JP3638488B2 - Solid oxide fuel cell and method for producing the same - Google Patents

Solid oxide fuel cell and method for producing the same Download PDF

Info

Publication number
JP3638488B2
JP3638488B2 JP36668399A JP36668399A JP3638488B2 JP 3638488 B2 JP3638488 B2 JP 3638488B2 JP 36668399 A JP36668399 A JP 36668399A JP 36668399 A JP36668399 A JP 36668399A JP 3638488 B2 JP3638488 B2 JP 3638488B2
Authority
JP
Japan
Prior art keywords
solid electrolyte
fuel electrode
molded body
electrode
air electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP36668399A
Other languages
Japanese (ja)
Other versions
JP2001185159A (en
Inventor
雅人 西原
高志 重久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP36668399A priority Critical patent/JP3638488B2/en
Publication of JP2001185159A publication Critical patent/JP2001185159A/en
Application granted granted Critical
Publication of JP3638488B2 publication Critical patent/JP3638488B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【0001】
【発明の属する技術分野】
本発明は、空気極の表面に、固体電解質、金属粒子を含有する燃料極を順次積層してなる固体電解質型燃料電池セルおよびその製法に関するものである。
【0002】
【従来技術】
従来より、固体電解質型燃料電池はその作動温度が900〜1050℃と高温であるため発電効率が高く、第3世代の発電システムとして期待されている。
【0003】
一般に固体電解質型燃料電池セルには、円筒型と平板型が知られている。平板型燃料電池セルは、発電の単位体積当たり出力密度は高いという特徴を有するが、実用化に関してはガスシール不完全性やセル内の温度分布の不均一性などの問題がある。それに対して、円筒型燃料電池セルでは、出力密度は低いものの、セルの機械的強度が高く、またセル内の温度の均一性が保てるという特徴がある。両形状の固体電解質型燃料電池セルとも、それぞれの特徴を生かして積極的に研究開発が進められている。
【0004】
円筒型燃料電池の単セルは、図3に示したように開気孔率30〜40%程度のLaMnO3 系材料からなる多孔性の空気極支持管2を形成し、その表面にY2 3 安定化ZrO2 からなる固体電解質3を被覆し、さらにこの表面に多孔性のNi−ジルコニアの燃料極4を設けて構成されている。
【0005】
燃料電池のモジュールにおいては、各単セルはLaCrO3 系の集電体(インターコネクタ)5を介して接続される。発電は、空気極支持管2内部に空気(酸素)6を、外部に燃料(水素)7を流し、1000〜1050℃の温度で行われる。また空気極としての機能を合わせ持つ支持管材料としては、LaをCaで20原子%又はSrで10〜15原子%置換した固溶体材料が用いられている。
【0006】
上記のような燃料電池セルを製造する方法としては、例えばCaO安定化ZrO2 からなる絶縁粉末を押出成形法などにより円筒状に成形後、これを焼成して円筒状支持体を作製し、この支持体の外周面に空気極、固体電解質、燃料極、集電体のスラリーを塗布してこれを順次焼成して積層するか、あるいは円筒状支持体の表面に電気化学的蒸着法(EVD法)やプラズマ溶射法などにより空気極、固体電解質、燃料極、集電体を順次形成することも行われている。
【0007】
近年ではセルの製造工程を簡略化し且つ製造コストを低減するために、各構成材料のうち少なくとも2つを同時焼成する、いわゆる共焼結法が提案されている。この共焼結法は、例えば、円筒状の空気極成形体に固体電解質成形体及び集電体成形体をロール状に巻き付けて同時焼成を行い、その後固体電解質層表面に燃料極層を形成する方法である。またプロセス簡略化のために、固体電解質成形体の表面にさらに燃料極成形体を積層して、同時焼成する共焼結法も提案されている。
【0008】
この共焼結法は非常に簡単なプロセスで製造工程数も少なく、セルの製造時の歩留まり向上、コスト低減に有利である。このような共焼結法による燃料電池セルでは、Y2 3 安定化または部分安定化ZrO2 からなる固体電解質を用い、この固体電解質に熱膨張係数を合致させる等のため、空気極材料として、LaMnO3 からなるペロブスカイト型複合酸化物のLaの一部をYおよびCaで置換したものが用いられている(特開平10−162847号公報等参照)。
【0009】
【発明が解決しようとする課題】
上述した共焼結法を用いて円筒型燃料電池セルを作製すると、共焼結の際に、空気極の構成成分であるMn元素が、固体電解質型燃料電池セルの周囲の雰囲気中に蒸発し、この蒸発したMnが燃料極内部に拡散し、その結果、燃料極中のMn量が増加し、燃料極サイトの分極値およびセル構成成分の実抵抗値が高く、その結果、初期における出力密度が低いという問題があった。
【0010】
本発明は、初期において高い出力密度を得ることができるとともに、長期に亘って高い出力密度を維持できる固体電解質型燃料電池セルおよびその製法を提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明者等は、拡散により生じた燃料極内部のMn量と発電性能は大きな相関があり、燃料極内部のMn量が少ないほど燃料極サイトの分極値およびセル構成成分の実抵抗値を低くでき、これにより、出力密度を高くできることを見いだし、本発明に至った。
【0012】
さらに、本発明者等は、燃料極内部に拡散するMn量は、空気極を構成するLaMnO3 系ペロブスカイト型複合酸化物(ABO3 )のLa/Mn比、すなわちAサイトとBサイトの比率(A/B比)に大きく依存しており、A/B比を制御することにより、燃料極内部に拡散するMn量を減少できることを見いだし、本発明に至った。
【0013】
即ち、本発明の固体電解質型燃料電池セルは、少なくともLaおよびMnを含有するペロブスカイト型複合酸化物からなる空気極の表面に、固体電解質、燃料極を順次積層してなるとともに、前記空気極、前記固体電解質及び前記燃料極を共焼結してなる固体電解質型燃料電池セルにおいて、前記燃料極中のMn量が0.35重量%以下であることを特徴とする。
【0014】
このように燃料極中のMn量を0.35重量%以下に制御することにより、燃料極サイトの分極値およびセル構成成分の実抵抗値を低くでき、これにより、出力密度を高くできるとともに、高い出力密度を長期間に亘って維持できる。
【0015】
これは、燃料極中に存在するMn量が多い場合には、燃料極の焼結性を過剰に促進し、燃料極中の金属粒子の粒成長が過剰となり、金属粒子と固体電解質との接触面積が低下し、燃料極サイトの分極値が大きくなるからであり、さらに金属粒子間にMnが析出するため導電性が低下し、セル構成成分の実抵抗値が高くなるからである。
【0016】
燃料極の膜厚は5〜20μmであることが望ましい。これにより、空気極成形体、固体電解質成形体、燃料極成形体を順次積層し、同時焼成したとしても、各成形体に発生する焼成収縮差に伴う応力を緩和できるため、固体電解質からの燃料極の剥離を防止できるとともに、燃料極と固体電解質との焼成収縮差を小さくできる。
【0017】
このように、燃料極と固体電解質との焼成収縮差を小さくできるため、固体電解質と燃料極の界面から固体電解質内部に生成するクラック(亀裂)を阻止することが可能となる。その結果、燃料極と固体電解質間の分極値の増大、また固体電解質成分の実抵抗値の増大を防止でき、これに伴い初期の高い出力密度を長期的に亘って維持できる。
【0018】
本発明の固体電解質型燃料電池セルの製法は、少なくともLaおよびMnを含有するペロブスカイト型複合酸化物からなる空気極成形体(空気極仮焼体を包含する意味である)の表面に、固体電解質成形体(固体電解質仮焼体を包含する意味である)、金属粒子を含有する燃料極成形体を順次積層してなる積層成形体を焼成する固体電解質型燃料電池セルの製法であって、前記空気極成形体を構成するペロブスカイト型複合酸化物が、少なくともLaを含有するAサイト、少なくともMnを含有するBサイトで表され、かつ、前記Aサイトと前記Bサイトの比率(A/B比)が0.95〜0.99であることを特徴とする。
【0019】
例えば、La、Ca、Y及びMnを含有するペロブスカイト型複合酸化物からなる円筒状の空気極材料を用いてセルを共焼結すると、共焼結時に空気極を構成するそれぞれの成分元素の中でもMn元素の拡散(蒸発及び固相内での拡散)がとりわけ速い。そのため、Mn元素の拡散を低減するためには、フリーのMnO系酸化物(第二相)が存在しない組成領域、つまりペロブスカイト(LaMnO3 )相が単一相として安定な定比組成(A/B比が1)側の材料を用いることが良い。Mnリッチな不定比組成側、すなわちA/Bサイト比率の小さい材料を用いると、ペロブスカイト相に加え第二相としてのMnO系酸化物が生成し、この組成領域では、Mn元素の拡散量が前者に比べると異常に高くなる。
【0020】
一方、定比組成(A/B比が1)側の空気極材料を使用すると、共焼結時に、空気極と固体電解質との間にCaZrO3 、Y2 3 の反応生成物及び分解物を生成し、その結果、上記界面の剥離が経時的に進行し、性能においても急激な出力劣化を伴うことになる。これらのことを踏まえ、AサイトとBサイトの比率調製は十分注意して行う必要がある。
【0021】
本発明の固体電解質型燃料電池セルでは、予め空気極材料として、上記反応生成物及び分解物を伴わない定比組成側よりも若干Mnリッチのペロブスカイト型複合酸化物を使用する。即ち、空気極を構成するLaMnO3 系複合酸化物のA/Bサイト比率を1よりも若干小さくし、空気極成形体のA/B比を0.95〜0.99とし、定比組成側に近づけることによって、フリーのMnO系酸化物(第二相)の含量が少なくなり、Mnの拡散を低減できるとともに、空気極と固体電解質との界面に分極抵抗増大となるような反応及び分解物を生成させない。一方、Mnの拡散は1400℃以上の高温領域では比較的顕著に起きるため、共焼結時の温度を低下させ、焼成時の保持時間を可能な限り低減することにより、さらに燃料極中のMn量を減少できる。さらに、焼成時に空気極から発生するガスを燃料極側に近づけないようにすることも有効な手段である。
【0022】
【発明の実施の形態】
本発明における固体電解質型燃料電池セルは、図1に示すように円筒状の固体電解質31の内面に空気極32、外面に燃料極33が形成してセル本体34を形成し、空気極32には集電体35(インターコネクタ)が電気的に接続されている。
【0023】
即ち、固体電解質31の一部に切欠部36が形成され、固体電解質31の内面に形成されている空気極32の一部が露出しており、この露出面37及び切欠部36近傍の固体電解質31の表面が集電体35により被覆され、集電体35が、固体電解質31の両端部表面及び固体電解質31の切欠部36から露出した空気極32の表面に接合されている。 空気極32と電気的に接続する集電体35は、セル本体34の外面に形成され、ほぼ段差のない連続同一面39を覆うように形成されており、 燃料極33とは電気的に接続されていない。 この集電体35は、セル同士間を接続する際に他のセルの燃料極にNiフェルトを介して電気的に接続され、これにより燃料電池モジュールが構成される。 連続同一面39は、固体電解質の両端部と空気極の一部とが連続したほぼ同一面となるまで、固体電解質の両端部間を研磨することにより形成される。
固体電解質31は、例えば3〜15モル%のY2 3 含有した部分安定化あるいは安定化ZrO2 が用いられる。また、空気極32としては、例えば、主としてLaをCa又はSrで10〜30原子%、Yで5〜20原子%置換したLaMnO3 が用いられ、集電体35としては、例えば、主としてCrをMgで10〜30原子%置換したLaCrO3 が用いられる。 燃料極33としては、50〜80重量%Niを含むZrO2 (Y2 3 含有)サーメットが用いられる。 固体電解質31、 集電体35、 燃料極33としては、上記例に限定されるものではなく、公知材料を用いても良い。 ま、空気極32としては、少なくともLaおよびMnを含有するペロブスカイト型複合酸化物からなるものであれば良い。
【0024】
そして、本発明の固体電解質型燃料電池セルでは、燃料極33中におけるMn量が0. 35重量%以下であることを特徴とする。ここで、Mn拡散量を上記範囲に定めたのは、燃料極33中におけるMn量が0. 35重量%よりも多くなると初期段階から出力密度が低く、しかも時間と共に出力密度が低下していくからである。尚、燃料極33内部におけるMn量は、少なくともLaおよびMnを含有する空気極32と、固体電解質31、燃料極33を同時焼成(共焼結)する限り、Mnは必然的に燃料極33中に拡散するが、上記理由から0. 25重量%以下が望ましい。
【0025】
また、燃料極33の膜厚に関しては、5〜20μmの範囲に制御することが望ましい。これは、この範囲内ならば、各成形体に発生する焼成収縮差に伴う応力を緩和できるため、固体電解質からの燃料極の剥離を防止できるとともに、燃料極と固体電解質との焼成収縮差を小さくでき、固体電解質と燃料極の界面から固体電解質内部に生成するクラック(亀裂)を阻止することができ、これにより、燃料極と固体電解質間の分極値の増大、また固体電解質成分の実抵抗値の増大を防止でき、初期の高い出力密度を長期的に亘って維持できるからである。
【0026】
一方、膜厚が20μmよりも大きくなると、共焼結後に燃料極膜自体が固体電解質との界面から熱膨張差を伴って剥離し易くなり、逆に5μmよりも小さくなると、界面に平行方向でのNi粒子間において粒成長が顕著に起こり、共焼結の段階で固体電解質との界面で焼成収縮差が大きくなり、界面から固体電解質内部へ亀裂の進展が起こり易くなり、実抵抗値の増大を引き起こし、出力密度が時間と共に低下するからである。燃料極33の膜厚は、上記理由から、10〜15μmの範囲が望ましい。
【0027】
以上のように構成された固体電解質型燃料電池セルの製法は、まず、円筒状の空気極成形体を形成する。この円筒状の空気極成形体は、例えば所定の調合組成に従いLa2 3 、Y2 3 、CaCO3 、MnO2 の素原料を秤量、混合する。この際に、空気極成形体を構成するペロブスカイト型複合酸化物のA/B比が0.95〜0.99を満足するように、秤量する必要がある。
【0028】
A/B比か0.95よりも小さい場合、Mn拡散抑制効果がなく、共焼結後に燃料極中に0.35重量%以上含有することになり、0.99よりも大きい場合には空気極と固体電解質との間にCaZrO3 、Y2 3 の反応生成物が発生し、出力密度が低下するからである。
【0029】
この後、La 、Y 、CaCO 、MnO の素原料の混合粉末を、例えば、1500℃程度の温度で2〜10時間仮焼し、その後4〜8μmの粒度に粉砕調製する。調製した粉体に、バインダーを混合、混練し押出成形法により円筒状の空気極成形体を作製し、さらに脱バインダー処理し、1200〜1250℃で仮焼を行うことで円筒状の空気極仮焼体を作製する。尚、Mnの拡散は1400℃以上で顕著であるため、上記空気極成形体の仮焼温度ではMnは殆ど拡散しない。
【0030】
シート状の第1固体電解質成形体として、所定粉末にトルエン、バインダー、市販の分散剤を加えてスラリー化したものをドクターブレード等の方法により、例えば、100〜120μmの厚さに成形したものを用い、円筒状の空気極仮焼体の表面に第1固体電解質成形体を貼り付けて仮焼し、空気極仮焼体の表面に第1固体電解質仮焼体を形成する。
【0031】
次に、シート状の燃料極成形体を作製する。まず、例えば、所定比率に調製したNi/YSZ混合粉体にトルエン、バインダーを加えてスラリー化したものを準備する。前記第1固体電解質成形体の作製と同様、成形、乾燥し、例えば、15μmの厚さのシート状の第2固体電解質成形体を形成する。
【0032】
この第2固体電解質成形体上に燃料極層成形体を印刷、乾燥した後、第1固体電解質仮焼体上に、燃料極層成形体が形成された第2固体電解質成形体を、第1固体電解質仮焼体に第2固体電解質成形体が当接するように巻き付け、積層する。
【0033】
燃料極層成形体を構成するNi/YSZ混合粉体は、Ni粉末の平均粒径が0.2〜0.4μm、YSZ粉末の平均粒径が0.4〜0.8μmの原料粉体を用い、所定比率に調合した後分散性を高めるためにZrO2 ボールを用いて湿式粉砕混合を行う。燃料極を構成するYSZ粉末の粒子径が0.8μmよりも大きくなると、焼成収縮差という点では問題無いが、Ni粒子の支持がミクロレベルで十分でないために局所的にNi粒成長を伴う。
【0034】
YSZ粉末が0.8μm以上の粒径になると焼成時の収縮差という観点では問題無いが、Ni粒子の粒成長を抑制できずに、その結果反応サイト数の減少に因る燃料極サイトの分極増大を伴って出力性能が低下する。
【0035】
その結果、反応サイト数という観点においてNi/YSZ間の接点数が減少し、そのために燃料極サイトの分極値が極めて増大し出力性能が低下する。また、Ni含有比率が80%より高くなると、固体電解質膜との熱膨張率の不整合を生じ易く剥離が生じ易い。
【0036】
次に、固体電解質成形体の調製同様、100〜120μmの厚さに成形した集電体成形体を所定箇所に貼り付ける。
【0037】
この後、円筒状空気極仮焼体、第1固体電解質仮焼体、第2固体電解質成形体、燃料極成形体および集電体成形体の積層体は、例えば、大気中1400〜1550℃の温度で、4層同時に共焼成される。
【0038】
Mnの拡散は、焼成温度、保持時間にも影響するため、焼成温度をできるだけ低下させ、焼成時間をできるだけ短くすることにより、さらにMn量を減少できる。
【0039】
尚、燃料極層成形体の厚みは9〜60μmの厚みとされている。燃料極層成形体の厚みが9μmよりも薄くなると、Ni粒成長に伴い焼成収縮差が助長され、一方60μmよりも厚くなると、固体電解質間との熱膨張率の不整合を伴って燃料極が剥離し易くなる。このような点から、燃料極成形体の厚みは特に25〜40μmが望ましい。
【0040】
このような製法では、空気極成形体のA/B比を0.95〜0.99とし、定比組成側に近づけることによって、フリーのMnO系酸化物(第二相)の含量が少なくなり、Mnの蒸発による燃料極への拡散を低減して、燃料極中のMn量を0.35重量%以下に制御でき、これにより、出力密度を高くできるとともに、高い出力密度を長期間に亘って維持できる。
【0041】
また、空気極成形体のA/B比が1よりも小さいため、空気極と固体電解質との界面に分極抵抗増大となるような反応及び分解物を生成させず、界面での剥離が発生せず、高い出力密度を長期的に維持できる。
【0042】
尚、上記例では円筒状の固体電解質型燃料電池セルについて説明したが、本発明は上記例に限定されるものではなく、平板型形状の燃料電池セルにおいても適用できる。
【0043】
また、円筒状の固体電解質型燃料電池セルにおいても、固体電解質の片面に空気極、他面に燃料極が形成されていればよく、その構造は図1に限定されるものではない。
【0044】
さらに、上記例では、空気極仮焼体、第1固体電解質仮焼体を形成した例について説明したが、これらが、空気極成形体、第1固体電解質成形体であっても良い。
【0045】
【実施例】
円筒状固体電解質型燃料電池セルを共焼結法により作製するため、まず円筒状の空気極仮焼体を以下の手順で作製した。市販の純度99.9%以上のLa2 3 、Y2 3 、CaCO3 、Mn2 3 を出発原料として、(La0.560.14Ca0.3 )xMnO3 のxが、即ち、A/B比が表1に示す値となるように秤量し、これを用いて、押出成形後、1250℃の条件で脱バイ・仮焼し、空気極仮焼体を作製した。
【0046】
次に、Y2 3 を8モル%の割合で含有する平均粒径が1〜2μmのZrO2 粉末を用いてスラリーを調製し、ドクターブレード法により厚さ100μmと厚さ15μmの第1及び2固体電解質成形体としてのシートを作製した。
【0047】
次に、燃料極成形体の作製について説明する。平均粒径が0.4μmのNi粉末に対し、平均粒径が0.6μmのY2 3 を8モル%の割合で含有するZrO2 粉末を準備し、Ni/YSZ比率(重量分率)が65/35になるように調合し、粉砕混合処理を行い、スラリー化した。
【0048】
その後、調製したスラリーを第2固体電解質成形体上に、表1に示す厚さで、全面に印刷した。燃料極成形体のシート厚と焼成後の膜厚を表1に示す。
【0049】
次に、市販の純度99.9%以上のLa2 3 、Cr2 3 、MgOを出発原料として、これをLa(Mg0.3 Cr0.7 0.973 の組成になるように秤量混合した後1500℃で3時間仮焼粉砕し、この固溶体粉末を用いてスラリーを調製し、ドクターブレード法により厚さ100μmの集電体成形体を作製した。
【0050】
まず、前記空気極仮焼体に前記第1固体電解質成形体を、その両端部が開口するようにロール状に巻き付け1150℃で5時間の条件で仮焼した。仮焼後、第1固体電解質仮焼体の両端部間を空気極仮焼体を露出させるように平坦に研磨し、連続した同一面を形成するように加工した。
【0051】
次に、第1固体電解質仮焼体表面に、燃料極成形体が形成された第2固体電解質成形体を、第1固体電解質仮焼体と第2固体電解質成形体が当接するように積層し、乾燥した後、上記連続同一面に集電体成形体を貼り付け、この後、大気中1500℃で6時間の条件で共焼結を行い、共焼結体を作製した。
【0052】
次に、上記共焼結体を用いて、燃料極内部のMn拡散量を評価する試料を作製した。まず、長さ10mm程度に切り出した試料の断面の燃料極内部において、X線マイクロアナライザ(EPMA)を用い全構成成分の定量を行った。それから、Mn成分の燃料極全成分に対する含有濃度を算出した。その結果を、表1に示す。
【0053】
次に、発電用の円筒型セルを作製するため、前記共焼結体片端部に封止部材の接合を行った。封止部材の接合は、以下のような手順で行った。Y2 3 を8モル%の割合で含有する平均粒子径が1μmのZrO2 粉末に水を溶媒として加えてスラリーを調製し、このスラリーに前記共焼結体の片端部を浸漬し、厚さ100μmになるように片端部外周面に塗布し乾燥した。封止部材としてのキャップ形状を有する成形体は、前記スラリー組成と同組成の粉末を用いて静水圧成形(ラバープレス)を行い切削加工した。その後、前記スラリーを被覆した前記共焼結体片端部を封止部材用成形体に挿入し、大気中1300℃の温度で1時間焼成を行った。
【0054】
発電は、1000℃でセルの内側に空気を、外側に水素を流し、出力値が安定した際の初期値と1000時間保持後の値でそれぞれの性能を測定評価した。上記Mn量の結果と併せて、これらの測定結果を表1に示す。
【0055】
【表1】

Figure 0003638488
【0056】
表1より、Mn量の極めて多い本発明範囲外の試料No.1、2は、いずれも初期段階から出力密度が低く、しかも1000時間経過後には出力密度が劣化していることが確認できた。発電後の試料を観察すると、燃料極の固体電解質界面との間における付着が弱くなっており、発電性能において燃料極側の分極および実抵抗成分が高くなっていることが示唆できた。一方、本発明品である試料No.3〜11 は、初期から0.33W/cm2 を上回り、1000時間経過後も出力密度がほぼ安定しているか若しくは高くなっていく傾向がみられた。図2に、各試料のMn量と出力密度との関係を示したグラフを記載する。
【0057】
【発明の効果】
以上詳述したように、本発明の円筒型燃料電池セルでは、共焼結時に空気極側から燃料極内部に向かって拡散してくるMn量を0.35重量%以下に低減制御することで、出力密度を向上でき、また経時的な変化も小さくできるため、初期の高い出力密度を長期間にわたり維持できる。
【図面の簡単な説明】
【図1】本発明の円筒状固体電解質型燃料電池セルを示す断面図である。
【図2】Mn量と出力密度との関係を示したグラフである。
【図3】従来の円筒状固体電解質型燃料電池セルを示す斜視図である。
【符号の説明】
31・・・固体電解質
32・・・空気極
33・・・燃料極
35・・・集電体
36・・・切欠部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a solid oxide fuel cell obtained by sequentially laminating a solid electrolyte and a fuel electrode containing metal particles on the surface of an air electrode, and a method for producing the same.
[0002]
[Prior art]
Conventionally, a solid oxide fuel cell has a high power generation efficiency because its operating temperature is as high as 900 to 1050 ° C., and is expected as a third generation power generation system.
[0003]
Generally, cylindrical and flat plate types are known as solid oxide fuel cells. The flat fuel cell has a feature that the power density per unit volume of power generation is high, but there are problems such as imperfect gas seal and non-uniform temperature distribution in the cell for practical use. On the other hand, the cylindrical fuel cell has the characteristics that although the power density is low, the cell has high mechanical strength and the temperature in the cell can be kept uniform. Both types of solid oxide fuel cells have been actively researched and developed taking advantage of their characteristics.
[0004]
As shown in FIG. 3, a single cell of a cylindrical fuel cell is formed with a porous air electrode support tube 2 made of a LaMnO 3 material having an open porosity of about 30 to 40%, and Y 2 O 3 is formed on the surface thereof. The solid electrolyte 3 made of stabilized ZrO 2 is coated, and a porous Ni-zirconia fuel electrode 4 is provided on the surface.
[0005]
In the fuel cell module, each single cell is connected via a LaCrO 3 current collector (interconnector) 5. Power generation is performed at a temperature of 1000 to 1050 ° C. by flowing air (oxygen) 6 inside the air electrode support tube 2 and flowing fuel (hydrogen) 7 outside. Further, as a support tube material having a function as an air electrode, a solid solution material in which La is replaced by 20 atomic% with Ca or 10-15 atomic% with Sr is used.
[0006]
As a method of manufacturing the fuel cell as described above, for example, an insulating powder made of CaO-stabilized ZrO 2 is formed into a cylindrical shape by an extrusion method or the like, and then fired to produce a cylindrical support. A slurry of an air electrode, a solid electrolyte, a fuel electrode, and a current collector is applied to the outer peripheral surface of the support and sequentially fired and laminated, or electrochemical deposition (EVD method) is applied to the surface of the cylindrical support. ) And plasma spraying methods, etc., an air electrode, a solid electrolyte, a fuel electrode, and a current collector are sequentially formed.
[0007]
In recent years, in order to simplify the cell manufacturing process and reduce the manufacturing cost, a so-called co-sintering method in which at least two of the constituent materials are simultaneously fired has been proposed. In this co-sintering method, for example, a solid electrolyte molded body and a current collector molded body are wound around a cylindrical air electrode molded body in a roll shape and co-fired, and then a fuel electrode layer is formed on the surface of the solid electrolyte layer. Is the method. In order to simplify the process, a co-sintering method in which a fuel electrode molded body is further laminated on the surface of the solid electrolyte molded body and co-fired has been proposed.
[0008]
This co-sintering method is a very simple process and has a small number of manufacturing steps, and is advantageous in improving the yield during manufacturing of cells and reducing costs. In such a fuel cell by the co-sintering method, a solid electrolyte composed of Y 2 O 3 stabilized or partially stabilized ZrO 2 is used, and the thermal expansion coefficient is matched with this solid electrolyte. A perovskite complex oxide composed of LaMnO 3 in which part of La is substituted with Y and Ca is used (see JP-A-10-162847, etc.).
[0009]
[Problems to be solved by the invention]
When a cylindrical fuel cell is produced using the above-mentioned co-sintering method, the Mn element, which is a constituent component of the air electrode, evaporates into the atmosphere around the solid oxide fuel cell during co-sintering. The evaporated Mn diffuses inside the fuel electrode. As a result, the amount of Mn in the fuel electrode increases, and the polarization value of the fuel electrode site and the actual resistance value of the cell components are high. There was a problem of low.
[0010]
An object of the present invention is to provide a solid oxide fuel cell that can obtain a high power density in the initial stage and can maintain a high power density over a long period of time, and a method for producing the same.
[0011]
[Means for Solving the Problems]
The inventors of the present invention have a large correlation between the amount of Mn inside the fuel electrode produced by diffusion and the power generation performance, and the smaller the amount of Mn inside the fuel electrode, the lower the polarization value of the fuel electrode site and the actual resistance value of the cell components. Thus, it was found that the output density can be increased, and the present invention has been achieved.
[0012]
Furthermore, the present inventors have determined that the amount of Mn diffused inside the fuel electrode is the La / Mn ratio of the LaMnO 3 perovskite complex oxide (ABO 3 ) constituting the air electrode, that is, the ratio of A site to B site ( It has been greatly dependent on (A / B ratio), and it has been found that the amount of Mn diffused inside the fuel electrode can be reduced by controlling the A / B ratio, and the present invention has been achieved.
[0013]
That is, the solid electrolyte fuel cell of the present invention is formed by sequentially laminating a solid electrolyte and a fuel electrode on the surface of an air electrode made of a perovskite complex oxide containing at least La and Mn, and the air electrode, In the solid oxide fuel cell obtained by co-sintering the solid electrolyte and the fuel electrode, the amount of Mn in the fuel electrode is 0.35% by weight or less.
[0014]
Thus, by controlling the amount of Mn in the fuel electrode to 0.35% by weight or less, the polarization value of the fuel electrode site and the actual resistance value of the cell constituent components can be lowered, thereby increasing the output density, A high power density can be maintained over a long period of time.
[0015]
This is because when the amount of Mn present in the fuel electrode is large, the sinterability of the fuel electrode is excessively promoted, the particle growth of the metal particles in the fuel electrode becomes excessive, and the contact between the metal particles and the solid electrolyte occurs. This is because the area decreases and the polarization value of the fuel electrode site increases, and further, Mn precipitates between the metal particles, so that the conductivity decreases and the actual resistance value of the cell constituent component increases.
[0016]
The film thickness of the fuel electrode is desirably 5 to 20 μm. As a result, even if the air electrode molded body, the solid electrolyte molded body, and the fuel electrode molded body are sequentially laminated and fired at the same time, the stress accompanying the difference in firing shrinkage generated in each molded body can be relieved. The electrode peeling can be prevented and the difference in firing shrinkage between the fuel electrode and the solid electrolyte can be reduced.
[0017]
Thus, since the difference in firing shrinkage between the fuel electrode and the solid electrolyte can be reduced, it is possible to prevent cracks generated in the solid electrolyte from the interface between the solid electrolyte and the fuel electrode. As a result, an increase in the polarization value between the fuel electrode and the solid electrolyte and an increase in the actual resistance value of the solid electrolyte component can be prevented, and accordingly, an initial high power density can be maintained over a long period.
[0018]
The method for producing a solid electrolyte fuel cell according to the present invention comprises the step of forming a solid electrolyte on the surface of an air electrode molded body (including an air electrode calcined body) made of a perovskite complex oxide containing at least La and Mn. A method for producing a solid electrolyte fuel cell by firing a molded body (which is meant to include a solid electrolyte calcined body) and a laminated molded body obtained by sequentially laminating a fuel electrode molded body containing metal particles , The perovskite complex oxide constituting the air electrode compact is represented by an A site containing at least La and a B site containing at least Mn, and the ratio of the A site to the B site (A / B ratio) Is 0.95 to 0.99.
[0019]
For example, when a cell is co-sintered using a cylindrical air electrode material made of a perovskite complex oxide containing La, Ca, Y and Mn, among the component elements constituting the air electrode during co-sintering The diffusion of the Mn element (evaporation and diffusion in the solid phase) is particularly fast. Therefore, in order to reduce the diffusion of Mn element, a composition region in which free MnO-based oxide (second phase) does not exist, that is, a perovskite (LaMnO 3 ) phase is stable as a single phase (A / It is preferable to use a material having a B ratio of 1). When using a material with Mn-rich non-stoichiometric composition, that is, a material with a small A / B site ratio, a MnO-based oxide as a second phase is generated in addition to the perovskite phase. In this composition region, the amount of diffusion of Mn element is the former. It becomes abnormally high compared to.
[0020]
On the other hand, when an air electrode material having a stoichiometric composition (A / B ratio is 1) is used, reaction products and decomposition products of CaZrO 3 and Y 2 O 3 are formed between the air electrode and the solid electrolyte during co-sintering. As a result, the separation of the interface proceeds with time, and the output is also abruptly deteriorated in performance. Based on these facts, it is necessary to carefully adjust the ratio of the A site and the B site.
[0021]
In the solid oxide fuel cell of the present invention, a perovskite complex oxide that is slightly Mn richer than the stoichiometric composition side without the reaction product and decomposition product is used as the air electrode material in advance. That is, the A / B site ratio of the LaMnO 3 composite oxide constituting the air electrode is slightly smaller than 1, and the A / B ratio of the air electrode molded body is 0.95 to 0.99. As a result, the content of free MnO-based oxide (second phase) is reduced, the diffusion of Mn can be reduced, and the reaction and decomposition products that increase the polarization resistance at the interface between the air electrode and the solid electrolyte Is not generated. On the other hand, the diffusion of Mn occurs relatively remarkably in a high temperature region of 1400 ° C. or higher. Therefore, by reducing the temperature during co-sintering and reducing the holding time during firing as much as possible, Mn in the fuel electrode is further reduced. The amount can be reduced. Furthermore, it is also an effective means to prevent the gas generated from the air electrode during firing from approaching the fuel electrode side.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
As shown in FIG. 1, the solid electrolyte fuel cell according to the present invention has an air electrode 32 formed on the inner surface of a cylindrical solid electrolyte 31 and a fuel electrode 33 formed on the outer surface to form a cell body 34. The current collector 35 (interconnector) is electrically connected.
[0023]
That is, a notch 36 is formed in a part of the solid electrolyte 31, and a part of the air electrode 32 formed on the inner surface of the solid electrolyte 31 is exposed, and the solid electrolyte near the exposed surface 37 and the notch 36. The surface of 31 is covered with a current collector 35, and the current collector 35 is joined to the surface of both ends of the solid electrolyte 31 and the surface of the air electrode 32 exposed from the notch 36 of the solid electrolyte 31. A current collector 35 that is electrically connected to the air electrode 32 is formed on the outer surface of the cell body 34 and is formed so as to cover a continuous identical surface 39 having almost no step, and is electrically connected to the fuel electrode 33. It has not been. The current collector 35 is electrically connected to the fuel electrode of another cell via a Ni felt when connecting the cells, thereby forming a fuel cell module. The continuous identical surface 39 is formed by polishing between both ends of the solid electrolyte until both ends of the solid electrolyte and a part of the air electrode become substantially the same continuous surface.
As the solid electrolyte 31, for example, partially stabilized or stabilized ZrO 2 containing 3 to 15 mol% of Y 2 O 3 is used. Further, as the air electrode 32, for example, LaMnO 3 in which La is mainly substituted by 10 to 30 atomic% with Ca or Sr and 5 to 20 atomic% with Y is used, and as the current collector 35, for example, mainly Cr is used. LaCrO 3 substituted with 10 to 30 atomic% with Mg is used. As the fuel electrode 33, ZrO 2 (containing Y 2 O 3 ) cermet containing 50 to 80 wt% Ni is used. The solid electrolyte 31, the current collector 35, and the fuel electrode 33 are not limited to the above examples, and known materials may be used. The air electrode 32 may be made of a perovskite complex oxide containing at least La and Mn.
[0024]
In the solid oxide fuel cell of the present invention, the amount of Mn in the fuel electrode 33 is 0.35 wt% or less. Here, the Mn diffusion amount is set to the above range because when the Mn amount in the fuel electrode 33 exceeds 0.35% by weight, the output density is low from the initial stage, and the output density decreases with time. Because. The amount of Mn inside the fuel electrode 33 is necessarily Mn in the fuel electrode 33 as long as the air electrode 32 containing at least La and Mn, the solid electrolyte 31, and the fuel electrode 33 are simultaneously fired (co-sintered). However, 0.25% by weight or less is desirable for the above reasons.
[0025]
Further, the film thickness of the fuel electrode 33 is desirably controlled in the range of 5 to 20 μm. Within this range, the stress accompanying the difference in firing shrinkage generated in each molded body can be relieved, so that the separation of the fuel electrode from the solid electrolyte can be prevented, and the difference in firing shrinkage between the fuel electrode and the solid electrolyte can be reduced. It can be reduced, and cracks generated inside the solid electrolyte from the interface between the solid electrolyte and the fuel electrode can be prevented, thereby increasing the polarization value between the fuel electrode and the solid electrolyte and the actual resistance of the solid electrolyte component This is because the increase in the value can be prevented and the initial high power density can be maintained over a long period of time.
[0026]
On the other hand, when the film thickness is larger than 20 μm, the fuel electrode film itself tends to be peeled off from the interface with the solid electrolyte after co-sintering with a difference in thermal expansion, and conversely, when the film thickness is smaller than 5 μm, it is parallel to the interface. Grain growth occurs between the Ni particles, and the difference in firing shrinkage increases at the interface with the solid electrolyte in the co-sintering stage. Cracks tend to develop from the interface into the solid electrolyte, increasing the actual resistance value. This is because the power density decreases with time. The film thickness of the fuel electrode 33 is preferably in the range of 10 to 15 μm for the above reasons.
[0027]
In the manufacturing method of the solid oxide fuel cell configured as described above, first, a cylindrical air electrode molded body is formed. In this cylindrical air electrode molded body, for example, raw materials of La 2 O 3 , Y 2 O 3 , CaCO 3 , and MnO 2 are weighed and mixed according to a predetermined composition. At this time, it is necessary to weigh so that the A / B ratio of the perovskite complex oxide constituting the air electrode molded body satisfies 0.95 to 0.99.
[0028]
When the A / B ratio is less than 0.95, there is no Mn diffusion suppressing effect, and 0.35 wt% or more will be contained in the fuel electrode after co-sintering. This is because a reaction product of CaZrO 3 and Y 2 O 3 is generated between the electrode and the solid electrolyte, and the output density is lowered.
[0029]
Thereafter, a mixed powder of raw materials of La 2 O 3 , Y 2 O 3 , CaCO 3 , and MnO 2 is calcined at a temperature of about 1500 ° C. for 2 to 10 hours, and then pulverized to a particle size of 4 to 8 μm. Prepare. The prepared powder is mixed and kneaded with a binder to produce a cylindrical air electrode molded body by extrusion molding. Further, the binder is debindered and calcined at 1200 to 1250 ° C. A fired body is produced. Since Mn diffusion is significant at 1400 ° C. or higher, Mn hardly diffuses at the calcining temperature of the air electrode molded body.
[0030]
As a sheet-like first solid electrolyte molded body, a slurry obtained by adding toluene, a binder, and a commercially available dispersant to a predetermined powder and molding it into a thickness of, for example, 100 to 120 μm by a method such as a doctor blade is used. The first solid electrolyte formed body is attached to the surface of the cylindrical air electrode calcined body and calcined to form the first solid electrolyte calcined body on the surface of the air electrode calcined body.
[0031]
Next, a sheet-shaped fuel electrode molded body is produced. First, for example, a slurry obtained by adding toluene and a binder to Ni / YSZ mixed powder prepared at a predetermined ratio is prepared. Similarly to the production of the first solid electrolyte molded body, the molded and dried mold is formed to form a sheet-like second solid electrolyte molded body having a thickness of 15 μm, for example.
[0032]
After the fuel electrode layer molded body is printed and dried on the second solid electrolyte molded body, the second solid electrolyte molded body on which the fuel electrode layer molded body is formed is formed on the first solid electrolyte calcined body. The solid electrolyte calcined body is wound and laminated so that the second solid electrolyte molded body comes into contact therewith.
[0033]
The Ni / YSZ mixed powder constituting the fuel electrode layer molded body is a raw material powder having an average particle diameter of Ni powder of 0.2 to 0.4 μm and an average particle diameter of YSZ powder of 0.4 to 0.8 μm. In order to increase the dispersibility after blending to a predetermined ratio, wet pulverization mixing is performed using ZrO 2 balls. When the particle diameter of the YSZ powder constituting the fuel electrode is larger than 0.8 μm, there is no problem in terms of firing shrinkage difference, but Ni particles are locally supported because Ni particles are not sufficiently supported at the micro level.
[0034]
When the YSZ powder has a particle size of 0.8 μm or more, there is no problem in terms of the difference in shrinkage at the time of firing, but Ni particle grain growth cannot be suppressed, and as a result, the polarization of the fuel electrode site due to the decrease in the number of reaction sites The output performance decreases with the increase.
[0035]
As a result, the number of contacts between Ni / YSZ decreases from the viewpoint of the number of reaction sites, and therefore the polarization value of the fuel electrode site increases extremely and the output performance decreases. On the other hand, when the Ni content ratio is higher than 80%, the thermal expansion coefficient is inconsistent with the solid electrolyte membrane, and peeling is likely to occur.
[0036]
Next, as in the preparation of the solid electrolyte molded body, the current collector molded body molded to a thickness of 100 to 120 μm is attached to a predetermined location.
[0037]
Thereafter, the laminated body of the cylindrical air electrode calcined body, the first solid electrolyte calcined body, the second solid electrolyte molded body, the fuel electrode molded body and the current collector molded body is, for example, 1400 to 1550 ° C. in the atmosphere. At the temperature, four layers are cofired simultaneously.
[0038]
Since the diffusion of Mn affects the firing temperature and holding time, the amount of Mn can be further reduced by reducing the firing temperature as much as possible and shortening the firing time as much as possible.
[0039]
The fuel electrode layer molded body has a thickness of 9 to 60 μm. When the thickness of the fuel electrode layer compact is less than 9 μm, the firing shrinkage difference is promoted as the Ni grains grow. On the other hand, when the thickness is greater than 60 μm, the fuel electrode has a thermal expansion coefficient mismatch with the solid electrolyte. It becomes easy to peel. From this point, the thickness of the fuel electrode molded body is particularly preferably 25 to 40 μm.
[0040]
In such a production method, the content of free MnO-based oxide (second phase) is reduced by setting the A / B ratio of the air electrode compact to 0.95 to 0.99 and bringing it closer to the stoichiometric composition side. , The diffusion of Mn into the fuel electrode can be reduced and the amount of Mn in the fuel electrode can be controlled to 0.35% by weight or less, which can increase the power density and increase the power density over a long period of time. Can be maintained.
[0041]
In addition, since the A / B ratio of the air electrode molded body is smaller than 1, reaction and decomposition products that increase polarization resistance are not generated at the interface between the air electrode and the solid electrolyte, and separation at the interface does not occur. Therefore, high power density can be maintained for a long time.
[0042]
In the above example, the cylindrical solid electrolyte fuel cell has been described. However, the present invention is not limited to the above example, and can also be applied to a flat plate fuel cell.
[0043]
Also in a cylindrical solid electrolyte fuel cell, it is sufficient that an air electrode is formed on one side of the solid electrolyte and a fuel electrode is formed on the other side, and the structure is not limited to that shown in FIG.
[0044]
Furthermore, although the example which formed the air electrode calcined body and the 1st solid electrolyte calcined body was demonstrated in the said example, these may be an air electrode molded object and a 1st solid electrolyte molded object.
[0045]
【Example】
In order to produce a cylindrical solid electrolyte fuel cell by a co-sintering method, a cylindrical air electrode calcined body was first produced by the following procedure. Starting from commercially available La 2 O 3 , Y 2 O 3 , CaCO 3 , Mn 2 O 3 having a purity of 99.9% or more, x of (La 0.56 Y 0.14 Ca 0.3 ) xMnO 3 is A, B Weighed so that the ratio would be the value shown in Table 1, and after this, after extrusion, it was deburied and calcined at 1250 ° C. to produce an air electrode calcined body.
[0046]
Next, a slurry was prepared using a ZrO 2 powder having an average particle diameter of 1 to 2 μm containing Y 2 O 3 at a ratio of 8 mol%, and the first and the first 100 μm and 15 μm thick first and A sheet as a two-solid electrolyte molded body was produced.
[0047]
Next, production of the fuel electrode molded body will be described. A ZrO 2 powder containing 8 mol% of Y 2 O 3 having an average particle diameter of 0.6 μm with respect to Ni powder having an average particle diameter of 0.4 μm was prepared, and the Ni / YSZ ratio (weight fraction) Was adjusted to 65/35, pulverized and mixed, and slurried.
[0048]
Thereafter, the prepared slurry was printed on the entire surface of the second solid electrolyte molded body with the thickness shown in Table 1. Table 1 shows the sheet thickness of the fuel electrode molded body and the film thickness after firing.
[0049]
Next, after commercially available La 2 O 3 , Cr 2 O 3 and MgO having a purity of 99.9% or more are used as starting materials, they are weighed and mixed so as to have a composition of La (Mg 0.3 Cr 0.7 ) 0.97 O 3. After calcining and pulverizing at 1500 ° C. for 3 hours, a slurry was prepared using the solid solution powder, and a current collector molded body having a thickness of 100 μm was prepared by a doctor blade method.
[0050]
First, the first solid electrolyte compact was wound around the air electrode calcined body in a roll shape so that both ends thereof were opened, and calcined at 1150 ° C. for 5 hours. After the calcination, the first solid electrolyte calcined body was polished flat so as to expose the air electrode calcined body and processed so as to form a continuous same surface.
[0051]
Next, the second solid electrolyte molded body on which the fuel electrode molded body is formed is laminated on the surface of the first solid electrolyte calcined body so that the first solid electrolyte calcined body and the second solid electrolyte molded body are in contact with each other. After drying, the current collector molded body was pasted on the continuous same surface, and then co-sintered at 1500 ° C. in the atmosphere for 6 hours to produce a co-sintered body.
[0052]
Next, a sample for evaluating the amount of Mn diffusion inside the fuel electrode was produced using the co-sintered body. First, all components were quantified using an X-ray microanalyzer (EPMA) inside the fuel electrode in the cross section of the sample cut out to a length of about 10 mm. Then, the content concentration of the Mn component with respect to all components of the fuel electrode was calculated. The results are shown in Table 1.
[0053]
Next, in order to produce a cylindrical cell for power generation, a sealing member was joined to one end of the co-sintered body. The sealing member was joined by the following procedure. A slurry is prepared by adding water as a solvent to a ZrO 2 powder containing Y 2 O 3 at a ratio of 8 mol% and having an average particle diameter of 1 μm, and one end of the co-sintered body is immersed in this slurry, The film was applied to the outer peripheral surface of one end so as to have a thickness of 100 μm and dried. The molded body having a cap shape as a sealing member was subjected to isostatic pressing (rubber press) using a powder having the same composition as the slurry composition and cut. Thereafter, the end portion of the co-sintered body coated with the slurry was inserted into a molded body for a sealing member, and baked at a temperature of 1300 ° C. in the atmosphere for 1 hour.
[0054]
For power generation, air was flown inside the cell and hydrogen was flown outside at 1000 ° C., and the performance was measured and evaluated with the initial value when the output value was stabilized and the value after holding for 1000 hours. These measurement results are shown in Table 1 together with the results of the amount of Mn.
[0055]
[Table 1]
Figure 0003638488
[0056]
From Table 1, the sample No. 1 and 2, it was confirmed that the output density was low from the initial stage, and that the output density was degraded after 1000 hours. When the sample after power generation was observed, the adhesion between the fuel electrode and the solid electrolyte interface was weak, suggesting that the fuel electrode side polarization and the actual resistance component were high in the power generation performance. On the other hand, sample no. Nos. 3 to 11 exceeded 0.33 W / cm 2 from the beginning, and the power density tended to be almost stable or increased even after 1000 hours. FIG. 2 shows a graph showing the relationship between the Mn amount of each sample and the power density.
[0057]
【The invention's effect】
As described above in detail, in the cylindrical fuel cell of the present invention, the amount of Mn diffused from the air electrode side toward the inside of the fuel electrode during co-sintering is controlled to be reduced to 0.35% by weight or less. Since the power density can be improved and the change with time can be reduced, the initial high power density can be maintained over a long period of time.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a cylindrical solid oxide fuel cell according to the present invention.
FIG. 2 is a graph showing the relationship between the amount of Mn and the power density.
FIG. 3 is a perspective view showing a conventional cylindrical solid oxide fuel cell.
[Explanation of symbols]
31 ... Solid electrolyte 32 ... Air electrode 33 ... Fuel electrode 35 ... Current collector 36 ... Notch

Claims (3)

少なくともLaおよびMnを含有するペロブスカイト型複合酸化物からなる空気極の表面に、固体電解質、燃料極を順次積層してなるとともに、前記空気極、前記固体電解質及び前記燃料極を共焼結してなる固体電解質型燃料電池セルにおいて、前記燃料極中のMn量が0.35重量%以下であることを特徴とする固体電解質型燃料電池セル。A solid electrolyte and a fuel electrode are sequentially laminated on the surface of an air electrode made of a perovskite complex oxide containing at least La and Mn, and the air electrode, the solid electrolyte and the fuel electrode are co-sintered. In the solid oxide fuel cell, the amount of Mn in the fuel electrode is 0.35% by weight or less. 燃料極の膜厚が5〜20μmであることを特徴とする請求項1記載の固体電解質型燃料電池セル。2. The solid oxide fuel cell according to claim 1, wherein the film thickness of the fuel electrode is 5 to 20 [mu] m. 少なくともLaおよびMnを含有するペロブスカイト型複合酸化物からなる空気極成形体の表面に、固体電解質成形体、金属粒子を含有する燃料極成形体を順次積層してなる積層成形体を焼成する固体電解質型燃料電池セルの製法であって、前記空気極成形体を構成するペロブスカイト型複合酸化物が、少なくともLaを含有するAサイト、少なくともMnを含有するBサイトで表され、かつ、前記Aサイトと前記Bサイトの比率(A/B比)が0.95〜0.99であることを特徴とする固体電解質型燃料電池セルの製法。Solid electrolyte for firing a multilayer molded body obtained by sequentially laminating a solid electrolyte molded body and a fuel electrode molded body containing metal particles on the surface of an air electrode molded body made of a perovskite complex oxide containing at least La and Mn The perovskite complex oxide constituting the air electrode molded body is represented by an A site containing at least La and a B site containing at least Mn, and A method for producing a solid oxide fuel cell, wherein the B site ratio (A / B ratio) is 0.95 to 0.99.
JP36668399A 1999-12-24 1999-12-24 Solid oxide fuel cell and method for producing the same Expired - Fee Related JP3638488B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36668399A JP3638488B2 (en) 1999-12-24 1999-12-24 Solid oxide fuel cell and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36668399A JP3638488B2 (en) 1999-12-24 1999-12-24 Solid oxide fuel cell and method for producing the same

Publications (2)

Publication Number Publication Date
JP2001185159A JP2001185159A (en) 2001-07-06
JP3638488B2 true JP3638488B2 (en) 2005-04-13

Family

ID=18487396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36668399A Expired - Fee Related JP3638488B2 (en) 1999-12-24 1999-12-24 Solid oxide fuel cell and method for producing the same

Country Status (1)

Country Link
JP (1) JP3638488B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2553074A1 (en) * 2003-08-06 2005-02-17 Toto Ltd. Solid oxide fuel cell

Also Published As

Publication number Publication date
JP2001185159A (en) 2001-07-06

Similar Documents

Publication Publication Date Title
JP4383092B2 (en) Electrochemical element
JP4462727B2 (en) Solid electrolyte fuel cell
JP4845296B2 (en) Solid oxide fuel cell and fuel cell
JP3339983B2 (en) Solid oxide fuel cell and method of manufacturing the same
JP3350313B2 (en) Solid oxide fuel cell and method of manufacturing the same
JP4743949B2 (en) Solid electrolyte fuel cell
JP3725997B2 (en) Method for manufacturing solid oxide fuel cell
JP3638489B2 (en) Solid oxide fuel cell
JP3638488B2 (en) Solid oxide fuel cell and method for producing the same
JP2002134132A (en) Solid electrolyte fuel cell and its manufacturing method
JP3595223B2 (en) Solid oxide fuel cell
JP3342610B2 (en) Solid oxide fuel cell
JP4748863B2 (en) Solid oxide fuel cell and fuel cell
JP3740342B2 (en) Solid oxide fuel cell
JP3570900B2 (en) Solid oxide fuel cell
JP3725994B2 (en) Solid oxide fuel cell
JPH0997621A (en) Cell of cylindrical fuel cell
JP4562230B2 (en) Manufacturing method of solid electrolyte fuel cell
JP3652932B2 (en) Solid oxide fuel cell
JP3595214B2 (en) Manufacturing method of solid oxide fuel cell
JP3339995B2 (en) Cylindrical fuel cell and method of manufacturing the same
JP3677404B2 (en) Cylindrical solid electrolyte fuel cell
JP2002260677A (en) Cell of solid electrolyte fuel cell and fuel cell
JP3595215B2 (en) Solid oxide fuel cell
JP3677401B2 (en) Cylindrical solid electrolyte fuel cell

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050111

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120121

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120121

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130121

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees