JP3678522B2 - Camera with zoom lens - Google Patents

Camera with zoom lens Download PDF

Info

Publication number
JP3678522B2
JP3678522B2 JP00017797A JP17797A JP3678522B2 JP 3678522 B2 JP3678522 B2 JP 3678522B2 JP 00017797 A JP00017797 A JP 00017797A JP 17797 A JP17797 A JP 17797A JP 3678522 B2 JP3678522 B2 JP 3678522B2
Authority
JP
Japan
Prior art keywords
refractive power
lens
group
lens group
camera
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00017797A
Other languages
Japanese (ja)
Other versions
JPH10197793A (en
Inventor
青木法彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP00017797A priority Critical patent/JP3678522B2/en
Publication of JPH10197793A publication Critical patent/JPH10197793A/en
Application granted granted Critical
Publication of JP3678522B2 publication Critical patent/JP3678522B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/143Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only
    • G02B15/1431Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only the first group being positive
    • G02B15/143103Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only the first group being positive arranged ++-

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、小型のズームレンズを備えたカメラに関し、特に、軸外収差が良好に補正されたバックフォーカスの短いズームレンズを備えたレンズシャッターカメラ等に関するものである。また、本発明は、ライカ判よりも大きなフィルムサイズのカメラに関するものである。
【0002】
【従来の技術】
従来より、レンズシャッターカメラ等に用いられる小型のズームレンズとしては、特開昭56−128911号等に開示されているように、前群を正レンズ群、後群を負レンズ群の構成にしたタイプがよく知られている。このタイプは、正・負配置のいわゆるテレフォトタイプを構成しているので、後群の屈折力を効率よく上げることにより小型化を達成することが可能である。しかし、このタイプは2つの群を移動させることで変倍を行っているので、自由度が小さく高変倍比化や高性能化には限界がある。
【0003】
そのため、最近では、特開昭63−25613号等に開示されているように、物体側より順に、負、正、負の3群構成にしたタイプや、特開昭63−32513号等に開示されているように、更にその後ろに正又は負のレンズ群を付加した4群構成のズームレンズが多数提案されている。
【0004】
また、特開昭63−153511号等に開示されているように、物体側より順に、正、正、負の3群構成にしたタイプや、特開昭63−43115号等に開示されているように、正、正、負の3群構成のタイプの第2群を負・正に分割した正、負、正、負の4群構成のズームレンズが多数提案されている。
【0005】
しかし、これらの例は全てライカサイズのフィルムフォーマットを基準としており、それ以上に大きなフィルムサイズへ適用するという視点は含まれていない。さらに、これらの例では、良好な収差性能を維持したままバックフォーカスを短くしてレンズ系を小型化することは最早限界であった。そのため、広角端でのバックフォーカスを更に短くすることは、最像側の負レンズ群のパワーアップを意味し、この負レンズ群により補正していた軸外収差が過剰に補正されすぎてしまい、反対に光学性能の劣化を招くことになる。
【0006】
【発明が解決しようとする課題】
本発明は従来技術のこのような問題点に鑑みてなされたものであり、その目的は、最も像側に配置された負レンズ群を効果的に使って軸外収差を補正した小型のズームレンズを備えたカメラを提供することである。
【0007】
【課題を解決するための手段】
上記目的を達成する本発明の第1のズームレンズを備えたカメラは、最も像側に負の屈折力を有するレンズ群が配置された複数のレンズ群よりなり、少なくとも一つのレンズ群間隔を変化させることにより変倍を行い、以下の条件を満足することを特徴とするものである。
(1) 0.01<−1/(HB×tanω)<0.05 (1/mm)
(3)’0.6<−fN /fW <1.0
(4) −1.2<Σd/fN <−0.3
ここで、HBは物点が無限遠の場合の広角端においてレンズ最終面から全系の後側主点位置までの距離、ωは物点が無限遠の場合の広角端での半画角、fW は物点が無限遠の場合の広角端での焦点距離、fN は最も像側に配置された負の屈折力を有するレンズ群の焦点距離、Σdは最も像側に配置された負の屈折力を有するレンズ群の光軸上の厚みである。
【0012】
(1) 0.01<−1/(HB×tanω)<0.05 (1/mm)
(3) 0.6<−fN /fW <1.5
ここで、HBは物点が無限遠の場合の広角端においてレンズ最終面から全系の後側主点位置までの距離、ωは物点が無限遠の場合の広角端での半画角、fW は物点が無限遠の場合の広角端での焦点距離、fN は最も像側に配置された負の屈折力を有するレンズ群の焦点距離である。
【0013】
以下、本発明において上記の構成をとる理由と作用について説明する。
レンズ系を小型にするためには、像側に負の屈折力成分を配置することによりテレフォトタイプとして、全系の後側主点を物体側に移動させることが一般的である。像面との間に特にミラーを配置する必要のないタイプのズームレンズも同様で、最も像側に負のレンズ群を配置することで、レンズ系の小型化を達成している。像側の負レンズ群の屈折力を強くすればそれだけ全長の小型化は達成できるが、特に広角端の軸外収差の発生量が大きくなり、その補正が困難となる。
【0014】
そこで、本発明に用いるズームレンズでは、上記の構成をとり、さらに、条件式(1)を満足させることで、レンズ系の小型化を図ったまま、特に広角端における軸外収差を良好に補正することを可能にしたものである。
【0015】
軸外収差には、ザイデルの5収差の表現を使うと、非点収差と像面湾曲、コマ収差、歪曲収差がある。これら軸外収差は、非点収差と像面湾曲は入射半画角の2乗に、コマ収差は1乗に、歪曲収差は3乗に比例してそれらの発生量が大きくなる。また、屈折面の光線高が高くなればそれだけ発生量も増え、最も像側に配置された負のレンズ群においては、特に広角端の軸外光線の光線高が高くなるため、その発生量も大きくなる。そのため、一般には、入射半画角を不変のままで軸外収差の補正を行うために、軸外光線の光線高を低くして収差の発生量自体を小さくすることが行われている。これを最も像側に配置された負のレンズ群に適用すると、広角端の焦点距離に対してバックフォーカスを小さくすることが不可能となり、レンズ系の小型化が図れなくなる。
【0016】
一方、本発明に用いるズームレンズでは、広角端の焦点距離に対してバックフォーカスを十分小さくすることにより、意図的に最も像側に配置された負のレンズ群を通る軸外光線の光線高を高くする。そのことで、軸外収差が発生しやすくなるが、それをコントロールさせるように後で記載する条件式(3)’、(4)を満足するようにしたものである。
【0017】
条件式(1)はそのために設定したもので、同じ入射半画角でより効果的に軸外収差の補正が可能なように、軸外光線の光線高を規定するための条件式である。条件式(1)の下限の0.01を越えると、軸外光線の光線高が高くなりすぎ、その発生量が大きくなりすぎるばかりか、それを負レンズ群内でコントロールすること自体が不可能となり、十分な収差補正ができなくなってしまう。また、上限の0.05を越えると、逆に軸外光線の光線高が低くなり、広角端の焦点距離に対しバックフォーカスが長くなり、レンズ系の小型化が図れなくなってしまう。
【0018】
また、特に2群ズームレンズの場合は、物体側より順に、全体として正の屈折力を有する前群と、全体としての負の屈折力を有する後群とを配置し、双方の間隔を変えて変倍を行い、前記の条件式(1)と(2)を満足するようにする。
【0019】
前群正、後群負の2群ズームの場合は、条件式(1)を満足することで、レンズ系の小型化と広角端での軸外収差補正が良好に行われるが、条件式(2)を満足することで、更にそれを良好にすることができる。条件式(1)の作用効果は上記の通りであり、条件式(2)は、負の後群を通る軸外光線の光線高とレンズ系の小型化をバランスさせるために、広角端のバックフォーカスを規定した条件式である。
【0020】
条件式(2)の下限の0.04を越えると、全系の後側主点位置が物体側に必要以上に大きく移動し、負の後群を通る軸外光線の光線高が高くなりすぎる結果、後群だけではコントロールできなくなる量の軸外収差が発生してしまう。また、さらに、バックフォーカスが短くなりすぎて、フィルム上にレンズのゴミ等が写り込んでしまう。条件式(2)の上限の0.2を越えると、広角端の焦点距離に対するバックフォーカスが長くなりすぎ、レンズ系の小型化が図れない。以上の構成と、条件式(1)、(2)、(3)’(4)を満足することにより、正・負の2群ズームレンズは更に良好な結果が得られる。
【0021】
また、さらに、3群以上のズームレンズの場合は、最も像側に負の屈折力を有するレンズ群が配置された複数のレンズ群よりなり、少なくとも一つのレンズ群間隔を変化させることにより変倍を行い、前記の条件式(1)と(3)を満足するようにする。
【0022】
最も像側に負の屈折力のレンズ群を配置した3群以上のズームレンズの場合には、条件式(1)、(3)’(4)を満足することで、レンズ系の小型化と広角端での軸外収差補正が良好に行われる。
条件式(1)の作用効果は上記の通りであり、条件式(3)’は、最も像側に配置された負の屈折力を有するレンズ群の焦点距離を規定することで、軸外収差を積極的に補正できるだけの軸外収差の発生量を確保すると同時に、レンズ系の小型化を達成するために設定した条件式である。
【0023】
条件式(3)’の下限の0.6を越えると、最も像側に配置された負の屈折力を有するレンズ群の屈折力が強くなり、発生する収差量が大きくなりすぎてその補正ができなくなると同時に、広角端での全系の後側主点が必要以上に物体側へ移動してしまう結果、バックフォーカスが短くなり、フィルム上にゴミ等が写り込んでしまう。また、上限の1.0を越えると、逆にバックフォーカスが長くなり、レンズ系の小型化が図れなくなる上、広角端で最も像側に配置された負の屈折力を有するレンズ群で発生する軸外収差の発生量が小さく、全系でその補正ができなくなってしまう。以上の構成と、条件式(1)、(3)’を満足することにより、最も像側に負の屈折力のレンズ群を配置した3群以上のズームレンズは更に良好な結果が得られる。
【0024】
また、条件式(3)’は、正・負の2群ズームレンズの場合にも適用が可能で、これを満足することにより、レンズ系の小型化を達成することができる。
【0025】
そして、本発明に用いるズームレンズは、以下の条件式を満足することで、更に良好な収差補正が可能である。
(4) −1.2<Σd/fN <−0.3
ここで、Σdは最も像側に配置された負の屈折力を有するレンズ群の光軸上の厚みである。
【0026】
条件式(4)は、軸外収差の中でも特に非点収差と歪曲収差を補正する目的で、最も像側に配置された負の屈折力を有するレンズ群の厚みを規定した条件式であり、その上限−0.3、下限−1.2の範囲を越えると、特に、それぞれの収差が補正不足、補正過剰となり、十分な性能を満足することができなくなってしまう。
【0027】
なお、条件式(1)、(2)の数値範囲の中でも、それぞれ以下の条件式(1)’、(2)’の数値範囲に限定することで、更なる軸外収差の補正と全系の小型化が可能である。
【0028】
(1)’0.02<−1/(HB×tanω)<0.05 (1/mm)
(2)’0.08<fBW/fW <0.15
また、本発明のズームレンズを3群で構成する場合は、物体側より順に、正、正、負あるいは負、正、負の群構成が望ましい。特に、正、正、負の3群で構成した場合には、高変倍比化と小型化に有利であり、負、正、負の3群で構成した場合には、その対称性から軸外収差の補正に有利であるためである。また、これらの場合、レンズ系の最も物体側の面を物体に対して凹面とすることにより、特にその面で軸外光線の入射角を大きくし、最も像側に配置された負の屈折力を有するレンズ群で発生する軸外収差とキャンセルするような収差を発生させ、良好な軸外性能を得ることができる。なお、例えば正、正、負の3群構成のズームレンズの第2群を負正に分割し、正、負、正、負の4群構成にすれば、自由度が更に増えて収差補正上有利なのはいうまでもない。
【0029】
また、本発明に用いるズームレンズはどこでフォーカシングをすることも可能であるが、2群構成のズームレンズの場合は、正の前群で、3群構成のズームレンズの場合は、正の第2群をフォーカシング群として用いるのが、物点位置の違いによる収差変動が小さくて好ましい。
【0030】
さらに、3群以上の構成のズームレンズの場合は、フローティングの考えを導入し、2つ以上の群を独立に移動させることによりフォーカシングを行うことが可能なのはいうまでもない。
【0031】
また、さらに、本発明に用いるズームレンズに非球面を導入すれば、なお一層良好な性能が得られる。特に軸外収差を補正する目的で、最も像側に配置された負の屈折力を有するレンズ群に非球面を導入する場合は、少なくとも1面は光軸から離れるに従って正の屈折力が強くなるような形状の非球面が望ましい。また、正の屈折力を有するレンズ群に、特に望遠端の球面収差を補正する目的で非球面を導入する場合は、少なくとも1面は光軸から離れるに従って正の屈折力が弱くなるような形状の非球面が望ましい。
また、本発明に用いるズームレンズにプラスチックレンズに用いれば、コスト上有利であり、非球面レンズをプラスチックで構成すれば、生産上も好ましい。
【0032】
また、本発明に用いるズームレンズは、広角端を以下の条件式(5)を満足するような範囲に設定することで、以上説明してきた作用効果をさらに活かすことが可能である。
(5) 0.3<IH/fW <1.2
ここで、IHはフィルム対角長の1/2の長さ、fW は物点が無限遠の場合の広角端での焦点距離である。
条件式(5)の上限1.2、下限0.3の範囲を越えると、レンズ系の広角端での小型化と軸外収差のバランスが崩れ、所望の性能を得ることができなくなってしまう。
【0033】
【発明の実施の形態】
以下、本発明に用いるズームレンズの実施例1〜5について図面を参照にして説明する。図1〜図5に物点無限遠における実施例1〜5のレンズ断面図を示す。各図中、(a)は広角端、(b)は中間焦点距離、(c)は望遠端での断面図である。
【0034】
実施例1〜5中、実施例1と実施例2は、前群G1が正、後群G2が負の屈折力を有する2群ズームレンズの例であり、実施例3と実施例4は、物体側から順に、正、正、負の屈折力を有する3群ズームレンズの例であり、実施例5は、物体側から順に、負、正、負の屈折力を有する3群ズームレンズの例である。なお、実施例5は、第2群G2を移動させることにより−1/50倍の近距離物点にフォーカシングするようにしている。
【0035】
各実施例の数値データは後記するが、実施例1においては、図1に示すように、第1群(前群)G1は、物体側に凸の正メニスカスレンズと、両凹レンズと、両凸レンズと、物体側に凸の正メニスカスレンズと、絞りとからなり、第2群(後群)G2は、像側に凸の正メニスカスレンズと、像側に凸の負メニスカスレンズ2枚とからなる。非球面は、第2群G2の最も物体側の面1面に用いられている。なお、第2群G2の最も物体側のレンズはプラスチックレンズである。
【0036】
実施例2においては、図2に示すように、第1群(前群)G1は、物体側に凸の正メニスカスレンズと、像側に凸の負メニスカスレンズと、両凹レンズと、両凸レンズと、物体側に凸の正メニスカスレンズと、絞りとからなり、第2群(後群)G2は、像側に凸の正メニスカスレンズと、像側に凸の負メニスカスレンズ2枚とからなる。非球面は用いられていない。
【0037】
実施例3においては、図3に示すように、第1群G1は、物体側に凸の正メニスカスレンズと、像側に凸の負メニスカスレンズとからなり、第2群G2は、両凹レンズと、両凸レンズ2枚と、絞りとからなり、第3群G3は、像側に凸の正メニスカスレンズと、両凹レンズと、像側に凸の負メニスカスレンズとからなる。非球面は、第2群G2の絞りの前の面1面に用いられている。
【0038】
実施例4においては、図4に示すように、第1群G1は、両凹レンズと、両凸レンズとからなり、第2群G2は、両凹レンズと、両凸レンズ2枚と、絞りとからなり、第3群G3は、像側に凸の正メニスカスレンズと、両凹レンズと、像側に凸の負メニスカスレンズとからなる。非球面は、第1群G1の両凹レンズの像側の面1面に用いられている。
【0039】
実施例5においては、図5に示すように、第1群G1は、両凹レンズと、物体側に凸の正メニスカスレンズと、像側に凸の負メニスカスレンズとからなり、第2群G2は、物体側に凸の負メニスカスレンズと物体側に凸の正メニスカスレンズとの接合レンズと、両凸レンズと、絞りとからなり、第3群G3は、像側に凸の正メニスカスレンズと、物体側に凸の正メニスカスレンズと、像側に凸の負メニスカスレンズとからなる。非球面は、第1群G1の両凹レンズの像側の面と、第2群G2の最も物体側の面の2面に用いられている。
【0040】
以下に、上記各実施例の数値データを示すが、記号は上記の外、fは全系焦点距離、FNOはFナンバー、2ωは画角、fB はバックフォーカス、r1 、r2 …は各レンズ面の曲率半径、d1 、d2 …は各レンズ面間の間隔、nd1、nd2…は各レンズのd線の屈折率、νd1、νd2…は各レンズのアッベ数である。なお、非球面形状は、xを光の進行方向を正とした光軸とし、yを光軸と直行する方向にとると、下記の式にて表される。
x=(y2 /r)/[1+{1−(K+1)(y/r)2 1/2 ]+A44 +A66 +A88 + A1010
ただし、rは近軸曲率半径、Kは円錐係数、A4、A6、A8、A10 はそれぞれ4次、6次、8次、10次の非球面係数である。
【0041】
実施例1
f =57.48190〜69.48431〜89.45734
NO= 3.872 〜 4.787 〜 6.077
2ω=60.596°〜53.098°〜42.926°
B = . 〜 . 〜 .
IH=34.85mm
1 = 27.7244 d1 = 3.5254 nd1 =1.71300 νd1 =53.84
2 = 122.4137 d2 = 2.8434
3 = -59.8497 d3 = 3.5191 nd2 =1.83400 νd2 =37.17
4 = 34.4570 d4 = 1.8420
5 = 77.5696 d5 =16.5530 nd3 =1.58313 νd3 =59.38
6 = -32.8760 d6 = 0.2420
7 = 38.3177 d7 = 2.5486 nd4 =1.51823 νd4 =58.96
8 = 361.0018 d8 = 1.2907
9 = ∞(絞り) d9 =(可変)
10= -104.2747(非球面) d10= 6.9367 nd5 =1.52542 νd5 =55.78
11= -69.7755 d11= 4.2091
12= -36.3975 d12= 1.4864 nd6 =1.78590 νd6 =44.19
13= -54.0732 d13=11.0520
14= -19.3697 d14= 2.3686 nd7 =1.72916 νd7 =54.68
15= -37.4152

Figure 0003678522
非球面係数
第10面
K = 0
A4 = 1.0069 ×10-5
A6 =-3.2735 ×10-8
A8 = 4.3649 ×10-10
A10=-1.4686 ×10-12
【0042】
実施例2
f =56.49997〜70.49962〜89.63455
NO= 3.946 〜 4.923 〜 6.035
2ω=61.944°〜52.980°〜43.146°
B = . 〜 . 〜 .
IH=34.85mm
1 = 30.1324 d1 = 3.0455 nd1 =1.69680 νd1 =55.53
2 = 64.0157 d2 = 2.5724
3 = -37.4440 d3 = 9.7899 nd2 =1.78590 νd2 =44.19
4 = -39.8481 d4 = 0.7910
5 = -61.3819 d5 = 3.5800 nd3 =1.83400 νd3 =37.17
6 = 45.1134 d6 = 0.8675
7 = 64.1348 d7 = 6.5821 nd4 =1.60311 νd4 =60.68
8 = -37.7502 d8 = 0.2000
9 = 38.0136 d9 = 5.4007 nd5 =1.62280 νd5 =57.04
10= 266.1204 d10= 1.2907
11= ∞(絞り) d11=(可変)
12= -81.9778 d12= 3.0084 nd6 =1.83400 νd6 =37.17
13= -35.9506 d13= 0.2000
14= -50.1773 d14= 5.7885 nd7 =1.72916 νd7 =54.68
15= -737.8817 d15=10.7738
16= -22.5194 d16= 2.8000 nd8 =1.78590 νd8 =44.19
17= -48.3899
Figure 0003678522
【0043】
実施例3
f =56.98133〜70.46247〜89.45954
NO= 4.307 〜 5.340 〜 6.750
2ω=61.596°〜52.174°〜42.614°
B = . 〜 . 〜 .
IH=34.85mm
1 = 32.4052 d1 = 3.2000 nd1 =1.69680 νd1 =55.53
2 = 45.7497 d2 = 4.0340
3 = -36.6768 d3 = 8.3167 nd2 =1.78590 νd2 =44.19
4 = -42.7845 d4 =(可変)
5 = -35.1280 d5 = 3.2710 nd3 =1.83400 νd3 =37.17
6 = 59.6928 d6 = 0.2000
7 = 25.1868 d7 = 6.6603 nd4 =1.60311 νd4 =60.68
8 = -34.5814 d8 = 0.2000
9 = 50.7268 d9 = 2.8000 nd5 =1.62280 νd5 =57.04
10= -457.9309(非球面) d10= 1.5000
11= ∞(絞り) d11=(可変)
12= -124.8078 d12= 3.4804 nd6 =1.83400 νd6 =37.17
13= -30.2302 d13= 0.2000
14= -40.2138 d14= 2.5000 nd7 =1.74100 νd7 =52.65
15= 112.8500 d15=10.0460
16= -17.7043 d16= 2.8000 nd8 =1.78590 νd8 =44.19
17= -33.5387
Figure 0003678522
非球面係数
第10面
K = 0
A4 = 2.0979 ×10-5
A6 = 6.6723 ×10-8
A8 = 1.8229 ×10-10
A10= 0 。
【0044】
実施例4
f =57.42205〜69.97808〜89.92677
NO= 4.143 〜 5.098 〜 6.638
2ω=61.996°〜52.942°〜42.604°
B = . 〜 . 〜 .
IH=34.85mm
1 = -127.5116 d1 = 3.7631 nd1 =1.72916 νd1 =54.68
2 = 55.6452(非球面) d2 = 3.6407
3 = 41.0946 d3 = 4.9817 nd2 =1.83400 νd2 =37.16
4 = -181.2868 d4 =(可変)
5 = -72.3793 d5 = 2.1262 nd3 =1.68893 νd3 =31.08
6 = 30.6782 d6 = 1.8000
7 = 72.2304 d7 = 3.7273 nd4 =1.56873 νd4 =63.16
8 = -47.4098 d8 = 0.2000
9 = 47.0591 d9 =10.8386 nd5 =1.48749 νd5 =70.23
10= -31.4740 d10= 1.5000
11= ∞(絞り) d11=(可変)
12= -79.9855 d12=13.9133 nd6 =1.72342 νd6 =37.95
13= -31.3262 d13= 0.2000
14= -41.8528 d14= 7.1230 nd7 =1.69680 νd7 =55.53
15= 243.9638 d15=13.9905
16= -22.5775 d16= 2.4372 nd8 =1.74100 νd8 =52.64
17= -49.8360
Figure 0003678522
非球面係数
第2面
K = 0
A4 = 5.6926 ×10-6
A6 = 5.3656 ×10-9
A8 =-1.7080 ×10-12
A10= 2.1066 ×10-14
【0045】
実施例5
f =58.62419〜69.93659〜89.09643
NO= 4.210 〜 4.885 〜 6.024
2ω=62.872°〜53.306°〜42.580°
B = . 〜 . 〜 .
IH=34.85mm
1 = -136.8802 d1 = 1.8500 nd1 =1.69680 νd1 =55.53
2 = 28.0894(非球面) d2 = 0.4000
3 = 25.8510 d3 = 4.2185 nd2 =1.80100 νd2 =34.97
4 = 114.3033 d4 = 1.9014
5 = -171.8671 d5 = 2.4564 nd3 =1.69680 νd3 =55.53
6 = -672.2122 d6 =(可変)
7 = 61.3055(非球面) d7 = 1.7164 nd4 =1.72825 νd4 =28.46
8 = 21.6683 d8 = 8.2982 nd5 =1.51633 νd5 =64.14
9 = 75.9732 d9 = 0.2000
10= 34.7837 d10=11.7838 nd6 =1.48749 νd6 =70.23
11= -27.6249 d11= 1.5000
12= ∞(絞り) d12=(可変)
13= -55.0380 d13=11.1130 nd7 =1.66446 νd7 =35.81
14= -38.5152 d14= 2.8888
15= 37.7960 d15= 3.2366 nd8 =1.77250 νd8 =49.60
16= 39.0980 d16= 9.9471
17= -22.9028 d17= 5.1740 nd9 =1.72916 νd9 =54.68
18= -491.0107
Figure 0003678522
非球面係数
第2面
K = 0
A4 = 1.9012 ×10-6
A6 = 2.5404 ×10-9
A8 =-6.8183 ×10-13
A10= 2.0412 ×10-14
第7面
K = 0
A4 =-1.1625 ×10-5
A6 =-2.1198 ×10-8
A8 =-6.6221 ×10-12
A10=-7.4818 ×10-14
【0046】
上記実施例1〜5の無限遠物点に対する収差図をそれぞれ図6〜図10に示す。また、実施例5の−1/50倍の近距離物点にフォーカシングした状態での収差図を図11に示す。各収差図中、(a1)〜(a3)は球面収差、(b1)〜(b3)は非点収差、(c1)〜(c3)は歪曲収差、(d1)〜(d3)は倍率色収差を示し、(a1)〜(d1)は広角端での、(a2)〜(d2)は中間焦点距離での、(a3)〜(d3)は望遠端でのそれぞれの収差を表す。
【0047】
次に、上記実施例1〜5の前記条件式(1)〜(5)の値を次の表に示す。
【0048】
Figure 0003678522
【0049】
〔1〕 最も像側に負の屈折力を有するレンズ群が配置された複数のレンズ群よりなり、少なくとも一つのレンズ群間隔を変化させることにより変倍を行い、以下の条件を満足することを特徴とするズームレンズ。
(1) 0.01<−1/(HB×tanω)<0.05 (1/mm)
ここで、HBは物点が無限遠の場合の広角端においてレンズ最終面から全系の後側主点位置までの距離、ωは物点が無限遠の場合の広角端での半画角である。
【0050】
〔2〕 最も像側に負の屈折力を有するレンズ群が配置された複数のレンズ群よりなり、少なくとも一つのレンズ群間隔を変化させることにより変倍を行い、以下の条件を満足することを特徴とするズームレンズ。
(1) 0.01<−1/(HB×tanω)<0.05 (1/mm)
(5) 0.3<IH/fW <1.2
ここで、HBは物点が無限遠の場合の広角端においてレンズ最終面から全系の後側主点位置までの距離、ωは物点が無限遠の場合の広角端での半画角、IHはフィルム対角長の1/2の長さ、fW は物点が無限遠の場合の広角端での焦点距離である。
【0051】
〔3〕 物体側より順に、全体として正の屈折力を有する前群と、全体としての負の屈折力を有する後群とを配置し、双方の間隔を変えて変倍を行い、以下の条件を満足することを特徴とするズームレンズ。
(1) 0.01<−1/(HB×tanω)<0.05 (1/mm)
(2) 0.04<fBW/fW <0.2
ここで、HBは物点が無限遠の場合の広角端においてレンズ最終面から全系の後側主点位置までの距離、ωは物点が無限遠の場合の広角端での半画角、fW は物点が無限遠の場合の広角端での焦点距離、fBWは物点が無限遠の広角端でのバックフォーカスである。
【0052】
〔4〕 最も像側に負の屈折力を有するレンズ群が配置された複数のレンズ群よりなり、少なくとも複数のレンズ群間隔を変化させることにより変倍を行い、以下の条件を満足することを特徴とするズームレンズ。
(1) 0.01<−1/(HB×tanω)<0.05 (1/mm)
(3) 0.6<−fN /fW <1.5
ここで、HBは物点が無限遠の場合の広角端においてレンズ最終面から全系の後側主点位置までの距離、ωは物点が無限遠の場合の広角端での半画角、fW は物点が無限遠の場合の広角端での焦点距離、fN は最も像側に配置された負の屈折力を有するレンズ群の焦点距離である。
【0053】
〔5〕 最も像側に負の屈折力を有するレンズ群が配置された複数のレンズ群よりなり、少なくとも一つのレンズ群間隔を変化させることにより変倍を行い、以下の条件を満足することを特徴とするズームレンズ。
(1)’0.02<−1/(HB×tanω)<0.05 (1/mm)
ここで、HBは物点が無限遠の場合の広角端においてレンズ最終面から全系の後側主点位置までの距離、ωは物点が無限遠の場合の広角端での半画角である。
【0054】
〔6〕 最も像側に負の屈折力を有するレンズ群が配置された複数のレンズ群よりなり、少なくとも一つのレンズ群間隔を変化させることにより変倍を行い、以下の条件を満足することを特徴とするズームレンズ。
(1)’0.02<−1/(HB×tanω)<0.05 (1/mm)
(5) 0.3<IH/fW <1.2
ここで、HBは物点が無限遠の場合の広角端においてレンズ最終面から全系の後側主点位置までの距離、ωは物点が無限遠の場合の広角端での半画角、IHはフィルム対角長の1/2の長さ、fW は物点が無限遠の場合の広角端での焦点距離である。
【0055】
〔7〕 物体側より順に、全体として正の屈折力を有する前群と、全体としての負の屈折力を有する後群とを配置し、双方の間隔を変えて変倍を行い、以下の条件を満足することを特徴とするズームレンズ。
(1)’0.02<−1/(HB×tanω)<0.05 (1/mm)
(2) 0.04<fBW/fW <0.2
ここで、HBは物点が無限遠の場合の広角端においてレンズ最終面から全系の後側主点位置までの距離、ωは物点が無限遠の場合の広角端での半画角、fW は物点が無限遠の場合の広角端での焦点距離、fBWは物点が無限遠の広角端でのバックフォーカスである。
【0056】
〔8〕 最も像側に負の屈折力を有するレンズ群が配置された複数のレンズ群よりなり、少なくとも複数のレンズ群間隔を変化させることにより変倍を行い、以下の条件を満足することを特徴とするズームレンズ。
(1)’0.02<−1/(HB×tanω)<0.05 (1/mm)
(3) 0.6<−fN /fW <1.5
ここで、HBは物点が無限遠の場合の広角端においてレンズ最終面から全系の後側主点位置までの距離、ωは物点が無限遠の場合の広角端での半画角、fW は物点が無限遠の場合の広角端での焦点距離、fN は最も像側に配置された負の屈折力を有するレンズ群の焦点距離である。
【0057】
〔9〕 物体側より順に、全体として正の屈折力を有する前群と、全体としての負の屈折力を有する後群とを配置し、双方の間隔を変えて変倍を行い、以下の条件を満足することを特徴とするズームレンズ。
(1) 0.01<−1/(HB×tanω)<0.05 (1/mm)
(2)’0.08<fBW/fW <0.15
ここで、HBは物点が無限遠の場合の広角端においてレンズ最終面から全系の後側主点位置までの距離、ωは物点が無限遠の場合の広角端での半画角、fW は物点が無限遠の場合の広角端での焦点距離、fBWは物点が無限遠の広角端でのバックフォーカスである。
【0058】
〔10〕 最も像側に負の屈折力を有するレンズ群が配置された複数のレンズ群よりなり、少なくとも複数のレンズ群間隔を変化させることにより変倍を行い、以下の条件を満足することを特徴とするズームレンズ。
(1) 0.01<−1/(HB×tanω)<0.05 (1/mm)
(3)’0.6<−fN /fW <1.0
ここで、HBは物点が無限遠の場合の広角端においてレンズ最終面から全系の後側主点位置までの距離、ωは物点が無限遠の場合の広角端での半画角、fW は物点が無限遠の場合の広角端での焦点距離、fN は最も像側に配置された負の屈折力を有するレンズ群の焦点距離である。
【0059】
〔11〕 物体側より順に、全体として正の屈折力を有する前群と、全体としての負の屈折力を有する後群とを配置し、双方の間隔を変えて変倍を行い、以下の条件を満足することを特徴とするズームレンズ。
(1)’0.02<−1/(HB×tanω)<0.05 (1/mm)
(2)’0.08<fBW/fW <0.15
ここで、HBは物点が無限遠の場合の広角端においてレンズ最終面から全系の後側主点位置までの距離、ωは物点が無限遠の場合の広角端での半画角、fW は物点が無限遠の場合の広角端での焦点距離、fBWは物点が無限遠の広角端でのバックフォーカスである。
【0060】
〔12〕 最も像側に負の屈折力を有するレンズ群が配置された複数のレンズ群よりなり、少なくとも複数のレンズ群間隔を変化させることにより変倍を行い、以下の条件を満足することを特徴とするズームレンズ。
(1)’0.02<−1/(HB×tanω)<0.05 (1/mm)
(3)’0.6<−fN /fW <1.0
ここで、HBは物点が無限遠の場合の広角端においてレンズ最終面から全系の後側主点位置までの距離、ωは物点が無限遠の場合の広角端での半画角、fW は物点が無限遠の場合の広角端での焦点距離、fN は最も像側に配置された負の屈折力を有するレンズ群の焦点距離である。
【0061】
〔13〕 物体側より順に、正の屈折力の前群と、負の屈折力の後群とからなることを特徴とする上記〔1〕又は〔2〕記載のズームレンズ。
【0062】
〔14〕 物体側より順に、正の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、負の屈折力を有する第3レンズ群とを配置したことを特徴とする上記〔1〕、〔2〕又は〔4〕記載のズームレンズ。
【0063】
〔15〕 物体側より順に、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、負の屈折力を有する第3レンズ群とを配置したことを特徴とする上記〔1〕、〔2〕又は〔4〕記載のズームレンズ。
【0064】
〔16〕 物体側より順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、負の屈折力を有する第4レンズ群とを配置したことを特徴とする上記〔1〕、〔2〕又は〔4〕記載のズームレンズ。
【0065】
〔17〕 前群でフォーカシングをすることを特徴とする上記〔3〕記載のズームレンズ。
【0066】
〔18〕 正のレンズ群でフォーカシングをすることを特徴とする上記〔4〕又は〔15〕記載のズームレンズ。
【0067】
〔19〕 以下の条件式(4)を満足することを特徴とする上記〔1〕から〔4〕の何れか1項記載のズームレンズ。
(4) −1.2<Σd/fN <−0.3
ここで、Σdは最も像側に配置された負の屈折力を有するレンズ群の光軸上の厚みである。
【0068】
〔20〕 最も像側に配置された負の屈折力を有するレンズ群に導入された非球面の少なくとも1面は、光軸から離れるに従って正の屈折力が強くなるような形状であることを特徴とする上記〔1〕から〔4〕の何れか1項記載のズームレンズ。
【0069】
〔21〕 正の屈折力を有するレンズ群に導入された非球面の少なくとも1面は、光軸から離れるに従って正の屈折力が弱くなるような形状であることを特徴とする上記〔1〕から〔4〕の何れか1項記載のズームレンズ。
【0070】
【発明の効果】
以上の説明から明らかなように、本発明によると、最も像側に配置された負レンズ群を効果的に使って軸外収差を補正した小型のズームレンズを備えたカメラ得ることができる。
【図面の簡単な説明】
【図1】本発明に用いる実施例1のズームレンズの物点無限遠における断面図である。
【図2】実施例2のズームレンズの物点無限遠における断面図である。
【図3】実施例3のズームレンズの物点無限遠における断面図である。
【図4】実施例4のズームレンズの物点無限遠における断面図である。
【図5】実施例5のズームレンズの物点無限遠における断面図である。
【図6】実施例1の物点無限遠における収差図である。
【図7】実施例2の物点無限遠における収差図である。
【図8】実施例3の物点無限遠における収差図である。
【図9】実施例4の物点無限遠における収差図である。
【図10】実施例5の物点無限遠における収差図である。
【図11】実施例5の−1/50倍の近距離物点にフォーカシングした状態での収差図である。
【符号の説明】
G1…第1レンズ群
G2…第2レンズ群
G3…第3レンズ群[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a camera including a small zoom lens, and more particularly to a lens shutter camera including a zoom lens with a short back focus in which off-axis aberrations are well corrected. The present invention also relates to a camera having a film size larger than the Leica size.
[0002]
[Prior art]
Conventionally, as a small zoom lens used for a lens shutter camera or the like, as disclosed in Japanese Patent Laid-Open No. 56-128911, the front group has a positive lens group and the rear group has a negative lens group. The type is well known. Since this type constitutes a so-called telephoto type of positive / negative arrangement, it is possible to achieve miniaturization by efficiently increasing the refractive power of the rear group. However, since this type performs zooming by moving two groups, the degree of freedom is small and there is a limit to high zoom ratio and high performance.
[0003]
Therefore, recently, as disclosed in Japanese Patent Laid-Open No. 63-25613, etc., a type in which three groups of negative, positive, and negative are arranged in order from the object side, and disclosed in Japanese Patent Laid-Open No. 63-32513, etc. As described above, a large number of zoom lenses having a four-group configuration in which a positive or negative lens group is further added have been proposed.
[0004]
Further, as disclosed in Japanese Patent Laid-Open No. Sho 63-153511, etc., it is disclosed in a type in which three groups of positive, positive, and negative are arranged in order from the object side, and in Japanese Patent Laid-Open No. 63-43115, etc. As described above, there have been proposed a large number of positive, negative, positive, and negative four-group zoom lenses obtained by dividing the second group of the positive, positive, and negative three-group types into negative and positive.
[0005]
However, these examples are all based on Leica-sized film formats and do not include the viewpoint of applying to larger film sizes. Further, in these examples, it is no longer possible to reduce the size of the lens system by shortening the back focus while maintaining good aberration performance. Therefore, further shortening the back focus at the wide-angle end means power-up of the negative lens group on the most image side, and the off-axis aberration corrected by the negative lens group is excessively corrected, On the contrary, the optical performance is deteriorated.
[0006]
[Problems to be solved by the invention]
The present invention has been made in view of such problems of the prior art, and an object thereof is a compact zoom lens in which off-axis aberrations are corrected by effectively using a negative lens group disposed closest to the image side. It is to provide a camera equipped with.
[0007]
[Means for Solving the Problems]
  The camera having the first zoom lens of the present invention that achieves the above object comprises a plurality of lens groups in which a lens group having a negative refractive power is arranged closest to the image side, and changes at least one lens group interval. The zooming is performed by satisfying the following conditions.
  (1) 0.01 <−1 / (HB × tan ω) <0.05 (1 / mm)
  (3) '0.6 <-fN/ FW<1.0
  (4) -1.2 <Σd / fN<-0.3
Here, HB is the distance from the lens final surface to the rear principal point position of the entire system at the wide angle end when the object point is at infinity, ω is the half angle of view at the wide angle end when the object point is at infinity, fWIs the focal length at the wide-angle end when the object point is infinity, fNIs the focal length of the lens unit having the negative refractive power disposed closest to the image side, and Σd is the thickness on the optical axis of the lens unit having the negative refractive power disposed closest to the image side.
[0012]
(1) 0.01 <−1 / (HB × tan ω) <0.05 (1 / mm)
(3) 0.6 <−fN/ FW<1.5
Here, HB is the distance from the lens final surface to the rear principal point position of the entire system at the wide angle end when the object point is at infinity, ω is the half angle of view at the wide angle end when the object point is at infinity, fWIs the focal length at the wide-angle end when the object point is infinity, fNIs the focal length of the lens unit having the negative refractive power arranged closest to the image side.
[0013]
Hereinafter, the reason and effect | action which take said structure in this invention are demonstrated.
In order to reduce the size of the lens system, the rear principal point of the entire system is generally moved to the object side as a telephoto type by disposing a negative refractive power component on the image side. The same applies to a zoom lens of a type that does not require a mirror in particular between the image plane, and the lens system is miniaturized by disposing a negative lens group closest to the image side. If the refractive power of the negative lens unit on the image side is increased, the overall length can be reduced. However, the amount of off-axis aberration at the wide-angle end is particularly large, and the correction becomes difficult.
[0014]
Therefore, the zoom lens used in the present invention adopts the above-described configuration, and further satisfies conditional expression (1), thereby favorably correcting off-axis aberrations particularly at the wide-angle end while reducing the size of the lens system. It is possible to do.
[0015]
Off-axis aberrations include astigmatism, field curvature, coma aberration, and distortion aberration when using Seidel's five aberration expressions. These off-axis aberrations are generated in proportion to astigmatism and field curvature to the square of the incident half field angle, coma to the first power, and distortion to the third power. In addition, the amount of generated light increases as the ray height of the refracting surface increases, and in the negative lens group arranged closest to the image side, the height of off-axis light rays at the wide-angle end increases, so the amount of generated light also increases. growing. Therefore, in general, in order to correct off-axis aberrations with the incident half angle of view unchanged, the height of off-axis rays is lowered to reduce the amount of aberration itself. When this is applied to the negative lens group arranged closest to the image side, it becomes impossible to reduce the back focus with respect to the focal length at the wide-angle end, and the lens system cannot be downsized.
[0016]
  On the other hand, in the zoom lens used in the present invention, by reducing the back focus sufficiently with respect to the focal length at the wide-angle end, the height of the off-axis light beam passing through the negative lens group that is intentionally arranged closest to the image side can be reduced. Make it high. As a result, off-axis aberrations are likely to occur, but conditional expressions (3) 'and (4) described later are satisfied so as to control them.
[0017]
  Conditional expression (1) is set for this purpose, and is a conditional expression for defining the ray height of off-axis rays so that off-axis aberrations can be more effectively corrected at the same incident half angle of view. Exceeding the lower limit of 0.01 of conditional expression (1), the height of off-axis rays becomes too high, and the amount of generation becomes too large, and it is impossible to control it within the negative lens group itself. Therefore, sufficient aberration correction cannot be performed. On the other hand, if the upper limit of 0.05 is exceeded, the height of off-axis rays is reduced, the back focus becomes longer with respect to the focal length at the wide-angle end, and the lens system cannot be downsized.
[0018]
Particularly in the case of a two-group zoom lens, in order from the object side, a front group having a positive refractive power as a whole and a rear group having a negative refractive power as a whole are arranged, and the distance between them is changed. The zooming is performed so that the conditional expressions (1) and (2) are satisfied.
[0019]
In the case of the front-group positive and rear-group negative two-group zoom, satisfying conditional expression (1) makes it possible to reduce the size of the lens system and correct off-axis aberrations at the wide-angle end. By satisfying 2), it can be further improved. The effect of conditional expression (1) is as described above. Conditional expression (2) is designed to balance the height of off-axis rays passing through the negative rear group and the reduction in size of the lens system. This is a conditional expression that defines the focus.
[0020]
  If the lower limit of 0.04 of conditional expression (2) is exceeded, the rear principal point position of the entire system moves more than necessary to the object side, and the height of off-axis rays passing through the negative rear group becomes too high. As a result, an amount of off-axis aberration that cannot be controlled by the rear group alone occurs. In addition, the back focus becomes too short, and lens dust or the like appears on the film. If the upper limit of 0.2 in conditional expression (2) is exceeded, the back focus with respect to the focal length at the wide angle end becomes too long, and the lens system cannot be downsized. By satisfying the above configuration and the conditional expressions (1), (2), (3) ′ (4), the positive / negative two-group zoom lens can obtain better results.
[0021]
Further, in the case of a zoom lens having three or more groups, the zoom lens includes a plurality of lens groups in which a lens group having a negative refractive power is disposed closest to the image side. By changing at least one lens group interval, zooming is performed. To satisfy the above conditional expressions (1) and (3).
[0022]
  In the case of a zoom lens having three or more groups in which a lens unit having a negative refractive power on the most image side is satisfied, it is possible to reduce the size of the lens system by satisfying conditional expressions (1), (3) ′ (4). The off-axis aberration correction at the wide angle end is performed well.
  The operational effect of the conditional expression (1) is as described above, and the conditional expression (3) ′ defines an off-axis aberration by defining the focal length of the lens unit having the negative refractive power arranged closest to the image side. Is a conditional expression set in order to secure the amount of off-axis aberration that can be corrected positively and at the same time to achieve downsizing of the lens system.
[0023]
  If the lower limit of 0.6 of conditional expression (3) ′ is exceeded, the refractive power of the lens unit having the negative refractive power arranged closest to the image side becomes strong, and the amount of aberration that occurs becomes too large to correct it. At the same time, the rear principal point of the entire system at the wide-angle end moves to the object side more than necessary. As a result, the back focus is shortened and dust or the like appears on the film. On the other hand, if the upper limit of 1.0 is exceeded, the back focus becomes longer, making it impossible to reduce the size of the lens system, and it occurs in a lens group having a negative refractive power disposed closest to the image side at the wide-angle end. The amount of off-axis aberration is small, and the correction cannot be made in the entire system. By satisfying the above-described configuration and conditional expressions (1) and (3) ′, the zoom lens of three or more groups in which the lens unit having the negative refractive power on the most image side can obtain better results.
[0024]
  Conditional expression (3) 'can also be applied to a positive / negative two-group zoom lens. By satisfying this, it is possible to reduce the size of the lens system.
[0025]
  In addition, the zoom lens used in the present invention can further correct aberrations by satisfying the following conditional expression.
  (4) -1.2 <Σd / fN<-0.3
Here, Σd is the thickness on the optical axis of the lens group having the negative refractive power arranged closest to the image side.
[0026]
Conditional expression (4) is a conditional expression that prescribes the thickness of the lens unit having the negative refractive power arranged closest to the image side for the purpose of correcting astigmatism and distortion among the off-axis aberrations. If the upper limit of −0.3 and the lower limit of −1.2 are exceeded, the respective aberrations are particularly undercorrected and overcorrected, and sufficient performance cannot be satisfied.
[0027]
  In addition, among the numerical ranges of the conditional expressions (1) and (2), by further limiting to the numerical ranges of the following conditional expressions (1) ′ and (2) ′, further correction of off-axis aberrations and the entire system Can be miniaturized.
[0028]
  (1) '0.02 <−1 / (HB × tan ω) <0.05 (1 / mm)
  (2) '0.08 <fBW/ FW<0.15
  Further, when the zoom lens of the present invention is configured by three groups, it is desirable that the positive, positive, negative or negative, positive, negative group configurations are arranged in order from the object side. In particular, when it is composed of three groups of positive, positive, and negative, it is advantageous for achieving a high zoom ratio and miniaturization, and when it is composed of three groups of negative, positive, and negative, the axis is determined from its symmetry. This is because it is advantageous for correcting external aberrations. In these cases, the most object-side surface of the lens system is concave with respect to the object, so that the incident angle of off-axis rays is increased particularly on that surface, and the negative refractive power arranged closest to the image side. It is possible to generate an off-axis aberration that occurs in a lens group that has a canceling aberration and to obtain a good off-axis performance. For example, if the second group of the positive, positive, and negative three-group zoom lens is divided into negative and positive groups to form a positive, negative, positive, and negative four-group structure, the degree of freedom is further increased and aberration correction is performed. It goes without saying that it is advantageous.
[0029]
The zoom lens used in the present invention can be focused anywhere, but in the case of a zoom lens having a two-group configuration, it is a positive front group, and in the case of a zoom lens having a three-group configuration, it is a positive second. It is preferable to use the group as a focusing group because the variation in aberration due to the difference in object point position is small.
[0030]
Further, in the case of a zoom lens having three or more groups, it is needless to say that focusing can be performed by introducing the idea of floating and moving two or more groups independently.
[0031]
Furthermore, even better performance can be obtained by introducing an aspherical surface to the zoom lens used in the present invention. In particular, when an aspherical surface is introduced to the lens group having the negative refractive power arranged on the most image side for the purpose of correcting off-axis aberration, the positive refractive power increases as the distance from the optical axis increases. An aspheric surface having such a shape is desirable. In addition, when an aspherical surface is introduced into a lens group having a positive refractive power, particularly for the purpose of correcting spherical aberration at the telephoto end, at least one surface has a shape in which the positive refractive power decreases as the distance from the optical axis increases. An aspherical surface is desirable.
Further, if the zoom lens used in the present invention is used as a plastic lens, it is advantageous in terms of cost, and if the aspherical lens is made of plastic, it is preferable in production.
[0032]
In addition, the zoom lens used in the present invention can make further use of the functions and effects described above by setting the wide-angle end to a range that satisfies the following conditional expression (5).
(5) 0.3 <IH / fW<1.2
Here, IH is 1/2 of the film diagonal length, fWIs the focal length at the wide-angle end when the object point is at infinity.
If the range of the upper limit 1.2 and the lower limit 0.3 of conditional expression (5) is exceeded, the balance between miniaturization and off-axis aberration at the wide-angle end of the lens system will be lost, and the desired performance cannot be obtained. .
[0033]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments 1 to 5 of the zoom lens used in the present invention will be described below with reference to the drawings. FIGS. 1 to 5 show lens cross sections of Examples 1 to 5 at an object point at infinity. In each figure, (a) is a wide-angle end, (b) is an intermediate focal length, and (c) is a sectional view at a telephoto end.
[0034]
Among Examples 1 to 5, Example 1 and Example 2 are examples of a two-group zoom lens in which the front group G1 has a positive refractive power and the rear group G2 has a negative refractive power. Examples 3 and 4 are FIG. 5 is an example of a three-group zoom lens having positive, positive, and negative refractive powers in order from the object side, and Example 5 is an example of a three-group zoom lens having negative, positive, and negative refractive powers in order from the object side. It is. In the fifth embodiment, the second group G2 is moved so as to focus on a short distance object point of -1/50 times.
[0035]
Numerical data of each embodiment will be described later. In the first embodiment, as shown in FIG. 1, the first group (front group) G1 includes a positive meniscus lens convex to the object side, a biconcave lens, and a biconvex lens. And a positive meniscus lens convex toward the object side and a stop. The second group (rear group) G2 includes a positive meniscus lens convex toward the image side and two negative meniscus lenses convex toward the image side. . The aspherical surface is used for one surface closest to the object side in the second group G2. The lens closest to the object side in the second group G2 is a plastic lens.
[0036]
In the second embodiment, as shown in FIG. 2, the first group (front group) G1 includes a positive meniscus lens convex on the object side, a negative meniscus lens convex on the image side, a biconcave lens, and a biconvex lens. The second lens group (rear group) G2 includes a positive meniscus lens convex on the image side and two negative meniscus lenses convex on the image side. An aspheric surface is not used.
[0037]
In Example 3, as shown in FIG. 3, the first group G1 includes a positive meniscus lens convex on the object side and a negative meniscus lens convex on the image side, and the second group G2 includes a biconcave lens. The third group G3 is composed of a positive meniscus lens convex on the image side, a biconcave lens, and a negative meniscus lens convex on the image side. The aspherical surface is used for one surface before the stop of the second group G2.
[0038]
In Example 4, as shown in FIG. 4, the first group G1 is composed of a biconcave lens and a biconvex lens, and the second group G2 is composed of a biconcave lens, two biconvex lenses, and a diaphragm. The third group G3 includes a positive meniscus lens convex on the image side, a biconcave lens, and a negative meniscus lens convex on the image side. The aspherical surface is used for one surface on the image side of the biconcave lens in the first group G1.
[0039]
In Example 5, as shown in FIG. 5, the first group G1 is composed of a biconcave lens, a positive meniscus lens convex on the object side, and a negative meniscus lens convex on the image side. The third lens unit G3 includes a cemented lens of a negative meniscus lens convex on the object side and a positive meniscus lens convex on the object side, a biconvex lens, and a stop. The third group G3 includes a positive meniscus lens convex on the image side It consists of a positive meniscus lens convex on the side and a negative meniscus lens convex on the image side. The aspheric surfaces are used for the two surfaces of the image side surface of the biconcave lens of the first group G1 and the most object side surface of the second group G2.
[0040]
In the following, numerical data of each of the above embodiments is shown. Symbols are the above, f is the total focal length,NOIs the F number, 2ω is the angle of view, fBIs back focus, r1, R2... is the radius of curvature of each lens surface, d1, D2... is the distance between each lens surface, nd1, Nd2... is the refractive index of d-line of each lens, νd1, Νd2... is the Abbe number of each lens. The aspherical shape is expressed by the following equation, where x is an optical axis with the light traveling direction being positive, and y is a direction perpendicular to the optical axis.
x = (y2/ R) / [1+ {1- (K + 1) (y / r)2}1/2] + AFouryFour+ A6y6+ A8y8+ ATenyTen
Where r is the paraxial radius of curvature, K is the cone coefficient, AFour, A6, A8, ATenAre the 4th, 6th, 8th and 10th order aspherical coefficients, respectively.
[0041]
Example 1
f = 57.48190-69.48431-89.45734
FNO= 3.872 to 4.787 to 6.077
2ω = 60.596 ° 〜53.098 ° 〜42.926 °
fB=.
IH = 34.85mm
r1= 27.7244 d1= 3.5254 nd1 = 1.71300 νd1 = 53.84
r2= 122.4137 d2= 2.8434
rThree= -59.8497 dThree= 3.5191 nd2 = 1.83400 νd2 = 37.17
rFour= 34.4570 dFour= 1.8420
rFive= 77.5696 dFive= 16.5530 nd3 = 1.58313 νd3 = 59.38
r6= -32.8760 d6= 0.2420
r7= 38.3177 d7= 2.5486 nd4 = 1.51823 νd4 = 58.96
r8= 361.0018 d8= 1.2907
r9= ∞ (aperture) d9= (Variable)
rTen= -104.2747 (aspherical surface) dTen= 6.9367 nd5 = 1.52542 νd5 = 55.78
r11= -69.7755 d11= 4.2091
r12= -36.3975 d12= 1.4864 nd6 = 1.78590 νd6 = 44.19
r13= -54.0732 d13= 11.0520
r14= -19.3697 d14= 2.3686 nd7 = 1.72916 νd7 = 54.68
r15= -37.4152
Figure 0003678522
Aspheric coefficient
10th page
K = 0
AFour = 1.0069 × 10-Five
A6 = -3.2735 × 10-8
A8 = 4.3649 × 10-Ten
ATen= -1.4686 × 10-12                                            .
[0042]
Example 2
f = 56.49997 to 70.49962 to 89.63455
FNO= 3.946 to 4.923 to 6.035
2ω = 61.944 ° -52.980 ° -43.146 °
fB=.
IH = 34.85mm
r1= 30.1324 d1= 3.0455 nd1 = 1.69680 νd1 = 55.53
r2= 64.0157 d2= 2.5724
rThree= -37.4440 dThree= 9.7899 nd2 = 1.78590 νd2 = 44.19
rFour= -39.8481 dFour= 0.7910
rFive= -61.3819 dFive= 3.5800 nd3 = 1.83400 νd3 = 37.17
r6= 45.1134 d6= 0.8675
r7= 64.1348 d7= 6.5821 nd4 = 1.60311 νd4 = 60.68
r8= -37.7502 d8= 0.2000
r9= 38.0136 d9= 5.4007 nd5 = 1.62280 νd5 = 57.04
rTen= 266.1204 dTen= 1.2907
r11= ∞ (aperture) d11= (Variable)
r12= -81.9778 d12= 3.0084 nd6 = 1.83400 νd6 = 37.17
r13= -35.9506 d13= 0.2000
r14= -50.1773 d14= 5.7885 nd7 = 1.72916 νd7 = 54.68
r15= -737.8817 d15= 10.7738
r16= -22.5194 d16= 2.8000 nd8 = 1.78590 νd8 = 44.19
r17= -48.3899
Figure 0003678522
[0043]
Example 3
f = 56.98133-70.46247-89.45954
FNO= 4.307 to 5.340 to 6.750
2ω = 61.596 ° 〜52.174 ° 〜42.614 °
fB=.
IH = 34.85mm
r1= 32.4052 d1= 3.2000 nd1 = 1.69680 νd1 = 55.53
r2= 45.7497 d2= 4.0340
rThree= -36.6768 dThree= 8.3167 nd2 = 1.78590 νd2 = 44.19
rFour= -42.7845 dFour= (Variable)
rFive= -35.1280 dFive= 3.2710 nd3 = 1.83400 νd3 = 37.17
r6= 59.6928 d6= 0.2000
r7= 25.1868 d7= 6.6603 nd4 = 1.60311 νd4 = 60.68
r8= -34.5814 d8= 0.2000
r9= 50.7268 d9= 2.8000 nd5 = 1.62280 νd5 = 57.04
rTen= -457.9309 (Aspherical surface) dTen= 1.5000
r11= ∞ (aperture) d11= (Variable)
r12= -124.8078 d12= 3.4804 nd6 = 1.83400 νd6 = 37.17
r13= -30.2302 d13= 0.2000
r14= -40.2138 d14= 2.5000 nd7 = 1.74100 νd7 = 52.65
r15= 112.8500 d15= 10.0460
r16= -17.7043 d16= 2.8000 nd8 = 1.78590 νd8 = 44.19
r17= -33.5387
Figure 0003678522
Aspheric coefficient
10th page
K = 0
AFour = 2.0979 × 10-Five
A6 = 6.6723 × 10-8
A8 = 1.8229 x10-Ten
ATen= 0.
[0044]
Example 4
f = 57.42205-69.97808-89.92677
FNO= 4.143 to 5.098 to 6.638
2ω = 61.996 °-52.942 °-42.604 °
fB=.
IH = 34.85mm
r1= -127.5116 d1= 3.7631 nd1 = 1.72916 νd1 = 54.68
r2= 55.6452 (aspherical surface) d2= 3.6407
rThree= 41.0946 dThree= 4.9817 nd2 = 1.83400 νd2 = 37.16
rFour= -181.2868 dFour= (Variable)
rFive= -72.3793 dFive= 2.1262 nd3 = 1.68893 νd3 = 31.08
r6= 30.6782 d6= 1.8000
r7= 72.2304 d7= 3.7273 nd4 = 1.56873 νd4 = 63.16
r8= -47.4098 d8= 0.2000
r9= 47.0591 d9= 10.8386 nd5 = 1.48749 νd5 = 70.23
rTen= -31.4740 dTen= 1.5000
r11= ∞ (aperture) d11= (Variable)
r12= -79.9855 d12= 13.9133 nd6 = 1.72342 νd6 = 37.95
r13= -31.3262 d13= 0.2000
r14= -41.8528 d14= 7.1230 nd7 = 1.69680 νd7 = 55.53
r15= 243.9638 d15= 13.9905
r16= -22.5775 d16= 2.4372 nd8 = 1.74100 νd8 = 52.64
r17= -49.8360
Figure 0003678522
Aspheric coefficient
Second side
K = 0
AFour = 5.6926 × 10-6
A6 = 5.3656 x10-9
A8 = -1.7080 × 10-12
ATen= 2.1066 x10-14                                            .
[0045]
Example 5
f = 58.62419-69.93659-89.09643
FNO= 4.210 to 4.885 to 6.024
2ω = 62.872 °-53.306 °-42.580 °
fB=.
IH = 34.85mm
r1= -136.8802 d1= 1.8500 nd1 = 1.69680 νd1 = 55.53
r2= 28.0894 (aspherical surface) d2= 0.4000
rThree= 25.8510 dThree= 4.2185 nd2 = 1.80100 νd2 = 34.97
rFour= 114.3033 dFour= 1.9014
rFive= -171.8671 dFive= 2.4564 nd3 = 1.69680 νd3 = 55.53
r6= -672.2122 d6= (Variable)
r7= 61.3055 (aspherical surface) d7= 1.7164 nd4 = 1.72825 νd4 = 28.46
r8= 21.6683 d8= 8.2982 nd5 = 1.51633 νd5 = 64.14
r9= 75.9732 d9= 0.2000
rTen= 34.7837 dTen= 11.7838 nd6 = 1.48749 νd6 = 70.23
r11= -27.6249 d11= 1.5000
r12= ∞ (aperture) d12= (Variable)
r13= -55.0380 d13= 11.1130 nd7 = 1.66446 νd7 = 35.81
r14= -38.5152 d14= 2.8888
r15= 37.7960 d15= 3.2366 nd8 = 1.77250 νd8 = 49.60
r16= 39.0980 d16= 9.9471
r17= -22.9028 d17= 5.1740 nd9 = 1.72916 νd9 = 54.68
r18= -491.0107
Figure 0003678522
Aspheric coefficient
Second side
K = 0
AFour = 1.9012 × 10-6
A6 = 2.5404 x10-9
A8 = -6.8183 × 10-13
ATen= 2.0412 × 10-14
7th page
K = 0
AFour = -1.1625 × 10-Five
A6 = -2.1198 × 10-8
A8 = -6.6221 x10-12
ATen= -7.4818 x10-14                                            .
[0046]
Aberration diagrams with respect to object points at infinity in Examples 1 to 5 are shown in FIGS. In addition, FIG. 11 shows aberration diagrams in a state where focusing is performed on a short-distance object point of −1/50 times that in Example 5. In each aberration diagram, (a1) to (a3) are spherical aberration, (b1) to (b3) are astigmatism, (c1) to (c3) are distortion aberration, and (d1) to (d3) are chromatic aberration of magnification. (A1) to (d1) represent aberrations at the wide-angle end, (a2) to (d2) represent intermediate focal lengths, and (a3) to (d3) represent aberrations at the telephoto end, respectively.
[0047]
Next, the values of the conditional expressions (1) to (5) of Examples 1 to 5 are shown in the following table.
[0048]
Figure 0003678522
[0049]
[1] It is composed of a plurality of lens groups in which a lens group having a negative refractive power on the most image side is arranged, and zooming is performed by changing an interval between at least one lens group, and the following conditions are satisfied. A featured zoom lens.
(1) 0.01 <−1 / (HB × tan ω) <0.05 (1 / mm)
Here, HB is the distance from the last lens surface to the rear principal point position of the entire system at the wide angle end when the object point is at infinity, and ω is the half field angle at the wide angle end when the object point is at infinity. is there.
[0050]
[2] It is composed of a plurality of lens groups in which a lens group having a negative refractive power on the most image side is arranged, and zooming is performed by changing an interval between at least one lens group, and the following conditions are satisfied. A featured zoom lens.
(1) 0.01 <−1 / (HB × tan ω) <0.05 (1 / mm)
(5) 0.3 <IH / fW<1.2
Here, HB is the distance from the lens final surface to the rear principal point position of the entire system at the wide angle end when the object point is at infinity, ω is the half angle of view at the wide angle end when the object point is at infinity, IH is ½ the diagonal length of the film, fWIs the focal length at the wide-angle end when the object point is at infinity.
[0051]
[3] In order from the object side, a front group having a positive refractive power as a whole and a rear group having a negative refractive power as a whole are arranged, and magnification is changed by changing the distance between the two. A zoom lens characterized by satisfying
(1) 0.01 <−1 / (HB × tan ω) <0.05 (1 / mm)
(2) 0.04 <fBW/ FW<0.2
Here, HB is the distance from the lens final surface to the rear principal point position of the entire system at the wide angle end when the object point is at infinity, ω is the half angle of view at the wide angle end when the object point is at infinity, fWIs the focal length at the wide-angle end when the object point is infinity, fBWIs the back focus at the wide-angle end where the object point is at infinity.
[0052]
[4] It is composed of a plurality of lens groups in which a lens group having a negative refractive power on the most image side is arranged, and at least the distance between the plurality of lens groups is changed to satisfy the following conditions. A featured zoom lens.
(1) 0.01 <−1 / (HB × tan ω) <0.05 (1 / mm)
(3) 0.6 <−fN/ FW<1.5
Here, HB is the distance from the lens final surface to the rear principal point position of the entire system at the wide angle end when the object point is at infinity, ω is the half angle of view at the wide angle end when the object point is at infinity, fWIs the focal length at the wide-angle end when the object point is infinity, fNIs the focal length of the lens unit having the negative refractive power arranged closest to the image side.
[0053]
[5] It is composed of a plurality of lens groups in which a lens group having a negative refractive power on the most image side is arranged, and zooming is performed by changing an interval between at least one lens group, and the following conditions are satisfied. A featured zoom lens.
(1) '0.02 <−1 / (HB × tan ω) <0.05 (1 / mm)
Here, HB is the distance from the last lens surface to the rear principal point position of the entire system at the wide angle end when the object point is at infinity, and ω is the half field angle at the wide angle end when the object point is at infinity. is there.
[0054]
[6] It is composed of a plurality of lens groups in which a lens group having a negative refractive power on the most image side is arranged, and zooming is performed by changing an interval between at least one lens group, and the following conditions are satisfied. A featured zoom lens.
(1) '0.02 <−1 / (HB × tan ω) <0.05 (1 / mm)
(5) 0.3 <IH / fW<1.2
Here, HB is the distance from the lens final surface to the rear principal point position of the entire system at the wide angle end when the object point is at infinity, ω is the half angle of view at the wide angle end when the object point is at infinity, IH is 1/2 the diagonal length of the film, fWIs the focal length at the wide-angle end when the object point is at infinity.
[0055]
[7] In order from the object side, a front group having a positive refractive power as a whole and a rear group having a negative refractive power as a whole are arranged, and the magnification is changed by changing the distance between them. A zoom lens characterized by satisfying
(1) '0.02 <−1 / (HB × tan ω) <0.05 (1 / mm)
(2) 0.04 <fBW/ FW<0.2
Here, HB is the distance from the lens final surface to the rear principal point position of the entire system at the wide angle end when the object point is at infinity, ω is the half angle of view at the wide angle end when the object point is at infinity, fWIs the focal length at the wide-angle end when the object point is infinity, fBWIs the back focus at the wide-angle end where the object point is at infinity.
[0056]
[8] It is composed of a plurality of lens groups in which a lens group having a negative refractive power on the most image side is disposed, and at least the distance between the plurality of lens groups is changed to satisfy the following condition. A featured zoom lens.
(1) '0.02 <−1 / (HB × tan ω) <0.05 (1 / mm)
(3) 0.6 <−fN/ FW<1.5
Here, HB is the distance from the lens final surface to the rear principal point position of the entire system at the wide angle end when the object point is at infinity, ω is the half angle of view at the wide angle end when the object point is at infinity, fWIs the focal length at the wide-angle end when the object point is infinity, fNIs the focal length of the lens unit having the negative refractive power arranged closest to the image side.
[0057]
[9] In order from the object side, a front group having a positive refractive power as a whole and a rear group having a negative refractive power as a whole are arranged, and the magnification is changed by changing the distance between them. A zoom lens characterized by satisfying
(1) 0.01 <−1 / (HB × tan ω) <0.05 (1 / mm)
(2) '0.08 <fBW/ FW<0.15
Here, HB is the distance from the lens final surface to the rear principal point position of the entire system at the wide angle end when the object point is at infinity, ω is the half angle of view at the wide angle end when the object point is at infinity, fWIs the focal length at the wide-angle end when the object point is infinity, fBWIs the back focus at the wide-angle end where the object point is at infinity.
[0058]
[10] It is composed of a plurality of lens groups in which a lens group having a negative refractive power on the most image side is arranged, and at least a plurality of lens group intervals are varied to satisfy the following conditions. A featured zoom lens.
(1) 0.01 <−1 / (HB × tan ω) <0.05 (1 / mm)
(3) '0.6 <-fN/ FW<1.0
Here, HB is the distance from the lens final surface to the rear principal point position of the entire system at the wide angle end when the object point is at infinity, ω is the half angle of view at the wide angle end when the object point is at infinity, fWIs the focal length at the wide-angle end when the object point is infinity, fNIs the focal length of the lens unit having the negative refractive power arranged closest to the image side.
[0059]
[11] In order from the object side, a front group having a positive refractive power as a whole and a rear group having a negative refractive power as a whole are arranged, and magnification is changed by changing the distance between the two, and the following conditions are satisfied. A zoom lens characterized by satisfying
(1) '0.02 <−1 / (HB × tan ω) <0.05 (1 / mm)
(2) '0.08 <fBW/ FW<0.15
Here, HB is the distance from the lens final surface to the rear principal point position of the entire system at the wide angle end when the object point is at infinity, ω is the half angle of view at the wide angle end when the object point is at infinity, fWIs the focal length at the wide-angle end when the object point is infinity, fBWIs the back focus at the wide-angle end where the object point is at infinity.
[0060]
[12] It is composed of a plurality of lens groups in which a lens group having a negative refractive power on the most image side is disposed, and at least the distance between the plurality of lens groups is changed to satisfy the following condition. A featured zoom lens.
(1) '0.02 <−1 / (HB × tan ω) <0.05 (1 / mm)
(3) '0.6 <-fN/ FW<1.0
Here, HB is the distance from the lens final surface to the rear principal point position of the entire system at the wide angle end when the object point is at infinity, ω is the half angle of view at the wide angle end when the object point is at infinity, fWIs the focal length at the wide-angle end when the object point is infinity, fNIs the focal length of the lens unit having the negative refractive power arranged closest to the image side.
[0061]
[13] The zoom lens as described in [1] or [2] above, comprising, in order from the object side, a front group having a positive refractive power and a rear group having a negative refractive power.
[0062]
[14] A first lens group having a positive refractive power, a second lens group having a positive refractive power, and a third lens group having a negative refractive power are arranged in this order from the object side. The zoom lens according to [1], [2] or [4].
[0063]
[15] A first lens group having a negative refractive power, a second lens group having a positive refractive power, and a third lens group having a negative refractive power are arranged in this order from the object side. The zoom lens according to [1], [2] or [4].
[0064]
[16] In order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a negative refractive power The zoom lens according to [1], [2] or [4] above, wherein a fourth lens group is disposed.
[0065]
[17] The zoom lens according to [3], wherein focusing is performed in the front group.
[0066]
[18] The zoom lens as described in [4] or [15] above, wherein focusing is performed with a positive lens group.
[0067]
[19] The zoom lens according to any one of [1] to [4], wherein the following conditional expression (4) is satisfied.
(4) -1.2 <Σd / fN<-0.3
Here, Σd is the thickness on the optical axis of the lens group having the negative refractive power arranged closest to the image side.
[0068]
[20] At least one aspheric surface introduced into the lens group having the negative refractive power arranged on the most image side has a shape such that the positive refractive power increases as the distance from the optical axis increases. The zoom lens according to any one of [1] to [4] above.
[0069]
[21] From the above [1], wherein at least one aspherical surface introduced into the lens group having a positive refractive power has a shape such that the positive refractive power decreases as the distance from the optical axis increases. The zoom lens according to any one of [4].
[0070]
【The invention's effect】
As apparent from the above description, according to the present invention, it is possible to obtain a camera including a small zoom lens in which off-axis aberrations are corrected by effectively using the negative lens group arranged closest to the image side.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view at an object point infinity of a zoom lens according to a first embodiment used in the present invention.
2 is a cross-sectional view of a zoom lens according to Embodiment 2 at an object point at infinity. FIG.
3 is a cross-sectional view of a zoom lens according to Embodiment 3 at an object point at infinity. FIG.
4 is a cross-sectional view of a zoom lens according to Embodiment 4 at an object point at infinity. FIG.
5 is a cross-sectional view of a zoom lens according to Embodiment 5 at an object point at infinity. FIG.
FIG. 6 is an aberration diagram for Example 1 at an object point of infinity.
7 is an aberration diagram at Example infinity for Example 2. FIG.
FIG. 8 is an aberration diagram for Example 3 at an object point of infinity.
9 is an aberration diagram for Example 4 at an object point of infinity. FIG.
10 is an aberration diagram for Example 5 at an object point of infinity. FIG.
FIG. 11 is an aberration diagram in a state in which focusing is performed on an object point at a short distance of −1/50 times that in Example 5.
[Explanation of symbols]
G1: First lens group
G2: Second lens group
G3 ... Third lens group

Claims (13)

最も像側に負の屈折力を有するレンズ群が配置された複数のレンズ群よりなり、少なくとも一つのレンズ群間隔を変化させることにより変倍を行い、以下の条件を満足することを特徴とするズームレンズを備えたカメラ。
(1) 0.01<−1/(HB×tanω)<0.05 (1/mm)
(3)’0.6<−f N /f W <1.0
(4) −1.2<Σd/f N <−0.3
ここで、HBは物点が無限遠の場合の広角端においてレンズ最終面から全系の後側主点位置までの距離、ωは物点が無限遠の場合の広角端での半画角、f W は物点が無限遠の場合の広角端での焦点距離、f N は最も像側に配置された負の屈折力を有するレンズ群の焦点距離、Σdは最も像側に配置された負の屈折力を有するレンズ群の光軸上の厚みである。
It is composed of a plurality of lens groups in which a lens group having a negative refractive power on the most image side is arranged, and zooming is performed by changing an interval between at least one lens group, and the following conditions are satisfied: A camera with a zoom lens.
(1) 0.01 <−1 / (HB × tan ω) <0.05 (1 / mm)
(3) '0.6 <−f N / f W <1.0
(4) −1.2 <Σd / f N <−0.3
Here, HB is the distance from the lens final surface to the rear principal point position of the entire system at the wide angle end when the object point is at infinity, ω is the half angle of view at the wide angle end when the object point is at infinity , f W is the focal length at the wide-angle end when the object point is at infinity, f N is the focal length of the lens unit having the negative refractive power disposed closest to the image side, and Σd is the negative distance disposed closest to the image side. It is the thickness on the optical axis of the lens group which has a refractive power .
下の条件を満足することを特徴とする請求項1記載のズームレンズを備えたカメラ。
(5) 0.3<IH/fW <1.2
ここで、IHはフィルム対角長の1/2の長さである。
Camera equipped with claim 1 zoom lens according to satisfies the following conditions:.
(5) 0.3 <IH / f W <1.2
Here, I H is the length of 1/2 of the film diagonal length.
物体側より順に、全体として正の屈折力を有する前群と、前記負の屈折力を有するレンズ群である全体としての負の屈折力を有する後群とからなり、双方の間隔を変えて変倍を行い、以下の条件を満足することを特徴とする請求項1又は2記載のズームレンズを備えたカメラ。
(2) 0.04<fBW/fW <0.2
ここで、f BWは物点が無限遠の広角端でのバックフォーカスである。
In order from the object side, a front group having positive refractive power as a whole, consists of a rear group having negative refractive power as a whole is a lens unit having negative refractive power, varying by changing both the distance The camera equipped with a zoom lens according to claim 1 or 2 , wherein the following conditions are satisfied.
(2) 0.04 <f BW / f W <0.2
Here , f BW is the back focus at the wide-angle end where the object point is infinity.
下の条件を満足することを特徴とする請求項1から3の何れか1項記載のズームレンズを備えたカメラ。
(1)’0.02<−1/(HB×tanω)<0.05 (1/mm)
Camera equipped with a zoom lens according to any one of claims 1 to 3, characterized by satisfying the following conditions:.
(1) '0.02 <−1 / (HB × tan ω) <0.05 (1 / mm)
物体側より順に、全体として正の屈折力を有する前群と、前記負の屈折力を有するレンズ群である後群とを配置し、双方の間隔を変えて変倍を行い、以下の条件を満足することを特徴とする請求項1又は2記載のズームレンズを備えたカメラ。
(2)’0.08<fBW/fW <0.15
ここで、f BWは物点が無限遠の広角端でのバックフォーカスである。
In order from the object side, a front group having a positive refractive power as a whole and a rear group which is a lens group having the negative refractive power are arranged, and magnification is changed by changing the distance between the two, and the following conditions are satisfied. 3. A camera comprising a zoom lens according to claim 1, wherein the camera is satisfied.
(2) '0.08 <f BW / f W <0.15
Here , f BW is the back focus at the wide-angle end where the object point is infinity.
物体側より順に、全体として正の屈折力を有する前群と、前記負の屈折力を有するレンズ群である後群とを配置し、双方の間隔を変えて変倍を行い、以下の条件を満足することを特徴とする請求項1又は2記載のズームレンズを備えたカメラ。
(1)’0.02<−1/(HB×tanω)<0.05 (1/mm)
(2)’0.08<fBW/fW <0.15
ここで、f BWは物点が無限遠の広角端でのバックフォーカスである。
In order from the object side, a front group having a positive refractive power as a whole and a rear group which is a lens group having the negative refractive power are arranged, and magnification is changed by changing the distance between the two, and the following conditions are satisfied. 3. A camera comprising a zoom lens according to claim 1, wherein the camera is satisfied.
(1) '0.02 <−1 / (HB × tan ω) <0.05 (1 / mm)
(2) '0.08 <fBW / fW <0.15
Here , f BW is the back focus at the wide-angle end where the object point is infinity.
物体側より順に、正の屈折力の前群と、前記負の屈折力を有するレンズ群である後群とからなることを特徴とする請求項1又は2記載のズームレンズを備えたカメラ。3. A camera having a zoom lens according to claim 1, comprising a front group having a positive refractive power and a rear group which is the lens group having the negative refractive power in order from the object side. 物体側より順に、正の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、前記負の屈折力を有するレンズ群である第3レンズ群とを配置したことを特徴とする請求項1又は2記載のズームレンズを備えたカメラ。In order from the object side, a first lens group having positive refractive power, a second lens group having a positive refractive power, in that a third lens group is a lens group having negative refractive power A camera comprising the zoom lens according to claim 1 or 2 . 物体側より順に、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、前記負の屈折力を有するレンズ群である第3レンズ群とを配置したことを特徴とする請求項1又は2記載のズームレンズを備えたカメラ。In order from the object side, a first lens group having negative refractive power, a second lens group having a positive refractive power, in that a third lens group is a lens group having negative refractive power A camera comprising the zoom lens according to claim 1 or 2 . 物体側より順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、前記負の屈折力を有するレンズ群である第4レンズ群とを配置したことを特徴とする請求項1又は2記載のズームレンズを備えたカメラ。In order from the object side, a first lens group having positive refractive power, a lens unit having a second lens group having negative refractive power, a third lens group having positive refractive power, the negative refractive power A camera having a zoom lens according to claim 1 or 2 , wherein a fourth lens group is arranged. 前記前群でフォーカシングをすることを特徴とする請求項3、5、6又は7記載のズームレンズを備えたカメラ。 8. A camera equipped with a zoom lens according to claim 3 , wherein the front group is focused. 前記正のレンズ群でフォーカシングをすることを特徴とする請求項記載のズームレンズを備えたカメラ。The camera with a zoom lens according to claim 9 , wherein focusing is performed by the positive lens group. 最も像側に配置された前記負の屈折力を有するレンズ群は、光軸から離れるに従って正の屈折力が強くなるような形状の少なくとも1面の非球面を有することを特徴とする請求項1からの何れか1項記載のズームレンズを備えたカメラ。Most wherein arranged on the image side lens group having a negative refractive power, claim 1, characterized in that it comprises at least one aspherical surface shaped like a positive refractive power becomes stronger as the distance from the optical axis 4. A camera comprising the zoom lens according to any one of items 1 to 3 .
JP00017797A 1997-01-06 1997-01-06 Camera with zoom lens Expired - Fee Related JP3678522B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00017797A JP3678522B2 (en) 1997-01-06 1997-01-06 Camera with zoom lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00017797A JP3678522B2 (en) 1997-01-06 1997-01-06 Camera with zoom lens

Publications (2)

Publication Number Publication Date
JPH10197793A JPH10197793A (en) 1998-07-31
JP3678522B2 true JP3678522B2 (en) 2005-08-03

Family

ID=11466736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00017797A Expired - Fee Related JP3678522B2 (en) 1997-01-06 1997-01-06 Camera with zoom lens

Country Status (1)

Country Link
JP (1) JP3678522B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3435364B2 (en) * 1998-12-24 2003-08-11 ペンタックス株式会社 Zoom lens system
JP2001201683A (en) 2000-01-19 2001-07-27 Olympus Optical Co Ltd Zoom lens
JP3673471B2 (en) 2000-12-28 2005-07-20 シャープ株式会社 Text-to-speech synthesizer and program recording medium
JP5788257B2 (en) * 2011-07-28 2015-09-30 株式会社シグマ Imaging optics
CN108132515B (en) * 2017-12-04 2020-09-18 瑞声光学解决方案私人有限公司 Image pickup optical lens
CN108227120B (en) * 2017-12-04 2020-06-16 瑞声光学解决方案私人有限公司 Image pickup optical lens
CN108227124B (en) * 2017-12-18 2020-08-25 瑞声光学解决方案私人有限公司 Image pickup optical lens
JP2020086307A (en) 2018-11-29 2020-06-04 キヤノン株式会社 Optical system and imaging apparatus having the same
JP7246240B2 (en) * 2019-04-23 2023-03-27 株式会社タムロン Shooting lens and shooting device
CN111061038B (en) * 2019-12-13 2022-03-01 诚瑞光学(常州)股份有限公司 Image pickup optical lens

Also Published As

Publication number Publication date
JPH10197793A (en) 1998-07-31

Similar Documents

Publication Publication Date Title
JP3710609B2 (en) Small zoom lens
JP3365835B2 (en) Compact 3-group zoom lens
JP3204703B2 (en) Zoom lens
JP3231355B2 (en) Small zoom lens
JPH07253542A (en) Zoom lens
JPH11109241A (en) Zoom lens system
JP3429554B2 (en) Zoom lens
JP3678522B2 (en) Camera with zoom lens
JP3365837B2 (en) Focusing method of 3-group zoom lens
JP3302063B2 (en) Rear focus compact zoom lens
JP3486457B2 (en) High magnification zoom lens including wide angle range
JP3331011B2 (en) Small two-group zoom lens
US6094313A (en) Zoom lens system
JP3245452B2 (en) Small three-group zoom lens
JP3467086B2 (en) Camera with zoom lens
JPH07225339A (en) Zoom lens
JP3331223B2 (en) Small two-group zoom lens
JP2901066B2 (en) Zoom lens
JP3310319B2 (en) Two-group zoom lens
JP3414519B2 (en) Camera using a small 3-group zoom lens
JP3162113B2 (en) Small and bright zoom lens
JP3245469B2 (en) Two-group zoom lens
JP3262235B2 (en) Wide-angle zoom lens
JP3447424B2 (en) High zoom lens
JPH08271790A (en) Zoom lens

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050427

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050510

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080520

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090520

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100520

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100520

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110520

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120520

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130520

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees