclined so that the blowing side faces upward so as to efficiently blow out the cold air cooled by the cooler 32 for refrigeration to the refrigerator compartment 13 .
  • cool air can be easily discharged downward.
  • Frost adhering to the refrigerating cooler 32 can be defrosted by the inside air of the refrigerating compartment 13 having a plus temperature. In this case, it is preferable to drive the refrigerating fan 33 without flowing the refrigerant through the refrigerating cooler 32 .
  • the refrigerating compartment duct 31 is connected to a casing 33a on the outlet side of the refrigerating fan 33.
  • the refrigerating compartment duct 31 is tapered such that its width gradually increases upward.
  • a refrigerating outlet 35 communicating with the refrigerating chamber 13 is formed in the refrigerating chamber duct 31 .
  • the refrigerating compartment duct 31 has a low temperature compartment duct 31a that is branched to the side in the middle.
  • the low-temperature chamber duct 31a communicates the refrigerating chamber duct 31 and the low-temperature chamber 16, and discharges cool air into the low-temperature chamber 16 from the low-temperature chamber outlet 35a.
  • the low-temperature-chamber duct 31 a also includes a low-temperature-chamber damper 36 a in the middle above the upper surface 16 a of the low-temperature chamber 16 .
  • the low-temperature room damper 36a is configured to switch between blowing and stopping the blowing of cold air cooled by the refrigerating cooler 32 to the low-temperature room 16 by performing an opening/closing operation.
  • the low-temperature chamber damper 36a is located above the upper surface 16a of the low-temperature chamber 16, heat exchange with the low-temperature chamber 16 is suppressed. Therefore, it is possible to suppress cooling of the low temperature chamber damper 36a by heat exchange with the low temperature chamber 16 mainly when the low temperature chamber damper 36a is closed. Therefore, dew condensation, frost formation, and freezing of the low-temperature-room damper 36a can be suppressed, and the reliability of the low-temperature-room damper 36a is improved.
  • a shielding plate 39 is provided on the lower surface side of the cooler 32 for refrigeration and below the header described later.
  • the shielding plate 39 covers the lower part of the header, and has a function of guiding the inside air sent from the refrigerator compartment 13 to the later-described air flow path of the cooler 32 for refrigeration.
  • the shield plate 39 may be provided in the cooling chamber 30 for refrigeration. In this case, the shielding plate 39 is provided at a position corresponding to the lower portion of the header, which will be described later.
  • a freezing cooling chamber 40 is provided on the back side of the freezing chamber 14 of the refrigerator 1 .
  • a freezing cooler 41 is accommodated in the freezing cooling chamber 40 .
  • the freezing cooler 41 is, for example, a fin-tube cooler.
  • a fin-tube cooler is, for example, a cooler composed of a circular pipe and flat fins.
  • a freezing fan 42 that sends cold air cooled by the freezing cooler 41 to the inside of the freezing compartment 14 is arranged above the freezing cooler 41 .
  • a fin-tube cooler is designed with a larger distance between fins than a microchannel cooler. Therefore, clogging due to frost formation can be suppressed, and the number of times the heater for defrosting is energized can be reduced. Therefore, power consumption can be suppressed.
  • An axial fan for example, is used as the cooling fan 42 .
  • the axial fan is inclined so that the blowing side faces upward so as to efficiently blow out the cold air cooled by the freezing cooler 41 to the freezer compartment 14 .
  • a freezer outlet 43 is formed on the back surface of the freezer compartment 14 .
  • the freezing fan 42 may be, for example, a centrifugal fan.
  • a glass tube heater 44 for defrosting frost adhering to the freezing cooler 41 is arranged below the freezing cooler 41 . Instead of using the glass tube heater 44, a pipe heater that directly heats the freezing cooler 41 may be used to defrost the freezing cooler 41.
  • FIG. Cold air in the cooling chamber 40 for freezing is configured to be sent to the vegetable compartment 15 through a communication hole 45 formed in the lower partition plate 12 .
  • a dew tray 37 for refrigeration is arranged below the cooler 32 for refrigeration.
  • a freezing dew tray 46 is arranged below the freezing cooler 41 .
  • An evaporating dish 47 is arranged below the back side of the vegetable compartment 15 .
  • a refrigerating drain pipe 38 is connected to the refrigerating dew tray 37 .
  • a freezing drain pipe 48 is connected to the freezing dew pan 46 .
  • the lower ends of refrigerating drain pipe 38 and freezing drain pipe 48 penetrate upper partition plate 11 and lower partition plate 12 , respectively, and extend to the vicinity of the upper portion of evaporating plate 47 .
  • the drain water accumulated in the refrigerating dew pan 37 and the freezing dew pan 46 can be sent to the evaporating pan 47 via the refrigerating drain pipe 38 and the freezing drain pipe 48. configured to evaporate.
  • a compressor 50 is installed on the rear upper part of the main body.
  • FIG. 3 is a refrigerating cycle diagram showing the refrigerating cycle of the refrigerator 1.
  • the refrigerator 1 includes a compressor 50, a condenser 51, a switching valve 52, a refrigerating decompression means 53, a refrigerating cooler 32, a refrigerating return pipe 55a, and a freezing decompressor.
  • the means 54 , the refrigerating cooler 41 , and the refrigerating return pipe 55 b are connected by a refrigerant return pipe 55 .
  • a refrigerating capillary tube 53 and a freezing capillary tube 54 are provided as decompressing means 53 for refrigerating and decompressing means 54, respectively.
  • the refrigerating pressure reducing means 53 and the refrigerating cooler 32 , and the freezing pressure reducing means 54 and the freezing cooler 41 are connected in parallel with each other via the switching valve 52 .
  • FIG. 4 is a perspective view showing cooler 32 for refrigeration according to the first embodiment.
  • FIG. 5 is a plan view showing cooler 32 for refrigeration according to the first embodiment.
  • FIG. 6 is a front view showing cooler 32 for refrigeration according to the first embodiment.
  • the refrigerating cooler 32 includes a refrigerant conduction member 60 through which refrigerant flows.
  • the refrigerant conducting member 60 is composed of a flat perforated tube in which a plurality of substantially rectangular passages are continuously arranged.
  • the refrigerant conduction member 60 is formed in a meandering shape including a plurality of flat tubes 61 formed substantially parallel with a predetermined interval and curved portions 62 connecting ends of the flat tubes 61 .
  • four flat tubes 61 are provided between headers, which will be described later.
  • the number of flat tubes 61 is not limited to this, and can be set arbitrarily. Further, each flat tube 61 and the bent portion 62 may be integrated, and one flat tube 61 may meander and be formed between the headers.
  • the flat tube 61 and the bent portion 62 are vertically divided into three upper regions 63, a middle region 64, and a lower region 65 in the present embodiment.
  • the area is vertically divided into three areas, but the area may be vertically divided into two areas or four or more areas.
  • An inlet side header 66 and an outlet side header 67 extending vertically are provided at one end of the outermost flat tube 61 .
  • the inlet-side header 66 and the outlet-side header 67 are made of circular tubes, for example.
  • the inlet-side header 66 and the outlet-side header 67 are arranged with their positions shifted in the width direction (horizontal direction) of the refrigerating cooler 32 .
  • the side header 67 is arranged at a position farther from the flat tube 61 than the inlet side header 66, and the inlet side header 66 and the outlet side header 67 are alternately provided.
  • the outlet side header 67 may be arranged near the flat tube 61 and the inlet side header 66 may be arranged at a position farther from the flat tube 61 than the outlet side header 67 is.
  • the inlet side header 66 and the outlet side header 67 are attached so as not to protrude from the end surface of the flat tube 61 in the depth direction (front-rear direction).
  • the inlet-side header 66 is connected to the flat tube 61 via a bent portion 61a formed by bending the end of the flat tube 61
  • the outlet-side header 67 is connected to the flat tube 61 by bending the end of the flat tube 61. It is connected to the flat tube 61 via the curved portion 61a.
  • the inlet-side header 66 and the outlet-side header 67 By arranging the inlet-side header 66 and the outlet-side header 67 in this way, the end faces of the inlet-side header 66 and the outlet-side header 67 are flush with the outer surface of the flat tube 61 of the refrigerant conducting member 60, and the inlet-side header
  • the side surfaces of 66 and outlet side header 67 are arranged so as not to protrude from the thickness of flat tube 61 .
  • the thickness dimension of the refrigerating cooler 32 can be reduced, and when the refrigerating cooler 32 is accommodated inside the refrigerating cooling chamber 30, the internal space of the refrigerating chamber duct 31 can be reduced. can.
  • the internal space of the refrigerator compartment 13 can be enlarged.
  • an inlet pipe 68 is connected to a side surface of the inlet header 66 on the rear side of the refrigerator compartment 13 at a height corresponding to the lower region 65 .
  • an inlet-side pipe 68 is connected to the side of the inlet-side header 66 in a direction toward the flat tube 61 to which the outlet-side header 67 is connected.
  • the inlet-side pipe 68 is preferably connected substantially parallel to the depth direction (front-rear direction) of the refrigerating cooler 32 .
  • the outlet side header 67 is formed higher than the height dimension of the inlet side header 66 .
  • Outlet-side pipe 69 is connected to a side surface of outlet-side header 67 facing forward of refrigerator compartment 13 and at a position above the upper end of upper region 63 .
  • the outlet side pipe 69 is connected to the side surface of the outlet side header 67 in the direction toward the flat tube 61 to which the inlet side header 66 is connected.
  • the outlet pipe 69 is preferably connected substantially parallel to the inlet pipe 68 . That is, the outlet pipe 69 is connected to a position above the upper end of the uppermost flat tube.
  • the inlet-side pipe 68 extends upward substantially parallel to the inlet-side header 66
  • the outlet-side pipe 69 extends upward substantially parallel to the outlet-side header 67
  • the inlet-side pipe 68 protrudes toward the outlet-side header 67 in the thickness direction (front-rear direction) of the flat pipe 61
  • the outlet-side pipe 69 protrudes toward the inlet-side header 66 from the flat pipe 61 . It protrudes in the thickness direction (front-rear direction).
  • the inlet-side pipe 68 and the outlet-side pipe 69 have diameters smaller than those of the inlet-side header 66 and the outlet-side header 67 .
  • the inlet-side pipe 68 and the outlet-side pipe 69 As described above, the arrangement space for the inlet-side pipe 68 and the outlet-side pipe 69 can be reduced.
  • the inlet pipe 68 is connected to the capillary tube 53 for refrigeration
  • the outlet pipe 69 is connected to the return pipe 55a for refrigeration.
  • the refrigerating capillary tube 53 is embedded in the rear heat insulating wall of the main body 10 after extending above the inlet side header 66 .
  • the refrigerating return pipe 55 a extends above the outlet side header 67 and is embedded in the rear heat insulating wall of the main body 10 .
  • the refrigerating capillary tube 53 and the refrigerating return pipe 55a are closely connected in the rear heat insulating wall so as to exchange heat.
  • An accumulator (gas-liquid separator) for preventing liquid refrigerant from flowing into the compressor 50 is not provided between the outlet pipe 69 and the refrigerating return pipe 55a connected downstream.
  • the coolant flows in from the lower portion of the inlet side header 66 and the coolant flows out from the upper portion of the outlet side header 67 .
  • the flow of the coolant is made parallel to the ventilation direction of the cool air.
  • parallel flow refers to the case where the flow direction of the coolant is the same as the ventilation direction of the cool air.
  • the inlet-side header 66 and the outlet-side header 67 may be provided at different ends of the flat tube 61 , respectively, and the inlet-side header 66 and the outlet-side header 67 may be arranged on both sides of the refrigerant conducting member 60 . .
  • the refrigerant inlet of the inlet side header 66 may be provided upward, and the refrigerant outlet of the outlet side header 67 may be provided downward.
  • a partition plate 70 is provided at a position corresponding to the boundary between the lower region 65 and the middle region 64 of the inlet side header 66 .
  • the positions corresponding to the middle region 64 and the upper region 63 of the inlet side header 66 communicate with each other.
  • a partition plate 71 is provided at a position corresponding to the boundary between the upper region 63 and the middle region 64 of the outlet side header 67 to block communication within the outlet side header 67 .
  • Positions corresponding to the middle region 64 and the lower region 65 of the outlet side header 67 communicate with each other.
  • the coolant that has flowed in from the lower portion of the inlet side header 66 flows through the interior of the lower region 65 of the coolant conduction member 60 and into the outlet side header 67 .
  • the refrigerant that has flowed through the outlet-side header 67 flows into the central region 64 of the refrigerant conduction member 60 , flows into the inlet-side header 66 , flows through the inlet-side header 66 through the lower region 65 , and then flows through the upper portion of the outlet-side header 67 .
  • each flat tube 61 is connected in series. As a result, even when the cool air ventilation direction is aligned with the vertical direction, it is possible to prevent the liquid refrigerant from accumulating in the lower portion due to gravity. Therefore, it becomes possible to spread the refrigerant over the entire cooler, and it is possible to suppress a decrease in heat exchange efficiency.
  • An air flow path 72 is formed between each flat tube 61 of the refrigerant conduction member 60 .
  • fins 73 are arranged which are continuously provided by being inclined at a predetermined angle with respect to the flat tube 61 and bent in a zigzag shape.
  • an air flow path 72 having a substantially triangular cross-sectional shape is continuously formed. Note that the air flow path 72 having a rectangular cross-sectional shape may be formed continuously.
  • the air flow path 72 is formed vertically along the vertical direction of the cooling chamber 30 for refrigeration.
  • the inside air flowing upward from the bottom of the cooling chamber 30 for refrigeration flows through the air flow path 72, and at this time, exchanges heat with the refrigerant flowing inside the refrigerant conduction member 60, and is cooled to a predetermined temperature.
  • the positions of the fins 73 in the lower region 65 and the fins 73 in the upper region 63 may be shifted. may be arranged with a phase shift of 1/2. That is, the substantially triangular air flow paths 72 in the upper region 63 and the substantially triangular air flow channels 72 in the lower region 65 may be formed so as to overlap each other in plan view. Further, the phase of the fins 73 may be shifted by shifting the phase of the fins 73 in the central region 64 with respect to the fins in the upper region 63 .
  • the inclination angle of the fins 73 in the lower region 65 on the upstream side of the air flow path may be set larger than the inclination angle of the fins 73 in the upper region 63 on the downstream side of the air flow path. That is, the fins 73 of the lower region 65 may be formed with a large angle corresponding to the vertex of the substantially triangular air flow path 72 . With this configuration, a large cross-sectional area of the air flow path 72 can be ensured in the lower region 65 on the upstream side of the air flow path 72 . Therefore, even if frost or condensation adheres to the fins 73 when the inside air exchanges heat with the refrigerant, it is possible to prevent the air flow path 72 from being blocked by the frost or condensation. flow can be secured.
  • the lower ends of the fins 73 are positioned below the lower ends of the coolant conduction members 60 .
  • the upper ends of the fins 73 may be positioned above the upper ends of the coolant conducting members 60 . As a result, since the fin area is increased, the amount of heat exchanged between the fins 73 and the inside air is increased, and the heat exchange efficiency of the inside air can be enhanced.
  • FIG. 7 is an enlarged view around the suction port 87 in FIG.
  • the height of the upper end 87a of the suction port 87 substantially matches the height of the lower end 32a of the front surface of the cooler 32 for refrigeration.
  • the partition inside the cooling chamber 30 for refrigeration A space is formed at the corner between the rear surface side of the wall 85 and the lower end 32a of the front surface of the cooler 32 for refrigeration. In the space formed at this corner, the air that has flowed in from the suction port 87 forms a vortex and tends to stay there.
  • the height of the upper end 87a of the suction port 87 and the height of the lower end 32a of the front surface of the cooler 32 for refrigeration substantially match. Therefore, in the present embodiment, the partition wall 85 and the lower end 32a of the front surface do not form a corner space inside the cooling chamber 30 for refrigeration. Therefore, it is possible to prevent the air that has flowed in from the suction port 87 from forming a vortex and stay there, and the air flows smoothly into the air flow path 72 near the partition wall 85 as well. Therefore, the efficiency of heat exchange in the cooler 32 for refrigeration is improved. Moreover, since the heat exchange in the cooler 32 for refrigeration is made uniform, uneven frost formation on the cooler 32 for refrigeration can be suppressed.
  • the cooler 32 for refrigeration can be installed downward, the height up to the cooler 32 for refrigeration, which has a large thickness, can be suppressed, and a decrease in the internal volume can be suppressed.
  • the fan 33 for refrigeration can also be installed downward. Therefore, the height from the thick refrigerating cooler 32 to the refrigerating fan 33 can be reduced, thereby suppressing a decrease in the internal volume.
  • the flat tube 61 provided on the front surface of the cooler 32 for refrigeration is in contact with the partition wall 85 .
  • the partition wall 85 As a result, it is possible to prevent air from passing through between the partition wall 85 and the cooler 32 for refrigeration without passing through the air flow path 72 . Therefore, the efficiency of heat exchange in the cooler 32 for refrigeration is improved.
  • a suction port 87 provided below the partition wall 85 is provided with a louver 89 .
  • three louvers 89 are arranged substantially vertically, and each louver 89 is inclined so that the cooling chamber 30 side for refrigeration is higher. That is, the louvers 89 are configured to guide the air sent from the cooling chamber side to the respective air flow paths 72 of the coolers 32 for refrigeration. As a result, the air sucked from the refrigeration compartment 13 into the cooling compartment 30 for refrigeration is guided upward by the louvers 89 and smoothly flows toward the cooler 32 for refrigeration. Therefore, the efficiency of heat exchange in the cooler 32 for refrigeration is improved.
  • louvers 89 are each slanted toward the fins 73 (ie, the air channels 72). As a result, the air can be guided from the suction port 87 to the fins 73, so that the air can easily flow through the air flow path 72, and the heat exchange efficiency in the cooler 32 for refrigeration is improved. Further, in this embodiment, more specifically, the louver 89 arranged on the upper side near the cooler 32 for refrigeration is located at the suction port 87 (or the partition wall 85) of the plurality of air flow paths 72. It is slanted towards the closer air flow path 72 .
  • the louvers 89 arranged on the upper, middle, and lower sides are sequentially inclined toward the front, center, and rear air flow paths 72 of the plurality of air flow paths 72, respectively. are doing. As a result, it is possible to prevent the air flows guided by the louvers from crossing each other, so that the air flows more easily through the air flow paths 72, and the heat exchange efficiency in the cooler 32 for refrigerating is improved.
  • the partition wall 85 is composed of a heat insulating material 85a facing the cooling chamber 30 for refrigeration and a decorative cover 85b facing the refrigerating chamber 13.
  • the heat insulating material 85a is made of a heat insulating material such as urethane foam.
  • the decorative cover 85b is made of resin such as ABS resin. Therefore, the decorative cover 85b facing the refrigerator compartment 13 improves the appearance. Furthermore, the heat insulating material 85a suppresses cooling of the decorative cover 85b due to heat exchange with cold air in the cooling chamber 30 for refrigerating and the cooler 32 for refrigerating, thereby suppressing dew condensation on the decorative cover 85b.
  • the refrigerant sent to the cooler 32 for refrigeration flows from the inlet side header 66 of the refrigerant conducting member 60 and flows inside the lower region 65 .
  • the refrigerant that has flowed to the outlet side header 67 flows through the middle region 64 via the outlet side header 67 , is sent to the inlet side header 66 , and flows through the upper region 63 via the inlet side header 66 .
  • Refrigerant that has flowed through the upper region 63 flows out from the outlet side header 67 and is returned to the compressor 50 .
  • the air inside the refrigerating chamber 13 flows into the cooling chamber 30 for refrigerating through the suction port 87 .
  • the internal air is guided upward along the louvers 89 and passes through the air flow paths 72 of the cooler 32 for refrigeration.
  • the inside air flows upward from below the refrigerating compartment duct 31 .
  • the cold air passing through the cooler 32 for refrigeration is directed upward from below the cooler 32 for refrigeration.
  • the air inside the refrigerator compartment 13 exchanges heat with the refrigerant flowing through the refrigerant conduction member 60 and is cooled.
  • the refrigerant sent to the freezing cooler 41 drives the freezing fan 42 to exchange heat with the inside air flowing upward from the bottom of the freezing cooling chamber 40, and the air cooled by the refrigerant Returned to chamber 14 .
  • the refrigerating cooling chamber 30 includes the refrigerating cooler 32 for cooling the refrigerating chamber 13, and the refrigerating cooler 32 is a microchannel cooler.
  • the refrigerating chamber 13 and the refrigerating cooling chamber 30 are separated by a partition wall 85, and the partition wall 85 is provided with a suction port 87 for communicating the refrigerating chamber 13 and the refrigerating cooling chamber 30.
  • the suction port 87 is formed such that the height of its upper end 87a is equal to or higher than the height of the lower end 32a of the front surface of the cooler 32 for refrigeration. According to this configuration, it is possible to prevent the air that has flowed in from the suction port 87 from staying. Therefore, the air can easily flow through the cooler 32 for refrigeration, and the efficiency of cooling is improved.
  • the refrigerating chamber 13 also includes a low-temperature chamber 16 having a lower temperature than the refrigerating chamber 13 .
  • a low-temperature chamber 16 having a lower temperature than the refrigerating chamber 13 .
  • Refrigerator 1 also includes refrigerating fan 33 that flows cool air cooled by refrigerating cooler 32 into refrigerating chamber 13 , and refrigerating fan 33 is arranged above upper surface 16 a of low-temperature chamber 16 . According to this configuration, heat exchange between the cooling fan 33 and the low temperature room 16 is suppressed. Therefore, dew condensation, frost formation, or freezing of the refrigerating fan 33 can be suppressed, and the reliability of the refrigerating fan 33 is improved.
  • the refrigerator 1 also includes a low-temperature chamber duct 31a that communicates the refrigerating cooling chamber 30 and the low-temperature chamber 16.
  • the low-temperature chamber duct 31a includes a low-temperature chamber damper 36a that can be opened/closed. , above the upper surface 16 a of the low temperature chamber 16 . According to this configuration, heat exchange between the low temperature chamber damper 36a and the low temperature chamber 16 is suppressed. Therefore, dew condensation, frost formation, or freezing of the low-temperature-room damper 36a can be suppressed, and the reliability of the low-temperature-room damper 36a is improved.
  • the refrigerating cooler 32 includes a plurality of flat tubes 61 arranged substantially parallel with a predetermined interval, air flow paths 72 formed between the respective flat tubes 61, and air flow paths 72 provided inside the air flow paths 72.
  • the refrigerating cooler 32 is provided so that the flat tube 61 is in contact with the partition wall 85 . According to this configuration, air can be prevented from passing between the flat tube 61 and the partition wall 85 without passing through the air flow path 72 . Therefore, the air can easily flow through the air flow path 72 provided with the fins 73, and the cooling efficiency is improved.
  • Refrigerator 1 also includes louvers 89 that guide air sucked into refrigerating cooling chamber 30 through inlet 87, and louvers 89 are provided so that the refrigerating cooling chamber 30 side is higher than the refrigerating chamber 13 side. ing. According to this configuration, the air sucked into the cooling chamber 30 for refrigeration through the suction port 87 is guided upward by the louvers 89 . Therefore, it becomes easier for air to pass through the cooler 32 for refrigeration, and the cooling efficiency is improved.
  • the refrigerator 1 also includes a louver 89 that guides the air sucked into the cooling chamber 30 for refrigerating via the suction port 87 , and the louver 89 is inclined toward the fins 73 . According to this configuration, the air sucked into the cooling chamber 30 for refrigeration through the suction port 87 is guided to the fins 73 by the louvers 89 . Therefore, the air can easily pass through the air flow path 72 of the cooler 32 for refrigeration, and the cooling efficiency is improved.
  • Embodiment 1 has been described as an example of the technology disclosed in the present application.
  • the technology in the present disclosure is not limited to this, and can also be applied to embodiments with modifications, replacements, additions, omissions, and the like.
  • the height of the upper end 87a of the suction port 87 of the partition wall 85 and the height of the lower end 32a of the front face of the cooler 32 for refrigeration are substantially the same.
  • the relationship between the height of the upper end 87a and the height of the lower end 32a of the front surface may be such that the partition wall 85 and the lower end 32a of the front surface do not form a space in the cooling chamber 30 for refrigeration. Therefore, the height of the upper end 87a of the suction port 87 is not limited to substantially matching the height of the lower end 32a of the front face of the cooler 32 for refrigeration. It may be equal to or higher than the lower end 32a of the front surface of the cooler 32 .
  • the three louvers 89 are vertically arranged in the suction port 87 .
  • Any louver 89 may be used as long as it can guide the air sucked from the suction port 87 upward. Therefore, a plurality of louvers 89 may be arranged in the front-rear direction, and the number of louvers 89 may be changed arbitrarily.
  • the number of louvers 89 is the same as the number of air flow paths 72 arranged in the front-rear direction as in Embodiment 1, each louver 89 and each air flow path 72 can be easily matched one-to-one. Therefore, by inclining each louver 89 toward each air flow path 72, the amount of air flowing into each air flow path 72 can be easily made uniform.
  • the present disclosure can be suitably used for refrigerators capable of improving cooling efficiency.
  • Refrigerating room for refrigerating room 31 Refrigerating room duct 31a Low temperature room duct 32 Cooler for refrigerating 32a Front lower end 33 Fan for refrigerating 33a Casing 35 Outlet for refrigerating 35a Outlet for cold room 36a Low temperature room damper 37 Refrigeration dew pan 38 Refrigeration drain pipe 39 Shield plate 40 Freezing cooling chamber 41 Freezing cooler 42 Freezing fan 43 Freezing outlet 44 Glass tube heater 45 Communication hole 46 Freezing dew pan 47 Evaporating dish 48 Freezing drain pipe 50 Compressor 51 Condenser 52 Switching valve 53 Refrigeration decompression means (refrigeration capillary tube) 54 Decompression means for freezing (capillary tube for freezing) 55 Refrigerant return pipe 55a Refrigerating return pipe 55b Freezing return pipe

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Abstract

The present disclosure provides a refrigerator having improved cooling efficiency. This refrigerator comprises at least a refrigeration chamber 13 and a refrigeration cooling chamber 30, wherein the refrigeration cooling chamber 30 comprises a refrigeration cooler 32 for cooling the refrigeration chamber 13, the refrigeration cooler 32 is configured by a microchannel-type cooler, the refrigeration chamber 13 and the refrigeration cooling chamber 30 are partitioned from each other by a partition wall 85, the partition wall 85 comprises an intake opening 87 enabling communication between the refrigeration chamber 13 and the refrigeration cooling chamber 30, and the intake opening 87 is configured such that the height of an upper end 87a thereof is greater than or equal to the height of a lower end 32a of the front surface of the refrigeration cooler 32.

Description

冷蔵庫refrigerator
 本開示は、冷蔵庫に関する。 This disclosure relates to refrigerators.
 特許文献1は、冷蔵庫を開示する。この冷蔵庫は、内部に冷媒が流れる流路が複数形成されている偏平管を有するマルチフロー型冷蔵用冷却器を用いて冷凍サイクルの熱交換を行うものである。 Patent Document 1 discloses a refrigerator. This refrigerator performs heat exchange in a refrigerating cycle using a multi-flow type refrigerator having a flat tube inside which a plurality of channels through which a refrigerant flows are formed.
特開2018-048799号公報JP 2018-048799 A
 本開示は、冷却効率を向上させることのできる冷蔵庫を提供する。 The present disclosure provides a refrigerator capable of improving cooling efficiency.
 この明細書には、2021年11月26日に出願された日本国特許出願・特願2021-191907の全ての内容が含まれる。
 本開示における冷蔵庫は、少なくとも冷蔵室と冷蔵用冷却室とを備えた冷蔵庫において、前記冷蔵用冷却室は、前記冷蔵室を冷却するための冷蔵用冷却器を備え、前記冷蔵用冷却器は、マイクロチャネル式冷却器で構成され、前記冷蔵室と前記冷蔵用冷却室とは、仕切壁によって仕切られ、前記仕切壁は、前記冷蔵室と前記冷蔵用冷却室とを連通する吸込口を備え、前記吸込口は、その上端の高さが前記冷蔵用冷却器の前面の下端の高さ以上となるように形成されている。
This specification includes all the contents of Japanese Patent Application/Japanese Patent Application No. 2021-191907 filed on November 26, 2021.
A refrigerator according to the present disclosure is a refrigerator comprising at least a refrigerating compartment and a refrigerating cooling compartment, wherein the refrigerating cooling compartment comprises a refrigerating cooler for cooling the refrigerating compartment, the refrigerating cooler comprising: The refrigerating chamber and the refrigerating cooling chamber are separated by a partition wall, and the partition wall includes a suction port that communicates between the refrigerating chamber and the refrigerating cooling chamber, The suction port is formed such that the height of the upper end thereof is equal to or higher than the height of the lower end of the front surface of the cooler for refrigeration.
 本開示における冷蔵庫は、冷却効率を向上させることができる。 The refrigerator according to the present disclosure can improve cooling efficiency.
図1は、実施の形態1における冷蔵庫の概略を示す側面断面図1 is a side cross-sectional view showing an outline of a refrigerator according to Embodiment 1. FIG. 図2は、実施の形態1における冷蔵庫の概略を示す概略正面図FIG. 2 is a schematic front view showing the outline of the refrigerator according to Embodiment 1. FIG. 図3は、実施の形態1の冷凍サイクルを示す冷凍サイクル図FIG. 3 is a refrigerating cycle diagram showing the refrigerating cycle of the first embodiment; 図4は、実施の形態1の冷蔵用冷却器を示す斜視図4 is a perspective view showing the cooler for refrigeration according to Embodiment 1; FIG. 図5は、実施の形態1の冷蔵用冷却器を示す平面図5 is a plan view showing the cooler for refrigeration according to Embodiment 1; FIG. 図6は、実施の形態1の冷蔵用冷却器を示す正面図6 is a front view showing the cooler for refrigeration according to Embodiment 1; FIG. 図7は、実施の形態1の吸込口周辺を示す側面断面図7 is a side cross-sectional view showing the vicinity of the suction port of Embodiment 1. FIG.
 (本開示の基礎となった知見等)
 発明者らが本開示に想到するに至った当時、内部に冷媒が流れる流路が複数形成されている偏平管を有するマルチフロー型冷蔵用冷却器を用いて冷凍サイクルの熱交換を行う冷蔵庫が開示されていた。この冷蔵庫は、冷蔵用冷却器を冷蔵用冷却室に備え、冷蔵用冷却器で空気を冷却することで冷蔵室を冷却する技術であった。
 しかしながら、従来の技術では、冷蔵用冷却器に空気が流入する際に冷蔵用冷却室内で一部の空気が滞留し、冷蔵用冷却器の一部に空気が流入しにくくなるため、冷却効率が低下するという課題を発明者らは発見し、その課題を解するために、本開示の主題を構成するに至った。
 そこで本開示は、冷却効率を向上させることができる冷蔵庫を提供する。
(Knowledge, etc. on which this disclosure is based)
At the time when the inventors arrived at the present disclosure, there was a refrigerator that performs heat exchange in a refrigeration cycle using a multi-flow type refrigerator having a flat tube in which a plurality of flow paths for refrigerant flow is formed. had been disclosed. This refrigerator was based on the technology of providing a refrigerating cooler in a refrigerating cooling chamber and cooling the refrigerating chamber by cooling air with the refrigerating cooler.
However, in the conventional technology, when air flows into the refrigerating cooler, part of the air stays in the refrigerating cooling chamber, making it difficult for the air to flow into a part of the refrigerating cooler, resulting in poor cooling efficiency. The inventors have discovered the problem of lowering and have come to constitute the subject matter of this disclosure in order to solve that problem.
Accordingly, the present disclosure provides a refrigerator capable of improving cooling efficiency.
 以下、図面を参照しながら、実施の形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明、または、実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が必要以上に冗長になるのを避け、当業者の理解を容易にするためである。
 なお、添付図面および以下の説明は、当業者が本開示を十分に理解するために提供されるのであって、これらにより特許請求の範囲に記載の主題を限定することを意図していない。
Hereinafter, embodiments will be described in detail with reference to the drawings. However, more detailed description than necessary may be omitted. For example, detailed descriptions of well-known matters or redundant descriptions of substantially the same configurations may be omitted. This is to avoid the following description from becoming more redundant than necessary and to facilitate understanding by those skilled in the art.
It should be noted that the accompanying drawings and the following description are provided to allow those skilled in the art to fully understand the present disclosure and are not intended to limit the claimed subject matter thereby.
 (実施の形態1)
 以下、図1~図7を用いて、実施の形態1を説明する。
 [1-1.構成]
 [1-1-1.冷蔵庫の構成]
 図1は、本発明に係る冷蔵庫の概略を示す概略断面図である。
 図1に示すように、冷蔵庫1は、箱型の本体10を備えている。本体10の上下方向の2箇所には、本体10の内部を上下3つの空間に仕切る上部仕切板11及び下部仕切板12が設けられている。
 上部仕切板11の上側空間は、冷蔵室13とされ、上部仕切板11と下部仕切板12との間の空間は、冷凍室14とされ、下部仕切板12の下側空間は、野菜室15とされている。
 冷蔵室13の内部下方には、冷蔵室13より低温とされる低温室16が設けられている。冷蔵室13の内部には、食品を載置する棚板17が設けられている。
 冷凍室14の内部には、氷を溜める製氷室18が設けられている。
(Embodiment 1)
Embodiment 1 will be described below with reference to FIGS. 1 to 7. FIG.
[1-1. composition]
[1-1-1. Refrigerator configuration]
FIG. 1 is a schematic cross-sectional view showing the outline of a refrigerator according to the present invention.
As shown in FIG. 1 , the refrigerator 1 has a box-shaped main body 10 . An upper partition plate 11 and a lower partition plate 12 are provided at two locations in the vertical direction of the main body 10 to divide the interior of the main body 10 into three spaces, one above the other.
The space above the upper partition plate 11 serves as a refrigerator compartment 13, the space between the upper partition plate 11 and the lower partition plate 12 serves as a freezer compartment 14, and the space below the lower partition plate 12 serves as a vegetable compartment 15. It is said that
A low-temperature chamber 16 whose temperature is lower than that of the refrigerating chamber 13 is provided below the refrigerating chamber 13 . Inside the refrigeration compartment 13, a shelf board 17 for placing food is provided.
Inside the freezer compartment 14, an ice making compartment 18 for storing ice is provided.
 冷蔵室13の前面には、横開き式の冷蔵室用扉20が開閉自在に設けられている。
 冷凍室14の前面には、冷凍室用引き出し扉21が開閉自在に設けられており、冷凍室用引き出し扉21の内側には、内部に食品を収容する冷凍用引き出しケース22が設けられている。
 野菜室15の前面の開口部には、野菜室用引き出し扉23が開閉自在に設けられており、野菜室用引き出し扉23の内側には、内部に食品を収容する野菜室用引き出しケース24が設けられている。
A side-opening door 20 for the refrigerator compartment is provided on the front surface of the refrigerator compartment 13 so as to be freely opened and closed.
A freezer compartment drawer door 21 is provided on the front surface of the freezer compartment 14 so as to be freely opened and closed, and inside the freezer compartment drawer door 21, a freezer drawer case 22 for storing food is provided inside. .
A vegetable compartment drawer door 23 is provided at the front opening of the vegetable compartment 15 so that it can be opened and closed. Inside the vegetable compartment drawer door 23, a vegetable compartment drawer case 24 for storing food is provided. is provided.
 図1および図2に示すように、冷蔵庫1の冷蔵室13の背面側には、冷蔵用冷却室30が設けられている。冷蔵用冷却室30の上方には、冷蔵室13の上方に延在する冷蔵室ダクト31が接続されている。冷蔵室13と冷蔵用冷却室30とは、鉛直方向に延在する仕切壁85によって仕切られている。
 冷蔵用冷却室30には、冷蔵用冷却器32が収容されている。冷蔵用冷却器32は、マイクロチャネル式の冷却器とされている。マイクロチャネル式の冷却器とは、例えば、扁平多孔管とフィンで構成された冷却器である。扁平多孔管は、内部に冷媒が流れる流路が複数形成された扁平管である。なお、冷蔵用冷却器32の詳細については、後述する。
 冷蔵用冷却室30の冷蔵用冷却器32の上方には、冷蔵用ファン33が配置されている。冷蔵用ファン33は、例えば、遠心ファンが用いられる。遠心ファンは、回転羽根の軸方向の一面側中央部分から冷蔵用冷却器32を通過した冷気を吸い込み、遠心方向に吹き出すファンである。また、遠心ファンは、冷蔵用冷却室30の後方から冷気を吸い込み、遠心方向に吹き出す。遠心ファンを用いることで、細いダクトでも風量を確保することができる。
 また、図1に示すように、冷蔵用ファン33は、低温室16の上面16aよりも上方に設けられている。これにより、冷蔵用ファン33は、低温室16との熱交換が抑制される。従って、主に冷蔵用ファン33の非駆動時に、低温室16との熱交換によって冷蔵用ファン33が冷却されることを抑制できる。従って、冷蔵用ファン33の結露や着霜、凍結を抑制することができ、冷蔵用ファン33の信頼性が向上する。
 冷蔵用ファン33により冷蔵用冷却室30から冷気が吸い込まれることで、仕切壁85に設けられた略矩形状の吸込口87を介して、冷蔵室13から冷蔵用冷却室30に空気が流入する。なお、吸込口87周辺の詳細な構成については、後述する。
As shown in FIGS. 1 and 2 , a cooling chamber 30 for refrigerating is provided on the back side of the refrigerating chamber 13 of the refrigerator 1 . A refrigerating chamber duct 31 extending above the refrigerating chamber 13 is connected above the cooling chamber 30 for refrigerating. The refrigerator compartment 13 and the cooling compartment for refrigeration 30 are separated by a partition wall 85 extending in the vertical direction.
A refrigerating cooler 32 is accommodated in the refrigerating cooling chamber 30 . The refrigerating cooler 32 is a microchannel cooler. A microchannel cooler is, for example, a cooler composed of flat perforated tubes and fins. A flat perforated tube is a flat tube in which a plurality of channels through which a coolant flows are formed. Details of the refrigerating cooler 32 will be described later.
A refrigerating fan 33 is arranged above the refrigerating cooler 32 in the refrigerating cooling chamber 30 . A centrifugal fan, for example, is used as the cooling fan 33 . The centrifugal fan is a fan that draws in cool air that has passed through the refrigerating cooler 32 from the central portion of one side in the axial direction of the rotating blades and blows it out in the centrifugal direction. Also, the centrifugal fan draws cold air from the rear of the cooling chamber 30 for refrigeration and blows it out in the centrifugal direction. By using a centrifugal fan, it is possible to secure air volume even in narrow ducts.
Further, as shown in FIG. 1 , the cooling fan 33 is provided above the upper surface 16 a of the low temperature chamber 16 . As a result, the cooling fan 33 is prevented from exchanging heat with the low-temperature room 16 . Therefore, it is possible to prevent the cooling fan 33 from being cooled by heat exchange with the low-temperature room 16 mainly when the cooling fan 33 is not driven. Therefore, dew condensation, frost formation, and freezing of the refrigerating fan 33 can be suppressed, and the reliability of the refrigerating fan 33 is improved.
Cold air is sucked from the refrigerating cooling chamber 30 by the refrigerating fan 33 , so that the air flows from the refrigerating chamber 13 into the refrigerating cooling chamber 30 through the substantially rectangular suction port 87 provided in the partition wall 85 . . A detailed configuration around the suction port 87 will be described later.
 なお、本実施の形態において遠心ファンは、冷蔵用冷却室30の後方から冷気を吸い込む構成としているが、冷蔵用冷却室30の前方から冷気を吸い込む構成としてもよい。
 また、冷蔵用ファン33は、例えば、軸流ファンであってもよい。軸流ファンは、冷蔵用冷却器32により冷却された冷気を冷蔵室13に効率よく吹き出すように、吹き出し側が上方を向くように傾斜して配置されている。軸流ファンを用いることで、下方向へも冷気を吐出しやすくできる。
In the present embodiment, the centrifugal fan draws cold air from the rear of the cooling chamber 30 for refrigeration, but may be configured to draw cold air from the front of the cooling chamber 30 for refrigeration.
Also, the cooling fan 33 may be, for example, an axial fan. The axial fan is inclined so that the blowing side faces upward so as to efficiently blow out the cold air cooled by the cooler 32 for refrigeration to the refrigerator compartment 13 . By using an axial fan, cool air can be easily discharged downward.
 冷蔵用冷却器32に付着した霜は、プラス温度である冷蔵室13の庫内空気によって除霜することができる。この場合、冷蔵用冷却器32には冷媒は流さずに、冷蔵用ファン33を駆動させることが好ましい。 Frost adhering to the refrigerating cooler 32 can be defrosted by the inside air of the refrigerating compartment 13 having a plus temperature. In this case, it is preferable to drive the refrigerating fan 33 without flowing the refrigerant through the refrigerating cooler 32 .
 冷蔵室ダクト31は、冷蔵用ファン33の吹き出し側のケーシング33aに接続されており、冷蔵室ダクト31は、上方に向かって徐々に幅寸法が大きくなるテーパ状に形成されている。
 冷蔵室ダクト31には、冷蔵室13に連通する冷蔵用吹出口35が形成されている。
 冷蔵室ダクト31は、中途部で側方に分岐して形成された低温室ダクト31aを備える。低温室ダクト31aは、冷蔵室ダクト31と低温室16とを連通し、低温室用吐出口35aから低温室16内に冷気を吐出する。また、低温室ダクト31aは、低温室16の上面16aよりも上方に位置する中途部に低温室ダンパ36aを備える。低温室ダンパ36aは、開閉動作を行うことで、冷蔵用冷却器32により冷却された冷気の低温室16に対する送風と送風停止とを切り替えるように構成されている。
 ここで、低温室ダンパ36aは、低温室16の上面16aよりも上方に位置するため、低温室16との熱交換が抑制される。従って、主に低温室ダンパ36aの閉状態の際に、低温室16との熱交換によって低温室ダンパ36aが冷却されることを抑制できる。従って、低温室ダンパ36aの結露や着霜、凍結を抑制することができ、低温室ダンパ36aの信頼性が向上する。
The refrigerating compartment duct 31 is connected to a casing 33a on the outlet side of the refrigerating fan 33. The refrigerating compartment duct 31 is tapered such that its width gradually increases upward.
A refrigerating outlet 35 communicating with the refrigerating chamber 13 is formed in the refrigerating chamber duct 31 .
The refrigerating compartment duct 31 has a low temperature compartment duct 31a that is branched to the side in the middle. The low-temperature chamber duct 31a communicates the refrigerating chamber duct 31 and the low-temperature chamber 16, and discharges cool air into the low-temperature chamber 16 from the low-temperature chamber outlet 35a. The low-temperature-chamber duct 31 a also includes a low-temperature-chamber damper 36 a in the middle above the upper surface 16 a of the low-temperature chamber 16 . The low-temperature room damper 36a is configured to switch between blowing and stopping the blowing of cold air cooled by the refrigerating cooler 32 to the low-temperature room 16 by performing an opening/closing operation.
Here, since the low-temperature chamber damper 36a is located above the upper surface 16a of the low-temperature chamber 16, heat exchange with the low-temperature chamber 16 is suppressed. Therefore, it is possible to suppress cooling of the low temperature chamber damper 36a by heat exchange with the low temperature chamber 16 mainly when the low temperature chamber damper 36a is closed. Therefore, dew condensation, frost formation, and freezing of the low-temperature-room damper 36a can be suppressed, and the reliability of the low-temperature-room damper 36a is improved.
 冷蔵用冷却器32の下面側であって後述するヘッダの下部には、遮蔽板39が設けられる。遮蔽板39は、ヘッダの下部を覆うことで、冷蔵室13から送られる庫内空気を冷蔵用冷却器32の後述する空気流路に導く機能を備えている。
 なお、遮蔽板39は、冷蔵用冷却室30に設けられていてもよい。この場合、遮蔽板39は、後述するヘッダの下部に対応する位置に設けられる。
A shielding plate 39 is provided on the lower surface side of the cooler 32 for refrigeration and below the header described later. The shielding plate 39 covers the lower part of the header, and has a function of guiding the inside air sent from the refrigerator compartment 13 to the later-described air flow path of the cooler 32 for refrigeration.
The shield plate 39 may be provided in the cooling chamber 30 for refrigeration. In this case, the shielding plate 39 is provided at a position corresponding to the lower portion of the header, which will be described later.
 冷蔵庫1の冷凍室14の背面側には、冷凍用冷却室40が設けられている。冷凍用冷却室40には、冷凍用冷却器41が収容されている。
 冷凍用冷却器41は、例えば、フィンチューブ式の冷却器とされている。フィンチューブ式の冷却器とは、例えば、円管のパイプとフラットフィンとで構成された冷却器である。冷凍用冷却器41の上方には、冷凍用冷却器41により冷却された冷気を冷凍室14の内部に送る冷凍用ファン42が配置されている。
 フィンチューブ式の冷却器は、マイクロチャネル式の冷却器と比較して、フィン間の距離が大きくなるように設計している。そのため、着霜による目詰まりを抑制でき、除霜するためのヒータに通電する回数を減らすことができる。従って、消費電力量を抑制することができる。
A freezing cooling chamber 40 is provided on the back side of the freezing chamber 14 of the refrigerator 1 . A freezing cooler 41 is accommodated in the freezing cooling chamber 40 .
The freezing cooler 41 is, for example, a fin-tube cooler. A fin-tube cooler is, for example, a cooler composed of a circular pipe and flat fins. A freezing fan 42 that sends cold air cooled by the freezing cooler 41 to the inside of the freezing compartment 14 is arranged above the freezing cooler 41 .
A fin-tube cooler is designed with a larger distance between fins than a microchannel cooler. Therefore, clogging due to frost formation can be suppressed, and the number of times the heater for defrosting is energized can be reduced. Therefore, power consumption can be suppressed.
 冷凍用ファン42は、例えば、軸流ファンが用いられる。軸流ファンは、冷凍用冷却器41により冷却された冷気を冷凍室14に効率よく吹き出すように、吹き出し側が上方を向くように傾斜して配置されている。冷凍室14の背面には、冷凍用吹出口43が形成されている。
 なお、冷凍用ファン42は、例えば、遠心ファンであってもよい。
 冷凍用冷却器41の下方には、冷凍用冷却器41に付着した霜を除霜するためのガラス管ヒータ44が配置されている。
 なお、ガラス管ヒータ44を用いずに、冷凍用冷却器41に付着した霜を除霜するために、冷凍用冷却器41を直接温めるパイプヒータを用いてもよい。
 冷凍用冷却室40の冷気は、下部仕切板12に形成された連通孔45を介して野菜室15に送られるように構成されている。
An axial fan, for example, is used as the cooling fan 42 . The axial fan is inclined so that the blowing side faces upward so as to efficiently blow out the cold air cooled by the freezing cooler 41 to the freezer compartment 14 . A freezer outlet 43 is formed on the back surface of the freezer compartment 14 .
The freezing fan 42 may be, for example, a centrifugal fan.
A glass tube heater 44 for defrosting frost adhering to the freezing cooler 41 is arranged below the freezing cooler 41 .
Instead of using the glass tube heater 44, a pipe heater that directly heats the freezing cooler 41 may be used to defrost the freezing cooler 41. FIG.
Cold air in the cooling chamber 40 for freezing is configured to be sent to the vegetable compartment 15 through a communication hole 45 formed in the lower partition plate 12 .
 冷蔵用冷却器32の下方には、冷蔵用露受け皿37が配置されている。冷凍用冷却器41の下方には、冷凍用露受け皿46が配置されている。
 野菜室15の背面側下方には、蒸発皿47が配置されている。
 冷蔵用露受け皿37には、冷蔵用排水管38が接続されている。冷凍用露受け皿46には、冷凍用排水管48が接続されている。冷蔵用排水管38および冷凍用排水管48の下端部は、上部仕切板11および下部仕切板12をそれぞれ貫通して蒸発皿47の上部近傍まで延在している。
 これにより、冷蔵用露受け皿37および冷凍用露受け皿46に溜まったドレン水を冷蔵用排水管38および冷凍用排水管48を介して蒸発皿47に送ることができ、蒸発皿47でドレン水の蒸発を行うように構成されている。
A dew tray 37 for refrigeration is arranged below the cooler 32 for refrigeration. A freezing dew tray 46 is arranged below the freezing cooler 41 .
An evaporating dish 47 is arranged below the back side of the vegetable compartment 15 .
A refrigerating drain pipe 38 is connected to the refrigerating dew tray 37 . A freezing drain pipe 48 is connected to the freezing dew pan 46 . The lower ends of refrigerating drain pipe 38 and freezing drain pipe 48 penetrate upper partition plate 11 and lower partition plate 12 , respectively, and extend to the vicinity of the upper portion of evaporating plate 47 .
As a result, the drain water accumulated in the refrigerating dew pan 37 and the freezing dew pan 46 can be sent to the evaporating pan 47 via the refrigerating drain pipe 38 and the freezing drain pipe 48. configured to evaporate.
 本体の後部上方には、圧縮機50が設置されている。 A compressor 50 is installed on the rear upper part of the main body.
 [1-1-2.冷凍サイクルの構成]
 次に、冷蔵庫1の冷凍サイクル構成について説明する。
 図3は、冷蔵庫1の冷凍サイクルを示す冷凍サイクル図である。
 図3に示すように、冷蔵庫1は、圧縮機50と、凝縮器51と、切替弁52と、冷蔵用減圧手段53と、冷蔵用冷却器32と、冷蔵用戻り配管55aと、冷凍用減圧手段54と、冷凍用冷却器41と、冷凍用戻り配管55bと、を冷媒戻り配管55で接続して構成されている。冷蔵用減圧手段53として冷蔵用キャピラリチューブ53が、冷凍用減圧手段54として冷凍用キャピラリチューブ54が配設されている。
 冷蔵用減圧手段53および冷蔵用冷却器32と、冷凍用減圧手段54および冷凍用冷却器41とは、切替弁52を介して互いに並列となるように接続されている。
[1-1-2. Configuration of refrigeration cycle]
Next, the refrigerating cycle configuration of the refrigerator 1 will be described.
FIG. 3 is a refrigerating cycle diagram showing the refrigerating cycle of the refrigerator 1. As shown in FIG.
As shown in FIG. 3, the refrigerator 1 includes a compressor 50, a condenser 51, a switching valve 52, a refrigerating decompression means 53, a refrigerating cooler 32, a refrigerating return pipe 55a, and a freezing decompressor. The means 54 , the refrigerating cooler 41 , and the refrigerating return pipe 55 b are connected by a refrigerant return pipe 55 . A refrigerating capillary tube 53 and a freezing capillary tube 54 are provided as decompressing means 53 for refrigerating and decompressing means 54, respectively.
The refrigerating pressure reducing means 53 and the refrigerating cooler 32 , and the freezing pressure reducing means 54 and the freezing cooler 41 are connected in parallel with each other via the switching valve 52 .
 [1-1-3.冷蔵用冷却器32の構成]
 次に、冷蔵庫1に搭載される冷蔵用冷却器32の構成について説明する。
 図4は、実施の形態1の冷蔵用冷却器32を示す斜視図である。図5は、実施の形態1の冷蔵用冷却器32を示す平面図である。図6は、実施の形態1の冷蔵用冷却器32を示す正面図である。
[1-1-3. Configuration of Refrigeration Cooler 32]
Next, the configuration of the refrigerating cooler 32 mounted on the refrigerator 1 will be described.
FIG. 4 is a perspective view showing cooler 32 for refrigeration according to the first embodiment. FIG. 5 is a plan view showing cooler 32 for refrigeration according to the first embodiment. FIG. 6 is a front view showing cooler 32 for refrigeration according to the first embodiment.
 図4から図6に示すように、冷蔵用冷却器32は、冷媒が流れる冷媒導通部材60を備えている。冷媒導通部材60は、略四角形状の複数の通路が連続して配列された扁平多孔管で構成されている。
 冷媒導通部材60は、所定間隔をもって略平行に形成された複数の扁平管61と、これら各扁平管61の端部を接続する曲成部62と、を備えて蛇行状に形成されている。
 本実施の形態においては、後述するヘッダ間に扁平管61は、4つで構成されている。
 なお、扁平管61の数はこれに限定されるものではなく、任意に設定可能である。
 また、各扁平管61と曲成部62が一体で、1本の扁平管61を蛇行させてヘッダ間に形成してもよい。
As shown in FIGS. 4 to 6, the refrigerating cooler 32 includes a refrigerant conduction member 60 through which refrigerant flows. The refrigerant conducting member 60 is composed of a flat perforated tube in which a plurality of substantially rectangular passages are continuously arranged.
The refrigerant conduction member 60 is formed in a meandering shape including a plurality of flat tubes 61 formed substantially parallel with a predetermined interval and curved portions 62 connecting ends of the flat tubes 61 .
In this embodiment, four flat tubes 61 are provided between headers, which will be described later.
The number of flat tubes 61 is not limited to this, and can be set arbitrarily.
Further, each flat tube 61 and the bent portion 62 may be integrated, and one flat tube 61 may meander and be formed between the headers.
 また、扁平管61および曲成部62は、本実施形態においては、上下方向に3つの上部領域63、中部領域64、下部領域65に分割されている。
 なお、本実施の形態においては、上下方向に3つの領域に分割するようにしたが、上下方向に2つの領域、または4つ以上の領域に分割するようにしてもよい。
In addition, the flat tube 61 and the bent portion 62 are vertically divided into three upper regions 63, a middle region 64, and a lower region 65 in the present embodiment.
In the present embodiment, the area is vertically divided into three areas, but the area may be vertically divided into two areas or four or more areas.
 最も外側に位置する扁平管61の一端部には、上下に延在する入口側ヘッダ66および出口側ヘッダ67がそれぞれ設けられている。
 入口側ヘッダ66および出口側ヘッダ67は、例えば、円管で構成されている。
 入口側ヘッダ66および出口側ヘッダ67は、冷蔵用冷却器32の幅方向(左右方向)に位置をずらして配置されており、入口側ヘッダ66が扁平管61の近くに配置されるとともに、出口側ヘッダ67が入口側ヘッダ66より扁平管61から離れる位置に配置されて、入口側ヘッダ66および出口側ヘッダ67は、互い違いに設けられている。
 なお、出口側ヘッダ67が扁平管61の近くに配置されるとともに、入口側ヘッダ66が出口側ヘッダ67より扁平管61から離れる位置に配置されてもよい。
An inlet side header 66 and an outlet side header 67 extending vertically are provided at one end of the outermost flat tube 61 .
The inlet-side header 66 and the outlet-side header 67 are made of circular tubes, for example.
The inlet-side header 66 and the outlet-side header 67 are arranged with their positions shifted in the width direction (horizontal direction) of the refrigerating cooler 32 . The side header 67 is arranged at a position farther from the flat tube 61 than the inlet side header 66, and the inlet side header 66 and the outlet side header 67 are alternately provided.
The outlet side header 67 may be arranged near the flat tube 61 and the inlet side header 66 may be arranged at a position farther from the flat tube 61 than the outlet side header 67 is.
 また、入口側ヘッダ66および出口側ヘッダ67は、扁平管61の奥行方向(前後方向)における端面から突出しないように取付けられている。入口側ヘッダ66は、扁平管61の端部を折り曲げて形成された折曲部61aを介して扁平管61と接続され、出口側ヘッダ67は扁平管61の端部を折り曲げて形成された折曲部61aを介して扁平管61と接続されている。
 このように入口側ヘッダ66および出口側ヘッダ67を配置することで、入口側ヘッダ66および出口側ヘッダ67の端面は、冷媒導通部材60の扁平管61の外面と面一とされ、入口側ヘッダ66および出口側ヘッダ67の側面が扁平管61の厚みから突出しないように配置される。
 これにより、冷蔵用冷却器32の厚さ寸法を低減させることができ、冷蔵用冷却室30の内部に冷蔵用冷却器32を収容した場合に、冷蔵室ダクト31の内部スペースを小さくすることができる。その結果、冷蔵室13の内部空間を大きくすることができる。
The inlet side header 66 and the outlet side header 67 are attached so as not to protrude from the end surface of the flat tube 61 in the depth direction (front-rear direction). The inlet-side header 66 is connected to the flat tube 61 via a bent portion 61a formed by bending the end of the flat tube 61, and the outlet-side header 67 is connected to the flat tube 61 by bending the end of the flat tube 61. It is connected to the flat tube 61 via the curved portion 61a.
By arranging the inlet-side header 66 and the outlet-side header 67 in this way, the end faces of the inlet-side header 66 and the outlet-side header 67 are flush with the outer surface of the flat tube 61 of the refrigerant conducting member 60, and the inlet-side header The side surfaces of 66 and outlet side header 67 are arranged so as not to protrude from the thickness of flat tube 61 .
As a result, the thickness dimension of the refrigerating cooler 32 can be reduced, and when the refrigerating cooler 32 is accommodated inside the refrigerating cooling chamber 30, the internal space of the refrigerating chamber duct 31 can be reduced. can. As a result, the internal space of the refrigerator compartment 13 can be enlarged.
 また、入口側ヘッダ66の側面のうち冷蔵室13の後方向の側面であって下部領域65に対応する高さには、入口側配管68が接続されている。具体的には、入口側ヘッダ66の側面であって出口側ヘッダ67が接続されている扁平管61に向かう方向に、入口側配管68が接続されている。さらに、入口側配管68は、冷蔵用冷却器32の奥行方向(前後方向)と略平行に接続されていることが好ましい。
 出口側ヘッダ67は、入口側ヘッダ66の高さ寸法より高く形成されている。出口側ヘッダ67の側面のうち冷蔵室13の前方向の側面であって上部領域63の上端より上方位置には、出口側配管69が接続されている。具体的には、出口側ヘッダ67の側面であって入口側ヘッダ66が接続されている扁平管61に向かう方向に、出口側配管69が接続されている。さらに、出口側配管69は、入口側配管68と略平行に接続されていることが好ましい。すなわち、出口側配管69は、最上段の扁平管の上端よりも上方位置に接続されている。
Further, an inlet pipe 68 is connected to a side surface of the inlet header 66 on the rear side of the refrigerator compartment 13 at a height corresponding to the lower region 65 . Specifically, an inlet-side pipe 68 is connected to the side of the inlet-side header 66 in a direction toward the flat tube 61 to which the outlet-side header 67 is connected. Furthermore, the inlet-side pipe 68 is preferably connected substantially parallel to the depth direction (front-rear direction) of the refrigerating cooler 32 .
The outlet side header 67 is formed higher than the height dimension of the inlet side header 66 . Outlet-side pipe 69 is connected to a side surface of outlet-side header 67 facing forward of refrigerator compartment 13 and at a position above the upper end of upper region 63 . Specifically, the outlet side pipe 69 is connected to the side surface of the outlet side header 67 in the direction toward the flat tube 61 to which the inlet side header 66 is connected. Furthermore, the outlet pipe 69 is preferably connected substantially parallel to the inlet pipe 68 . That is, the outlet pipe 69 is connected to a position above the upper end of the uppermost flat tube.
 入口側配管68は、入口側ヘッダ66と略平行に上方に延在しており、出口側配管69は、出口側ヘッダ67の略平行に上方に延在している。また、入口側配管68は、出口側ヘッダ67側に向けて扁平管61の厚さ方向(前後方向)に突出しており、出口側配管69は、入口側ヘッダ66側に向けて扁平管61の厚さ方向(前後方向)に突出している。
 入口側配管68および出口側配管69は、入口側ヘッダ66および出口側ヘッダ67の径に対して小径とされている。
 前述のように入口側配管68および出口側配管69を配置することで、入口側配管68および出口側配管69の配置スペースが少なくて済む。
 また、入口側配管68には、冷蔵用キャピラリチューブ53が接続され、出口側配管69には、冷蔵用戻り配管55aが接続されている。
 冷蔵用キャピラリチューブ53は、入口側ヘッダ66の上方へ延びた後、本体10の背面断熱壁内に埋設される。また、冷蔵用戻り配管55aは、出口側ヘッダ67の上方へ延びた後、本体10の背面断熱壁内に埋設される。
 そして、背面断熱壁内で冷蔵用キャピラリチューブ53と冷蔵用戻り配管55aとが熱交換するように密着接続されている。
 また、出口側配管69と、下流に接続される冷蔵用戻り配管55aとの間には、液冷媒が圧縮機50に流入するのを防止するアキュムレータ(気液分離器)は備えていない。
The inlet-side pipe 68 extends upward substantially parallel to the inlet-side header 66 , and the outlet-side pipe 69 extends upward substantially parallel to the outlet-side header 67 . In addition, the inlet-side pipe 68 protrudes toward the outlet-side header 67 in the thickness direction (front-rear direction) of the flat pipe 61 , and the outlet-side pipe 69 protrudes toward the inlet-side header 66 from the flat pipe 61 . It protrudes in the thickness direction (front-rear direction).
The inlet-side pipe 68 and the outlet-side pipe 69 have diameters smaller than those of the inlet-side header 66 and the outlet-side header 67 .
By arranging the inlet-side pipe 68 and the outlet-side pipe 69 as described above, the arrangement space for the inlet-side pipe 68 and the outlet-side pipe 69 can be reduced.
The inlet pipe 68 is connected to the capillary tube 53 for refrigeration, and the outlet pipe 69 is connected to the return pipe 55a for refrigeration.
The refrigerating capillary tube 53 is embedded in the rear heat insulating wall of the main body 10 after extending above the inlet side header 66 . Also, the refrigerating return pipe 55 a extends above the outlet side header 67 and is embedded in the rear heat insulating wall of the main body 10 .
Then, the refrigerating capillary tube 53 and the refrigerating return pipe 55a are closely connected in the rear heat insulating wall so as to exchange heat.
An accumulator (gas-liquid separator) for preventing liquid refrigerant from flowing into the compressor 50 is not provided between the outlet pipe 69 and the refrigerating return pipe 55a connected downstream.
 本実施の形態においては、入口側ヘッダ66の下部から冷媒が流入するように構成されており、出口側ヘッダ67の上部から冷媒が流出するように構成されている。これにより、冷媒の流れは、冷気の通風方向に対して並行流とされる。ここで、並行流とは、冷媒の流れ方向と冷気の通風方向とが同じ場合を指す。
 なお、入口側ヘッダ66および出口側ヘッダ67は、扁平管61の異なる端部にそれぞれ設け、入口側ヘッダ66と出口側ヘッダ67とが冷媒導通部材60の両側に配置されるようにしてもよい。また、入口側ヘッダ66の冷媒入口は、上方に設けるようにしてもよいし、出口側ヘッダ67の冷媒出口は、下方に設けるようにしてもよい。
In this embodiment, the coolant flows in from the lower portion of the inlet side header 66 and the coolant flows out from the upper portion of the outlet side header 67 . Thereby, the flow of the coolant is made parallel to the ventilation direction of the cool air. Here, "parallel flow" refers to the case where the flow direction of the coolant is the same as the ventilation direction of the cool air.
The inlet-side header 66 and the outlet-side header 67 may be provided at different ends of the flat tube 61 , respectively, and the inlet-side header 66 and the outlet-side header 67 may be arranged on both sides of the refrigerant conducting member 60 . . Moreover, the refrigerant inlet of the inlet side header 66 may be provided upward, and the refrigerant outlet of the outlet side header 67 may be provided downward.
 図4に示すように、入口側ヘッダ66の下部領域65と中部領域64との境界に相当する位置には、仕切板70が設けられている。入口側ヘッダ66の中部領域64と上部領域63に相当する位置は、連通している。
 出口側ヘッダ67の上部領域63と中部領域64との境界に相当する位置には、出口側ヘッダ67内の連通を遮断する仕切板71が設けられている。出口側ヘッダ67の中部領域64と下部領域65に相当する位置は、連通している。
As shown in FIG. 4, a partition plate 70 is provided at a position corresponding to the boundary between the lower region 65 and the middle region 64 of the inlet side header 66 . The positions corresponding to the middle region 64 and the upper region 63 of the inlet side header 66 communicate with each other.
A partition plate 71 is provided at a position corresponding to the boundary between the upper region 63 and the middle region 64 of the outlet side header 67 to block communication within the outlet side header 67 . Positions corresponding to the middle region 64 and the lower region 65 of the outlet side header 67 communicate with each other.
 入口側ヘッダ66の下部から流入した冷媒は、冷媒導通部材60の下部領域65の内部を通って、出口側ヘッダ67に流れる。出口側ヘッダ67に流れた冷媒は、冷媒導通部材60の中部領域64に流入して入口側ヘッダ66に流れ、入口側ヘッダ66を介して下部領域65を流れた後、出口側ヘッダ67の上部から流出される。
 すなわち、入口側ヘッダ66に流入した冷媒は、扁平管61の下部領域65、中部領域64、上部領域63を順次流れて出口側ヘッダ67に至るように直列に流れる。ここで、各扁平管61は、直列に接続されている。
 これにより、冷気の通風方向を上下方向と揃えた場合でも、液冷媒が重力により下部に溜まることを抑制できる。従って、冷却器全体に冷媒を行き渡らせることが可能となり、熱交換効率の低下を抑制させることができる。
The coolant that has flowed in from the lower portion of the inlet side header 66 flows through the interior of the lower region 65 of the coolant conduction member 60 and into the outlet side header 67 . The refrigerant that has flowed through the outlet-side header 67 flows into the central region 64 of the refrigerant conduction member 60 , flows into the inlet-side header 66 , flows through the inlet-side header 66 through the lower region 65 , and then flows through the upper portion of the outlet-side header 67 . is drained from
That is, the refrigerant that has flowed into the inlet side header 66 flows through the lower region 65 , the middle region 64 , and the upper region 63 of the flat tube 61 in order, and then flows in series to reach the outlet side header 67 . Here, each flat tube 61 is connected in series.
As a result, even when the cool air ventilation direction is aligned with the vertical direction, it is possible to prevent the liquid refrigerant from accumulating in the lower portion due to gravity. Therefore, it becomes possible to spread the refrigerant over the entire cooler, and it is possible to suppress a decrease in heat exchange efficiency.
 冷媒導通部材60の各扁平管61の間には、空気流路72が形成される。
 空気流路72の内部には、扁平管61に対して所定角度で傾斜されジグザグ状に折り曲げて連続して設けられたフィン73が配列されており、これらフィン73により、空気流路72の内部に、断面形状略三角形状の空気流路72が連続して形成される。
 なお、断面形状が矩形状の空気流路72が連続して形成されていてもよい。
 空気流路72は、冷蔵用冷却室30の上下方向に沿うように、上下方向に形成される。
An air flow path 72 is formed between each flat tube 61 of the refrigerant conduction member 60 .
Inside the air flow path 72, fins 73 are arranged which are continuously provided by being inclined at a predetermined angle with respect to the flat tube 61 and bent in a zigzag shape. , an air flow path 72 having a substantially triangular cross-sectional shape is continuously formed.
Note that the air flow path 72 having a rectangular cross-sectional shape may be formed continuously.
The air flow path 72 is formed vertically along the vertical direction of the cooling chamber 30 for refrigeration.
 これにより、冷蔵用冷却室30の下方から上方に向かって流れる庫内空気は、空気流路72を流れ、このとき、冷媒導通部材60の内部を流れる冷媒と熱交換を行い、所定温度に冷却されるように構成されている。 As a result, the inside air flowing upward from the bottom of the cooling chamber 30 for refrigeration flows through the air flow path 72, and at this time, exchanges heat with the refrigerant flowing inside the refrigerant conduction member 60, and is cooled to a predetermined temperature. configured to be
 なお、下部領域65のフィン73と、上部領域63のフィン73との位置をずらして配置するようにしてもよく、より詳細には、下部領域65のフィン73と、上部領域63のフィン73とは、位相を1/2ずらして配置されていてもよい。すなわち、上部領域63における略三角形状の空気流路72と、下部領域65における略三角形状の空気流路72と、が平面視において互いに重なるように形成されるようにしてもよい。また、フィン73の位相をずらすのは、上部領域63のフィンに対して中部領域64のフィン73の位相をずらすようにしてもよい。このように構成することで、庫内空気が空気流路72を流れる際の抵抗は、多少増加するものの、空気の流れ方向に対してフィン73の端部との熱交換面積が増えることで前縁効果を高めることができ、そのため、熱交換効率を高めることができる。 The positions of the fins 73 in the lower region 65 and the fins 73 in the upper region 63 may be shifted. may be arranged with a phase shift of 1/2. That is, the substantially triangular air flow paths 72 in the upper region 63 and the substantially triangular air flow channels 72 in the lower region 65 may be formed so as to overlap each other in plan view. Further, the phase of the fins 73 may be shifted by shifting the phase of the fins 73 in the central region 64 with respect to the fins in the upper region 63 . By configuring in this way, although the resistance when the internal air flows through the air flow path 72 increases somewhat, the heat exchange area with the ends of the fins 73 increases in the direction of air flow, so The edge effect can be enhanced and thus the heat exchange efficiency can be enhanced.
 また、空気流路の上流側となる下部領域65のフィン73の傾斜角度は、空気流路の下流側となる上部領域63のフィン73の傾斜角度より大きく形成するようにしてもよい。すなわち、下部領域65のフィン73は、略三角形状の空気流路72の頂点に相当する角度が大きく形成されるようにしてもよい。このように構成することで、空気流路72の上流側となる下部領域65における空気流路72の断面積を大きく確保することができる。そのため、庫内空気が冷媒と熱交換した際に、フィン73に霜や結露が付着した場合でも、霜や結露により、空気流路72が塞がれてしまうことを防止することができ、空気の流れを確保することができる。 Further, the inclination angle of the fins 73 in the lower region 65 on the upstream side of the air flow path may be set larger than the inclination angle of the fins 73 in the upper region 63 on the downstream side of the air flow path. That is, the fins 73 of the lower region 65 may be formed with a large angle corresponding to the vertex of the substantially triangular air flow path 72 . With this configuration, a large cross-sectional area of the air flow path 72 can be ensured in the lower region 65 on the upstream side of the air flow path 72 . Therefore, even if frost or condensation adheres to the fins 73 when the inside air exchanges heat with the refrigerant, it is possible to prevent the air flow path 72 from being blocked by the frost or condensation. flow can be secured.
 また、本実施の形態においては、フィン73の下端は、冷媒導通部材60の下端よりも下方に位置している。これにより、庫内空気と冷媒とが熱交換した際に、着霜や結露などで発生する水をフィン73の下端に集めることができ、排水性を高めることが可能となる。
 また、フィン73の上端を冷媒導通部材60の上端より上方に位置させるようにしてもよい。これにより、フィン面積が大きくなることから、フィン73と庫内空気との熱交換量が増大し、庫内空気の熱交換効率を高めることができる。
Further, in the present embodiment, the lower ends of the fins 73 are positioned below the lower ends of the coolant conduction members 60 . As a result, when heat is exchanged between the inside air and the refrigerant, water generated by frost formation or dew condensation can be collected at the lower ends of the fins 73, and drainage can be improved.
Alternatively, the upper ends of the fins 73 may be positioned above the upper ends of the coolant conducting members 60 . As a result, since the fin area is increased, the amount of heat exchanged between the fins 73 and the inside air is increased, and the heat exchange efficiency of the inside air can be enhanced.
 [1-1-4.吸込口87周辺の構成]
 次に、冷蔵室13内から冷蔵用冷却室30に空気を吸い込むための吸込口87周辺の構成について説明する。
 図7は、図1における吸込口87周辺の拡大図である。
[1-1-4. Configuration around suction port 87]
Next, the configuration around the suction port 87 for sucking air from the refrigerating chamber 13 into the refrigerating cooling chamber 30 will be described.
FIG. 7 is an enlarged view around the suction port 87 in FIG.
 図7に示すように、吸込口87の上端87aの高さは、冷蔵用冷却器32の前面の下端32aの高さと略一致している。
 ここで、本開示とは異なり、吸込口87の上端87aの高さが冷蔵用冷却器32の前面の下端32aの高さよりも低くなっている場合は、冷蔵用冷却室30の内側において、仕切壁85の後面側と冷蔵用冷却器32の前面の下端32aとの隅部に空間が形成される。この隅部に形成される空間においては、吸込口87から流入した空気が渦を形成して滞留しやすくなる。従って、この場合は、本開示とは異なり、特に仕切壁85に近い空気流路72に空気が流入することを妨げられやすく、冷蔵用冷却器32における熱交換の効率が低下する。また、この場合は、本開示とは異なり、冷蔵用冷却器32における熱交換が不均一となることにより、冷蔵用冷却器32に偏着霜しやすくなる。
As shown in FIG. 7, the height of the upper end 87a of the suction port 87 substantially matches the height of the lower end 32a of the front surface of the cooler 32 for refrigeration.
Here, unlike the present disclosure, when the height of the upper end 87a of the suction port 87 is lower than the height of the lower end 32a of the front surface of the cooler 32 for refrigeration, the partition inside the cooling chamber 30 for refrigeration A space is formed at the corner between the rear surface side of the wall 85 and the lower end 32a of the front surface of the cooler 32 for refrigeration. In the space formed at this corner, the air that has flowed in from the suction port 87 forms a vortex and tends to stay there. Therefore, in this case, unlike the present disclosure, air is likely to be prevented from flowing into the air flow path 72 particularly close to the partition wall 85, and the efficiency of heat exchange in the refrigerating cooler 32 is reduced. Also, in this case, unlike the present disclosure, heat exchange in the refrigerating cooler 32 becomes non-uniform, so uneven frosting tends to occur on the refrigerating cooler 32 .
 一方で、本実施の形態では、先述した通り、吸込口87の上端87aの高さと、冷蔵用冷却器32の前面の下端32aの高さと、が略一致している。よって、本実施の形態では、冷蔵用冷却室30の内側において、仕切壁85と前面の下端32aとが隅となる空間を形成しない。従って、吸込口87から流入した空気が渦を形成して滞留することを抑制でき、仕切壁85に近い空気流路72においても、空気がスムーズに流入する。従って、冷蔵用冷却器32における熱交換の効率が向上する。また、冷蔵用冷却器32における熱交換が均一化されるため、冷蔵用冷却器32に偏着霜することを抑制できる。
 さらに、冷蔵用冷却器32を下方に設置できるため、厚さの大きい冷蔵用冷却器32までの高さを抑制し、庫内容積の低下を抑制できる。また、本実施の形態においては、冷蔵用冷却器32を下方に設置することで、冷蔵用ファン33についても、下方に設置することができる。従って、厚さが大きい冷蔵用冷却器32から冷蔵用ファン33までの高さを小さくすることができ、庫内容積の低下を抑制できる。
On the other hand, in the present embodiment, as described above, the height of the upper end 87a of the suction port 87 and the height of the lower end 32a of the front surface of the cooler 32 for refrigeration substantially match. Therefore, in the present embodiment, the partition wall 85 and the lower end 32a of the front surface do not form a corner space inside the cooling chamber 30 for refrigeration. Therefore, it is possible to prevent the air that has flowed in from the suction port 87 from forming a vortex and stay there, and the air flows smoothly into the air flow path 72 near the partition wall 85 as well. Therefore, the efficiency of heat exchange in the cooler 32 for refrigeration is improved. Moreover, since the heat exchange in the cooler 32 for refrigeration is made uniform, uneven frost formation on the cooler 32 for refrigeration can be suppressed.
Furthermore, since the cooler 32 for refrigeration can be installed downward, the height up to the cooler 32 for refrigeration, which has a large thickness, can be suppressed, and a decrease in the internal volume can be suppressed. Moreover, in the present embodiment, by installing the cooler 32 for refrigeration downward, the fan 33 for refrigeration can also be installed downward. Therefore, the height from the thick refrigerating cooler 32 to the refrigerating fan 33 can be reduced, thereby suppressing a decrease in the internal volume.
 また、図7に示すように、冷蔵用冷却器32の前面に備えられた扁平管61は、仕切壁85と接触している。これにより、空気が空気流路72を通らずに仕切壁85と冷蔵用冷却器32との間を通り抜けることを抑制できる。従って、冷蔵用冷却器32における熱交換の効率が向上する。 Further, as shown in FIG. 7, the flat tube 61 provided on the front surface of the cooler 32 for refrigeration is in contact with the partition wall 85 . As a result, it is possible to prevent air from passing through between the partition wall 85 and the cooler 32 for refrigeration without passing through the air flow path 72 . Therefore, the efficiency of heat exchange in the cooler 32 for refrigeration is improved.
 図7に示すように、仕切壁85の下方に設けられた吸込口87には、ルーバー89が設けられている。本実施の形態においては、3枚のルーバー89が略鉛直方向に沿って並んで設けられており、それぞれのルーバー89は、冷蔵用冷却室30側が高くなるように傾斜している。すなわち、ルーバー89により冷却室側から送られる空気を、冷蔵用冷却器32のそれぞれの空気流路72に案内することができるように構成されている。
 これにより、冷蔵室13から冷蔵用冷却室30に吸い込まれる空気がルーバー89によって上方に誘導され、冷蔵用冷却器32に向けてスムーズに流れる。従って、冷蔵用冷却器32における熱交換の効率が向上する。
As shown in FIG. 7, a suction port 87 provided below the partition wall 85 is provided with a louver 89 . In this embodiment, three louvers 89 are arranged substantially vertically, and each louver 89 is inclined so that the cooling chamber 30 side for refrigeration is higher. That is, the louvers 89 are configured to guide the air sent from the cooling chamber side to the respective air flow paths 72 of the coolers 32 for refrigeration.
As a result, the air sucked from the refrigeration compartment 13 into the cooling compartment 30 for refrigeration is guided upward by the louvers 89 and smoothly flows toward the cooler 32 for refrigeration. Therefore, the efficiency of heat exchange in the cooler 32 for refrigeration is improved.
 さらに、ルーバー89は、それぞれがフィン73(すなわち、空気流路72)に向かって傾斜している。
 これにより、吸込口87からフィン73に空気を導くことができるため、空気が空気流路72を流れやすくなり、冷蔵用冷却器32での熱交換効率が向上する。
 また、本実施の形態では、より具体的には、冷蔵用冷却器32に近い、上側に配置されたルーバー89は、複数の空気流路72の内、吸込口87(もしくは仕切壁85)に近い空気流路72に向かって傾斜している。このように、本実施の形態では、上側、中段、下側に配置されたルーバー89は順次、複数の空気流路72のうち前方、中央、後方にある空気流路72に順次向かってそれぞれ傾斜している。
 これにより、各ルーバーが誘導する空気の流れが交わることを抑制できるので、空気が空気流路72をさらに流れやすくなり、冷蔵用冷却器32での熱交換効率が向上する。
Further, the louvers 89 are each slanted toward the fins 73 (ie, the air channels 72).
As a result, the air can be guided from the suction port 87 to the fins 73, so that the air can easily flow through the air flow path 72, and the heat exchange efficiency in the cooler 32 for refrigeration is improved.
Further, in this embodiment, more specifically, the louver 89 arranged on the upper side near the cooler 32 for refrigeration is located at the suction port 87 (or the partition wall 85) of the plurality of air flow paths 72. It is slanted towards the closer air flow path 72 . Thus, in this embodiment, the louvers 89 arranged on the upper, middle, and lower sides are sequentially inclined toward the front, center, and rear air flow paths 72 of the plurality of air flow paths 72, respectively. are doing.
As a result, it is possible to prevent the air flows guided by the louvers from crossing each other, so that the air flows more easily through the air flow paths 72, and the heat exchange efficiency in the cooler 32 for refrigerating is improved.
 図7に示すように、仕切壁85は、冷蔵用冷却室30に面する断熱材85aと、冷蔵室13に面する化粧カバー85bと、によって構成されている。断熱材85aは、例えば発泡ウレタンなどの断熱材料によって形成されている。化粧カバー85bは、例えばABS樹脂などの樹脂によって形成されている。従って、冷蔵室13に面する化粧カバー85bによって外観性が向上する。さらに、断熱材85aが、冷蔵用冷却室30内の冷気及び冷蔵用冷却器32との熱交換による化粧カバー85bの冷却を抑制することで、化粧カバー85bの結露を抑制できる。 As shown in FIG. 7, the partition wall 85 is composed of a heat insulating material 85a facing the cooling chamber 30 for refrigeration and a decorative cover 85b facing the refrigerating chamber 13. As shown in FIG. The heat insulating material 85a is made of a heat insulating material such as urethane foam. The decorative cover 85b is made of resin such as ABS resin. Therefore, the decorative cover 85b facing the refrigerator compartment 13 improves the appearance. Furthermore, the heat insulating material 85a suppresses cooling of the decorative cover 85b due to heat exchange with cold air in the cooling chamber 30 for refrigerating and the cooler 32 for refrigerating, thereby suppressing dew condensation on the decorative cover 85b.
 [1-2.動作]
 以上のように構成された冷蔵庫1について、その動作を以下説明する。
 まず、圧縮機50を駆動することにより、冷媒を凝縮器51に送り、切替弁を切り替えることで、冷蔵用冷却器32または冷凍用冷却器41のいずれかに冷媒を送る。
[1-2. motion]
The operation of the refrigerator 1 configured as described above will be described below.
First, by driving the compressor 50 , the refrigerant is sent to the condenser 51 , and by switching the switching valve, the refrigerant is sent to either the refrigerating cooler 32 or the freezing cooler 41 .
 冷蔵用冷却器32に送られた冷媒は、冷媒導通部材60の入口側ヘッダ66から流入して下部領域65の内部を流れる。出口側ヘッダ67に流れた冷媒は、出口側ヘッダ67を介して中部領域64を流れ、入口側ヘッダ66に送られ、入口側ヘッダ66を介して上部領域63を流れる。上部領域63を流れた冷媒は、出口側ヘッダ67から流出して、圧縮機50に戻される。 The refrigerant sent to the cooler 32 for refrigeration flows from the inlet side header 66 of the refrigerant conducting member 60 and flows inside the lower region 65 . The refrigerant that has flowed to the outlet side header 67 flows through the middle region 64 via the outlet side header 67 , is sent to the inlet side header 66 , and flows through the upper region 63 via the inlet side header 66 . Refrigerant that has flowed through the upper region 63 flows out from the outlet side header 67 and is returned to the compressor 50 .
 冷媒導通部材60の内部を冷媒が流れている状態で、冷蔵用ファン33を駆動することで、冷蔵室13の庫内空気が吸込口87から冷蔵用冷却室30に流入する。このとき、庫内空気はルーバー89に沿って上方に誘導され、冷蔵用冷却器32の空気流路72を通過する。その後、庫内空気は冷蔵室ダクト31の下方から上方に流れる。すなわち、冷蔵用冷却器32を通る冷気の通風方向は、冷蔵用冷却器32の下方から上方に向かう方向である。
 これにより、冷蔵室13の庫内空気が冷媒導通部材60を流れる冷媒と熱交換して冷却される。
By driving the refrigerating fan 33 while the refrigerant is flowing inside the refrigerant conduction member 60 , the air inside the refrigerating chamber 13 flows into the cooling chamber 30 for refrigerating through the suction port 87 . At this time, the internal air is guided upward along the louvers 89 and passes through the air flow paths 72 of the cooler 32 for refrigeration. After that, the inside air flows upward from below the refrigerating compartment duct 31 . In other words, the cold air passing through the cooler 32 for refrigeration is directed upward from below the cooler 32 for refrigeration.
As a result, the air inside the refrigerator compartment 13 exchanges heat with the refrigerant flowing through the refrigerant conduction member 60 and is cooled.
 冷凍用冷却器41に送られた冷媒は、冷凍用ファン42を駆動することで、冷凍用冷却室40の下方から上方に流れる庫内空気と熱交換し、冷媒により冷却された空気は、冷凍室14に戻される。 The refrigerant sent to the freezing cooler 41 drives the freezing fan 42 to exchange heat with the inside air flowing upward from the bottom of the freezing cooling chamber 40, and the air cooled by the refrigerant Returned to chamber 14 .
 [1-3.効果等]
 以上述べたように、本実施の形態における冷蔵庫1において、冷蔵用冷却室30は、冷蔵室13を冷却するための冷蔵用冷却器32を備え、冷蔵用冷却器32は、マイクロチャネル式冷却器で構成され、冷蔵室13と冷蔵用冷却室30とは、仕切壁85によって仕切られ、仕切壁85は、冷蔵室13と冷蔵用冷却室30とを連通する吸込口87を備え、吸込口87は、その上端87aの高さが冷蔵用冷却器32の前面の下端32aの高さ以上となるように形成されている。
 この構成によれば、吸込口87から流入した空気が滞留することを抑制できる。従って、空気が冷蔵用冷却器32を流れやすくなり、冷却の効率が向上する。
[1-3. effects, etc.]
As described above, in the refrigerator 1 according to the present embodiment, the refrigerating cooling chamber 30 includes the refrigerating cooler 32 for cooling the refrigerating chamber 13, and the refrigerating cooler 32 is a microchannel cooler. The refrigerating chamber 13 and the refrigerating cooling chamber 30 are separated by a partition wall 85, and the partition wall 85 is provided with a suction port 87 for communicating the refrigerating chamber 13 and the refrigerating cooling chamber 30. The suction port 87 is formed such that the height of its upper end 87a is equal to or higher than the height of the lower end 32a of the front surface of the cooler 32 for refrigeration.
According to this configuration, it is possible to prevent the air that has flowed in from the suction port 87 from staying. Therefore, the air can easily flow through the cooler 32 for refrigeration, and the efficiency of cooling is improved.
 また、冷蔵室13は、その内部に冷蔵室13よりも低温とされる低温室16を備え、冷蔵用冷却室30は、低温室16の背面側に配置される。
 この構成によれば、仕切壁85の冷蔵室13側と冷蔵用冷却室30側との温度差が小さくなるので、仕切壁85の厚みを小さくしても、仕切壁85の結露を抑制できる。よって、冷蔵室13の庫内容積の低下を抑制できる。
The refrigerating chamber 13 also includes a low-temperature chamber 16 having a lower temperature than the refrigerating chamber 13 .
With this configuration, the temperature difference between the refrigerating chamber 13 side and the refrigerating cooling chamber 30 side of the partition wall 85 is small, so that dew condensation on the partition wall 85 can be suppressed even if the thickness of the partition wall 85 is reduced. Therefore, a decrease in the internal volume of the refrigerator compartment 13 can be suppressed.
 また、冷蔵庫1は、冷蔵用冷却器32で冷却した冷気を冷蔵室13に流す冷蔵用ファン33を備え、冷蔵用ファン33は、低温室16の上面16aよりも上方に配置される。
 この構成によれば、冷蔵用ファン33と低温室16との間での熱交換が抑制される。従って、冷蔵用ファン33の結露、着霜、または凍結を抑制でき、冷蔵用ファン33の信頼性が向上する。
Refrigerator 1 also includes refrigerating fan 33 that flows cool air cooled by refrigerating cooler 32 into refrigerating chamber 13 , and refrigerating fan 33 is arranged above upper surface 16 a of low-temperature chamber 16 .
According to this configuration, heat exchange between the cooling fan 33 and the low temperature room 16 is suppressed. Therefore, dew condensation, frost formation, or freezing of the refrigerating fan 33 can be suppressed, and the reliability of the refrigerating fan 33 is improved.
 また、冷蔵庫1は、冷蔵用冷却室30と低温室16とを連通する低温室ダクト31aを備え、低温室ダクト31aは、その開閉を変更可能な低温室ダンパ36aを備え、低温室ダンパ36aは、低温室16の上面16aよりも上方に配置される。
 この構成によれば、低温室ダンパ36aと低温室16との間での熱交換が抑制される。従って、低温室ダンパ36aの結露、着霜、または凍結を抑制でき、低温室ダンパ36aの信頼性が向上する。
The refrigerator 1 also includes a low-temperature chamber duct 31a that communicates the refrigerating cooling chamber 30 and the low-temperature chamber 16. The low-temperature chamber duct 31a includes a low-temperature chamber damper 36a that can be opened/closed. , above the upper surface 16 a of the low temperature chamber 16 .
According to this configuration, heat exchange between the low temperature chamber damper 36a and the low temperature chamber 16 is suppressed. Therefore, dew condensation, frost formation, or freezing of the low-temperature-room damper 36a can be suppressed, and the reliability of the low-temperature-room damper 36a is improved.
 また、冷蔵用冷却器32は、所定間隔をもって略平行に配置された複数の扁平管61と、それぞれの扁平管61の間に形成される空気流路72と、空気流路72の内部に設けられるフィン73と、を備え、冷蔵用冷却器32は、扁平管61が仕切壁85に接触するように設けられている。
 この構成によれば、空気が空気流路72を通らずに扁平管61と仕切壁85との間を通り抜けることを抑制できる。従って、フィン73が設けられた空気流路72に空気が流れやすくなり、冷却効率が向上する。
Further, the refrigerating cooler 32 includes a plurality of flat tubes 61 arranged substantially parallel with a predetermined interval, air flow paths 72 formed between the respective flat tubes 61, and air flow paths 72 provided inside the air flow paths 72. The refrigerating cooler 32 is provided so that the flat tube 61 is in contact with the partition wall 85 .
According to this configuration, air can be prevented from passing between the flat tube 61 and the partition wall 85 without passing through the air flow path 72 . Therefore, the air can easily flow through the air flow path 72 provided with the fins 73, and the cooling efficiency is improved.
 また、冷蔵庫1は、吸込口87を介して冷蔵用冷却室30に吸い込まれる空気を導くルーバー89を備え、ルーバー89は、冷蔵室13側よりも冷蔵用冷却室30側が高くなるように設けられている。
 この構成によれば、吸込口87から冷蔵用冷却室30に吸い込まれる空気が、ルーバー89により上方に導かれる。従って、空気が冷蔵用冷却器32を通りやすくなり、冷却効率が向上する。
Refrigerator 1 also includes louvers 89 that guide air sucked into refrigerating cooling chamber 30 through inlet 87, and louvers 89 are provided so that the refrigerating cooling chamber 30 side is higher than the refrigerating chamber 13 side. ing.
According to this configuration, the air sucked into the cooling chamber 30 for refrigeration through the suction port 87 is guided upward by the louvers 89 . Therefore, it becomes easier for air to pass through the cooler 32 for refrigeration, and the cooling efficiency is improved.
 また、冷蔵庫1は、吸込口87を介して冷蔵用冷却室30に吸い込まれる空気を導くルーバー89を備え、ルーバー89は、フィン73に向けて傾斜している。
 この構成によれば、吸込口87から冷蔵用冷却室30に吸い込まれる空気が、ルーバー89によってフィン73に導かれる。従って、空気が冷蔵用冷却器32の空気流路72を通りやすくなり、冷却効率が向上する。
The refrigerator 1 also includes a louver 89 that guides the air sucked into the cooling chamber 30 for refrigerating via the suction port 87 , and the louver 89 is inclined toward the fins 73 .
According to this configuration, the air sucked into the cooling chamber 30 for refrigeration through the suction port 87 is guided to the fins 73 by the louvers 89 . Therefore, the air can easily pass through the air flow path 72 of the cooler 32 for refrigeration, and the cooling efficiency is improved.
 (他の実施の形態)
 以上のように、本出願において開示する技術の例示として、実施の形態1を説明した。しかしながら、本開示における技術は、これに限定されず、変更、置き換え、付加、省略などを行った実施の形態にも適用できる。また、上記実施の形態1で説明した各構成要素を組み合わせて、新たな実施の形態とすることも可能である。
 そこで、以下、他の実施の形態を例示する。
(Other embodiments)
As described above, Embodiment 1 has been described as an example of the technology disclosed in the present application. However, the technology in the present disclosure is not limited to this, and can also be applied to embodiments with modifications, replacements, additions, omissions, and the like. Also, it is possible to combine the constituent elements described in the first embodiment to form a new embodiment.
Therefore, other embodiments will be exemplified below.
 実施の形態1では、仕切壁85の吸込口87について、その上端87aの高さと、冷蔵用冷却器32の前面の下端32aの高さと、が略一致していると説明した。上端87aの高さと前面の下端32aの高さとの関係は、仕切壁85と前面の下端32aとが隅となる空間を冷蔵用冷却室30内に形成しないような関係であれば良い。従って、吸込口87の上端87aの高さは、冷蔵用冷却器32の前面の下端32aの高さと略一致しているものに限定されず、吸込口87の上端87aの高さが、冷蔵用冷却器32の前面の下端32aの高さ以上としてもよい。 In Embodiment 1, the height of the upper end 87a of the suction port 87 of the partition wall 85 and the height of the lower end 32a of the front face of the cooler 32 for refrigeration are substantially the same. The relationship between the height of the upper end 87a and the height of the lower end 32a of the front surface may be such that the partition wall 85 and the lower end 32a of the front surface do not form a space in the cooling chamber 30 for refrigeration. Therefore, the height of the upper end 87a of the suction port 87 is not limited to substantially matching the height of the lower end 32a of the front face of the cooler 32 for refrigeration. It may be equal to or higher than the lower end 32a of the front surface of the cooler 32 .
 また、実施の形態1では、吸込口87には、3枚のルーバー89が鉛直に並んで配置されると説明した。ルーバー89は、吸込口87から吸い込んだ空気を上方に導くことができるものであればよい。従って、複数のルーバー89が前後方向に並んでいてもよく、ルーバー89の枚数を任意に変更してもよい。ただし、実施の形態1のように、ルーバー89の枚数が、空気流路72が前後方向に並んだ数と同数であれば、各ルーバー89と各空気流路72とを一対一で対応させやすいので、各ルーバー89を各空気流路72に向けて傾斜させることで、各空気流路72に流入する空気の量を均一化しやすくなる。 Further, in Embodiment 1, it has been explained that the three louvers 89 are vertically arranged in the suction port 87 . Any louver 89 may be used as long as it can guide the air sucked from the suction port 87 upward. Therefore, a plurality of louvers 89 may be arranged in the front-rear direction, and the number of louvers 89 may be changed arbitrarily. However, if the number of louvers 89 is the same as the number of air flow paths 72 arranged in the front-rear direction as in Embodiment 1, each louver 89 and each air flow path 72 can be easily matched one-to-one. Therefore, by inclining each louver 89 toward each air flow path 72, the amount of air flowing into each air flow path 72 can be easily made uniform.
 なお、上述の実施の形態は、本開示における技術を例示するためのものであるから、特許請求の範囲またはその均等の範囲において種々の変更、置き換え、付加、省略などを行うことができる。 It should be noted that the above-described embodiments are intended to illustrate the technology of the present disclosure, and various modifications, replacements, additions, omissions, etc. can be made within the scope of the claims or equivalents thereof.
 本開示は、冷却効率を向上することができる冷蔵庫に好適に利用可能である。 The present disclosure can be suitably used for refrigerators capable of improving cooling efficiency.
 1 冷蔵庫
 10 本体
 11 上部仕切板
 12 下部仕切板
 13 冷蔵室
 14 冷凍室
 15 野菜室
 16 低温室
 16a 上面
 17 棚板
 18 製氷室
 20 冷蔵室用扉
 21 冷凍室用引き出し扉
 22 冷凍用引き出しケース
 23 野菜室用引き出し扉
 24 野菜室用引き出しケース
 30 冷蔵用冷却室
 31 冷蔵室ダクト
 31a 低温室ダクト
 32 冷蔵用冷却器
 32a 前面の下端
 33 冷蔵用ファン
 33a ケーシング
 35 冷蔵用吹出口
 35a 低温室用吐出口
 36a 低温室ダンパ
 37 冷蔵用露受け皿
 38 冷蔵用排水管
 39 遮蔽板
 40 冷凍用冷却室
 41 冷凍用冷却器
 42 冷凍用ファン
 43 冷凍用吹出口
 44 ガラス管ヒータ
 45 連通孔
 46 冷凍用露受け皿
 47 蒸発皿
 48 冷凍用排水管
 50 圧縮機
 51 凝縮器
 52 切替弁
 53 冷蔵用減圧手段(冷蔵用キャピラリチューブ)
 54 冷凍用減圧手段(冷凍用キャピラリチューブ)
 55 冷媒戻り配管
 55a 冷蔵用戻り配管
 55b 冷凍用戻り配管
 60 冷媒導通部材
 61 扁平管
 61a 折曲部
 62 曲成部
 63 上部領域
 64 中部領域
 65 下部領域
 66 入口側ヘッダ
 67 出口側ヘッダ
 68 入口側配管
 69 出口側配管
 70 仕切板
 71 仕切板
 72 空気流路
 73 フィン
 85 仕切壁
 85a 断熱材
 85b 化粧カバー
 87 吸込口
 87a 上端
 89 ルーバー
 
1 refrigerator 10 main body 11 upper partition 12 lower partition 13 refrigerator compartment 14 freezer compartment 15 vegetable compartment 16 low temperature compartment 16a upper surface 17 shelf board 18 ice making compartment 20 refrigerator compartment door 21 freezer compartment drawer door 22 freezer drawer case 23 vegetables Drawer door for room 24 Drawer case for vegetable compartment 30 Cooling room for refrigerating room 31 Refrigerating room duct 31a Low temperature room duct 32 Cooler for refrigerating 32a Front lower end 33 Fan for refrigerating 33a Casing 35 Outlet for refrigerating 35a Outlet for cold room 36a Low temperature room damper 37 Refrigeration dew pan 38 Refrigeration drain pipe 39 Shield plate 40 Freezing cooling chamber 41 Freezing cooler 42 Freezing fan 43 Freezing outlet 44 Glass tube heater 45 Communication hole 46 Freezing dew pan 47 Evaporating dish 48 Freezing drain pipe 50 Compressor 51 Condenser 52 Switching valve 53 Refrigeration decompression means (refrigeration capillary tube)
54 Decompression means for freezing (capillary tube for freezing)
55 Refrigerant return pipe 55a Refrigerating return pipe 55b Freezing return pipe 60 Refrigerant conducting member 61 Flat pipe 61a Bending portion 62 Bending portion 63 Upper region 64 Middle region 65 Lower region 66 Inlet side header 67 Outlet side header 68 Inlet side pipe 69 outlet pipe 70 partition plate 71 partition plate 72 air flow path 73 fin 85 partition wall 85a heat insulating material 85b decorative cover 87 suction port 87a upper end 89 louver

Claims (7)

  1.  少なくとも冷蔵室と冷蔵用冷却室とを備えた冷蔵庫において、
     前記冷蔵用冷却室は、前記冷蔵室を冷却するための冷蔵用冷却器を備え、
     前記冷蔵用冷却器は、マイクロチャネル式冷却器で構成され、
     前記冷蔵室と前記冷蔵用冷却室とは、仕切壁によって仕切られ、
     前記仕切壁は、前記冷蔵室と前記冷蔵用冷却室とを連通する吸込口を備え、
     前記吸込口は、その上端の高さが前記冷蔵用冷却器の前面の下端の高さ以上となるように形成されている
     ことを特徴とする冷蔵庫。
    In a refrigerator comprising at least a refrigerating compartment and a refrigerating cooling compartment,
    The cooling room for refrigerating comprises a cooler for refrigerating for cooling the refrigerating room,
    The refrigeration cooler is composed of a microchannel cooler,
    The refrigerating chamber and the refrigerating cooling chamber are separated by a partition wall,
    The partition wall has a suction port that communicates between the refrigerating chamber and the refrigerating cooling chamber,
    The refrigerator, wherein the suction port is formed such that the height of the upper end thereof is equal to or higher than the height of the lower end of the front surface of the cooler for refrigeration.
  2.  前記冷蔵室は、その内部に前記冷蔵室よりも低温とされる低温室を備え、
     前記冷蔵用冷却室は、前記低温室の背面側に配置される
     ことを特徴とする請求項1に記載の冷蔵庫。
    The refrigerating chamber includes a low-temperature chamber having a lower temperature than the refrigerating chamber,
    The refrigerator according to claim 1, wherein the cooling chamber for refrigeration is arranged on the back side of the low-temperature chamber.
  3.  前記冷蔵用冷却器で冷却した冷気を前記冷蔵室に流す冷蔵用ファンを備え、
     前記冷蔵用ファンは、前記低温室の上面よりも上方に配置される
     ことを特徴とする請求項2に記載の冷蔵庫。
    A refrigerating fan for flowing cold air cooled by the refrigerating cooler into the refrigerating compartment,
    The refrigerator according to claim 2, wherein the cooling fan is arranged above the upper surface of the low-temperature compartment.
  4.  前記冷蔵用冷却室と前記低温室とを連通する低温室ダクトを備え、
     前記低温室ダクトは、その開閉を変更可能な低温室ダンパを備え、
     前記低温室ダンパは、前記低温室の上面よりも上方に配置される
     ことを特徴とする請求項2または3に記載の冷蔵庫。
    A low-temperature chamber duct communicating between the cooling chamber for refrigeration and the low-temperature chamber,
    The low-temperature room duct includes a low-temperature room damper that can be opened and closed,
    The refrigerator according to claim 2 or 3, wherein the low-temperature compartment damper is arranged above an upper surface of the low-temperature compartment.
  5.  前記冷蔵用冷却器は、所定間隔をもって略平行に配置された複数の扁平管と、それぞれの前記扁平管の間に形成される空気流路と、前記空気流路の内部に設けられるフィンと、を備え、
     前記冷蔵用冷却器は、前記扁平管が前記仕切壁に接触するように設けられている
     ことを特徴とする請求項1乃至4に記載の冷蔵庫。
    The refrigerating cooler includes a plurality of flat tubes arranged substantially parallel with a predetermined interval, air flow paths formed between the flat tubes, fins provided inside the air flow paths, with
    The refrigerator according to any one of claims 1 to 4, wherein the cooler for refrigeration is provided so that the flat tube is in contact with the partition wall.
  6.  前記吸込口を介して前記冷蔵用冷却室に吸い込まれる空気を導くルーバーを備え、
     前記ルーバーは、前記冷蔵室側よりも前記冷蔵用冷却室側が高くなるように設けられている
     ことを特徴とする請求項1乃至5に記載の冷蔵庫。
    a louver for guiding air sucked into the refrigerating cooling chamber through the suction port;
    The refrigerator according to any one of claims 1 to 5, wherein the louvers are provided so that the side of the cooling chamber for refrigeration is higher than the side of the refrigerating chamber.
  7.  前記吸込口を介して前記冷蔵用冷却室に吸い込まれる空気を導くルーバーを備え、
     前記ルーバーは、前記フィンに向けて傾斜している
     ことを特徴とする請求項5に記載の冷蔵庫。
     
    a louver for guiding air sucked into the refrigerating cooling chamber through the suction port;
    The refrigerator according to claim 5, wherein the louvers are inclined toward the fins.
PCT/JP2022/040184 2021-11-26 2022-10-27 Refrigerator WO2023095537A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021191907A JP2023078669A (en) 2021-11-26 2021-11-26 refrigerator
JP2021-191907 2021-11-26

Publications (1)

Publication Number Publication Date
WO2023095537A1 true WO2023095537A1 (en) 2023-06-01

Family

ID=86539395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/040184 WO2023095537A1 (en) 2021-11-26 2022-10-27 Refrigerator

Country Status (2)

Country Link
JP (1) JP2023078669A (en)
WO (1) WO2023095537A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS471329Y1 (en) * 1969-03-05 1972-01-18
JP2003166778A (en) * 2001-11-30 2003-06-13 Hoshizaki Electric Co Ltd Refrigerator
JP2004266247A (en) * 2003-02-12 2004-09-24 Denso Corp Cooling structure for heat generating component
JP2005009825A (en) * 2003-06-20 2005-01-13 Matsushita Electric Ind Co Ltd Refrigerator
JP2005201530A (en) * 2004-01-15 2005-07-28 Matsushita Electric Ind Co Ltd Refrigerator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS471329Y1 (en) * 1969-03-05 1972-01-18
JP2003166778A (en) * 2001-11-30 2003-06-13 Hoshizaki Electric Co Ltd Refrigerator
JP2004266247A (en) * 2003-02-12 2004-09-24 Denso Corp Cooling structure for heat generating component
JP2005009825A (en) * 2003-06-20 2005-01-13 Matsushita Electric Ind Co Ltd Refrigerator
JP2005201530A (en) * 2004-01-15 2005-07-28 Matsushita Electric Ind Co Ltd Refrigerator

Also Published As

Publication number Publication date
JP2023078669A (en) 2023-06-07

Similar Documents

Publication Publication Date Title
KR101649624B1 (en) Refrigerator
JP5903552B2 (en) refrigerator
US20140318168A1 (en) Air conditioning device
JP5575532B2 (en) refrigerator
WO2023095537A1 (en) Refrigerator
JP4320518B2 (en) Freezer refrigerator
JP7032055B2 (en) refrigerator
JP2012032111A (en) Heat exchanger
WO2023063165A1 (en) Refrigerator
JP2016003831A (en) refrigerator
JP2015148403A (en) refrigerator
JP6940424B2 (en) refrigerator
JP2006078053A (en) Refrigerator
TWI722397B (en) refrigerator
KR20110087917A (en) Refrigerator
CN112113381A (en) Refrigerator with special-shaped evaporator
JP6762247B2 (en) Freezing and refrigerating equipment
WO2023068023A1 (en) Refrigerator
KR100331806B1 (en) device for cooling compressor in the refrigerator
CN220206106U (en) Evaporator, refrigerating device and refrigerating equipment
JP3609812B2 (en) refrigerator
US7730742B2 (en) Accelerated heat exchanger
WO2023210200A1 (en) Cooler
TWI658245B (en) Refrigerator
JP4203662B2 (en) refrigerator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22898321

Country of ref document: EP

Kind code of ref document: A1