JP3414519B2 - Camera using a small 3-group zoom lens - Google Patents

Camera using a small 3-group zoom lens

Info

Publication number
JP3414519B2
JP3414519B2 JP23107794A JP23107794A JP3414519B2 JP 3414519 B2 JP3414519 B2 JP 3414519B2 JP 23107794 A JP23107794 A JP 23107794A JP 23107794 A JP23107794 A JP 23107794A JP 3414519 B2 JP3414519 B2 JP 3414519B2
Authority
JP
Japan
Prior art keywords
lens
group
camera
positive
zoom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23107794A
Other languages
Japanese (ja)
Other versions
JPH0894934A (en
Inventor
小方康司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optic Co Ltd filed Critical Olympus Optic Co Ltd
Priority to JP23107794A priority Critical patent/JP3414519B2/en
Publication of JPH0894934A publication Critical patent/JPH0894934A/en
Application granted granted Critical
Publication of JP3414519B2 publication Critical patent/JP3414519B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、バックフォーカスに制
限のないレンズシャッターカメラ等に適した小型3群ズ
ームレンズとそれを用いたカメラに係わり、特に、レン
ズ枚数が少なく、コンパクトな高倍ズームレンズを用い
たカメラに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a compact three-group zoom lens suitable for a lens shutter camera having no limitation on back focus and a camera using the same, and particularly to a compact high-power zoom lens having a small number of lenses. It relates to a camera using.

【0002】[0002]

【従来の技術】従来、レンズシャッターカメラ用ズーム
レンズとしては、正・負の2群ズームレンズタイプ、
正・正・負の3群ズームレンズタイプ、負・正・負
の3群ズームレンズタイプ、等がよく知られている。何
れのタイプも、バックフォーカスに制限がない利点を生
かして、小型化を可能としている。しかし、ズームレン
ズを高変倍化しようとすると、様々な問題が生じてく
る。
2. Description of the Related Art Conventionally, as a zoom lens for a lens shutter camera, a positive / negative two-group zoom lens type,
Well-known are positive / positive / negative three-group zoom lens type, negative / positive / negative three-group zoom lens type, and the like. Both types can be downsized by taking advantage of the fact that the back focus is not limited. However, when trying to increase the zoom ratio of the zoom lens, various problems occur.

【0003】第1の問題点は、大型化である。特に、
とのタイプは、ズーム時の群の移動量が大きくなる。
したがって、鏡枠が長くなったり、あるいは、鏡枠を短
くするために複数の枠で構成したとしても、鏡枠が太く
なったりして、結局カメラが大型化してしまう。一方、
のタイプは、ズーム時の移動量が比較的小さいが、広
角端でのレンズ全長が大きいため、やはりカメラの大型
化につながる。
The first problem is the increase in size. In particular,
With the and types, the amount of movement of the group during zooming becomes large.
Therefore, the lens frame becomes long, or even if the lens frame is made up of a plurality of frames in order to shorten the lens frame, the lens frame becomes thick and the camera eventually becomes large. on the other hand,
The type (3) has a relatively small amount of movement during zooming, but since the total lens length at the wide-angle end is large, it also leads to an increase in the size of the camera.

【0004】第2の問題点は、性能の劣化である。特
に、とのタイプは、群のパワー配置が非対称な構成
となっているため、軸外収差の悪化を招きやすい。一
方、のタイプは、群のパワー配置が対称な構成である
から軸外収差に関しては有利であるが、負パワーの第1
群で軸上光線がハネ上げられるため、第2群での光線高
が高くなり、球面収差の補正が難しくなる。
The second problem is deterioration of performance. In particular, since the power distributions of the groups of and are asymmetrical, off-axis aberrations are likely to be deteriorated. On the other hand, the type (1) is advantageous in terms of off-axis aberrations because the power arrangement of the groups is symmetrical, but the first type of negative power
Since the axial ray is raised in the group, the ray height in the second group becomes high and it becomes difficult to correct spherical aberration.

【0005】かかる状況を考慮して、後記する本発明で
は、正・負・正の3群ズームレンズタイプを採用してい
る。このタイプをレンズシャッターカメラに適用した例
として、特開平5−60975号のものが知られてい
る。この例では、第1群の移動量が少ない特徴を積極的
に利用して、第1群をズームレンズ時に固定となし、防
水機能を盛り込んでいる。その結果、9枚から11枚の
レンズ枚数にて2倍程度の標準ズームレンズを達成して
いる。
In consideration of such a situation, in the present invention described later, a positive / negative / positive three-group zoom lens type is adopted. As an example in which this type is applied to a lens shutter camera, the one disclosed in JP-A-5-60975 is known. In this example, the feature that the movement amount of the first group is small is positively used, the first group is fixed at the time of the zoom lens, and the waterproof function is incorporated. As a result, a standard zoom lens of about 2 times is achieved with 9 to 11 lenses.

【0006】一方、TTLカメラに適用した例として、
特開昭54−30855号等のものが知られている。こ
の例は、第2群と第3群の変倍作用を共に増倍させるこ
とで、効率良く変倍比をかせいでいる。その結果、10
枚から11枚のレンズ枚数にて2.5倍程度の標準ズー
ムレンズを達成している。
On the other hand, as an example applied to a TTL camera,
For example, Japanese Patent Laid-Open No. 54-30855 is known. In this example, the zooming ratios are efficiently obtained by multiplying the zooming actions of the second and third groups together. As a result, 10
A standard zoom lens of about 2.5 times has been achieved with the number of lenses from 11 to 11.

【0007】また、レンズ枚数を極端に減らした例とし
て、特開平4−317019号等のものが知られてい
る。この例は、各群のレンズ枚数を2枚ないし3枚程度
まで減らし、非球面の多用で収差を補正しようとしてい
る。その結果、6枚から9枚のレンズ枚数にて2倍から
3倍程度の標準ズームレンズを達成している。
Also, as an example in which the number of lenses is extremely reduced, there is known one such as Japanese Patent Laid-Open No. 4-317019. In this example, the number of lenses in each group is reduced to about 2 to 3, and aberrations are corrected by using aspherical surfaces. As a result, a standard zoom lens of about 2 to 3 times has been achieved with 6 to 9 lenses.

【0008】また、望遠ズームレンズに適用した例とし
て、特開平1−310322号等のものが知られてい
る。この例は、第3群の構成を正・負のいわゆるテレフ
ォトタイプとして全長の短縮を図っている。その結果、
10枚のレンズ枚数にて2.8倍程度の望遠ズームレン
ズを達成している。
Further, as an example applied to a telephoto zoom lens, there is known one disclosed in Japanese Patent Laid-Open No. 1-310322. In this example, the total length is shortened by using a positive / negative so-called telephoto type as the third group. as a result,
We have achieved a 2.8x telephoto zoom lens with 10 lenses.

【0009】[0009]

【発明が解決しようとする課題】上記先行例の中、特開
平5−60975号のものは、防水のために第1群を固
定となしているから、広角端レンズ全長が大きく、好ま
しくない。また、変倍比も2倍程度であり、レンズ枚数
も多い。
Among the above-mentioned prior art examples, the one disclosed in Japanese Patent Laid-Open No. 5-60975 is not preferable because the first lens unit is fixed for waterproofing, so that the wide-angle end lens has a large total length. Further, the variable power ratio is about twice, and the number of lenses is large.

【0010】特開昭54−30855号のものは、TT
Lカメラ用のためにバックフォーカスが長く、したがっ
て、レンズ全長も大きいため、小型化にとって好ましく
ない。また、レンズ枚数も多い。
JP-A-54-30855 discloses a TT
The back focus is long for the L camera, and therefore the total lens length is large, which is not preferable for downsizing. Also, the number of lenses is large.

【0011】特開平4−317019号のものも、TT
Lカメラ用のためにバックフォーカスが長く、したがっ
て、レンズ全長も大きいため、小型化にとって好ましく
ない。一方、レンズ枚数は少ないが非球面が非常に多い
ため、かえってコスト高になってしまう。また、収差補
正も不十分である。
Japanese Patent Laid-Open No. 4-317019 also discloses a TT
The back focus is long for the L camera, and therefore the total lens length is large, which is not preferable for downsizing. On the other hand, the number of lenses is small, but the number of aspherical surfaces is very large, so the cost is rather high. Also, the aberration correction is insufficient.

【0012】特開平1−310322号のものも、TT
Lカメラ用のためにバックフォーカスが長いが、望遠レ
ンズのため、さらにレンズ全長が大きくなっている。ま
た、レンズ枚数も多い。
Japanese Unexamined Patent Publication No. 1-310322 also has a TT
The back focus is long for the L camera, but because of the telephoto lens, the total lens length is further increased. Also, the number of lenses is large.

【0013】本発明は従来技術の上記のような問題点に
鑑みてなされたものであり、その目的は、変倍比が3程
度で、レンズ枚数が8枚程度と少なく、収差の良好な小
型ズームレンズを用いたカメラを提供することである。
The present invention has been made in view of the above-mentioned problems of the prior art, and its object is a small size with a zoom ratio of about 3, a small number of lenses of about 8 and good aberrations. The object is to provide a camera using a zoom lens.

【0014】[0014]

【課題を解決するための手段】上記目的を達成するため
に、本発明の第1の小型3群ズームレンズを用いたカメ
ラは、正屈折力の第1群と負屈折力の第2群と正屈折力
の第3群からなり、広角端から望遠端への変倍に際して
前記第1群と第3群が物体側へ移動するズームレンズを
用いたカメラにおいて、第1群の最も像側には両凸正レ
ンズが配置され、第2群の最も物体側には両凹負レンズ
が配置され、下記条件式を満足することを特徴とするも
のである。 0.20<fBW/IH<0.75 ・・・(1) 1<|r1a−r1b|/|r1a+r1b| ・・・(3) 1<(r2a−r2b)/(r2a+r2b)<3 ・・・(4) ただし、fBWは広角端におけるバックフォーカス、IH
は画面対角長、r1a及びr1bは第1群の最も像側に配置
されたレンズの物体側の面及び像側の面の曲率半径、r
2a及びr2bは第2群の最も物体側に配置されたレンズの
物体側の面及び像側の面の曲率半径である。
In order to achieve the above object, a camera using the first small three-group zoom lens of the present invention comprises a first group having a positive refractive power and a second group having a negative refractive power. In a camera using a zoom lens composed of a third lens unit having a positive refractive power, wherein the first lens unit and the third lens unit move to the object side during zooming from the wide-angle end to the telephoto end, the first lens unit is located closest to the image side. Is characterized in that a biconvex positive lens is arranged and a biconcave negative lens is arranged on the most object side of the second lens group, and the following conditional expression is satisfied. 0.20 <f BW /IH<0.75 ··· (1 ) 1 <| r 1a -r 1b | / | r 1a + r 1b | ··· (3) 1 <(r 2a -r 2b) / (R 2a + r 2b ) <3 (4) where f BW is the back focus at the wide-angle end, IH
Is the diagonal length of the screen, r 1a and r 1b are the radii of curvature of the object-side surface and the image-side surface of the lens closest to the image side in the first group, and r 1
2a and r2b are the radii of curvature of the object-side surface and the image-side surface of the lens arranged closest to the object in the second group.

【0015】本発明の第2の小型3群ズームレンズを用
いたカメラは、正屈折力の第1群と負屈折力の第2群と
正屈折力の第3群からなり、広角端から望遠端への変倍
に際して前記第1群と第3群が物体側へ移動するズーム
レンズを用いたカメラにおいて、第1群の最も像側には
両凸正レンズが配置され、第2群の最も物体側には両凹
負レンズが配置され、下記条件式を満足し、前記第3群
は正レンズと負レンズと正レンズにて構成されているこ
とを特徴とするものである。 1<|r1a−r1b|/|r1a+r1b| ・・・(3) 1<(r2a−r2b)/(r2a+r2b)<3 ・・・(4) ただし、r1a及びr1bは第1群の最も像側に配置された
レンズの物体側の面及び像側の面の曲率半径、r2a及び
2bは第2群の最も物体側に配置されたレンズの物体側
の面及び像側の面の曲率半径である。
A camera using the second small-sized three-group zoom lens of the present invention comprises a first group having positive refracting power, a second group having negative refracting power, and a third group having positive refracting power. In a camera using a zoom lens in which the first group and the third group move to the object side upon zooming to the edge, a biconvex positive lens is arranged on the most image side of the first group, and the most of the second group. A biconcave negative lens is arranged on the object side, the following conditional expression is satisfied, and the third group is composed of a positive lens, a negative lens, and a positive lens. 1 <| r 1a −r 1b | / | r 1a + r 1b | (3) 1 <(r 2a −r 2b ) / (r 2a + r 2b ) <3 (4) However, r 1a And r 1b are radii of curvature of the object-side surface and the image-side surface of the lens arranged closest to the image side in the first group, and r 2a and r 2b are objects of the lens arranged closest to the object side in the second group. Is the radius of curvature of the side surface and the image side surface.

【0016】[0016]

【作用】以下、本発明において上記の構成をとる理由と
作用について説明する。本発明では、上記目的を達成す
るために2通りの手段を提案する。
Now, the reason why the above structure is adopted and the function of the present invention will be described. The present invention proposes two means for achieving the above object.

【0017】第1の手段は、正屈折力の第1群と負屈折
力の第2群と正屈折力の第3群からなり、広角端から望
遠端への変倍に際して前記第1群と第3群が物体側へ移
動するズームレンズにおいて、下記条件式を満足するも
のである。 0.20<fBW/IH<0.75 ・・・(1) ただし、fBWは広角端におけるバックフォーカス、IH
は画面対角長である。
The first means comprises a first group having a positive refracting power, a second group having a negative refracting power, and a third group having a positive refracting power, and when the magnification is changed from the wide-angle end to the telephoto end, the first unit is used. In the zoom lens in which the third lens unit moves to the object side, the following conditional expression is satisfied. 0.20 <f BW /IH<0.75 (1) where f BW is the back focus at the wide-angle end, IH
Is the diagonal length of the screen.

【0018】上記の従来技術に関して述べた通り、ズー
ムレンズのパワー配置を対称な構成にしておけば、軸外
収差の補正に有利になる。しかし、負屈折力の群が先行
してしまうと軸上光線がハネ上げられ、後続する群にお
いて光線高が高くなってしまうため、球面収差の補正が
困難になる。その結果、レンズ枚数を増やさざるを得な
い。そこで、本発明のように、正屈折力の群を先行させ
ておくと、第2群において軸上光線の光線高を低くする
ことができ、球面収差の良好な補正を可能にしている。
また、軸外収差に関しても、正・負・正の対称な構成に
より、良好な補正が可能となる。
As described above with respect to the prior art, if the power arrangement of the zoom lens is symmetrical, it is advantageous for correction of off-axis aberrations. However, if the group of negative refracting power precedes, the axial ray is lifted up, and the ray height becomes high in the subsequent group, so that it becomes difficult to correct the spherical aberration. As a result, the number of lenses has to be increased. Therefore, as in the present invention, if the group having the positive refracting power is preceded, the ray height of the axial ray in the second group can be lowered, and the spherical aberration can be favorably corrected.
Further, with respect to the off-axis aberration, good correction can be performed by the positive / negative / positive symmetrical configuration.

【0019】一方、変倍比を効率良く確保するために
は、第1群と第3群が物体側へ移動するようにするのが
よい。その結果、第2群と第3群が共に増倍作用を持
ち、高変倍比を達成することができる。また、レンズ全
長については、広角端よりも望遠端で長くなる。
On the other hand, in order to efficiently secure the variable power ratio, it is preferable that the first group and the third group move to the object side. As a result, both the second group and the third group have a multiplication effect, and a high zoom ratio can be achieved. Further, the total lens length is longer at the telephoto end than at the wide-angle end.

【0020】ところで、近年の鏡枠の高精度化技術によ
り、多段繰り出し等の鏡枠構造が利用されるようになっ
ており、小型化に対しレンズ全長の短縮とズーム移動量
の短縮がレンズの設計に求められるようになってきた。
しかし、変倍比の確保と良好な収差補正のためには、各
群のレンズ厚みと群間隔がある程度決まってしまうの
で、レンズ全長の短縮にはバックフォーカスを短くする
ことが有効であり、そのための条件が条件式(1)であ
る。したがって、条件式(1)の上限の0.75を越え
ると、バックフォーカスが長くなり、小型化が達成でき
ない。一方、条件式(1)の下限の0.20を越える
と、バックフォーカスが短くなり過ぎ、第3群のレンズ
径が大きくなるため、やはり小型化が達成できない。
By the way, a lens frame structure such as a multi-stage feeding is used by the recent technology for improving the accuracy of the lens frame. With respect to downsizing, it is possible to shorten the total lens length and zoom movement amount of the lens. It has come to be required for design.
However, in order to secure the zoom ratio and correct aberrations, the lens thickness and group spacing of each group are determined to some extent, so it is effective to shorten the back focus to shorten the total lens length. The condition is the conditional expression (1). Therefore, if the upper limit of 0.75 of the conditional expression (1) is exceeded, the back focus becomes long and downsizing cannot be achieved. On the other hand, when the lower limit of 0.20 of the conditional expression (1) is exceeded, the back focus becomes too short and the lens diameter of the third lens group becomes large, so that downsizing cannot be achieved either.

【0021】次に、ズーム時の移動量を短縮するために
は、下記条件式(2)を満足することが望ましい。 0.15<Δ1 /IH・Z<0.45 ・・・(2) ただし、Δ1 は広角端から望遠端へ変倍する時の第1群
の移動量、Zは変倍比である。
Next, in order to reduce the amount of movement during zooming, it is desirable to satisfy the following conditional expression (2). 0.15 <Δ 1 /IH·Z<0.45 (2) where Δ 1 is the moving amount of the first lens unit when zooming from the wide-angle end to the telephoto end, and Z is the zoom ratio. .

【0022】条件式(2)の上限の0.45を越えるこ
とは、第1群のズーム移動量が大きくなることであり、
また、第1群のパワーが弱くなることであり、鏡枠の小
型化が達成できない。一方、条件式(2)の下限の0.
15を越えると、第1群のズーム移動量は少なくなって
小型化には有利だが、第1群のパワーが強くなるため、
収差補正上レンズ枚数が増加して好ましくない。
If the upper limit of 0.45 to condition (2) is exceeded, the amount of zoom movement of the first lens unit will increase, and
In addition, the power of the first group is weakened, so that the lens frame cannot be downsized. On the other hand, the lower limit of conditional expression (2) is 0.
Beyond 15, the amount of zoom movement of the first group is small, which is advantageous for downsizing, but the power of the first group becomes strong,
This is not preferable because the number of lenses increases due to aberration correction.

【0023】第1の手段において、レンズ全長短縮を実
現するためには、第3群を正レンズ成分とそれから間隔
を隔てて負レンズ成分とから構成し、いわゆるテレフォ
トタイプとするのがよい。また、正レンズ成分・負レン
ズ成分共に1枚の正レンズと1枚の負レンズにて構成す
ることが望ましい。
In the first means, in order to realize the shortening of the total lens length, it is preferable that the third lens group be composed of a positive lens component and a negative lens component spaced apart from the positive lens component, so-called telephoto type. Further, it is desirable that both the positive lens component and the negative lens component are composed of one positive lens and one negative lens.

【0024】本発明の第2の手段は、正屈折力の第1群
と負屈折力の第2群と正屈折力の第3群からなり、広角
端から望遠端への変倍に際して前記第1群と第3群が物
体側へ移動するズームレンズにおいて、前記第3群は正
レンズと負レンズと正レンズにて構成されているもので
ある。
A second means of the present invention comprises a first group having a positive refracting power, a second group having a negative refracting power, and a third group having a positive refracting power, and the above-mentioned first group at the time of zooming from the wide-angle end to the telephoto end. In the zoom lens in which the first group and the third group move to the object side, the third group is composed of a positive lens, a negative lens and a positive lens.

【0025】ズームレンズの場合、各群単独にてある程
度収差補正をしておく必要があり、このことは高変倍に
なる程重要になってくる。また、第3群には第2群で発
散された光束が入射するため、光線高が高くなり、収差
補正にとって不利となる。したがって、第3群において
ある程度収差補正をするために、正レンズと負レンズと
正レンズにて構成することが望ましい。この時、負レン
ズの像側の面のパワーが強くなり、この面にてコマ収差
や歪曲収差の発生が大きくなるから、これを補正するた
めに、最も物体側の正レンズの物体側の面のパワーを強
くし、さらに、負レンズの物体側の面は物体側に凸面を
向ける形状とするのがよい。また、各レンズを接合レン
ズにて構成しても、本発明中に含まれるものである。
In the case of a zoom lens, it is necessary to correct aberrations to some extent by each group alone, and this becomes more important as the zoom ratio becomes higher. Further, since the light flux diverged by the second lens group enters the third lens group, the height of the light beam becomes high, which is disadvantageous for aberration correction. Therefore, in order to correct aberrations to some extent in the third lens group, it is desirable that the third lens group be composed of a positive lens, a negative lens and a positive lens. At this time, the power of the image side surface of the negative lens becomes strong, and the coma aberration and the distortion aberration become large at this surface, so in order to correct this, the object side surface of the positive lens closest to the object side. It is preferable that the surface of the negative lens on the object side has a convex surface facing the object side. Further, even if each lens is composed of a cemented lens, it is included in the present invention.

【0026】第2の手段の場合、バックフォーカスを短
縮することは容易ではない。したがって、小型化のため
には、群の移動量を減らすことが重要であり、前記条件
式(2)を満足することが望ましい。
In the case of the second means, it is not easy to shorten the back focus. Therefore, in order to reduce the size, it is important to reduce the amount of movement of the group, and it is desirable to satisfy the conditional expression (2).

【0027】上記何れの手段においても、第3群中には
非球面の使用が望ましく、その非球面は光軸から離れる
に従って正パワーが弱くなるような形状がよい。特に、
第2群にて発散された光束が入射する第3群の最も物体
側の面に非球面を用いることが望ましい。
In any of the above means, it is desirable to use an aspherical surface in the third lens group, and the aspherical surface preferably has a shape such that its positive power becomes weaker as it moves away from the optical axis. In particular,
It is desirable to use an aspherical surface for the surface of the third group that is closest to the object side and on which the light beam diverged by the second group enters.

【0028】また、良好な収差補正のために、第1群の
最も像側には両凸正レンズが配置され、第2群の最も物
体側には両凹負レンズが配置されることが望ましい。両
レンズ共に各群のパワーを負担しながら、両凸正レンズ
の像側面と両凹負レンズの物体側面にて非点収差と歪曲
収差を補正している。そのために、上記の形状にするこ
とがよい。
For good aberration correction, it is desirable that the biconvex positive lens is arranged on the most image side of the first group, and the biconcave negative lens is arranged on the most object side of the second group. . Both lenses correct the astigmatism and distortion on the image side surface of the biconvex positive lens and the object side surface of the biconcave negative lens while bearing the power of each group. Therefore, the above-mentioned shape is preferable.

【0029】さらに、下記条件式(3)と条件式(4)
を満足することが望ましい。 1<|r1a−r1b|/|r1a+r1b| ・・・(3) 1<(r2a−r2b)/(r2a+r2b)<3 ・・・(4) ただし、r1a及びr1bは上記両凸正レンズの物体側の面
及び像側の面の曲率半径、r2a及びr2bは上記両凹負レ
ンズの物体側の面及び像側の面の曲率半径である。
Further, the following conditional expressions (3) and (4)
It is desirable to satisfy. 1 <| r 1a −r 1b | / | r 1a + r 1b | (3) 1 <(r 2a −r 2b ) / (r 2a + r 2b ) <3 (4) However, r 1a And r 1b are the radii of curvature of the object-side surface and the image-side surface of the biconvex positive lens, and r 2a and r 2b are the radii of curvature of the object-side surface and the image-side surface of the biconcave negative lens.

【0030】条件式(3)の下限の1を越えると、正の
歪曲収差が大きくなり、好ましくない。また、条件式
(4)の下限の1を越えると、像面湾曲収差が補正過剰
になり、一方、条件式(4)の上限の3を越えると、像
面湾曲収差が補正不足になり、何れも好ましくない。ま
た、条件式(4)の範囲を越えると、歪曲収差の変倍に
伴う変動が大きくなる。
If the lower limit of 1 to condition (3) is exceeded, positive distortion becomes large, which is not preferable. If the lower limit of 1 to condition (4) is exceeded, the field curvature aberration will be overcorrected, whereas if the upper limit of 3 to condition (4) is exceeded, the field curvature will be undercorrected. Neither is preferable. Further, when the range of the conditional expression (4) is exceeded, the variation of the distortion aberration due to zooming becomes large.

【0031】また、第2群は下記条件式(5)を満足す
ることが望ましい。 1.65<n2N ・・・(5) ただし、n2Nは第2群中の負レンズの屈折率の平均値で
ある。この条件式は、ペッツバール像面を良好に補正す
るための条件である。条件式(5)の下限の1.65を
越えると、ペッツバール像面が補正過剰になり好ましく
ない。
Further, it is desirable that the second lens group satisfies the following conditional expression (5). 1.65 <n 2N (5) where n 2N is the average value of the refractive indices of the negative lenses in the second group. This conditional expression is a condition for favorably correcting the Petzval image plane. If the lower limit of 1.65 to condition (5) is exceeded, the Petzval image plane will be overcorrected, which is not preferable.

【0032】[0032]

【実施例】以下、本発明のカメラ用の小型3群ズームレ
ンズの実施例1〜5について説明する。図1〜図5にそ
れぞれ実施例1〜5の広角端(a)と望遠端(b)のレ
ンズ断面図を示す。各実施例の数値データは後記する
が、何れの実施例も、画角2ωが64.35°〜24.
46°、FナンバーFNOが4.66〜7.14であり、
変倍比2.9を有している。また、画面対角長は34.
6mmである。
Embodiments Embodiments 1 to 5 of the compact three-group zoom lens for a camera of the present invention will be described below. 1 to 5 are sectional views of lenses at the wide-angle end (a) and the telephoto end (b) of Examples 1 to 5, respectively. Numerical data of each example will be described later, but in each example, the angle of view 2ω is 64.35 ° to 24.
46 °, F number F NO is 4.66 to 7.14,
It has a variable power ratio of 2.9. The screen diagonal length is 34.
It is 6 mm.

【0033】実施例1は、第1群G1は、像側に凹な負
メニスカスレンズと両凸レンズの接合レンズからなり、
第2群G2は、両凹レンズと物体側に凸な正メニスカス
レンズからなり、第3群G3は、両凸レンズと物体側に
凹な負メニスカスレンズと、それから間隔を隔てて両凸
レンズと物体側に凹な負メニスカスレンズとからなり、
全系は7群8枚にて構成されている。
In the first embodiment, the first group G1 is composed of a cemented lens of a negative meniscus lens concave on the image side and a biconvex lens,
The second group G2 is composed of a biconcave lens and a positive meniscus lens convex to the object side, and the third group G3 is a biconvex lens and a negative meniscus lens concave to the object side, and a biconvex lens and an object side at a distance from the negative meniscus lens. Consisting of a negative negative meniscus lens,
The entire system consists of 8 elements in 7 groups.

【0034】絞りは、第2群G2と第3群G3の間にあ
り、独立に移動する。非球面は、第2群G2の正メニス
カスレンズの物体側の面、第3群G3の最も物体側の両
凸レンズの物体側の面、第3群G3の最も像側の両凸レ
ンズの像側の面の3面に用いられている。
The diaphragm is located between the second group G2 and the third group G3 and moves independently. The aspherical surface is the object-side surface of the positive meniscus lens of the second group G2, the object-side surface of the most object-side biconvex lens of the third group G3, and the image-side surface of the most image-side biconvex lens of the third group G3. It is used for three surfaces.

【0035】実施例2は、第1群G1は、像側に凹な負
メニスカスレンズと両凸レンズの接合レンズからなり、
第2群G2は、2枚の両凹レンズと両凸レンズからな
り、第3群G3は、両凸レンズと物体側に凹な負メニス
カスレンズの接合レンズと、それから間隔を隔てて両凸
レンズと物体側に凹な負メニスカスレンズとからなり、
全系は7群9枚にて構成されている。
In the second embodiment, the first group G1 is composed of a cemented lens of a negative meniscus lens concave on the image side and a biconvex lens,
The second group G2 is composed of two biconcave lenses and a biconvex lens, and the third group G3 is a cemented lens of a biconvex lens and a negative meniscus lens concave on the object side, and a biconvex lens and an object side with a distance from the cemented lens. Consisting of a negative negative meniscus lens,
The whole system consists of 9 elements in 7 groups.

【0036】絞りは、第2群G2と第3群G3の間にあ
り、第3群G3と一体で移動する。非球面は、第3群G
3の最も物体側の両凸レンズの物体側の面1面に用いら
れている。
The diaphragm is located between the second group G2 and the third group G3 and moves integrally with the third group G3. The aspherical surface is the third lens group G
3 is used as the first object-side surface of the biconvex lens closest to the object side.

【0037】実施例3は、第1群G1は、像側に凹な負
メニスカスレンズと両凸レンズの接合レンズからなり、
第2群G2は、両凹レンズと物体側に凸な正メニスカス
レンズからなり、第3群G3は、両凸レンズと物体側に
凹な負メニスカスレンズの接合レンズと、それから間隔
を隔てて両凸レンズと物体側に曲率半径の小さい面を向
けた両凹レンズとからなり、全系は6群8枚にて構成さ
れている。
In the third embodiment, the first group G1 is composed of a cemented lens of a negative meniscus lens concave on the image side and a biconvex lens.
The second group G2 is composed of a biconcave lens and a positive meniscus lens convex to the object side, and the third group G3 is composed of a cemented lens of a biconvex lens and a negative meniscus lens concave to the object side, and a biconvex lens spaced apart from the cemented lens. It is composed of a biconcave lens with a surface having a small radius of curvature facing the object side, and the entire system is composed of 8 elements in 6 groups.

【0038】絞りは、第2群G2と第3群G3の間にあ
り、独立に移動する。非球面は、第3群G3の最も物体
側の両凸レンズの物体側の面、第3群G3の最も像側の
両凸レンズの像側の面の2面に用いられている。
The diaphragm is located between the second group G2 and the third group G3 and moves independently. The aspherical surfaces are used for the two surfaces, that is, the object-side surface of the most object-side biconvex lens of the third group G3 and the image-side surface of the most image-side biconvex lens of the third group G3.

【0039】実施例4は、第1群G1は、像側に凹な負
メニスカスレンズと両凸レンズの接合レンズからなり、
第2群G2は、2枚の両凹レンズと物体側に凸な正メニ
スカスレンズからなり、第3群G3は、両凸レンズと像
側に凹な負メニスカスレンズと両凸レンズからなり、全
系は7群8枚にて構成されている。
In the fourth embodiment, the first group G1 is composed of a cemented lens of a negative meniscus lens concave on the image side and a biconvex lens,
The second group G2 is composed of two biconcave lenses and a positive meniscus lens convex to the object side, and the third group G3 is composed of a biconvex lens, a negative meniscus lens concave to the image side and a biconvex lens, and the entire system is 7 It consists of 8 sheets.

【0040】絞りは、第2群G2と第3群G3の間にあ
り、第3群G3と一体で移動する。非球面は、第2群G
2の正メニスカスレンズの物体側の面、第3群G3の最
も物体側の両凸レンズの物体側の面、第3群G3の最も
像側の両凸レンズの像側の面の3面に用いられている。
The diaphragm is located between the second group G2 and the third group G3 and moves integrally with the third group G3. The aspherical surface is the second group G
2 is used for the object-side surface of the positive meniscus lens, the object-side surface of the most object-side biconvex lens of the third group G3, and the image-side surface of the most image-side biconvex lens of the third group G3. ing.

【0041】実施例5は、第1群G1は、像側に凹な負
メニスカスレンズと両凸レンズからなり、第2群G2
は、両凹レンズと物体側に凸な正メニスカスレンズから
なり、第3群G3は、両凸レンズと、両凸レンズと両凹
レンズの接合レンズと、像側に凸な正メニスカスレンズ
とからなり、全系は7群8枚にて構成されている。
In the fifth embodiment, the first group G1 is composed of a negative meniscus lens concave to the image side and a biconvex lens, and the second group G2
Is composed of a biconcave lens and a positive meniscus lens convex to the object side, and the third group G3 is composed of a biconvex lens, a cemented lens of a biconvex lens and a biconcave lens, and a positive meniscus lens convex to the image side. Consists of 8 sheets in 7 groups.

【0042】絞りは、第2群G2と第3群G3の間にあ
り、第3群G3と一体で移動する。非球面は、第2群G
2の正メニスカスレンズ物体側の面、第3群G3の最も
物体側の両凸レンズの物体側の面の2面に用いられてい
る。
The diaphragm is located between the second group G2 and the third group G3 and moves integrally with the third group G3. The aspherical surface is the second group G
It is used for two surfaces of the positive meniscus lens object side surface of 2 and the object side surface of the most object side biconvex lens of the third group G3.

【0043】以下に、上記各実施例の数値データを示す
が、記号は上記の外、fは全系焦点距離、FNOはFナン
バー、2ωは画角、fB はバックフォーカス、r1 、r
2 …は各レンズ面の曲率半径、d1 、d2 …は各レンズ
面間の間隔、nd1、nd2…は各レンズのd線の屈折率、
νd1、νd2…は各レンズのアッベ数である。なお、非球
面形状は、光軸上光の進行方向をx、光軸に直交する方
向をyとした時、次式で表される。 x=(y2 /r)/[1+{1−(y/r)2 1/2 ] +A44 +A66 +A88 +A10 10 ただし、rは近軸曲率半径、A4、A6、A8、A10 はそれぞ
れ4次、6次、8次、10次の非球面係数である。
Numerical data of each of the above embodiments are shown below. Symbols are other than the above, f is the focal length of the entire system, F NO is the F number, 2ω is the angle of view, f B is the back focus, r 1 , r
2 ... is the radius of curvature of each lens surface, d 1 , d 2 ... Is the distance between the lens surfaces, n d1 , n d2 ... Is the d-line refractive index of each lens,
ν d1 , ν d2 ... Are Abbe numbers of each lens. The aspherical shape is expressed by the following equation, where x is the traveling direction of light on the optical axis and y is the direction orthogonal to the optical axis. x = (y 2 / r) / [1+ {1- (y / r) 2} 1/2] + A 4 y 4 + A 6 y 6 + A 8 y 8 + A 10 y 10 where, r is a paraxial radius of curvature, A 4 , A 6 , A 8 and A 10 are aspherical coefficients of the 4th, 6th, 8th and 10th orders, respectively.

【0044】実施例1 f = 27.5 〜 46.8 〜 79.8 FNO= 4.66 〜 5.77 〜 7.14 2ω= 64.35°〜 40.57°〜 24.46° fB = 19.27 〜 30.12 〜 46.86 r1 = 251.2860 d1 = 2.500 nd1 =1.80518 νd1 =25.43 r2 = 65.6210 d2 = 5.000 nd2 =1.51454 νd2 =54.69 r3 = -76.0950 d3 =(可変) r4 = -65.1520 d4 = 1.500 nd3 =1.72916 νd3 =54.68 r5 = 17.4630 d5 = 4.190 r6 = 22.8080(非球面) d6 = 3.000 nd4 =1.80518 νd4 =25.43 r7 = 40.4440 d7 =(可変) r8 = ∞(絞り) d8 =(可変) r9 = 13.1090(非球面) d9 = 5.170 nd5 =1.48749 νd5 =70.21 r10= -22.5240 d10= 1.120 r11= -18.2760 d11= 1.500 nd6 =1.84666 νd6 =23.78 r12= -30.7870 d12= 8.490 r13= 35.1390 d13= 3.550 nd7 =1.53172 νd7 =48.90 r14= -19.9170(非球面) d14= 3.640 r15= -11.1430 d15= 1.500 nd8 =1.83481 νd8 =42.72 r16= -1363.1700 非球面係数 第6面 A4 = 0.27597×10-5 A6 =-0.17760×10-7 A8 = 0.31410×10-9 A10= 0 第9面 A4 =-0.43785×10-4 A6 =-0.61839×10-7 A8 =-0.16116×10-8 A10= 0.43368×10-11 第14面 A4 = 0.25900×10-4 A6 = 0.24932×10-6 A8 =-0.19822×10-8 A10= 0
Example 1 f = 27.5 to 46.8 to 79.8 F NO = 4.66 to 5.77 to 7.14 2ω = 64.35 ° to 40.57 ° to 24.46 ° f B = 19.27 to 30.12 to 46.86 r 1 = 251.2860 d 1 = 2.500 nd 1 = 1.80518 ν d1 = 25.43 r 2 = 65.6210 d 2 = 5.000 n d2 = 1.51454 ν d2 = 54.69 r 3 = -76.0950 d 3 = (variable) r 4 = -65.1520 d 4 = 1.500 n d3 = 1.72916 ν d3 = 54.68 r 5 = 17.4630 d 5 = 4.190 r 6 = 22.8080 (aspherical surface) d 6 = 3.000 n d4 = 1.80518 ν d4 = 25.43 r 7 = 40.4440 d 7 = (variable) r 8 = ∞ (aperture) d 8 = (variable) r 9 = 13.1090 (aspherical) d 9 = 5.170 n d5 = 1.48749 ν d5 = 70.21 r 10 = -22.5240 d 10 = 1.120 r 11 = -18.2760 d 11 = 1.500 n d6 = 1.84666 ν d6 = 23.78 r 12 = - 30.7870 d 12 = 8.490 r 13 = 35.1390 d 13 = 3.550 n d7 = 1.53172 ν d7 = 48.90 r 14 = -19.9170 (aspherical surface) d 14 = 3.640 r 15 = -11.1430 d 15 = 1.500 n d8 = 1.83481 ν d8 = 42.72 r 16 = -1363.1700 Aspheric coefficient 6th surface A 4 = 0.27597 × 10 -5 A 6 = -0.17760 × 10 -7 A 8 = 0.31410 × 10 -9 A 10 = 0 9th surface A 4 = -0.43785 × 10 -4 A 6 = -0.61839 × 10 -7 A 8 = -0.16116 × 10 -8 A 10 = 0.43368 × 10 -11 14th surface A 4 = 0.25900 × 10 -4 A 6 = 0.24932 × 10 -6 A 8 = -0.19822 × 10 - 8 A 10 = 0
.

【0045】実施例2 f = 27.5 〜 46.8 〜 79.8 FNO= 4.66 〜 5.77 〜 7.14 2ω= 64.35°〜 40.57°〜 24.46° fB = 23.65 〜 32.86 〜 47.87 r1 = 46.6220 d1 = 2.500 nd1 =1.80518 νd1 =25.43 r2 = 27.0700 d2 = 6.000 nd2 =1.57135 νd2 =52.96 r3 = -245.9110 d3 =(可変) r4 = -209.3760 d4 = 1.500 nd3 =1.78800 νd3 =47.38 r5 = 14.6280 d5 = 3.670 r6 = -48.3530 d6 = 1.500 nd4 =1.77250 νd4 =49.60 r7 = 77.3830 d7 = 1.030 r8 = 30.2480 d8 = 3.000 nd5 =1.80518 νd5 =25.43 r9 = -284.7420 d9 =(可変) r10= ∞(絞り) d10= 1.500 r11= 12.9600(非球面) d11= 5.180 nd6 =1.48749 νd6 =70.21 r12= -15.2140 d12= 1.500 nd7 =1.69895 νd7 =30.12 r13= -33.3970 d13= 9.550 r14= 70.3770 d14= 3.270 nd8 =1.51454 νd8 =54.69 r15= -20.3510 d15= 3.350 r16= -9.9860 d16= 1.500 nd9 =1.88300 νd9 =40.78 r17= -28.4350 非球面係数 第11面 A4 =-0.48143×10-4A6 = 0.14592×10-6 A8 =-0.81941×10-8 A10= 0.70062×10-10
[0045] Example 2 f = 27.5 ~ 46.8 ~ 79.8 F NO = 4.66 ~ 5.77 ~ 7.14 2ω = 64.35 ° ~ 40.57 ° ~ 24.46 ° f B = 23.65 ~ 32.86 ~ 47.87 r 1 = 46.6220 d 1 = 2.500 n d1 = 1.80518 ν d1 = 25.43 r 2 = 27.0700 d 2 = 6.000 n d2 = 1.57135 ν d2 = 52.96 r 3 = -245.9110 d 3 = (variable) r 4 = -209.3760 d 4 = 1.500 n d3 = 1.78800 ν d3 = 47.38 r 5 = 14.6280 d 5 = 3.670 r 6 = -48.3530 d 6 = 1.500 n d4 = 1.77250 ν d4 = 49.60 r 7 = 77.3830 d 7 = 1.030 r 8 = 30.2480 d 8 = 3.000 n d5 = 1.80518 ν d5 = 25.43 r 9 = -284.7420 d 9 = (variable) r 10 = ∞ (aperture) d 10 = 1.500 r 11 = 12.9600 (aspherical surface) d 11 = 5.180 n d6 = 1.48749 ν d6 = 70.21 r 12 = -15.2140 d 12 = 1.500 n d7 = 1.69895 ν d7 = 30.12 r 13 = -33.3970 d 13 = 9.550 r 14 = 70.3770 d 14 = 3.270 n d8 = 1.51454 ν d8 = 54.69 r 15 = -20.3510 d 15 = 3.350 r 16 = -9.9860 d 16 = 1.500 n d9 = 1.88300 ν d9 = 40.78 r 17 = -28.4350 Aspherical surface 11th surface A 4 = -0.48143 × 10 -4 A 6 = 0.14592 × 10 -6 A 8 = -0.81941 × 10 -8 A 10 = 0.70062 × 10 -10
.

【0046】実施例3 f = 27.5 〜 46.8 〜 79.8 FNO= 4.66 〜 5.77 〜 7.14 2ω= 64.35°〜 40.57°〜 24.46° fB = 18.28 〜 28.75 〜 45.51 r1 = 642.9120 d1 = 2.500 nd1 =1.80518 νd1 =25.43 r2 = 92.9060 d2 = 5.000 nd2 =1.51454 νd2 =54.69 r3 = -75.2380 d3 =(可変) r4 = -63.7050 d4 = 1.500 nd3 =1.72916 νd3 =54.68 r5 = 18.3610 d5 = 4.230 r6 = 22.9070 d6 = 3.000 nd4 =1.80518 νd4 =25.43 r7 = 39.7820 d7 =(可変) r8 = ∞(絞り) d8 =(可変) r9 = 13.6900(非球面) d9 = 5.300 nd5 =1.48749 νd5 =70.21 r10= -16.5990 d10= 1.500 nd6 =1.78470 νd6 =26.30 r11= -29.8010 d11= 9.560 r12= 33.7420 d12= 3.540 nd7 =1.51742 νd7 =52.41 r13= -21.7420(非球面) d13= 3.610 r14= -10.7870 d14= 1.500 nd8 =1.78800 νd8 =47.38 r15= 123.4560 非球面係数 第9面 A4 =-0.46432×10-4 A6 =-0.12416×10-7 A8 =-0.29000×10-8 A10= 0.15241×10-10 第13面 A4 = 0.11567×10-4 A6 = 0.21994×10-6 A8 =-0.35579×10-8 A10= 0
Example 3 f = 27.5 to 46.8 to 79.8 F NO = 4.66 to 5.77 to 7.14 2ω = 64.35 ° to 40.57 ° to 24.46 ° f B = 18.28 to 28.75 to 45.51 r 1 = 642.9120 d 1 = 2.500 nd 1 = 1.80518 ν d1 = 25.43 r 2 = 92.9060 d 2 = 5.000 n d2 = 1.51454 ν d2 = 54.69 r 3 = -75.2380 d 3 = (variable) r 4 = -63.7050 d 4 = 1.500 n d3 = 1.72916 ν d3 = 54.68 r 5 = 18.3610 d 5 = 4.230 r 6 = 22.9070 d 6 = 3.000 n d4 = 1.80518 ν d4 = 25.43 r 7 = 39.7820 d 7 = (variable) r 8 = ∞ (aperture) d 8 = (variable) r 9 = 13.6900 (aspherical) d 9 = 5.300 n d5 = 1.48749 ν d5 = 70.21 r 10 = -16.5990 d 10 = 1.500 n d6 = 1.78470 ν d6 = 26.30 r 11 = -29.8010 d 11 = 9.560 r 12 = 33.7420 d 12 = 3.540 n d7 = 1.51742 ν d7 = 52.41 r 13 = -21.7420 (aspherical surface) d 13 = 3.610 r 14 = -10.7870 d 14 = 1.500 n d8 = 1.78800 ν d8 = 47.38 r 15 = 123.4560 Aspheric coefficient 9th surface A 4 = -0.46432 × 10 -4 A 6 = -0.12416 × 10 -7 A 8 = -0.29000 × 10 -8 A 10 = 0.15241 × 10 -10 13th surface A 4 = 0.11567 × 10 -4 A 6 = 0.21994 × 10 -6 A 8 = -0.35579 × 10 -8 A 10 = 0
.

【0047】実施例4 f = 27.5 〜 46.8 〜 79.8 FNO= 4.66 〜 5.77 〜 7.14 2ω= 64.35°〜 40.57°〜 24.46° fB = 41.30 〜 52.48 〜 70.27 r1 = 47.1410 d1 = 2.500 nd1 =1.78470 νd1 =26.30 r2 = 27.0530 d2 = 6.000 nd2 =1.57099 νd2 =50.80 r3 = -218.3390 d3 =(可変) r4 = -271.5520 d4 = 1.700 nd3 =1.72916 νd3 =54.68 r5 = 11.9770 d5 = 3.710 r6 = -72.2150 d6 = 1.700 nd4 =1.72916 νd4 =54.68 r7 = 124.6090 d7 = 0.710 r8 = 24.5980(非球面) d8 = 2.500 nd5 =1.80518 νd5 =25.43 r9 = 85.7040 d9 =(可変) r10= ∞(絞り) d10= 1.500 r11= 12.7870(非球面) d11= 4.000 nd6 =1.48749 νd6 =70.21 r12= -64.2790 d12= 2.090 r13= 30.2450 d13= 3.220 nd7 =1.80518 νd7 =25.43 r14= 13.4060 d14= 2.000 r15= 50.5810 d15= 3.000 nd8 =1.51633 νd8 =64.15 r16= -43.9540(非球面) 非球面係数 第8面 A4 = 0.12672×10-4 A6 =-0.16702×10-6 A8 = 0.53241×10-8 A10=-0.40848×10-10 第11面 A4 =-0.63708×10-4 A6 = 0.26747×10-6 A8 =-0.12512×10-7 A10= 0.10692×10-9 第16面 A4 = 0.22948×10-4 A6 = 0.91846×10-7 A8 = 0.54081×10-8 A10=-0.26742×10-11
[0047] Example 4 f = 27.5 ~ 46.8 ~ 79.8 F NO = 4.66 ~ 5.77 ~ 7.14 2ω = 64.35 ° ~ 40.57 ° ~ 24.46 ° f B = 41.30 ~ 52.48 ~ 70.27 r 1 = 47.1410 d 1 = 2.500 n d1 = 1.78470 ν d1 = 26.30 r 2 = 27.0530 d 2 = 6.000 n d2 = 1.57099 ν d2 = 50.80 r 3 = -218.3390 d 3 = (variable) r 4 = -271.5520 d 4 = 1.700 n d3 = 1.72916 ν d3 = 54.68 r 5 = 11.9770 d 5 = 3.710 r 6 = -72.2150 d 6 = 1.700 n d4 = 1.72916 ν d4 = 54.68 r 7 = 124.6090 d 7 = 0.710 r 8 = 24.5980 ( aspherical) d 8 = 2.500 n d5 = 1.80518 ν d5 = 25.43 r 9 = 85.7040 d 9 = (variable) r 10 = ∞ (aperture) d 10 = 1.500 r 11 = 12.7870 (aspherical surface) d 11 = 4.000 n d6 = 1.48749 ν d6 = 70.21 r 12 = -64.2790 d 12 = 2.090 r 13 = 30.2450 d 13 = 3.220 n d7 = 1.80518 ν d7 = 25.43 r 14 = 13.4060 d 14 = 2.000 r 15 = 50.5810 d 15 = 3.000 n d8 = 1.51633 ν d8 = 64.15 r 16 = -43.9540 (aspherical surface) ) Aspheric coefficient 8th surface A 4 = 0.12672 × 10 -4 A 6 = -0.16702 × 10 -6 A 8 = 0.53241 × 10 -8 A 10 = -0.40848 × 10 -10 11th surface A 4 = -0.63708 × 10 -4 A 6 = 0.26747 × 10 -6 A 8 = -0.12512 × 10 -7 A 10 = 0.10692 × 10 -9 16th surface A 4 = 0.22948 × 10 -4 A 6 = 0.91846 × 10 -7 A 8 = 0.54081 × 10 -8 A 10 = -0.26742 × 10 -11
.

【0048】実施例5 f = 27.5 〜 46.8 〜 79.8 FNO= 4.66 〜 5.77 〜 7.14 2ω= 64.35°〜 40.57°〜 24.46° fB = 37.27 〜 50.48 〜 69.59 r1 = 107.2970 d1 = 2.000 nd1 =1.78470 νd1 =26.30 r2 = 45.9800 d2 = 1.410 r3 = 58.5450 d3 = 4.500 nd2 =1.69350 νd2 =50.81 r4 = -120.2870 d4 =(可変) r5 = -96.2650 d5 = 1.700 nd3 =1.72916 νd3 =54.68 r6 = 12.9460 d6 = 4.370 r7 = 21.8000(非球面) d7 = 2.500 nd4 =1.80518 νd4 =25.43 r8 = 41.0090 d8 =(可変) r9 = ∞(絞り) d9 = 1.500 r10= 15.6700(非球面) d10= 3.500 nd5 =1.58904 νd5 =53.20 r11= -49.8540 d11= 0.990 r12= 17.4540 d12= 4.040 nd6 =1.56873 νd6 =63.16 r13= -20.7610 d13= 2.000 nd7 =1.83400 νd7 =37.17 r14= 12.3470 d14= 2.380 r15= -85.9230 d15= 2.000 nd8 =1.51633 νd8 =64.15 r16= -18.7640 非球面係数 第7面 A4 = 0.19011×10-4 A6 =-0.14588×10-6 A8 = 0.54332×10-8 A10=-0.36028×10-10 第10面 A4 =-0.26928×10-4 A6 = 0.58777×10-7 A8 =-0.24635×10-8 A10= 0.46358×10-11
Example 5 f = 27.5 to 46.8 to 79.8 F NO = 4.66 to 5.77 to 7.14 2ω = 64.35 ° to 40.57 ° to 24.46 ° f B = 37.27 to 50.48 to 69.59 r 1 = 107.2970 d 1 = 2.000 nd 1 = 1.78470 ν d1 = 26.30 r 2 = 45.9800 d 2 = 1.410 r 3 = 58.5450 d 3 = 4.500 n d2 = 1.69350 ν d2 = 50.81 r 4 = -120.2870 d 4 = (variable) r 5 = -96.2650 d 5 = 1.700 n d3 = 1.72916 ν d3 = 54.68 r 6 = 12.9460 d 6 = 4.370 r 7 = 21.8000 (aspherical surface) d 7 = 2.500 n d4 = 1.80518 ν d4 = 25.43 r 8 = 41.0090 d 8 = (variable) r 9 = ∞ ( Aperture) d 9 = 1.500 r 10 = 15.6700 (aspherical surface) d 10 = 3.500 n d5 = 1.58904 ν d5 = 53.20 r 11 = -49.8540 d 11 = 0.990 r 12 = 17.4540 d 12 = 4.040 n d6 = 1.56873 ν d6 = 63.16 r 13 = -20.7610 d 13 = 2.000 n d7 = 1.83400 ν d7 = 37.17 r 14 = 12.3470 d 14 = 2.380 r 15 = -85.9230 d 15 = 2.000 n d8 = 1.51633 ν d8 = 64.15 r 16 = -18.7640 Aspherical coefficient 7th surface A 4 = 0.19011 × 10 -4 A 6 = -0.14588 × 10 -6 A 8 = 0.54332 × 10 -8 A 10 = -0.36028 × 10 -10 10th surface A 4 = -0.26928 × 10 -4 A 6 = 0.58777 x 10 -7 A 8 = -0.24635 x 10 -8 A 10 = 0.46358 x 10 -11
.

【0049】次に、上記実施例1〜5の各条件式の値を
示す。
Next, the values of the conditional expressions of Examples 1 to 5 will be shown.

【0050】次に、図6〜8、図9〜11、図12〜1
4、図15〜17、図18〜20にそれぞれ実施例1〜
5の無限遠物点に対する広角端、中間焦点距離、望遠端
における収差図を示す。なお、各図において、(a)は
球面収差、(b)は非点収差、(c)は歪曲収差、
(d)は倍率色収差を示す。
Next, FIGS. 6 to 8, 9 to 11 and 12 to 1
4, FIGS. 15 to 17 and FIGS.
5 is an aberration diagram at a wide-angle end, an intermediate focal length, and a telephoto end for object point 5 at infinity. In each figure, (a) is spherical aberration, (b) is astigmatism, (c) is distortion,
(D) shows lateral chromatic aberration.

【0051】以上の本発明の小型3群ズームレンズは以
下のように構成することができる。 〔1〕 正屈折力の第1群と負屈折力の第2群と正屈折
力の第3群からなり、広角端から望遠端への変倍に際し
て前記第1群と第3群が物体側へ移動するズームレンズ
において、下記条件式を満足することを特徴とする小型
3群ズームレンズ。 0.20<fBW/IH<0.75 ・・・(1) ただし、fBWは広角端におけるバックフォーカス、IH
は画面対角長である。
The compact three-group zoom lens of the present invention described above can be constructed as follows. [1] It consists of a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive refractive power, and the first lens group and the third lens group are on the object side when zooming from the wide-angle end to the telephoto end. A compact three-group zoom lens characterized by satisfying the following conditional expression in a zoom lens moving to. 0.20 <f BW /IH<0.75 (1) where f BW is the back focus at the wide-angle end, IH
Is the diagonal length of the screen.

【0052】〔2〕 正屈折力の第1群と負屈折力の第
2群と正屈折力の第3群からなり、広角端から望遠端へ
の変倍に際して前記第1群と第3群が物体側へ移動する
ズームレンズにおいて、前記第3群は正レンズと負レン
ズと正レンズにて構成されていることを特徴とする小型
3群ズームレンズ。
[2] A first lens unit having a positive refractive power, a second lens unit having a negative refractive power, and a third lens unit having a positive refractive power, and the first and third lens units upon zooming from the wide-angle end to the telephoto end. Is a zoom lens in which the third lens unit moves toward the object side, the third lens unit is composed of a positive lens, a negative lens, and a positive lens.

【0053】〔3〕 上記〔1〕又は〔2〕のズームレ
ンズにおいて、下記条件式を満足することを特徴とする
小型3群ズームレンズ。 0.15<Δ1 /IH・Z<0.45 ・・・(2) ただし、Δ1 は広角端から望遠端へ変倍する時の第1群
の移動量、Zは変倍比である。
[3] A compact three-group zoom lens according to the above [1] or [2], which satisfies the following conditional expression: 0.15 <Δ 1 /IH·Z<0.45 (2) where Δ 1 is the moving amount of the first lens unit when zooming from the wide-angle end to the telephoto end, and Z is the zoom ratio. .

【0054】〔4〕 上記〔3〕のズームレンズにおい
て、非球面を有し、その形状が光軸から離れるにつれて
正パワーが弱くなる形状であることを特徴とする小型3
群ズームレンズ。
[4] The zoom lens according to the above [3], which has an aspherical surface and has a shape in which the positive power becomes weaker as the distance from the optical axis becomes smaller.
Group zoom lens.

【0055】〔5〕 上記〔4〕ズームレンズにおい
て、前記非球面は前記第3群の最も物体側の面に用いら
れていることを特徴とする小型3群ズームレンズ。
[5] The zoom lens according to the above [4], wherein the aspherical surface is used as a surface of the third lens group closest to the object side.

【0056】〔6〕 上記〔1〕又は〔2〕のズームレ
ンズにおいて、下記条件式を満足することを特徴とする
小型3群ズームレンズ。 1<|r1a−r1b|/|r1a+r1b| ・・・(3) 1<(r2a−r2b)/(r2a+r2b)<3 ・・・(4) ただし、r1a及びr1bは第1群の最も像側に配置された
レンズの物体側の面及び像側の面の曲率半径、r2a及び
2bは第2群の最も物体側に配置されたレンズの物体側
の面及び像側の面の曲率半径である。
[6] A compact three-group zoom lens according to the above [1] or [2], characterized by satisfying the following conditional expression. 1 <| r 1a −r 1b | / | r 1a + r 1b | (3) 1 <(r 2a −r 2b ) / (r 2a + r 2b ) <3 (4) However, r 1a And r 1b are radii of curvature of the object-side surface and the image-side surface of the lens arranged closest to the image side in the first group, and r 2a and r 2b are objects of the lens arranged closest to the object side in the second group. Is the radius of curvature of the side surface and the image side surface.

【0057】[0057]

【発明の効果】以上説明から明らかなように、本発明の
構成により、正・負・正の3群ズームレンズタイプにお
いて、少ないレンズ枚数でありながら、小型で収差の良
好な高倍ズームレンズを用いたカメラが得られる。
As is apparent from the above description, according to the configuration of the present invention, in the positive / negative / positive three-group zoom lens type, it is possible to use the high-power zoom lens having a small number of lenses and good aberrations. You will get the camera you had.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のカメラ用の小型3群ズームレンズの実
施例1の広角端(a)と望遠端(b)のレンズ断面図で
ある。
FIG. 1 is a lens sectional view at a wide-angle end (a) and a telephoto end (b) of Example 1 of a small-sized three-group zoom lens for a camera of the present invention.

【図2】実施例2の図1と同様なレンズ断面図である。2 is a lens cross-sectional view similar to FIG. 1 of Example 2. FIG.

【図3】実施例3の図1と同様なレンズ断面図である。FIG. 3 is a lens cross-sectional view similar to FIG. 1 of Example 3.

【図4】実施例4の図1と同様なレンズ断面図である。FIG. 4 is a lens cross-sectional view similar to FIG. 1 of Example 4.

【図5】実施例5の図1と同様なレンズ断面図である。5 is a lens cross-sectional view similar to FIG. 1 of Example 5. FIG.

【図6】実施例1の広角端における球面収差(a)、非
点収差(b)、歪曲収差(c)、倍率色収差(d)を示
す収差図である。
FIG. 6 is an aberration diagram showing spherical aberration (a), astigmatism (b), distortion (c), and lateral chromatic aberration (d) at the wide-angle end in Example 1.

【図7】実施例1の中間焦点距離における図6と同様な
収差図である。
FIG. 7 is an aberration diagram similar to FIG. 6 at the intermediate focal length of Example 1.

【図8】実施例1の望遠端における図6と同様な収差図
である。
FIG. 8 is an aberration diagram similar to that of FIG. 6 at the telephoto end of Example 1;

【図9】実施例2の広角端における図6と同様な収差図
である。
FIG. 9 is an aberration diagram similar to FIG. 6 at the wide-angle end in Example 2.

【図10】実施例2の中間焦点距離における図6と同様
な収差図である。
FIG. 10 is an aberration diagram similar to FIG. 6 at the intermediate focal length of Example 2.

【図11】実施例2の望遠端における図6と同様な収差
図である。
FIG. 11 is an aberration diagram similar to FIG. 6 at the telephoto end in Example 2;

【図12】実施例3の広角端における図6と同様な収差
図である。
FIG. 12 is an aberration diagram similar to FIG. 6 at the wide-angle end in Example 3.

【図13】実施例3の中間焦点距離における図6と同様
な収差図である。
FIG. 13 is an aberration diagram similar to FIG. 6 at the intermediate focal length of Example 3.

【図14】実施例3の望遠端における図6と同様な収差
図である。
FIG. 14 is an aberration diagram similar to FIG. 6 at the telephoto end of Example 3;

【図15】実施例4の広角端における図6と同様な収差
図である。
FIG. 15 is an aberration diagram similar to FIG. 6 at the wide-angle end in Example 4.

【図16】実施例4の中間焦点距離における図6と同様
な収差図である。
16 is an aberration diagram similar to FIG. 6 at the intermediate focal length of Example 4. FIG.

【図17】実施例4の望遠端における図6と同様な収差
図である。
FIG. 17 is an aberration diagram for Example 4 at the telephoto end, similar to FIG. 6.

【図18】実施例5の広角端における図6と同様な収差
図である。
FIG. 18 is an aberration diagram similar to FIG. 6 at the wide-angle end in Example 5.

【図19】実施例5の中間焦点距離における図6と同様
な収差図である。
FIG. 19 is an aberration diagram similar to FIG. 6 at the intermediate focal length of Example 5.

【図20】実施例5の望遠端における図6と同様な収差
図である。
FIG. 20 is an aberration diagram similar to FIG. 6 at the telephoto end of Example 5;

【符号の説明】[Explanation of symbols]

G1…第1レンズ群 G2…第2レンズ群 G3…第3レンズ群 G1 ... First lens group G2: Second lens group G3 ... Third lens group

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭58−199312(JP,A) 特開 平4−317019(JP,A) 特開 平4−25813(JP,A) 特開 平1−93713(JP,A) 特開 平4−95911(JP,A) 特開 平4−324812(JP,A) 特開 昭61−69017(JP,A) 特公 昭40−24876(JP,B1) (58)調査した分野(Int.Cl.7,DB名) G02B 9/00 - 17/08 G02B 21/02 - 21/04 G02B 25/00 - 25/04 ─────────────────────────────────────────────────── --- Continuation of the front page (56) Reference JP-A-58-199312 (JP, A) JP-A-4-317019 (JP, A) JP-A-4-25813 (JP, A) JP-A-1- 93713 (JP, A) JP 4-95911 (JP, A) JP 4-324812 (JP, A) JP 61-69017 (JP, A) JP 40-24876 (JP, B1) (58) Fields investigated (Int.Cl. 7 , DB name) G02B 9/00-17/08 G02B 21/02-21/04 G02B 25/00-25/04

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 正屈折力の第1群と負屈折力の第2群と
正屈折力の第3群からなり、広角端から望遠端への変倍
に際して前記第1群と第3群が物体側へ移動するズーム
レンズを用いたカメラにおいて、第1群の最も像側には
両凸正レンズが配置され、第2群の最も物体側には両凹
負レンズが配置され、下記条件式を満足することを特徴
とする小型3群ズームレンズを用いたカメラ。 0.20<fBW/IH<0.75 ・・・(1) 1<|r 1a −r 1b |/|r 1a +r 1b | ・・・(3) 1<(r 2a −r 2b )/(r 2a +r 2b )<3 ・・・(4) ただし、fBWは広角端におけるバックフォーカス、IH
は画面対角長、r 1a 及びr 1b は第1群の最も像側に配置
されたレンズの物体側の面及び像側の面の曲率半径、r
2a 及びr 2b は第2群の最も物体側に配置されたレンズの
物体側の面及び像側の面の曲率半径である。
1. A first lens unit having a positive refractive power, a second lens unit having a negative refractive power, and a third lens unit having a positive refractive power, wherein the first lens unit and the third lens unit are arranged at the time of zooming from a wide-angle end to a telephoto end. in a camera using the zoom lens moves toward the object side, the most image side of the first group
A biconvex positive lens is arranged, and the biconcave lens is closest to the object side in the second group.
A camera using a small three-group zoom lens , characterized in that a negative lens is arranged and the following conditional expression is satisfied. 0.20 <f BW /IH<0.75 ··· (1 ) 1 <| r 1a -r 1b | / | r 1a + r 1b | ··· (3) 1 <(r 2a -r 2b) / (R 2a + r 2b ) <3 (4) However, f BW is the back focus at the wide-angle end, IH
Is the diagonal length of the screen , and r 1a and r 1b are located closest to the image in the first group
Radius of curvature of the object-side surface and the image-side surface of the lens, r
2a and r 2b are of the lens arranged closest to the object in the second lens group.
It is the radius of curvature of the surface on the object side and the surface on the image side .
【請求項2】 正屈折力の第1群と負屈折力の第2群と
正屈折力の第3群からなり、広角端から望遠端への変倍
に際して前記第1群と第3群が物体側へ移動するズーム
レンズを用いたカメラにおいて、第1群の最も像側には
両凸正レンズが配置され、第2群の最も物体側には両凹
負レンズが配置され、下記条件式を満足し、前記第3群
は正レンズと負レンズと正レンズにて構成されているこ
とを特徴とする小型3群ズームレンズを用いたカメラ1<|r 1a −r 1b |/|r 1a +r 1b | ・・・(3) 1<(r 2a −r 2b )/(r 2a +r 2b )<3 ・・・(4) ただし、r 1a 及びr 1b は第1群の最も像側に配置された
レンズの物体側の面及び像側の面の曲率半径、r 2a 及び
2b は第2群の最も物体側に配置されたレンズの物体側
の面及び像側の面の曲率半径である。
2. A first lens unit having a positive refractive power, a second lens unit having a negative refractive power, and a third lens unit having a positive refractive power, wherein the first lens unit and the third lens unit are arranged upon zooming from a wide-angle end to a telephoto end. in a camera using the zoom lens moves toward the object side, the most image side of the first group
A biconvex positive lens is arranged, and the biconcave lens is closest to the object side in the second group.
A camera using a small three-group zoom lens , characterized in that a negative lens is arranged and the following conditional expression is satisfied , and the third group is composed of a positive lens, a negative lens and a positive lens. 1 <| r 1a −r 1b | / | r 1a + r 1b | (3) 1 <(r 2a −r 2b ) / (r 2a + r 2b ) <3 (4) However, r 1a And r 1b are located closest to the image in the first group
The radii of curvature of the object-side and image-side surfaces of the lens, r 2a and
r 2b is the object side of the lens arranged closest to the object side in the second group
And the radius of curvature of the surface on the image side.
【請求項3】 請求項1又は2記載のズームレンズを用
いたカメラにおいて、下記条件式を満足することを特徴
とする小型3群ズームレンズを用いたカメラ。 0.15<Δ1 /IH・Z<0.45 ・・・(2) ただし、Δ1 は広角端から望遠端へ変倍する時の第1群
の移動量、Zは変倍比、IHは画面対角長である。
3. A zoom lens according to claim 1 or 2 is used.
A camera using a small three-group zoom lens , characterized in that the following conditional expression is satisfied. 0.15 <Δ 1 /IH·Z<0.45 (2) where Δ 1 is the moving amount of the first lens unit when zooming from the wide-angle end to the telephoto end, Z is the zoom ratio, IH Is the diagonal length of the screen.
【請求項4】 請求項3記載のズームレンズを用いたカ
メラにおいて、前記第3群が非球面を有し、その形状が
光軸から離れるにつれて正パワーが弱くなる形状である
ことを特徴とする小型3群ズームレンズを用いたカメ
4. A camera using the zoom lens according to claim 3.
A camera using a small three-group zoom lens , characterized in that the third lens group has an aspherical surface, and its shape becomes weaker in positive power as the distance from the optical axis increases.
La .
【請求項5】 請求項4記載のズームレンズを用いたカ
メラにおいて、前記非球面は前記第3群の最も物体側の
面に用いられていることを特徴とする小型3群ズームレ
ンズを用いたカメラ
5. A camera using the zoom lens according to claim 4.
In the camera , the aspherical surface is used as the most object-side surface of the third lens group, and a camera using a small three-group zoom lens.
【請求項6】 前記第2群は下記条件式を満足すること
を特徴とする請求項1からの何れか1項記載の小型3
群ズームレンズを用いたカメラ。 1.65<n2N ・・・(5) ただし、n2Nは第2群中の負レンズの屈折率の平均値で
ある。
6. A small 3 according to any one of claims 1-5, wherein the second group satisfying the following condition
A camera that uses a group zoom lens. 1.65 <n 2N (5) where n 2N is the average value of the refractive indices of the negative lenses in the second group.
【請求項7】 レンズシャッターカメラであることを特
徴とする請求項1からの何れか1項記載の小型3群ズ
ームレンズを用いたカメラ
7. A lens shutter camera a camera using a small three-unit zoom lens of any one of claims 1 6, characterized in that.
JP23107794A 1994-09-27 1994-09-27 Camera using a small 3-group zoom lens Expired - Fee Related JP3414519B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23107794A JP3414519B2 (en) 1994-09-27 1994-09-27 Camera using a small 3-group zoom lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23107794A JP3414519B2 (en) 1994-09-27 1994-09-27 Camera using a small 3-group zoom lens

Publications (2)

Publication Number Publication Date
JPH0894934A JPH0894934A (en) 1996-04-12
JP3414519B2 true JP3414519B2 (en) 2003-06-09

Family

ID=16917932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23107794A Expired - Fee Related JP3414519B2 (en) 1994-09-27 1994-09-27 Camera using a small 3-group zoom lens

Country Status (1)

Country Link
JP (1) JP3414519B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108152937A (en) * 2017-11-13 2018-06-12 长春理工大学 In infrared/long wave Zooming-projection camera lens

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH116958A (en) * 1997-06-16 1999-01-12 Minolta Co Ltd Zoom lens
JP3569473B2 (en) * 1999-12-27 2004-09-22 ペンタックス株式会社 Zoom lens system
JP4548766B2 (en) * 2003-11-14 2010-09-22 株式会社リコー Zoom lens, lens unit, camera, and portable information terminal device
JP4911689B2 (en) * 2006-09-12 2012-04-04 オリンパスイメージング株式会社 Zoom lens
JP5158903B2 (en) * 2011-11-16 2013-03-06 オリンパスイメージング株式会社 Zoom lens

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58199312A (en) * 1982-05-18 1983-11-19 Konishiroku Photo Ind Co Ltd Small-sized zoom lens
JPH0629905B2 (en) * 1984-07-09 1994-04-20 キヤノン株式会社 Small zoom lens
JP2546293B2 (en) * 1987-10-05 1996-10-23 キヤノン株式会社 Small zoom lens
JPH0495911A (en) * 1990-08-07 1992-03-27 Minolta Camera Co Ltd Wide-angle, high-power lens
JPH0425813A (en) * 1990-05-21 1992-01-29 Minolta Camera Co Ltd Variable magnification lens
JPH04317019A (en) * 1991-04-16 1992-11-09 Minolta Camera Co Ltd Zoom lens
JPH04324812A (en) * 1991-04-25 1992-11-13 Olympus Optical Co Ltd Variable power lens

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108152937A (en) * 2017-11-13 2018-06-12 长春理工大学 In infrared/long wave Zooming-projection camera lens
CN108152937B (en) * 2017-11-13 2020-04-14 长春理工大学 Infrared medium/long wave zooming projection lens

Also Published As

Publication number Publication date
JPH0894934A (en) 1996-04-12

Similar Documents

Publication Publication Date Title
JP3253405B2 (en) Two-group zoom lens
JP3686178B2 (en) Zoom lens
JPH10221601A (en) Zoom lens
JPH05113537A (en) Zoom lens using plastic lens
JPH05173069A (en) High variable power three-group zoom lens
JP3204703B2 (en) Zoom lens
JP2002365548A (en) Zoom lens
JP3162114B2 (en) Two-group zoom lens
JPH07253542A (en) Zoom lens
JPH11258507A (en) Zoom lens
JPH11119100A (en) Zoom lens
JP2903482B2 (en) Zoom lens
JP3366092B2 (en) High zoom ratio 2-group zoom lens
JP3365837B2 (en) Focusing method of 3-group zoom lens
JP3060117B2 (en) Compact 3-group zoom lens
JPH0830783B2 (en) High magnification zoom lens for compact cameras
JP3429578B2 (en) Small rear focus zoom lens
JP3331011B2 (en) Small two-group zoom lens
JP3394624B2 (en) Zoom lens
JP3245452B2 (en) Small three-group zoom lens
JP3467086B2 (en) Camera with zoom lens
JP2000275522A (en) Zoom lens
JP3142353B2 (en) Two-group zoom lens
JP3414519B2 (en) Camera using a small 3-group zoom lens
US5589986A (en) Zoom lens

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030312

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090404

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090404

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100404

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees