JP3678483B2 - Method for producing thermoplastic resin clay mineral composite material - Google Patents

Method for producing thermoplastic resin clay mineral composite material Download PDF

Info

Publication number
JP3678483B2
JP3678483B2 JP03929796A JP3929796A JP3678483B2 JP 3678483 B2 JP3678483 B2 JP 3678483B2 JP 03929796 A JP03929796 A JP 03929796A JP 3929796 A JP3929796 A JP 3929796A JP 3678483 B2 JP3678483 B2 JP 3678483B2
Authority
JP
Japan
Prior art keywords
clay mineral
thermoplastic resin
weight
composite material
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03929796A
Other languages
Japanese (ja)
Other versions
JPH09225991A (en
Inventor
博 岡野
洋 小山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP03929796A priority Critical patent/JP3678483B2/en
Publication of JPH09225991A publication Critical patent/JPH09225991A/en
Application granted granted Critical
Publication of JP3678483B2 publication Critical patent/JP3678483B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、熱可塑性樹脂粘土鉱物複合材料の製造方法に関し、さらに詳しくは機械的性質及び耐熱性、染色性に優れ、生産性及び品質が改良された熱可塑性樹脂粘土鉱物複合材料の製造方法に関する。
【0002】
【従来の技術】
熱可塑性樹脂をはじめとする有機高分子材料の諸特性、特に機械的特性を改良するためにタルク、カオリナイト、マイカ、セピオライトなどを溶融混練することが行われている。しかしながら、熱可塑性樹脂に、これらを単に溶融混合するだけでは粘土鉱物が熱可塑性樹脂中に超微分散しないため満足できる特性を持つ熱可塑性樹脂複合体は得られていない。
ポリアミド樹脂中に粘土鉱物を超微分散させるために粘土鉱物、特に粘土鉱物を選び、これを予め、アミノ酸やナイロン塩などの有機化合物との複合体にした後、かかる複合体の存在下でモノマーを重合せしめ、該複合体を超微分散させたポリアミド樹脂複合体を製造することが行われている(特公昭58−35211号公報参照)。
【0003】
しかし、この方法(重合時に粘土鉱物を分散させる方法)によれば、モノマーを重合せしめることにより粘土鉱物が超微分散したポリアミド樹脂複合体を得るため、重合反応の過程でアミノ末端が反応で消費されてしまい、染色性、塗装性が不十分になることや、粘土鉱物が重合停止剤として働き、高粘度タイプのポリアミド樹脂/粘土鉱物複合材料や粘土鉱物含有量の高いポリアミド樹脂/粘土鉱物複合材料を、効率的に製造することができなかった。
さらに、この製造方法では、重合工程中に無機物が混入してしまい、重合材料の切り替え時などに大量のロスが生じることも問題であり、ポリアミドの種類によってはモノマー中で前記有機物で処理した粘土鉱物を膨潤させることが困難であった。
【0004】
上記のとおり従来の粘土鉱物が均一に分散したポリアミド樹脂複合材料は、ポリアミド樹脂に染色性という特徴を付与するアミノ末端基が封鎖されたものしかなく、かつ、従来の製造方法では、製造効率が低く、さらに、粘土鉱物の含有量が高くなると、ますます製造効率が低くなり、また、粘土鉱物が末端封鎖剤として働き、重合度を効率的に高くすることが困難であった。
これらの問題を解決するためアミノ末端基の反応率を低減させ、且つ粘土鉱物をポリアミド樹脂中に超微分散させるため前記有機物で処理した粘土鉱物をラクタム及び/又は水のような分散媒を加え、混合及び/又は混練する方法が提案されている(特公平7−47644公報参照)。
【0005】
しかしながら、この方法(分散媒と共に溶融混練する方法)を用いた場合、粘土鉱物を分散媒で膨潤状態としたものと熱可塑性樹脂とを混合・溶融混練する際、分散媒の添加量が少ないと、溶融混練を行う際、原料が押出機の供給部で詰まり、原料の供給量が制限されるため、生産性が悪くなる。又、分散媒の添加量が多いと、製造した複合材料中に多量の分散媒が残存し、射出成形などを行った際、成形体表面にシルバー(成形の際の揮発分によるガスの流動模様)が生じるため、溶融混練後に分散媒を抽出および除去する工程を必要とする。
以上の問題からこの製造方法(分散媒と共に溶融混練する方法)をもってしても生産性、品質の改善には未だ不十分であり、これまで説明した従来技術は、粘土鉱物の層間に挿入した有機物との反応が考慮されているため、ポリアミド樹脂以外の熱可塑性樹脂では溶融混練により、粘土鉱物が超微分散した複合材料を製造することはできなかった。
【0006】
【発明が解決しようとする課題】
本発明の課題は、熱可塑性樹脂と粘土鉱物との溶融混練工程において、生産性、品質を向上させ、かつ、多品種の熱可塑性樹脂中に粘土鉱物を超微分散させた熱可塑性樹脂粘土鉱物複合材料を製造する方法を提供することにある。
【0007】
【課題を解決するための手段】
本発明は、(A)熱可塑性樹脂100重量部、(B)層間にオニウムイオンを有する有機物を挿入した粘土鉱物0.05〜50重量部及び(C)分散媒を(B)成分100重量部に対して分散媒0.1〜5000重量部を、供給部のスクリューのフライト幅/ピッチの比が0.1〜0.49の範囲である押出機で溶融混練することを特徴とする熱可塑性樹脂粘土鉱物複合材料の製造方法である。
【0008】
本発明の熱可塑性樹脂粘土鉱物複合材料の製造方法は、熱可塑性樹脂と層間にオニウムイオンを有する有機物を挿入した粘土鉱物と分散媒とを膨潤状態にした複合体との溶融混練を供給部に特定のスクリューデザインを用いた押出機により溶融混練することを特徴とし、粘土鉱物が熱可塑性樹脂中に超微分散した複合材料を提供する製造方法に関わる。
ここで超微分散とは熱可塑性樹脂中に粘土鉱物を分散した際、粘土鉱物の重なりが平均して5層以下の多層物のそれぞれが平均で50オングストローム以上の層間距離を保ち、均一に分散している状態であって、その70%以上が5層を越えるような塊を形成することなく分散している状態をいう。
【0009】
本発明に用いられる熱可塑性樹脂としては、例えばポリエチレン、ポリプロピレン、ポリスチレン、アクリロニトリル−スチレン樹脂、アクリロニトリル−ブタジエン−スチレン樹脂、ポリアミド、熱可塑性ポリエステル、ポリメチルメタクリレート、ポリカーボネート、ポリフェニレンエーテル、ポリオキシメチレン、ポリフェニレンスルフィド、ポリサルフォン、ポリエーテルスルフォン、ポリエーテルイミド、ポリエーテルエーテルケトン等をあげることができる。これらの樹脂は単独で用いても良く、ポリフェニレンエーテルとポリスチレンのように2種以上組み合わせて用いても良い。
又、上記熱可塑性樹脂を2種以上組み合わせて用いる場合に、例えばポリカーボネートとポリエチレン、ポリカーボネートとアクリロニトリル−ブタジエン−スチレン樹脂の組み合わせのような非相溶性の樹脂を組み合わせる場合には、相溶化剤を配合することができる。
このような相溶化剤としては、従来公知のものを広く使用することができる。
【0010】
これらの熱可塑性樹脂として好ましくはポリアミド樹脂が挙げられる。ポリアミド樹脂の例としては、ポリアミド66樹脂、ポリアミド6樹脂、ポリアミド46樹脂、ポリアミド610樹脂、ポリアミド612樹脂、ポリアミド11樹脂、ポリアミド12樹脂、ポリアミド6T樹脂、ポリアミド6I樹脂、またはこれらの共重合体、あるいはこれらの混合物を挙げることができる。
又、本発明の製造方法において用いられる粘土鉱物は、陽イオン交換容量が50〜200ミリ当量/100g以上のものが好ましい。
【0011】
本発明の製造方法に用いられる粘土鉱物は熱可塑性樹脂100重量部に対して0.05〜50重量部が好ましく、特に0.5〜30重量部が好ましい。0.05重量部以下では補強効果が得られないし、50重量部を越えると成形時の流動性の悪化、表面外観の悪化、靱性の低下等好ましくない現象が生じる。このような粘土鉱物の原料としては、珪酸マグネシウムまたは珪酸アルミニウムの層から構成させる層状珪酸塩鉱物を例示することができる。具体的には、モンモリロナイト、サポナイト、バイデライト、ノントロナイト、ヘクトライト、スティブンサイト、膨潤性雲母等のスメクタイト系粘土鉱物やバーミキュライト、ハロイサイトなどを例示することができ、これらは天然のものであっても、合成されたものであってもよい。これらの中でもモンモリロナイトが好ましい。
【0012】
粘土鉱物は珪酸マグネシウム又は珪酸アルミニウム等から構成される層状フィロ珪酸塩で、同形イオンにより負に帯電しているものであり、層厚さが6〜20オングストロームで、一片の長さが0.02〜1ミクロンの範囲のものが好ましい。粘土鉱物は、この負電荷の密度や分布などによりその特徴が異なるが、本発明では、負電荷1価当たりの総表面の占有面積が25〜200オングストロームのものが好ましい。
なお、粘土鉱物は、ミキサー、ボールミル、振動ミル、ピンミル、ジェットミル、揺漬機等により粉砕処理し、予め、所望の形状、大きさに調製しておくことが好ましい。
【0013】
また、本発明のオニウムイオンを有する有機物とは、粘土鉱物のアルカリ、アルカリ土類金属イオン等を除き、せん断による層の剥離を容易にすること、及び、熱可塑性樹脂との相溶性を向上させるためのもので次のような有機物を挙げることができる。
分子中にアルキル鎖及び/又はアルキル鎖の一部にカルボン酸が共有結合している構造を持つものであり、アンモニウムイオン、ピリジニウムイオン、スルホニウムイオン、ホスホニウムイオンなどのオニウムイオン基を有する有機物である。なお、アルキル鎖の炭素数は、6以上が好ましい。
【0014】
さらに具体的には、オクタデシルアンモニウムイオン、モノメチルアンモニウムイオン、ジメチルオクタデシルアンモニウムイオン、ドデシルアンモニウムイオン、4−アミノ−n−酪酸イオン、6−アミノ−n−カプロン酸イオン、8−アミノ−n−カプロン酸イオン、10−アミノデカン酸イオン、12−アミノドデカン酸イオン、14−アミノテトラデカン酸イオン、16−アミノヘキサデカン酸イオン、18−アミノオクタデカン酸イオン等のイオンを有するものを例示できる。
これらの有機物は、溶融混練する前に粘土層間の正イオンであるアルカリ、アルカリ土類金属イオンと置換しておく。
これらの有機物は、イオン置換以前の状態としては塩素などのカウンターイオンでオニウム塩として存在するものである。また、イオン置換後は、十分に洗浄、濾過を行う。
【0015】
本発明の分散媒としては、水、メタノール、エタノール、プロパノール、イソプロパノール、エチレングリコール、1,4−ブタンジオール、グリセリン、ジメチルスルホキシド、N,N−ジメチルホルムアミド、酢酸、蟻酸、ピリジン、アニリン、フェノール、ニトロベンゼン、アセトニトリル、アセトン、メチルエチルケトン、クロロホルム、二硫化炭素、ポリピレンカーボネート、2−メトキシエタノール、エーテル、四塩化炭素、n−ヘキサン、ε−カプロラクタム、ω−ラウリンラクタム、6−アミノ−n−カプロン酸、12−アミノドデカン酸などを例示することができる。また、分散媒は1種類又は2種類以上を用いることができる。
【0016】
特に、分散媒として水、メタノール、エタノール及び/又はε−カプロラクタムを用いることが好ましい。
分散媒は、粘土鉱物の層間を拡げる役割、混練において粘土鉱物の分散を容易にする役割を担うものである。
このような分散媒は粘土鉱物、膨潤化剤および熱可塑性樹脂の種類により適宣決定することができるが、粘土鉱物を均一に分散させ、かつ、膨潤化剤及び熱可塑性樹脂との相溶性が良いものが好ましい。
【0017】
分散媒の使用量は、粘土鉱物100重量部に対して0.1〜200重量部となるような量が好ましく、特に0.1〜67重量部となる量が好ましい。分散媒の使用量が200重量部を越えると混練工程において分散媒の除去が困難になるため、複合材料中に多量の分散媒が残存してしまい成形体のシルバーや気泡の原因となること、混練機出口の複合材料が気泡を含んでしまい安定した品質の材料が得られなくこと、多量の材料の供給が必要になることから混練が均一に行いにくくなり、好ましくない。
【0018】
粘土鉱物を分散媒で膨潤状態にする方法・条件は、特に制限されず、例えば容器中に入れ攪拌された分散媒に少量ずつ粘土鉱物を投入する方法がある。混合条件も任意に選択できるが、分散媒の劣化が生じない程度の高温で、長時間攪拌した方が、膨潤状態にするには、より好ましい。
なお、分散状態にした複合体は、そのまま混練に供することができるが、必要に応じて分散媒の一部を除去して混練工程に供することもできる。ただし、分散媒を除去する場合でも、複合体中の分散媒含有量が前記の範囲内であるように調節することが好ましい。
【0019】
混練工程は、膨潤状態にした複合体と熱可塑性樹脂を混練する工程である。
混練方法・条件は熱可塑性樹脂の種類によって異なる。複合体は、必要に応じて加熱したものを用いることができる。
この混練工程においては、必要に応じて、他の高分子材料、染料、顔料、繊維状補強物、離型剤、増粘剤などの成形性改良剤、可塑剤、耐衝撃性改良剤、難燃剤、核剤等を配合、混練することができる。
【0020】
本発明の押出機とは、熱可塑性樹脂と粘土鉱物及び/又は分散媒との混合物を溶融混練するためのスクリュー型混練機であり、特に二軸型の押出機が好ましい。
又、本発明の供給部とは、図1に示すように押出機において、熱可塑性樹脂と粘土鉱物及び/又は分散媒との混合物を押出機内の溶融促進部に送り込む役割を持つスクリュー部分である。また、図2にスクリュー各部の名称を提示する。
【0021】
本発明の溶融混練工程における二軸押出機の供給部のスクリューは、フライト幅/ピッチの比が0.25〜0.45の範囲となるものが好ましい。
フライト幅/ピッチの比が0.25以下では、粘土鉱物/分散媒の重量比が小さくなると、熱可塑性樹脂と粘土鉱物及び/又は分散媒の供給が困難になるため、好ましくない。また、フライト幅/ピッチの比が0.45を越える場合、多軸押出機ではスクリューの設計が困難となり、熱可塑性樹脂と粘土鉱物及び/又は分散媒の供給能力が低下するため、好ましくない。
【0022】
【発明の実施の形態】
【0023】
【実施例1】
陽イオン交換容量が119ミリ当量/100gのモンモリロナイト100gを水2リットルに混合分散し、これに28.1gの12−アミノドデカン酸と12ミリリットルの濃塩酸を加え、80℃で60分間攪拌する。さらにブフナーロートを用いて、水で充分洗浄しながら、吸引濾過を行った後、80℃で48時間真空乾燥を行い、イオン置換された粘土鉱物の乾燥固体塊を得る。この塊状の複合物を粉砕機で1〜10ミクロン程度に細粒化し、12ーアミノドデカン酸イオンが粘土鉱物の層間にインターカレートした粉体を得る(以下この物質を処理粘土と略する)。
【0024】
この後、旭化成工業(株)社製ポリアミド66樹脂レオナ1300を100重量部に対して、処理粘土3重量部、ε−カプロラクタム3重量部、水3重量部の混合物をウエルナー&フライドラー社製二軸押出機ZSK25を用いて、供給部のスクリューのフライト幅/ピッチ比が0.31、且つ、供給部のスクリューがスクリュー全体の13.4%を有するスクリューデザインで、吐出量8kg/hour、滞留時間3分、樹脂温度295℃、スクリュー回転数4.17rpsの条件で溶融混練ペレット化し、ポリアミド66樹脂粘土鉱物複合材料のペレットを得る。
【0025】
このようにして得られたポリアミド66樹脂/粘土鉱物複合材料中の粘土鉱物の分散状態を日本電子(株)製透過型電子顕微鏡JEM1200を用い、リンタングステン酸で染色した超薄切片を作成し、これを観察する。なお、透過型電子顕微鏡による評価を下記の基準に基づいて行う。
○:分散性が良い 5層以下の層が70%以上認められる。
△:分散性が悪い 5層以下の層が70%を下回る。
×:分散性が非常に悪い ほとんどが数ミクロンオーダーの塊で存在する。
また、このペレットを窒素フロー雰囲気下、80℃で24時間乾燥した後、日本製鋼所(株)製J100SS−II成形機を用いてASTM3号短冊型成形体を射出成形する。この成形体をASTM D790に準じて曲げ弾性率、曲げ強度の評価を行う。結果を表1に示す。
【0026】
【実施例2】
供給部のスクリューのフライト幅/ピッチの比を0.24にした以外は、実施例1と同様に複合材料を製造し、評価する。結果を表1に示す。
【0027】
【実施例3】
供給部のスクリューがスクリュー全体の26.9%にした以外は、実施例1と同様に複合材料を製造し、評価する。結果を表1に示す。
【0028】
【実施例4】
吐出量を16kg/hourにした以外は、実施例1と同様に複合材料を製造し、評価する。結果を表1に示す。
【0029】
【実施例5】
処理粘土5重量部、ε−カプロラクタム5重量部、水5重量部の混合物にした以外は、実施例1と同様に複合材料を製造し、評価する。結果を表1に示す。
【0030】
【実施例6】
ε−カプロラクタム1重量部、水1重量部の混合物にした以外は、実施例1と同様に複合材料を製造し、評価する。結果を表1に示す。
【0031】
【表1】

Figure 0003678483
【0032】
【実施例7】
実施例1のポリアミド66樹脂の代わりにポリアミド6樹脂(宇部興産(株)製UBEナイロン61013B)を樹脂温度230℃に設定した以外は実施例1と同様に複合材料を製造し、評価する。結果を表1に示す。
【0035】
【比較例1】
実施例1の供給部のフライト幅/ピッチの比を0.06にした以外は、実施例1と同様に複合材料を製造し、評価する。結果を表2に示す。
【0036】
【比較例2】
供給部のスクリューがスクリュー全体の6.72%にした以外は、実施例1と同様に複合材料を製造し、評価する。結果を表2に示す。
【0037】
【比較例3】
供給部のスクリューがスクリュー全体の86.6%にした以外は、実施例1と同様に複合材料を製造し、評価する。結果を表2に示す。
【0038】
【比較例4】
処理粘土35重量部、ε−カプロラクタム35重量部、水35重量部の混合物にした以外は、実施例1と同様に複合材料を製造し、評価する。結果を表2に示す。
【0039】
【比較例5】
ε−カプロラクタム30重量部、水30重量部の混合物にした以外は、実施例1と同様に複合材料を製造し、評価する。結果を表2に示す。
【0040】
【表2】
Figure 0003678483
【0041】
【発明の効果】
熱可塑性樹脂と粘土鉱物及び/又は分散媒の溶融混練を行うことにより、比較例の条件と比較して、供給部での原料の詰まりもなく、溶融混練後の抽出工程も不要である、良好な生産性を示し、品質についても分散性、曲げ強度、曲げ弾性率の優れた複合材料を、多品種の熱可塑性樹脂について、粘土鉱物を超微分散させた複合材料を製造することができた。
【図面の簡単な説明】
【図1】スクリューの概略図。
【図2】スクリューの部分拡大図。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a thermoplastic resin clay mineral composite material, and more particularly relates to a method for producing a thermoplastic resin clay mineral composite material having excellent mechanical properties, heat resistance, and dyeability, and improved productivity and quality. .
[0002]
[Prior art]
In order to improve various properties of organic polymer materials such as thermoplastic resins, particularly mechanical properties, talc, kaolinite, mica, sepiolite and the like are melt-kneaded. However, a thermoplastic resin composite having satisfactory characteristics has not been obtained because clay minerals are not superfinely dispersed in the thermoplastic resin by simply melt-mixing them with the thermoplastic resin.
In order to disperse the clay mineral in the polyamide resin, a clay mineral, particularly a clay mineral, is selected, and this is pre-complexed with an organic compound such as an amino acid or a nylon salt, and then the monomer in the presence of the complex. Is polymerized to produce a polyamide resin composite in which the composite is ultrafinely dispersed (see Japanese Patent Publication No. 58-35211).
[0003]
However, according to this method (method of dispersing clay mineral during polymerization), a monomer resin is polymerized to obtain a polyamide resin composite in which the clay mineral is ultra-dispersed, so that the amino terminal is consumed by the reaction during the polymerization reaction. Resulting in insufficient dyeability and paintability, and clay minerals acting as a polymerization terminator, and high viscosity type polyamide resin / clay mineral composite materials and polyamide resin / clay mineral composites with high clay mineral content The material could not be produced efficiently.
Furthermore, in this production method, an inorganic substance is mixed in during the polymerization process, and a large amount of loss occurs at the time of switching the polymerization material. Depending on the type of polyamide, the clay treated with the organic substance in the monomer is also a problem. It was difficult to swell the mineral.
[0004]
As described above, the conventional polyamide resin composite material in which the clay mineral is uniformly dispersed has only the amino terminal group that gives the dyeing characteristics to the polyamide resin blocked, and the conventional production method has a production efficiency. When the content of the clay mineral is low and the content of the clay mineral is high, the production efficiency is further decreased, and the clay mineral acts as a terminal blocker, and it is difficult to efficiently increase the degree of polymerization.
In order to solve these problems, the reaction rate of amino end groups is reduced, and in order to disperse the clay mineral in the polyamide resin, a dispersion medium such as lactam and / or water is added to the clay mineral treated with the organic substance. A method of mixing and / or kneading has been proposed (see Japanese Patent Publication No. 7-47644).
[0005]
However, when this method (method of melt-kneading with the dispersion medium) is used, when the clay mineral swollen with the dispersion medium and the thermoplastic resin are mixed and melt-kneaded, the addition amount of the dispersion medium is small. When melt-kneading, the raw material is clogged at the supply part of the extruder, and the supply amount of the raw material is limited, so that the productivity is deteriorated. In addition, if the amount of the dispersion medium added is large, a large amount of the dispersion medium remains in the manufactured composite material. When injection molding is performed, the surface of the molded body is silver (gas flow pattern due to volatile components during molding). Therefore, a step of extracting and removing the dispersion medium after melt kneading is required.
Due to the above problems, even this production method (method of melting and kneading with a dispersion medium) is still insufficient for improving the productivity and quality, and the conventional techniques described so far are based on organic substances inserted between clay mineral layers. Therefore, it was not possible to produce a composite material in which clay minerals were ultra-dispersed by melt-kneading with thermoplastic resins other than polyamide resin.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to improve productivity and quality in a melt-kneading process of a thermoplastic resin and a clay mineral, and a thermoplastic resin clay mineral in which the clay mineral is ultrafinely dispersed in various types of thermoplastic resins. It is to provide a method for manufacturing a composite material.
[0007]
[Means for Solving the Problems]
The present invention includes (A) 100 parts by weight of a thermoplastic resin, (B) 0.05 to 50 parts by weight of a clay mineral in which an organic substance having onium ions is inserted between layers, and (C) 100 parts by weight of a component (B). Thermoplastic, characterized in that 0.1 to 5000 parts by weight of the dispersion medium is melt kneaded with an extruder having a flight width / pitch ratio of 0.1 to 0.49 in the supply part. It is a manufacturing method of a resin clay mineral composite material.
[0008]
In the method for producing a thermoplastic resin clay mineral composite material of the present invention, a melt-kneading of a thermoplastic resin, a clay mineral in which an organic substance having an onium ion is inserted between layers, and a composite in which a dispersion medium is swollen is used as a supply unit. The present invention is characterized by melting and kneading with an extruder using a specific screw design, and relates to a production method for providing a composite material in which clay mineral is ultrafinely dispersed in a thermoplastic resin.
Here, ultra-fine dispersion means that when clay minerals are dispersed in a thermoplastic resin, each of the multilayered materials with an average of five or less layers of clay minerals keeps an average interlayer distance of 50 angstroms or more and is uniformly dispersed. In this state, 70% or more of them are dispersed without forming a lump that exceeds 5 layers.
[0009]
Examples of the thermoplastic resin used in the present invention include polyethylene, polypropylene, polystyrene, acrylonitrile-styrene resin, acrylonitrile-butadiene-styrene resin, polyamide, thermoplastic polyester, polymethyl methacrylate, polycarbonate, polyphenylene ether, polyoxymethylene, polyphenylene. Examples thereof include sulfide, polysulfone, polyethersulfone, polyetherimide, polyetheretherketone and the like. These resins may be used alone or in combination of two or more kinds such as polyphenylene ether and polystyrene.
In addition, when two or more of the above thermoplastic resins are used in combination, for example, when a non-compatible resin such as a combination of polycarbonate and polyethylene or polycarbonate and acrylonitrile-butadiene-styrene resin is combined, a compatibilizer is added. can do.
A conventionally well-known thing can be widely used as such a compatibilizing agent.
[0010]
These thermoplastic resins are preferably polyamide resins. Examples of the polyamide resin include polyamide 66 resin, polyamide 6 resin, polyamide 46 resin, polyamide 610 resin, polyamide 612 resin, polyamide 11 resin, polyamide 12 resin, polyamide 6T resin, polyamide 6I resin, or a copolymer thereof. Or a mixture thereof may be mentioned.
The clay mineral used in the production method of the present invention preferably has a cation exchange capacity of 50 to 200 meq / 100 g or more.
[0011]
The clay mineral used in the production method of the present invention is preferably 0.05 to 50 parts by weight, particularly preferably 0.5 to 30 parts by weight with respect to 100 parts by weight of the thermoplastic resin. If it is 0.05 parts by weight or less, the reinforcing effect cannot be obtained, and if it exceeds 50 parts by weight, undesirable phenomena such as deterioration of fluidity during molding, deterioration of surface appearance, and deterioration of toughness occur. As a raw material for such a clay mineral, a layered silicate mineral composed of a layer of magnesium silicate or aluminum silicate can be exemplified. Specific examples include smectite clay minerals such as montmorillonite, saponite, beidellite, nontronite, hectorite, stevensite, and swellable mica, vermiculite, and halloysite, which are natural. Alternatively, it may be synthesized. Among these, montmorillonite is preferable.
[0012]
The clay mineral is a layered phyllosilicate composed of magnesium silicate or aluminum silicate, and is negatively charged by isomorphic ions. The layer thickness is 6 to 20 angstroms, and the length of a piece is 0.02 Those in the range of ~ 1 micron are preferred. The characteristics of the clay mineral differ depending on the density and distribution of the negative charge. In the present invention, the clay mineral preferably has a total surface occupation area of 25 to 200 angstroms per negative charge.
The clay mineral is preferably pulverized by a mixer, a ball mill, a vibration mill, a pin mill, a jet mill, a squeezing machine, etc., and prepared in advance in a desired shape and size.
[0013]
In addition, the organic substance having an onium ion of the present invention, excluding clay mineral alkali and alkaline earth metal ions, facilitates peeling of the layer by shearing, and improves compatibility with the thermoplastic resin. For example, the following organic substances can be mentioned.
It has a structure in which a carboxylic acid is covalently bonded to an alkyl chain and / or a part of the alkyl chain in the molecule, and is an organic substance having an onium ion group such as an ammonium ion, a pyridinium ion, a sulfonium ion, or a phosphonium ion. . The alkyl chain preferably has 6 or more carbon atoms.
[0014]
More specifically, octadecyl ammonium ion, monomethyl ammonium ion, dimethyl octadecyl ammonium ion, dodecyl ammonium ion, 4-amino-n-butyric acid ion, 6-amino-n-caproic acid ion, 8-amino-n-caproic acid Examples include ions having ions such as ions, 10-aminodecanoic acid ions, 12-aminododecanoic acid ions, 14-aminotetradecanoic acid ions, 16-aminohexadecanoic acid ions, and 18-aminooctadecanoic acid ions.
These organic substances are substituted with alkali and alkaline earth metal ions, which are positive ions between clay layers, before being melt-kneaded.
These organic substances exist as onium salts with counter ions such as chlorine as a state before ion substitution. In addition, after ion substitution, washing and filtration are performed sufficiently.
[0015]
Examples of the dispersion medium of the present invention include water, methanol, ethanol, propanol, isopropanol, ethylene glycol, 1,4-butanediol, glycerin, dimethyl sulfoxide, N, N-dimethylformamide, acetic acid, formic acid, pyridine, aniline, phenol, Nitrobenzene, acetonitrile, acetone, methyl ethyl ketone, chloroform, carbon disulfide, polypropylene carbonate, 2-methoxyethanol, ether, carbon tetrachloride, n-hexane, ε-caprolactam, ω-laurin lactam, 6-amino-n-caproic acid , 12-aminododecanoic acid and the like. Moreover, the dispersion medium can use 1 type or 2 types or more.
[0016]
In particular, it is preferable to use water, methanol, ethanol and / or ε-caprolactam as the dispersion medium.
The dispersion medium plays a role of expanding the layers of the clay mineral and a role of facilitating the dispersion of the clay mineral in the kneading.
Such a dispersion medium can be appropriately determined according to the type of clay mineral, swelling agent and thermoplastic resin, but the clay mineral is uniformly dispersed and has compatibility with the swelling agent and thermoplastic resin. Good ones are preferred.
[0017]
The amount of the dispersion medium used is preferably 0.1 to 200 parts by weight, particularly preferably 0.1 to 67 parts by weight, based on 100 parts by weight of the clay mineral. If the amount of the dispersion medium exceeds 200 parts by weight, it becomes difficult to remove the dispersion medium in the kneading step, so that a large amount of the dispersion medium remains in the composite material, which may cause silver and bubbles in the molded body. Since the composite material at the outlet of the kneader contains bubbles and a stable quality material cannot be obtained, and a large amount of material needs to be supplied, it is difficult to perform kneading uniformly, which is not preferable.
[0018]
The method and conditions for bringing the clay mineral into a swollen state with the dispersion medium are not particularly limited, and for example, there is a method in which the clay mineral is added little by little into the stirred dispersion medium. The mixing conditions can also be arbitrarily selected, but stirring for a long time at such a high temperature that the deterioration of the dispersion medium does not occur is more preferable for achieving a swollen state.
The composite in a dispersed state can be used for kneading as it is, but if necessary, a part of the dispersion medium can be removed and used for the kneading step. However, even when the dispersion medium is removed, it is preferable to adjust so that the content of the dispersion medium in the composite is within the above range.
[0019]
The kneading process is a process of kneading the swollen composite and the thermoplastic resin.
The kneading method and conditions vary depending on the type of thermoplastic resin. The complex can be heated as necessary.
In this kneading process, other polymer materials, dyes, pigments, fibrous reinforcements, mold release agents such as mold release agents, thickeners, plasticizers, impact resistance improvers, A flame retardant, a nucleating agent, etc. can be blended and kneaded.
[0020]
The extruder of the present invention, a screw-type kneader for melting and kneading a mixture of thermoplastic resin and clay mineral and / or dispersing medium, twin-screw extruder type especially preferred.
Moreover, the supply part of this invention is a screw part which has a role which sends the mixture of a thermoplastic resin, a clay mineral, and / or a dispersion medium to the fusion | melting acceleration | stimulation part in an extruder, as shown in FIG. . Moreover, the name of each part of a screw is shown in FIG.
[0021]
In the screw of the twin screw extruder in the melt kneading step of the present invention, the flight width / pitch ratio is 0 . What becomes the range of 25-0.45 is preferable.
When the flight width / pitch ratio is 0.25 or less, if the clay mineral / dispersion medium weight ratio is small, it becomes difficult to supply the thermoplastic resin and the clay mineral and / or the dispersion medium. In addition, when the flight width / pitch ratio exceeds 0.45 , it is difficult to design a screw with a multi-screw extruder, and the supply capacity of the thermoplastic resin and the clay mineral and / or the dispersion medium is lowered, which is not preferable.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
[0023]
[Example 1]
100 g of montmorillonite having a cation exchange capacity of 119 meq / 100 g is mixed and dispersed in 2 liters of water, to which 28.1 g of 12-aminododecanoic acid and 12 ml of concentrated hydrochloric acid are added and stirred at 80 ° C. for 60 minutes. Further, using a Buchner funnel, suction filtration is performed while sufficiently washing with water, followed by vacuum drying at 80 ° C. for 48 hours to obtain a dry solid mass of ion-substituted clay mineral. This massive composite is refined to about 1 to 10 microns by a pulverizer to obtain a powder in which 12-aminododecanoic acid ions are intercalated between clay mineral layers (hereinafter, this material is abbreviated as treated clay).
[0024]
Thereafter, a mixture of 3 parts by weight of treated clay, 3 parts by weight of ε-caprolactam, and 3 parts by weight of water with respect to 100 parts by weight of polyamide 66 resin Leona 1300 manufactured by Asahi Kasei Kogyo Co., Ltd. Using screw extruder ZSK25, the screw width of the supply section is 0.31, the screw of the supply section is 13.4% of the total screw, discharge rate 8kg / hour, residence The mixture is melt-kneaded and pelletized under conditions of a time of 3 minutes, a resin temperature of 295 ° C., and a screw rotation speed of 4.17 rps to obtain polyamide 66 resin clay mineral composite pellets.
[0025]
A dispersion state of the clay mineral in the polyamide 66 resin / clay mineral composite material obtained in this way was prepared using an electron microscope JEM1200 manufactured by JEOL Ltd., and an ultrathin section was stained with phosphotungstic acid, Observe this. The evaluation with a transmission electron microscope is performed based on the following criteria.
○: Dispersibility is good 70% or more of 5 layers or less are recognized.
Δ: Dispersibility is poor. Layers of 5 layers or less are less than 70%.
×: Dispersibility is very poor Almost exists in the order of several microns.
Moreover, after drying this pellet for 24 hours at 80 degreeC by nitrogen flow atmosphere, the ASTM3 strip-shaped molded object is injection-molded using the Nippon Steel Works Co., Ltd. J100SS-II molding machine. The molded body is evaluated for flexural modulus and flexural strength according to ASTM D790. The results are shown in Table 1.
[0026]
[Example 2]
A composite material is manufactured and evaluated in the same manner as in Example 1 except that the flight width / pitch ratio of the screw of the supply unit is set to 0.24. The results are shown in Table 1.
[0027]
[Example 3]
A composite material is produced and evaluated in the same manner as in Example 1 except that the screw in the supply section is 26.9% of the entire screw. The results are shown in Table 1.
[0028]
[Example 4]
A composite material is manufactured and evaluated in the same manner as in Example 1 except that the discharge rate is 16 kg / hour. The results are shown in Table 1.
[0029]
[Example 5]
A composite material is produced and evaluated in the same manner as in Example 1 except that the mixture is 5 parts by weight of treated clay, 5 parts by weight of ε-caprolactam, and 5 parts by weight of water. The results are shown in Table 1.
[0030]
[Example 6]
A composite material is produced and evaluated in the same manner as in Example 1 except that a mixture of 1 part by weight of ε-caprolactam and 1 part by weight of water is used. The results are shown in Table 1.
[0031]
[Table 1]
Figure 0003678483
[0032]
[Example 7]
A composite material is produced and evaluated in the same manner as in Example 1 except that polyamide 6 resin (UBE nylon 61003B manufactured by Ube Industries, Ltd.) is set to a resin temperature of 230 ° C. instead of the polyamide 66 resin of Example 1. The results are shown in Table 1.
[0035]
[Comparative Example 1]
A composite material is manufactured and evaluated in the same manner as in Example 1 except that the flight width / pitch ratio of the supply unit in Example 1 is set to 0.06. The results are shown in Table 2.
[0036]
[Comparative Example 2]
A composite material is produced and evaluated in the same manner as in Example 1 except that the screw in the supply section is 6.72% of the entire screw. The results are shown in Table 2.
[0037]
[Comparative Example 3]
A composite material is produced and evaluated in the same manner as in Example 1 except that the screw in the supply section is 86.6% of the entire screw. The results are shown in Table 2.
[0038]
[Comparative Example 4]
A composite material is produced and evaluated in the same manner as in Example 1 except that the mixture is 35 parts by weight of treated clay, 35 parts by weight of ε-caprolactam, and 35 parts by weight of water. The results are shown in Table 2.
[0039]
[Comparative Example 5]
A composite material is produced and evaluated in the same manner as in Example 1 except that a mixture of 30 parts by weight of ε-caprolactam and 30 parts by weight of water is used. The results are shown in Table 2.
[0040]
[Table 2]
Figure 0003678483
[0041]
【The invention's effect】
By performing melt-kneading of thermoplastic resin and clay mineral and / or dispersion medium, compared to the conditions of the comparative example, there is no clogging of raw materials in the supply section, and no extraction process after melt-kneading is required. Was able to produce composite materials with excellent dispersibility, bending strength and flexural modulus, and composite materials with ultrafine dispersion of clay minerals for various types of thermoplastic resins. .
[Brief description of the drawings]
FIG. 1 is a schematic view of a screw.
FIG. 2 is a partially enlarged view of a screw.

Claims (3)

(A)熱可塑性樹脂100重量部、(B)層間にオニウムイオンを有する有機物を挿入した粘土鉱物0.05〜50重量部及び(C)分散媒を(B)成分100重量部に対して分散媒0.1〜200重量部を、押出機の供給部を構成するスクリューの長さがスクリュー全長の13.4〜26.9%かつ供給部のスクリューのフライト幅/ピッチの比が0.24〜0.45の範囲である2軸型の押出機で溶融混練することを特徴とする熱可塑性樹脂粘土鉱物複合材料の製造方法。(A) 100 parts by weight of a thermoplastic resin, (B) 0.05 to 50 parts by weight of a clay mineral in which an organic substance having onium ions is inserted between layers, and (C) a dispersion medium is dispersed with respect to 100 parts by weight of the component (B). 0.1 to 200 parts by weight of the medium, the length of the screw constituting the supply part of the extruder is 13.4 to 26.9% of the total length of the screw, and the flight width / pitch ratio of the screw in the supply part is 0.24. A method for producing a thermoplastic resin clay mineral composite material, comprising melt-kneading with a twin-screw extruder having a range of ˜0.45 . (C)分散媒を(B)成分100重量部に対して分散媒0.1〜67重量部を用いることを特徴とする請求項1に記載の熱可塑性樹脂粘土鉱物複合材料の製造方法。The method for producing a thermoplastic resin clay mineral composite material according to claim 1, wherein 0.1 to 67 parts by weight of the dispersion medium is used for 100 parts by weight of component (B) as the dispersion medium (C). 熱可塑性樹脂がポリアミド樹脂であることを特徴とする請求項1または2に記載の熱可塑性樹脂粘土鉱物複合材料の製造方法。The method for producing a thermoplastic resin clay mineral composite material according to claim 1 or 2 , wherein the thermoplastic resin is a polyamide resin.
JP03929796A 1996-02-27 1996-02-27 Method for producing thermoplastic resin clay mineral composite material Expired - Fee Related JP3678483B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03929796A JP3678483B2 (en) 1996-02-27 1996-02-27 Method for producing thermoplastic resin clay mineral composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03929796A JP3678483B2 (en) 1996-02-27 1996-02-27 Method for producing thermoplastic resin clay mineral composite material

Publications (2)

Publication Number Publication Date
JPH09225991A JPH09225991A (en) 1997-09-02
JP3678483B2 true JP3678483B2 (en) 2005-08-03

Family

ID=12549210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03929796A Expired - Fee Related JP3678483B2 (en) 1996-02-27 1996-02-27 Method for producing thermoplastic resin clay mineral composite material

Country Status (1)

Country Link
JP (1) JP3678483B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004083838A (en) * 2002-07-05 2004-03-18 Teijin Ltd Method for dyeing all aromatic polyamide and all aromatic polyamide dyed by the same method
WO2006006716A1 (en) * 2004-07-14 2006-01-19 Ube Industries, Ltd. Organized phyllosilicate solids and thermoplastic resin composition
JP2006176563A (en) * 2004-12-21 2006-07-06 Japan Polypropylene Corp Thermoplastic resin composition for interior trim component and interior trim component molded from the same
US7605205B2 (en) * 2005-11-07 2009-10-20 Exxonmobil Chemical Patents, Inc. Nanocomposite compositions and processes for making the same
JP5487411B2 (en) * 2008-01-23 2014-05-07 曙ブレーキ工業株式会社 Composite friction modifier

Also Published As

Publication number Publication date
JPH09225991A (en) 1997-09-02

Similar Documents

Publication Publication Date Title
EP2930212B1 (en) Electrically conductive polyamide moulding compositions
US5102948A (en) Polyamide composite material and method for preparing the same
EP1394197B1 (en) Highly viscous moulding materials with nanoscale fillers
JP2003517488A (en) Polymer nanocomposite composition
ITTO980800A1 (en) HYDROPHOBIC CHARACTER POLYMERS LOADED WITH STARCH COMPLEXES.
JPH09217012A (en) Production of thermoplastic resin/lamellar clay mineral composite material
WO2008057623A2 (en) Composites
WO2004096528A1 (en) Pultrusion method and an article produced by said method
JP3678483B2 (en) Method for producing thermoplastic resin clay mineral composite material
JP7287944B2 (en) Method for producing nanostructured materials using intercalation of carbon nanoparticles
DE69838621T2 (en) PROCESS FOR PREPARING NANOCOMPOSITE COMPOSITIONS
JP2021138971A (en) High-toughness polyamide-cellulose resin composition
CN113788914B (en) SEBS/AT composite toughening agent, preparation method thereof and high-performance PET/PA6 foaming material
EP2831159B1 (en) Thermoplastic moulded substances with increased hydrolysis resistance
JP6796107B2 (en) Method for Producing Cellulose-Containing Resin Composition
CN1038421C (en) Supertough master-pellets for polypropylene plastics and making method thereof
CN105924704A (en) High-performance graphene tire
KR102125262B1 (en) Thermoplastic resin composition having excellent heat resistance and electromagnetic wave shielding property, method for preparing the same and injection-molded article prepared therefrom
JP4312278B2 (en) Polyamide resin composition
JP5926024B2 (en) Polyamide resin composition and method for producing polyamide resin composition
DE60022985T2 (en) REINFORCED POLYAMIDE WITH HIGH MODULE
EP1229075A1 (en) Thermoplastic polymer composite based on starch containing integrated nanoscopic particles and process for its production
JPH10298426A (en) Production of polyamide resin composite material
CN111518337A (en) Graphene/basalt fiber reinforced composite material and preparation method thereof
JP3824402B2 (en) Method for producing glass fiber reinforced polypropylene molded body

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050131

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050131

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050510

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080520

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090520

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090520

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090520

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090520

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100520

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110520

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110520

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120520

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120520

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130520

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees