JP3677387B2 - Solid oxide fuel cell - Google Patents

Solid oxide fuel cell Download PDF

Info

Publication number
JP3677387B2
JP3677387B2 JP08630998A JP8630998A JP3677387B2 JP 3677387 B2 JP3677387 B2 JP 3677387B2 JP 08630998 A JP08630998 A JP 08630998A JP 8630998 A JP8630998 A JP 8630998A JP 3677387 B2 JP3677387 B2 JP 3677387B2
Authority
JP
Japan
Prior art keywords
solid electrolyte
air electrode
molded body
cazro
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08630998A
Other languages
Japanese (ja)
Other versions
JPH11283635A (en
Inventor
雅英 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP08630998A priority Critical patent/JP3677387B2/en
Publication of JPH11283635A publication Critical patent/JPH11283635A/en
Application granted granted Critical
Publication of JP3677387B2 publication Critical patent/JP3677387B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は固体電解質型燃料電池セルに関するものである。
【0002】
【従来技術】
従来より、固体電解質型燃料電池セルは、その作動温度が1000〜1050℃前後と高温であるため発電効率が高く、第3世代の燃料電池として期待されている。一般に、固体電解質型燃料電池セルには、円筒型と平板型の2種類のものが知られている。
【0003】
平板型の固体電解質型燃料電池セルは、発電の単位体積当り出力密度が高いという特長を有するが、実用化に際してはガスシール不完全性やセル内の温度分布の不均一性などの問題がある。それに対して、円筒型の固体電解質型燃料電池セルでは、出力密度は低いものの、セルの機械的強度が高く、またセル内の温度の均一性が保てるという特長がある。両形状の固体電解質燃料電池セルとも、それぞれの特長を生かして積極的に研究開発が進められている。
【0004】
円筒型の固体電解質型燃料電池セルは、図4に示すように、例えば、Y2 3 含有の安定化ZrO2 からなる固体電解質層3の内面に、(La,Ca)MnO3 系材料からなる多孔性の空気極層2を形成し、さらに固体電解質3の表面に多孔性のNi−ジルコニアなどからなる燃料極層4を形成して構成されている。そして、各セル間を接続するためのLaCrO3 系材料などからなる集電体5(インターコネクタ)が固体電解質層3を貫通し、空気極層2と電気的に接続しており、燃料極層4とは非接触の状態でセルの表面に露出している。
【0005】
燃料電池のモジュールは、上記構成からなる複数の単セルが集電体5およびNiフェルト(あるいはNi板)を介して接続され、発電は、空気極層2の内部に空気(酸素)6を、外部に燃料(水素)7を流し、1000〜1050℃の温度で行われる。
【0006】
このような円筒型の固体電解質型燃料電池セルは、例えば、固体電解質粉末を押出成形などにより円筒状に成形し、焼成することにより円筒状焼結体を作製し、その焼結体の内周面や外周面にスラリーコート法などにより空気極層あるいは燃料極層となるシート状成形体を形成して焼成する方法により製造されたり、またはセラミックスの多孔質支持管の表面に化学蒸着法(EVD法)、プラズマ溶射法などにより空気極層、固体電解質層、燃料極層を順次形成する方法により製造されたり、さらに、空気極材料を焼成してなる円筒状空気極の表面に、上記と同様の方法で固体電解質層、燃料極層を順次形成する方法により製造される。
【0007】
一方、従来、電気絶縁性円筒状基体の表面に、少なくとも空気極層および固体電解質層を具備してなる円筒型燃料電池セルを製造する方法であって、電気絶縁性の粉末により円筒状基体用成形体を作製する工程と、空気極形成用粉末および固体電解質形成用粉末によりそれぞれシート状成形体を作製する工程と、前記円筒状基体用成形体の表面に前記空気極用および固体電解質用シート状成形体を巻き付けて積層して円筒型積層物を作製する工程と、該円筒型積層物を同時に焼成する工程とを具備する円筒型燃料電池セルの製造方法が開示されている。
【0008】
この方法では、非常に簡単なプロセスで、且つ少ない工程数で燃料電池セルが歩留まりよく作製できる。また、空気極成形体表面に固体電解質材料、集電体材料のグリーンシートを順次巻き付け積層した後に同時に焼成する技術についても開示した(上記2方法を共焼結と呼ぶこともある)。
【0009】
この方法によれば、空気極材料のスラリーを円筒状に成形して空気極成形体を作製し、この空気極成形体の表面に、固体電解質材料のスラリーを用いて形成されたシート状成形体を巻き付けて、空気極成形体の表面に固体電解質成形体を形成し、前記固体電解質成形体の端面の間を研磨し、空気極成形体が露出した連続同一面を形成し、この平面に集電体材料からなるシート状成形体を固体電解質成形体に一部積層するように積層した後、焼成することにより、固体電解質型燃料電池セルが得られる。
【0010】
【発明が解決しようとする課題】
しかしながら、上記の少なくとも空気極と固体電解質とを共焼結して作製した固体電解質型燃料電池セルにおいては、空気極と固体電解質との付着力が強すぎて発電の出力密度が低かったり、あるいは逆に付着力が弱すぎて固体電解質が発電中および熱サイクルにおいて剥離するという大きな問題があった。
【0011】
即ち、上記のように空気極と固体電解質とを共焼結すると、これらの界面にCaZrO3 層が生成し、このCaZrO3 の生成量が多いと(層厚みが厚いと)、空気極と固体電解質との付着力は強くなるものの、CaZrO3 中で酸素イオンおよび電子の拡散が遅いため、発電の出力密度が低くなるという問題があった。
【0012】
CaZrO3 のような界面生成物は発電の観点からは好ましくないが、CaZrO3 層が存在しないと空気極と固体電解質との付着力が弱くなり、発電中や熱サイクルにおいて、固体電解質が容易に空気極から剥離するという問題があった。
【0013】
本発明は、空気極と固体電解質との付着力を向上できるとともに、発電特性を向上できる固体電解質型燃料電池セルを提供することを目的とする。
【0014】
【課題を解決するための手段】
本発明者等は上記課題に対して検討を重ねた結果、空気極と固体電解質との界面に生成するCaZrO3 の量を制御することにより、固体電解質の空気極からの剥離を防止し、かつ高い出力密度を安定して維持することができることを見出し本発明に至った。
【0015】
即ち、本発明の固体電解質型燃料電池セルは、ZrO系組成物からなる固体電解質の一面に、(La,Ca)MnO系組成物からなる空気極を、他面に燃料極を具備してなるとともに、前記固体電解質と前記空気極が共焼結される固体電解質型燃料電池セルにおいて、前記固体電解質と前記空気極の界面にCaZrO層が形成されており、前記固体電解質に接合された前記CaZrO層に、該CaZrO層側からX線を照射するX線回折測定において、CaZrOの(121)面のピーク強度が、立方晶ZrOの(111)面のピーク強度の0.5〜5%のものである。
【0016】
【作用】
空気極と固体電解質との共焼結により作製したセルにおいては、これらの界面に生成するCaZrO3 量により、空気極と固体電解質との付着力が強すぎて発電の出力密度が低かったり、あるいは付着力が弱すぎて固体電解質が発電中、あるいは熱サイクルを受けると剥離し出力密度が低下するという問題があった。
【0017】
本発明では、空気極と固体電解質との界面に生成するCaZrO3 量を制御することにより、発電特性および固体電解質の付着力を大きく向上できる。
【0018】
即ち、固体電解質に接合されたCaZrO3 層に、該CaZrO3 層側からX線を照射するX線回折測定において、CaZrO3 の(121)面のピーク強度が、立方晶ZrO2 の(111)面のピーク強度の0.5〜5%である場合には、空気極と固体電解質との界面に生成するCaZrO3 量が適量となり、発電特性を低下することなく固体電解質の付着力を大きく向上できるのである。
【0019】
【発明の実施の形態】
本発明の円筒型の固体電解質型燃料電池セルは、図1に示すように、円筒状の固体電解質31の内面に空気極32、外面に燃料極33を形成して燃料電池セル本体34が構成されており、この燃料電池セル本体34に、空気極32と電気的に接続する集電体35を設けてなるものである。即ち、固体電解質31の一部を切り欠いて固体電解質31の内面に形成されている空気極32の一部が露出しており、この露出面37および切り欠いた固体電解質31の表面が集電体35により被覆されている。尚、本発明の円筒型燃料電池セルは、多孔質支持管を形成し、この多孔質支持管の外面に空気極32、固体電解質31、燃料極33を順次積層して構成しても良い。
【0020】
空気極32と電気的に接続する集電体35は、連続同一面39を覆うように形成されており、燃料極33とは電気的に接続されていない。連続同一面39は、固体電解質31の内面に形成されている空気極32の一部を露出させるとともに、固体電解質31の端部40と空気極32の露出面37とをほぼ同一面(固体電解質31の端部40と空気極32の露出面37とが段差の少ない平面状態)として構成されている。この同一面39は固体電解質成形体の一部と空気極成形体の一部とが同一面近くとなるまでセル本体の外周面を研摩することにより形成されている。
固体電解質31はZrO2 系組成物、空気極33は(La,Ca)MnO3 系組成物、燃料極33は、NiおよびZrO2 またはCeO2 系組成物から構成されている。集電体35はLaCrO3 系組成物から構成されている。
【0021】
即ち、固体電解質31としては、ZrO2 に対してY2 3 ,Yb2 3 などの安定化材を3〜15モル%の割合で固溶させた部分安定化ZrO2 あるいは安定化ZrO2 が用いられる。また、空気極33としては、例えば、Laの15〜20原子%をCa元素により置換したLaMnO3 系組成物、特願平5−87406号にて提案されるような組成物などが挙げられる。さらに、集電体35としては、Ca、Mg、Srを固溶したLaCrO3 が用いられる。なお、燃料極としては、CeO2 またはZrO2 (Y2 3 を含有)とNiO粉末との混合物が好適に使用できる。
【0022】
そして、本発明の固体電解質型燃料電池セルでは、図2に示すように、空気極32と固体電解質31との界面にはCaZrO3 層47が形成されており、固体電解質31に接合されたCaZrO3 層47に、該CaZrO3 層側からX線を照射するX線回折測定において、CaZrO3 の(121)面のピーク強度が、立方晶ZrO2 の(111)面のピーク強度の0.5〜5%とされている。
【0023】
CaZrO3 の(121)面のピーク強度が、立方晶ZrO2 の(111)面のピーク強度の0.5%より小さいと、CaZrO3 の生成量が少ないため固体電解質の空気極への付着力が小さく、発電中や熱サイクルにおいて固体電解質が空気極から剥離する。また、5%より大きいと固体電解質の空気極への付着力は大きいが、発電において出力密度が小さい。このX線回折強度のピーク強度比は、固体電解質の空気極への付着力を向上し、発電における出力密度を向上するという点から0.5〜2%が望ましい。
【0024】
本発明の円筒型の固体電解質型燃料電池セルは、例えば、空気極形成粉末からなる円筒状成形体を作製する工程と、固体電解質形成粉末によりシート状成形体を作製する工程と、集電体形成粉末によりシート状成形体を作製する工程と、前記円筒状成形体の表面に前記固体電解質シート状成形体を巻き付けて積層する工程と、前記固体電解質シート状成形体の表面に、一部で円筒状成形体に当接するように前記集電体シート状成形体を巻き付けて積層する工程と、該円筒状積層物を酸化性雰囲気中で同時に1300〜1700℃の温度で焼成する工程とを具備する製造方法により作製される。
【0025】
また、空気極形成粉末によりシート状成形体を作製する工程と、固体電解質形成粉末によりシート状成形体を作製する工程と、集電体形成粉末によりシート状成形体を作製する工程と、前記空気極シート状成形体、前記固体電解質シート状成形体および前記集電体シート状成形体を積層した後に円筒状に形成する工程と、該円筒状積層物を酸化性雰囲気中で同時に1300〜1700℃の温度で焼成する工程とを具備する製造方法により作製される。
【0026】
そして、空気極と固体電解質との界面に生成するCaZrO3 量を制御する方法として、空気極形成粉末からなる円筒状成形体、または空気極形成粉末からなるシート状成形体と、固体電解質シート状成形体の界面に、空気極形成粉末と固体電解質形成粉末からなる混合粉末を介在させ、共焼結中に反応させてCaZrO3 が生成されるが、混合粉末中の空気極形成粉末と固体電解質形成粉末の比率を変化させることにより、CaZrO3 の生成量を制御することができる。
【0027】
以下、本発明の円筒型の固体電解質型燃料電池セルの製造方法について詳述する。本発明の1つの方法によれば、まず、空気極を形成する粉末を用いて円筒状成形体を作製する。この円筒状成形体は、例えば、空気極形成粉末を押出成形したり、静水圧成形(ラバープレス)したりして形成される。さらに他の方法としては、ドクターブレード法などにより空気極形成粉末をシート状に成形した後、そのシート状成形体を所定の円柱状支持体の表面に巻き付けて端部を合わせ接合することによっても円筒状成形体を作製することができる。円筒状成形体の肉厚は1〜3mmが適当である。
【0028】
次に固体電解質および集電体を形成する粉末により固体電解質および集電体のシート状成形体をそれぞれ作製する。このシート状成形体は、ドクターブレード法や押出成形法により周知の方法で作製される。固体電解質のシート状成形体の厚みは、焼成後固体電解質の厚みが10〜500μmになるように制御する必要がある。
【0029】
次に、上記のようにして得られた空気極の円筒状成形体の表面に固体電解質のシート状成形体を巻き付けた後、固体電解質のシート状成形体の端部部分を研摩した後、集電体のシート状成形体を積層圧着する。また場合によっては、固体電解質のシート状成形体の表面に燃料極のシート状成形体を巻き付けてもよい。各シート状成形体の間にはアクリル樹脂や有機溶媒などを接着材して介在させると接着が良くなる。上記のようにして得られた積層成形体を酸化性雰囲気中で円筒状形成体と積層されたシート状成形体を同時に焼成する。
【0030】
この際、固体電解質31とCaZrO3 層47のX線回折測定において、CaZrO3 の(121)面のピーク強度を、立方晶ZrO2 の(111)面のピーク強度の0.5〜5%に制御する必要がある。
【0031】
次に、CaZrO3 の(121)面のピーク強度と、立方晶ZrO2 の(111)面のピーク強度の比率を所定の比率に保持するための具体例を以下に示す。
【0032】
先ず、空気極形成粉末からなる円筒状成形体、または空気極形成粉末からなるシート状成形体と、固体電解質シート状成形体の界面に、空気極形成粉末と固体電解質形成粉末からなる混合粉末を介在させることにより、その組成を変化させることにより、ピーク強度の比率を所定の比率に制御できる。
【0033】
即ち、混合粉末としては、空気極形成粉末1〜30重量%、固体電解質形成粉末70〜99重量%、特に空気極形成粉末5〜10重量%、固体電解質形成粉末90〜95重量%が望ましい。空気極形成粉末が1重量%よりも少ないと、CaZrO3 の(121)面のピーク強度比が0.5%よりも小さくなり、30重量%よりも多い場合にはCaZrO3 の(121)面のピーク強度比が5%よりも大きくなるからである。用いる空気極形成粉末の結晶粒径としては、1〜15μm、固体電解質形成粉末としては0.5〜3μmの範囲が望ましい。
【0034】
上記の積層成形体を大気中で1300〜1700℃で3〜15時間程度焼成することにより、少なくとも固体電解質が相対密度96%以上の緻密質になるように焼成する。なお、空気極は相対密度が60〜75%程度であれば充分である。
【0035】
焼成温度が1300℃より低いと、上記のCaZrO3 の(121)強度の立方晶ZrO2 の(111)面に対するピーク強度の比率が低下するし、焼成温度が1700℃を越えるとX線回折の強度比率が大きくなる。特に好ましい温度範囲は1500〜1600℃である。
【0036】
空気極と固体電解質との界面のCaZrO3 の生成量を容易に求めることは不可能である。本発明では、燃料極を形成する前の段階で、希塩酸に投入して空気極層のみ溶解させ、固体電解質とCaZrO3 層のみ残した状態で、薄膜X線回折を行い、X線回折のCaZrO3 の(121)面のピーク強度と、立方晶ZrO2 の(111)面のピーク強度を比較し、CaZrO3 の(121)面のピーク強度と、立方晶系ZrO2 の(111)のピーク強度比を求めた。尚、CaZrO3 の(121)面のピークは、X線源としてCu−kα線を用いた場合、X線回析図において、2θ=31度付近に生じ、また、立方晶系ZrO2 系組成物の(111)のピークは2θ=29度付近に生じる。
【0037】
燃料極は、得られた空気極と固体電解質、集電体からなる円筒型の一体焼結体の固体電解質の表面に、燃料極を形成する粉末からなるスラリーをスクリーン印刷などにより塗布するか、または燃料極粉末からなるシート状成形体を表面に積層圧着した後に酸化性雰囲気中で1300〜1500℃で焼き付け処理して燃料極を形成してもよい。
【0038】
次に、本発明の製造方法の他の方法について説明する。この方法によれば、まず、空気極を形成する粉末、固体電解質を形成する粉末、集電体を形成する粉末により周知のドクターブレード法などによりそれぞれシート状成形体を作製する。その後、空気極および固体電解質のシート状成形体を所定の位置関係になるように積層圧着する。この時の積層圧着は、空気極形成粉末と固体電解質形成粉末からなる混合粉末を介在させる。
【0039】
そして、このようにして得られた積層体を円筒状に形成する。具体的には任意の円筒状支持体の表面に、空気極のシート状成形体、固体電解質のシート状成形体との積層体を、空気極のシート状成形体の端部同士が当接するか、あるいは端部がわずかに重ね合うように巻き付けて円筒状積層体を作製する。この後、固体電解質の端部部分を研摩し、この部分に集電体のシート状成形体を積層する。その後、上記円筒状積層体から円筒状支持体を抜き取り、円筒状積層体を前述の方法と同様な条件、即ち、大気などの酸化性雰囲気中で上述のように1300〜1700℃で3〜15時間程度焼成することにより空気極と固体電解質と集電体とを同時に焼成することができる。
【0040】
また、燃料極の形成にあたっては、上記と同様な方法に従い、空気極と固体電解質との形成工程後、あるいは工程中に形成することができる。なお、この方法において、集電体の形成においては、集電体を空気極のシート端部の当接部や合わせ部に形成することが空気極の気密性の点で望ましい。
【0041】
【実施例】
実施例1
空気極を形成する粉末として平均粒子径が5μmのLa0.85Ca0.15MnO3 粉末と,固体電解質を形成する粉末として平均粒径0.5μmのY2 3 を10モル%の割合で含有する共沈法ZrO2 粉末を準備した。さらに、燃料極を形成する粉末としてNiO粉末とZrO2 (Y2 3 含有)粉末を重量比で80:20の割合で混合したものを、集電体を形成する粉末として平均粒径1μmのLa0.8 Ca0.21CrO3 からなる化合物粉末を準備した。
【0042】
まず、上記のLa0.85Ca0.15MnO3 粉末を水を溶媒としてスラリーを作製し、このスラリーを用いて押出成形装置により内径13mm、外径16mmの円筒状の空気極成形体を得た。一方、上記固体電解質としてはY2 3 安定化ZrO2 粉末を、集電体としてはLa0.8 Ca0.21CrO3 粉末をそれぞれトルエンを溶媒としてスラリーを作製し、これをドクターブレード法により所定厚みのシート状成形体を作製した。
【0043】
CaZrO3 形成粉末として、上記の空気極形成粉末と固体電解質形成粉末を表1に示す組成に混合した後、アクリル樹脂に混合した。その後、空気極成形体の表面に上記アクリル樹脂からなる接着材を介して、上記固体電解質のシート状成形体を巻き付け、その端部の間を研摩して連続同一面を形成し、この連続同一面に集電体のシート状成形体を積層して圧着し、大気中において1300〜1700℃で5時間焼成した。
【0044】
燃料極層は上述の粉末にトルエンを溶媒としてスラリーを作製し、このスラリー中にディップし、乾燥して燃料極を形成し、図1に示したような円筒型燃料電池セルを作製した。
【0045】
その後、長さ1cmの試料を切り出し、燃料極と集電体を機械的に研摩した後、希塩酸で空気極を溶解させ、CaZrO3 層が形成された固体電解質を取り出し、CaZrO3 層からX線を照射してX線回折測定を行ない、CaZrO3 の(121)面のピーク強度の、立方晶ZrO2 の(111)面に対するピーク強度比を求めた。
【0046】
また、一方の円筒状セルを用いて、セルの内側に酸素を、外側に水素を流して1000℃で、1000時間発電を行った。その際、1000時間の間に1000℃〜室温間の熱サイクルを10回繰り返し、出力密度の初期値と1000時間後の出力密度の低下率を調べた。結果を表1に示す。
【0047】
【表1】

Figure 0003677387
【0048】
これより、CaZrO3 の(121)面のピーク強度が立方晶ZrO2 の(111)面のピーク強度の比率が0.5%より小さい試料No.1では、熱サイクル試験後に出力密度が低下した。この試料No.1を観察したところ固体電解質の一部が空気極から剥離していた。一方、X線回折の比率が5%を越える試料No.9では、熱サイクル試験後の出力密度の低下率は低いものの、出力密度そのものが低いことが判る。
【0049】
【発明の効果】
以上詳述したように、本発明によれば、固体電解質とCaZrO3 層のX線回折測定において、CaZrO3 の(121)面のピーク強度が、立方晶ZrO2 の(111)面のピーク強度の0.5〜5%である場合には、空気極と固体電解質との界面に生成するCaZrO3 量が適量となり、発電特性および固体電解質の付着力を大きく向上できる。
【図面の簡単な説明】
【図1】本発明の円筒型燃料電池セルを示す断面図である。
【図2】図1の一部を拡大して示す断面図である。
【図3】試料No.5のX線回折図である。
【図4】従来の円筒型燃料電池セルを示す斜視図である。
【符号の説明】
31・・・固体電解質
32・・・空気極
33・・・燃料極
34・・・燃料電池セル本体
35・・・集電体
47・・・CaZrO3 層[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a solid oxide fuel cell.
[0002]
[Prior art]
Conventionally, a solid oxide fuel cell has a high power generation efficiency because its operating temperature is as high as about 1000 to 1050 ° C., and is expected as a third generation fuel cell. In general, two types of solid oxide fuel cells are known, cylindrical and flat.
[0003]
Flat-type solid oxide fuel cells have the feature of high power density per unit volume of power generation, but there are problems such as imperfect gas seals and non-uniform temperature distribution in the cell when put to practical use. . On the other hand, the cylindrical solid oxide fuel cell has the characteristics that the mechanical strength of the cell is high and the temperature inside the cell can be kept uniform although the output density is low. Both types of solid electrolyte fuel cells are actively researched and developed by taking advantage of their respective features.
[0004]
As shown in FIG. 4, the cylindrical solid electrolyte fuel cell includes, for example, a (La, Ca) MnO 3 based material on the inner surface of the solid electrolyte layer 3 made of stabilized ZrO 2 containing Y 2 O 3. The porous air electrode layer 2 is formed, and the fuel electrode layer 4 made of porous Ni-zirconia or the like is further formed on the surface of the solid electrolyte 3. A current collector 5 (interconnector) made of LaCrO 3 -based material or the like for connecting the cells penetrates the solid electrolyte layer 3 and is electrically connected to the air electrode layer 2. 4 is exposed on the surface of the cell in a non-contact state.
[0005]
In the fuel cell module, a plurality of single cells having the above-described configuration are connected via a current collector 5 and Ni felt (or Ni plate), and power generation is performed by air (oxygen) 6 inside the air electrode layer 2. The fuel (hydrogen) 7 is flowed to the outside, and the temperature is 1000 to 1050 ° C.
[0006]
Such a cylindrical solid oxide fuel cell is produced by, for example, forming a cylindrical sintered body by forming a solid electrolyte powder into a cylindrical shape by extrusion or the like and firing the solid electrolyte powder. It is manufactured by a method in which a sheet-like molded body that becomes an air electrode layer or a fuel electrode layer is formed on the surface or outer peripheral surface by a slurry coating method or the like, or is fired, or a chemical vapor deposition method (EVD) is applied to the surface of a ceramic porous support tube Method), a plasma spraying method, etc., and a method of sequentially forming an air electrode layer, a solid electrolyte layer, and a fuel electrode layer. Further, the surface of a cylindrical air electrode formed by firing an air electrode material is the same as described above. In this way, the solid electrolyte layer and the fuel electrode layer are sequentially formed.
[0007]
On the other hand, there is a conventional method for manufacturing a cylindrical fuel cell having at least an air electrode layer and a solid electrolyte layer on the surface of an electrically insulating cylindrical substrate. A step of producing a molded body, a step of producing a sheet-like molded body from the air electrode forming powder and the solid electrolyte forming powder, respectively, and the air electrode and solid electrolyte sheet on the surface of the cylindrical substrate molded body. A method for manufacturing a cylindrical fuel cell comprising a step of winding and laminating a shaped compact to produce a cylindrical laminate, and a step of simultaneously firing the cylindrical laminate is disclosed.
[0008]
In this method, fuel cells can be manufactured with a high yield by a very simple process and a small number of steps. Also disclosed is a technique in which a green sheet of a solid electrolyte material and a current collector material is sequentially wound and laminated on the surface of the air electrode molded body and then fired at the same time (the above two methods are sometimes called co-sintering).
[0009]
According to this method, a slurry of an air electrode material is formed into a cylindrical shape to produce an air electrode molded body, and a sheet-like molded body is formed on the surface of the air electrode molded body using a slurry of a solid electrolyte material. To form a solid electrolyte molded body on the surface of the air electrode molded body, polish between the end faces of the solid electrolyte molded body to form a continuous identical surface with the air electrode molded body exposed, and collect on this plane. A solid electrolyte fuel cell is obtained by laminating a sheet-shaped molded body made of an electric material so as to be partially stacked on the solid electrolyte molded body, and then firing.
[0010]
[Problems to be solved by the invention]
However, in the solid oxide fuel cell produced by co-sintering at least the air electrode and the solid electrolyte, the adhesion between the air electrode and the solid electrolyte is too strong and the output density of power generation is low, or On the contrary, there was a big problem that the adhesive force was too weak and the solid electrolyte was peeled off during power generation and thermal cycle.
[0011]
That is, when the air electrode and the solid electrolyte are co-sintered as described above, a CaZrO 3 layer is formed at the interface between them, and when the amount of CaZrO 3 generated is large (when the layer thickness is thick), the air electrode and the solid electrolyte are formed. Although the adhesion to the electrolyte is strong, there is a problem that the output density of power generation is low because of the slow diffusion of oxygen ions and electrons in CaZrO 3 .
[0012]
Interfacial products such as CaZrO 3 are not preferable from the viewpoint of power generation, but if there is no CaZrO 3 layer, the adhesion between the air electrode and the solid electrolyte is weakened, and the solid electrolyte is easily formed during power generation and thermal cycling. There was a problem of peeling from the air electrode.
[0013]
An object of the present invention is to provide a solid oxide fuel cell capable of improving the adhesion between the air electrode and the solid electrolyte and improving the power generation characteristics.
[0014]
[Means for Solving the Problems]
As a result of repeated studies on the above problems, the present inventors have controlled the amount of CaZrO 3 generated at the interface between the air electrode and the solid electrolyte, thereby preventing the solid electrolyte from peeling from the air electrode, and The present inventors have found that a high power density can be stably maintained and have reached the present invention.
[0015]
That is, the solid oxide fuel cell of the present invention includes an air electrode made of a (La, Ca) MnO 3 composition on one side of a solid electrolyte made of a ZrO 2 composition and a fuel electrode on the other face. In the solid oxide fuel cell in which the solid electrolyte and the air electrode are co-sintered , a CaZrO 3 layer is formed at the interface between the solid electrolyte and the air electrode, and is joined to the solid electrolyte. wherein the CaZrO 3 layers were, in X-ray diffraction measurement for irradiating X-rays from the CaZrO 3-layer side, the peak intensity of the (121) plane of CaZrO 3 is 0 cubic ZrO 2 (111) plane of the peak intensity of 5 to 5%.
[0016]
[Action]
In the cell produced by co-sintering the air electrode and the solid electrolyte, the amount of CaZrO 3 produced at these interfaces causes the adhesion force between the air electrode and the solid electrolyte to be too strong, resulting in a low power output density, or There was a problem that the adhesive force was too weak and the solid electrolyte peeled off during power generation or when subjected to a heat cycle, resulting in a decrease in output density.
[0017]
In the present invention, by controlling the amount of CaZrO 3 generated at the interface between the air electrode and the solid electrolyte, the power generation characteristics and the adhesion of the solid electrolyte can be greatly improved.
[0018]
That is, in the X-ray diffraction measurement in which the CaZrO 3 layer bonded to the solid electrolyte is irradiated with X-rays from the CaZrO 3 layer side, the peak intensity of the (121) plane of CaZrO 3 is (111) of cubic ZrO 2. When it is 0.5 to 5% of the peak intensity of the surface, the amount of CaZrO 3 generated at the interface between the air electrode and the solid electrolyte becomes an appropriate amount, and the adhesion of the solid electrolyte is greatly improved without deteriorating the power generation characteristics. It can be done.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
As shown in FIG. 1, a cylindrical solid electrolyte fuel cell according to the present invention comprises a fuel cell body 34 in which an air electrode 32 is formed on the inner surface of a cylindrical solid electrolyte 31 and a fuel electrode 33 is formed on the outer surface. The fuel cell main body 34 is provided with a current collector 35 that is electrically connected to the air electrode 32. That is, a part of the solid electrolyte 31 is cut away, and a part of the air electrode 32 formed on the inner surface of the solid electrolyte 31 is exposed, and the exposed surface 37 and the surface of the cutout solid electrolyte 31 are collected. Covered by the body 35. The cylindrical fuel cell of the present invention may be configured by forming a porous support tube and sequentially laminating the air electrode 32, the solid electrolyte 31, and the fuel electrode 33 on the outer surface of the porous support tube.
[0020]
The current collector 35 electrically connected to the air electrode 32 is formed so as to cover the continuous same surface 39 and is not electrically connected to the fuel electrode 33. The continuous coplanar surface 39 exposes a part of the air electrode 32 formed on the inner surface of the solid electrolyte 31, and the end portion 40 of the solid electrolyte 31 and the exposed surface 37 of the air electrode 32 are substantially the same surface (solid electrolyte). The end portion 40 of 31 and the exposed surface 37 of the air electrode 32 are configured as a flat state with few steps. The same surface 39 is formed by polishing the outer peripheral surface of the cell body until part of the solid electrolyte molded body and part of the air electrode molded body are close to the same surface.
The solid electrolyte 31 is composed of a ZrO 2 composition, the air electrode 33 is composed of a (La, Ca) MnO 3 composition, and the fuel electrode 33 is composed of Ni and ZrO 2 or CeO 2 composition. The current collector 35 is composed of a LaCrO 3 composition.
[0021]
That is, as a solid electrolyte 31, Y 2 O 3, Yb 2 O 3 stabilized material was dissolved in a proportion of 3 to 15 mol% portion of such stabilized ZrO 2 or stabilized ZrO 2 relative to ZrO 2 Is used. Examples of the air electrode 33 include a LaMnO 3 composition in which 15 to 20 atomic% of La is substituted with Ca element, a composition as proposed in Japanese Patent Application No. 5-87406, and the like. Furthermore, as the current collector 35, LaCrO 3 in which Ca, Mg, and Sr are dissolved is used. As the fuel electrode, a mixture of CeO 2 or ZrO 2 (containing Y 2 O 3 ) and NiO powder can be suitably used.
[0022]
In the solid electrolyte fuel cell of the present invention, as shown in FIG. 2, a CaZrO 3 layer 47 is formed at the interface between the air electrode 32 and the solid electrolyte 31, and the CaZrO bonded to the solid electrolyte 31. In the X-ray diffraction measurement in which X-ray is irradiated from the CaZrO 3 layer side to the 3 layer 47, the peak intensity of the (121) plane of CaZrO 3 is 0.5 of the peak intensity of the (111) plane of cubic ZrO 2. It is said to be 5%.
[0023]
Peak intensity of (121) plane of CaZrO 3 is, adhesion of 0.5% and smaller than the peak intensity of cubic ZrO 2 (111) plane, the solid electrolyte of the air electrode for a small generation amount of CaZrO 3 The solid electrolyte peels off from the air electrode during power generation and thermal cycling. On the other hand, if it is larger than 5%, the adhesion of the solid electrolyte to the air electrode is large, but the power density is small in power generation. The peak intensity ratio of the X-ray diffraction intensity is preferably 0.5 to 2% from the viewpoint of improving the adhesion of the solid electrolyte to the air electrode and improving the power density in power generation.
[0024]
The cylindrical solid electrolyte fuel cell according to the present invention includes, for example, a step of producing a cylindrical molded body made of air electrode forming powder, a step of producing a sheet-like molded body from solid electrolyte forming powder, and a current collector. A step of producing a sheet-like molded body from the formed powder, a step of winding and laminating the solid electrolyte sheet-like molded body around the surface of the cylindrical molded body, and a part of the surface of the solid electrolyte sheet-like molded body A step of winding and stacking the current collector sheet-shaped molded body so as to contact the cylindrical molded body, and a step of firing the cylindrical laminated body at a temperature of 1300 to 1700 ° C. in an oxidizing atmosphere at the same time. It is produced by the manufacturing method.
[0025]
A step of producing a sheet-like molded body from the air electrode-forming powder; a step of producing a sheet-like molded body from the solid electrolyte-forming powder; a step of producing a sheet-like molded body from the current collector-forming powder; A step of forming an electrode sheet-shaped molded body, the solid electrolyte sheet-shaped molded body, and the current collector sheet-shaped molded body into a cylindrical shape, and simultaneously forming the cylindrical laminated body in an oxidizing atmosphere at 1300 to 1700 ° C. It is produced by the manufacturing method which comprises the process baked at this temperature.
[0026]
As a method for controlling the amount of CaZrO 3 generated at the interface between the air electrode and the solid electrolyte, a cylindrical molded body made of air electrode forming powder, or a sheet shaped molded body made of air electrode forming powder, and a solid electrolyte sheet A mixed powder composed of an air electrode forming powder and a solid electrolyte forming powder is interposed at the interface of the molded body and reacted during co-sintering to produce CaZrO 3. The air electrode forming powder and the solid electrolyte in the mixed powder are produced. By changing the ratio of the formed powder, the amount of CaZrO 3 produced can be controlled.
[0027]
Hereinafter, the manufacturing method of the cylindrical solid oxide fuel cell of the present invention will be described in detail. According to one method of the present invention, a cylindrical molded body is first produced using a powder that forms an air electrode. This cylindrical molded body is formed, for example, by extruding an air electrode forming powder or by isostatic pressing (rubber press). Still another method is to form the air electrode forming powder into a sheet shape by the doctor blade method or the like, and then wrap the sheet-shaped formed body around the surface of a predetermined cylindrical support body and join the ends together. A cylindrical molded body can be produced. The thickness of the cylindrical molded body is suitably 1 to 3 mm.
[0028]
Next, a sheet-like molded body of the solid electrolyte and the current collector is produced from the powder that forms the solid electrolyte and the current collector, respectively. This sheet-like molded body is produced by a known method by a doctor blade method or an extrusion molding method. The thickness of the solid electrolyte sheet-like molded body needs to be controlled so that the thickness of the solid electrolyte after firing is 10 to 500 μm.
[0029]
Next, after winding the solid electrolyte sheet-shaped molded body around the surface of the cylindrical body of the air electrode obtained as described above, after polishing the end portion of the solid electrolyte sheet-shaped molded body, The electric sheet-like molded body is laminated and pressure-bonded. In some cases, the sheet-like molded body of the fuel electrode may be wound around the surface of the sheet-like molded body of the solid electrolyte. Adhesion is improved when an acrylic resin or an organic solvent is interposed between the sheet-like molded bodies. The laminated molded body obtained as described above is fired at the same time in the oxidizing atmosphere and the sheet-shaped molded body laminated with the cylindrical formed body.
[0030]
At this time, in the X-ray diffraction measurement of the solid electrolyte 31 and the CaZrO 3 layer 47, the peak intensity of the (121) plane of CaZrO 3 is set to 0.5 to 5% of the peak intensity of the (111) plane of cubic ZrO 2. Need to control.
[0031]
Next, a specific example for maintaining the ratio between the peak intensity of the (121) plane of CaZrO 3 and the peak intensity of the (111) plane of cubic ZrO 2 at a predetermined ratio is shown below.
[0032]
First, a cylindrical molded body made of air electrode forming powder, or a sheet-like molded body made of air electrode forming powder and a mixed powder made of air electrode forming powder and solid electrolyte forming powder at the interface between the solid electrolyte sheet shaped molded body. By interposing, the ratio of the peak intensity can be controlled to a predetermined ratio by changing the composition.
[0033]
That is, as the mixed powder, 1 to 30% by weight of the air electrode forming powder, 70 to 99% by weight of the solid electrolyte forming powder, particularly 5 to 10% by weight of the air electrode forming powder, and 90 to 95% by weight of the solid electrolyte forming powder are desirable. When the air electrode forming powder is less than 1% by weight, the peak intensity ratio of the (121) surface of CaZrO 3 is less than 0.5%, and when it is more than 30% by weight, the (121) surface of CaZrO 3 is used. This is because the peak intensity ratio is larger than 5%. The crystal grain size of the air electrode forming powder used is preferably in the range of 1 to 15 μm, and the solid electrolyte forming powder is preferably in the range of 0.5 to 3 μm.
[0034]
The laminated molded body is fired in the atmosphere at 1300 to 1700 ° C. for about 3 to 15 hours, so that at least the solid electrolyte is dense so that the relative density is 96% or more. It is sufficient that the air electrode has a relative density of about 60 to 75%.
[0035]
If the firing temperature is lower than 1300 ° C., the ratio of the peak intensity of the above-mentioned CaZrO 3 (121) strength cubic ZrO 2 to the (111) plane is reduced, and if the firing temperature exceeds 1700 ° C., X-ray diffraction Strength ratio increases. A particularly preferred temperature range is 1500-1600 ° C.
[0036]
It is impossible to easily determine the amount of CaZrO 3 produced at the interface between the air electrode and the solid electrolyte. In the present invention, before forming the fuel electrode, thin-film X-ray diffraction is performed in a state where only the air electrode layer is dissolved in dilute hydrochloric acid and only the solid electrolyte and CaZrO 3 layer are left, and CaZrO of X-ray diffraction is obtained. 3 is compared with the peak intensity of the (111) plane of cubic ZrO 2 , the peak intensity of the (121) plane of CaZrO 3 and the peak of (111) of cubic ZrO 2 The intensity ratio was determined. Incidentally, the peak of the (121) plane of CaZrO 3 occurs in the vicinity of 2θ = 31 ° in the X-ray diffraction diagram when Cu—kα ray is used as the X-ray source, and the cubic ZrO 2 composition The (111) peak of the object occurs around 2θ = 29 degrees.
[0037]
The fuel electrode is applied to the surface of the solid electrolyte of a cylindrical integral sintered body made of the obtained air electrode, solid electrolyte, and current collector by applying a slurry made of powder forming the fuel electrode by screen printing or the like. Alternatively, the fuel electrode may be formed by laminating and pressure-bonding a sheet-like molded body made of the fuel electrode powder on the surface and then baking it at 1300 to 1500 ° C. in an oxidizing atmosphere.
[0038]
Next, another method of the production method of the present invention will be described. According to this method, first, a sheet-like molded body is prepared by a known doctor blade method or the like using a powder forming an air electrode, a powder forming a solid electrolyte, and a powder forming a current collector. Thereafter, the air electrode and the sheet-like molded body of the solid electrolyte are laminated and pressure-bonded so as to have a predetermined positional relationship. In the lamination pressure bonding at this time, a mixed powder composed of an air electrode forming powder and a solid electrolyte forming powder is interposed.
[0039]
And the laminated body obtained in this way is formed in a cylindrical shape. Specifically, a laminate of an air electrode sheet-shaped molded body and a solid electrolyte sheet-shaped molded body is in contact with the ends of the air electrode sheet-shaped molded body on the surface of an arbitrary cylindrical support. Or it winds so that an edge may overlap slightly, and produces a cylindrical laminated body. Thereafter, the end portion of the solid electrolyte is polished, and a sheet-like molded body of the current collector is laminated on this portion. Thereafter, the cylindrical support is removed from the cylindrical laminate, and the cylindrical laminate is subjected to the same conditions as described above, that is, 3 to 15 at 1300 to 1700 ° C. as described above in an oxidizing atmosphere such as the atmosphere. By firing for about an hour, the air electrode, the solid electrolyte, and the current collector can be fired simultaneously.
[0040]
In forming the fuel electrode, the fuel electrode can be formed after or during the process of forming the air electrode and the solid electrolyte according to the same method as described above. In this method, in forming the current collector, it is desirable from the viewpoint of airtightness of the air electrode that the current collector is formed at the contact portion or the mating portion of the sheet end portion of the air electrode.
[0041]
【Example】
Example 1
A powder containing La 0.85 Ca 0.15 MnO 3 powder with an average particle diameter of 5 μm as a powder forming an air electrode and 10 mol% of Y 2 O 3 with an average particle diameter of 0.5 μm as a powder forming a solid electrolyte. A precipitation ZrO 2 powder was prepared. Further, a mixture of NiO powder and ZrO 2 (containing Y 2 O 3 ) at a weight ratio of 80:20 as the powder forming the fuel electrode, and having an average particle diameter of 1 μm as the powder forming the current collector A compound powder composed of La 0.8 Ca 0.21 CrO 3 was prepared.
[0042]
First, a slurry was prepared using the La 0.85 Ca 0.15 MnO 3 powder as a solvent, and a cylindrical air electrode molded body having an inner diameter of 13 mm and an outer diameter of 16 mm was obtained using this slurry by an extrusion molding apparatus. On the other hand, slurry was prepared using Y 2 O 3 stabilized ZrO 2 powder as the solid electrolyte and La 0.8 Ca 0.21 CrO 3 powder as the current collector and toluene as a solvent, respectively, and this was prepared by a doctor blade method. A sheet-like molded body was produced.
[0043]
As the CaZrO 3 forming powder, the air electrode forming powder and the solid electrolyte forming powder were mixed in the composition shown in Table 1, and then mixed with an acrylic resin. Thereafter, the sheet-like molded body of the solid electrolyte is wound around the surface of the air electrode molded body via the adhesive made of the acrylic resin, and the end portion thereof is polished to form a continuous and identical surface. A sheet-like molded body of a current collector was laminated on the surface and pressed, and fired at 1300 to 1700 ° C. for 5 hours in the air.
[0044]
As the fuel electrode layer, a slurry was prepared by using toluene as a solvent in the above-mentioned powder, dipped in this slurry and dried to form a fuel electrode, and a cylindrical fuel cell as shown in FIG. 1 was prepared.
[0045]
Thereafter, a sample having a length of 1 cm was cut out, the fuel electrode and the current collector were mechanically polished, the air electrode was dissolved with dilute hydrochloric acid, the solid electrolyte with the CaZrO 3 layer formed was taken out, and the X-rays were extracted from the CaZrO 3 layer. X-ray diffraction measurement was performed, and the peak intensity ratio of the peak intensity of the (121) plane of CaZrO 3 to the (111) plane of cubic ZrO 2 was determined.
[0046]
Further, using one cylindrical cell, power was generated at 1000 ° C. for 1000 hours with oxygen flowing inside the cell and hydrogen flowing outside. At that time, the thermal cycle between 1000 ° C. and room temperature was repeated 10 times during 1000 hours, and the initial value of the output density and the decrease rate of the output density after 1000 hours were examined. The results are shown in Table 1.
[0047]
[Table 1]
Figure 0003677387
[0048]
As a result, the sample No. 1 in which the peak intensity ratio of the (121) plane of CaZrO 3 is less than 0.5% is the peak intensity ratio of the (111) plane of cubic ZrO 2 . In 1, the power density decreased after the thermal cycle test. When this sample No. 1 was observed, a part of the solid electrolyte was peeled off from the air electrode. On the other hand, Sample No. with X-ray diffraction ratio exceeding 5%. 9 shows that the output density after the thermal cycle test is low, but the output density itself is low.
[0049]
【The invention's effect】
As described above in detail, according to the present invention, in the X-ray diffraction measurement of the solid electrolyte and the CaZrO 3 layer, the peak intensity of the (121) plane of CaZrO 3 is the peak intensity of the (111) plane of cubic ZrO 2. Of 0.5 to 5%, the amount of CaZrO 3 generated at the interface between the air electrode and the solid electrolyte becomes an appropriate amount, and the power generation characteristics and the adhesion of the solid electrolyte can be greatly improved.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a cylindrical fuel cell according to the present invention.
2 is an enlarged cross-sectional view of a part of FIG.
3 is an X-ray diffraction pattern of sample No. 5. FIG.
FIG. 4 is a perspective view showing a conventional cylindrical fuel cell.
[Explanation of symbols]
31 ... Solid electrolyte 32 ... Air electrode 33 ... Fuel electrode 34 ... Fuel cell body 35 ... Current collector 47 ... CaZrO 3 layer

Claims (1)

ZrO系組成物からなる固体電解質の一面に、(La,Ca)MnO系組成物からなる空気極を、他面に燃料極を具備してなるとともに、前記固体電解質と前記空気極が共焼結される固体電解質型燃料電池セルにおいて、前記固体電解質と前記空気極の界面にCaZrO層が形成されており、前記固体電解質に接合された前記CaZrO層に、該CaZrO層側からX線を照射するX線回折測定において、CaZrOの(121)面のピーク強度が、立方晶ZrOの(111)面のピーク強度の0.5〜5%であることを特徴とする固体電解質型燃料電池セル。On one surface of the solid electrolyte comprising ZrO 2 based composition (La, Ca) an air electrode composed of MnO 3 based composition, it becomes comprises a fuel electrode on the other surface, the air electrode and the solid electrolyte co in the solid oxide fuel cell to be sintered, said being CaZrO 3 layers forming the solid electrolyte and the interface of the air electrode, the CaZrO 3 layer bonded to the solid electrolyte, from the CaZrO 3-layer side In the X-ray diffraction measurement of irradiating X-rays, the peak intensity of the (121) plane of CaZrO 3 is 0.5 to 5% of the peak intensity of the (111) plane of cubic ZrO 2 Electrolytic fuel cell.
JP08630998A 1998-03-31 1998-03-31 Solid oxide fuel cell Expired - Fee Related JP3677387B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08630998A JP3677387B2 (en) 1998-03-31 1998-03-31 Solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08630998A JP3677387B2 (en) 1998-03-31 1998-03-31 Solid oxide fuel cell

Publications (2)

Publication Number Publication Date
JPH11283635A JPH11283635A (en) 1999-10-15
JP3677387B2 true JP3677387B2 (en) 2005-07-27

Family

ID=13883245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08630998A Expired - Fee Related JP3677387B2 (en) 1998-03-31 1998-03-31 Solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP3677387B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102162814B1 (en) * 2018-11-27 2020-10-07 충남대학교산학협력단 Oxygen Ion Conducting Solid Electrolyte with Protective Layer and a Manufacturing Method Thereof

Also Published As

Publication number Publication date
JPH11283635A (en) 1999-10-15

Similar Documents

Publication Publication Date Title
JP2009507356A (en) Ceramic membrane with integral seal and support, and electrochemical cell and electrochemical cell stack structure including the same
JP4462727B2 (en) Solid electrolyte fuel cell
JP3342616B2 (en) Cylindrical fuel cell and method of manufacturing the same
JP3434883B2 (en) Method for manufacturing fuel cell
JP3677387B2 (en) Solid oxide fuel cell
JP3339998B2 (en) Cylindrical fuel cell
JP4743949B2 (en) Solid electrolyte fuel cell
JP3725997B2 (en) Method for manufacturing solid oxide fuel cell
JP4721500B2 (en) Solid oxide fuel cell and method for producing the same
JP3217695B2 (en) Cylindrical fuel cell
JP3455054B2 (en) Manufacturing method of cylindrical solid oxide fuel cell
JP3638489B2 (en) Solid oxide fuel cell
JP3342611B2 (en) Manufacturing method of cylindrical fuel cell
JPH09129245A (en) Cell for solid electrolyte fuel cell
JP4562230B2 (en) Manufacturing method of solid electrolyte fuel cell
JP2002134132A (en) Solid electrolyte fuel cell and its manufacturing method
JP3339995B2 (en) Cylindrical fuel cell and method of manufacturing the same
JP3725994B2 (en) Solid oxide fuel cell
JP3677404B2 (en) Cylindrical solid electrolyte fuel cell
JP3686788B2 (en) Method for manufacturing cylindrical solid oxide fuel cell
JPH11283634A (en) Cylindrical solid electrolyte fuel cell
JP3638488B2 (en) Solid oxide fuel cell and method for producing the same
JP3595215B2 (en) Solid oxide fuel cell
JP3595214B2 (en) Manufacturing method of solid oxide fuel cell
JP3677401B2 (en) Cylindrical solid electrolyte fuel cell

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050509

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100513

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110513

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110513

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120513

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120513

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130513

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees