JP3675997B2 - Gas detector - Google Patents

Gas detector Download PDF

Info

Publication number
JP3675997B2
JP3675997B2 JP30738696A JP30738696A JP3675997B2 JP 3675997 B2 JP3675997 B2 JP 3675997B2 JP 30738696 A JP30738696 A JP 30738696A JP 30738696 A JP30738696 A JP 30738696A JP 3675997 B2 JP3675997 B2 JP 3675997B2
Authority
JP
Japan
Prior art keywords
electrode
gas
oxygen
hollow portion
hollow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30738696A
Other languages
Japanese (ja)
Other versions
JPH10132782A (en
Inventor
圭吾 水谷
久喜 太田
啓暢 土方
太輔 牧野
兼仁 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Denso Corp
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nippon Soken Inc filed Critical Denso Corp
Priority to JP30738696A priority Critical patent/JP3675997B2/en
Publication of JPH10132782A publication Critical patent/JPH10132782A/en
Application granted granted Critical
Publication of JP3675997B2 publication Critical patent/JP3675997B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明はガス検出装置に関し、例えば内燃機関の排気管に配設されて内燃機関から排出される排気ガスに含まれる成分ガスの濃度検出に適用されるガス検出装置に関する。
【0002】
【従来の技術】
車両等の内燃機関では、排気エミッションを改善するため、例えば混合気の空気燃料比が理論空気燃料比になるように燃料の噴射量等をフィードバック制御した後、内燃機関から排出される排気ガス中の排気エミッションを三元触媒コンバータにより除去するようにした排気エミッション抑制技術が採用されている。近年、排気エミッションの規制が強化され、米国では既に自己診断規制(略称OBD−II)が開始し、三元触媒コンバータ等の排気エミッション抑制関連部品の故障を検知してドライバーに認識させることが義務付けられ、ドライバーも故障した排気エミッション抑制関連部品の修理が義務付けられるようになった。
【0003】
三元触媒コンバータの劣化診断技術としては、排気管の三元触媒コンバータの上流および下流にそれぞれ酸素濃度センサを設けたいわゆる2O2 センサシステムが知られている。しかしながら排気ガス規制の強化が上記OBD−IIのLEV(Low Emission Vehicle)からULEV(Ultra Low Emission Vehicle)へと進むと、2つの酸素濃度センサの信号差から間接的に浄化率を検知する2O2 センサシステムでは検出精度が不十分である。そこで窒素酸化物(NOx )等の排気エミッション成分を直接検出するガス検出装置の必要性が高まっている。
【0004】
上記排気エミッション等、検出対象である成分ガスを直接検出するガス検出装置としては、酸素イオン導電性の固体電解質材の両面に被測定ガスに曝露する電極と基準の酸素濃度の基準ガスに曝露する電極とを形成し電極間に発生する起電力等の変化を利用する固体電解質式ガス検出装置が種々、提案されている。これらはNOx を触媒等により分解して被測定ガスのNOx 濃度を酸素濃度として検出するもので、NOx を酸素に分解して検出するため、被測定ガス中の酸素に対する選択性がなく、被測定ガスの酸素濃度を一定に保つ必要がある。
【0005】
かかる固体電解質式ガス検出装置として、Society of Automotive Engineers(以下、SAEという)960334号記載の厚膜Zr O2 NOx センサがある。この厚膜ZrO2 NOx センサでは被測定ガスが導入される第1室に酸素センサが設けられ、これにより検出される酸素濃度が所定値となるように第1室内の酸素を排出する第1のポンプセルが設けられている。第1室と拡散抵抗路を介して連通する第2室には室内の酸素を排出する第2のポンプセルが設けられ、その室内側の電極はNOx に対して還元活性を有している。第1室内の酸度濃度は第1室に設けた酸素センサにより検出され、第1のポンプセルの駆動電圧にフィードバックされて一定に保たれるから、第2室へ拡散する被測定ガスの酸素濃度は一定である。第2室ではNOx の分解により新たに酸素が生成し、第2のポンプセルのポンプ電流がNOx 濃度に応じて増減する。ポンプ電流の増減を測定することでNOx 濃度を検出している。
【0006】
【発明が解決しようとする課題】
しかしながら上記SAE960334号記載の厚膜Zr O2 NOx センサでは、第2室に拡散する被測定ガスの酸素濃度を一定にするため第1室と第2室とを分離する拡散抵抗路が設けられているから、構造が複雑な上に応答性や検出利得も十分ではない。単純に拡散抵抗路を取り除けば流出入する酸素により第2のポンプセルの電極近傍における酸素濃度が変動し、検出誤差が生じるという問題がある。
【0007】
そこで本発明では簡単な構成で、高い応答性と高い検出利得とが得られ、しかも検出精度のよいガス検出装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
請求項1記載の発明では、被測定ガスが拡散抵抗を有する被測定ガス導入路を介して導入される中空部内の酸素濃度を制御すべく以下の構成を具備せしめる。酸素イオン導電性の固体電解質材の相対向する両面に一対の電極を形成した酸素センサ部と酸素ポンプ部とを設ける。酸素センサ部は一方の電極が中空部内に面し、他方の電極が中空部外の基準ガスに曝露するように形成する。酸素ポンプ部は、一方の電極が中空部外の被測定ガスに曝露し、他方の電極が中空部内に面するように形成して固体電解質材にポンプ電流を流すようにする。酸素センサ部により検出される酸素濃度に基づいて酸素ポンプ部のポンプ電流をフィードバック制御する酸素ポンプ制御手段とを設ける。中空部内における被測定ガス中の検出対象である窒素酸化物を分解して酸素を生成せしめNOx 濃度を酸素濃度として検出すべく、酸素イオン導電性の固体電解質材の相対向する両面に一対の電極を形成した成分ガス検出部を設ける。その一対の電極は中空部内側の電極をNOx に対して還元活性を有する電極とする。他方の電極は基準酸素濃度の基準ガスに曝露するように形成する。成分ガス検出部の電極間の出力信号を検出する信号検出手段を設ける。加えて酸素センサ部の中空部内側の電極を、被測定ガス導入路の中空部内側の開口位置の近傍に形成し、成分ガス検出部の中空部内側の電極を、酸素センサ部の中空部内側の電極よりもガス導入路の開口から離れた位置に、酸素ポンプ部の中空部内側の電極と畳重するように形成する。
【0009】
成分ガス検出部は、その中空部内側の電極表面においてNOx が還元反応により分解して酸素が生成し、信号検出手段によりこの酸素生成量に応じた検出信号が得られる。
【0010】
酸素センサ部の中空部内側の電極が被測定ガス導入路の開口の近傍位置にあるから、中空部内に導入される被測定ガス中の酸素濃度の変化に即応して酸素ポンプ部が作動する。成分ガス検出部の電極は被測定ガス導入路の開口位置から酸素センサ部の中空部内側の電極よりも離れた位置に、酸素ポンプ部の電極と畳重するように形成されているから、成分ガス検出部の中空部内側の電極の近傍における被測定ガス中の酸素は、中空部内に導入される被測定ガスの酸素濃度の変化に即応して酸素ポンプ部により供給または排出される。しかして成分ガス検出部の中空部内側の電極近傍の被測定ガスは、これを拡散抵抗路等で分離することなく酸素濃度が一定に保たれ、NOx 濃度の検出精度がよい。しかも成分ガス検出部の中空部内側の電極近傍の被測定ガスを分離しないから構造が簡単で応答性もよい。
【0011】
請求項2記載の発明によれば、上記酸素ポンプ部および酸素センサ部の上記中空部に面した電極を、検出対象であるNOx に対して不活性な金属で構成することにより、上記電極表面で上記中空部内の被測定ガス中のNOx が還元反応により分解することが防止され、NOx の検出誤差が生じるのを防ぐことができる。
【0012】
請求項3記載の発明では、ガス検出体を被測定ガス側と大気とを隔てる隔離壁に貫通し、先端部が上記被測定ガス側に突出するように設けるとともに、ガス検出体の内部には、先端部にガス検出体の外部と被測定ガス導入路を介して連通する中空部と、基準ガスが導入される基準ガス導入路とを設ける。基準ガス導入路は一端側が中空部の付近まで延び、ガス検出体の基部側の他端側から基準ガスが導入されるように構成する。上記酸素ポンプ部は、その固体電解質材を中空部とガス検出体の外部とを隔てる隔壁の一部に形成し、固体電解質材の中空部内側と中空部外側との両面に対向して第1の一対の電極を形成する。上記酸素センサ部はその固体電解質材を中空部と基準ガス導入路とを隔てる隔壁の一部に形成し、固体電解質材の中空部内側と基準ガス導入路側とに第2の一対の電極を形成する。その中空部内側の電極は、酸素ポンプ部の中空部内側の電極よりも小面積とするとともに該電極の中央部と対向する位置に形成する。上記成分ガス検出部はその固体電解質材を中空部と基準ガス導入路とを隔てる隔壁の一部に形成し、固体電解質材の中空部内側と基準ガス導入路側とに第3の一対の電極を形成する。その中空部内側の電極は中央部に肉抜き部を形成して酸素センサ部の中空部内側の電極を囲むように、かつ酸素ポンプ部の中空部内側の電極と畳重するように形成する。
【0013】
かかる構成とすることによりガス検出装置の主要部を一体にコンパクトに構成できる。
【0014】
【発明の実施の形態】
図1(A)は内燃機関から排出される排気ガスのNOx濃度の検出に適用した本発明のガス検出装置を示すもので、検出場所に設置されるセンサ部Sと、回路部Cとから構成してある。センサ部Sは内燃機関の隔離壁たる排気管壁Wを貫通して筒状のハウジング91が螺着してあり、ハウジング91内に内挿される絶縁部材921,922,923がハウジング91の上端開口を塞ぐ蓋部材93によりハウジング91に固定されている。そして絶縁部材921,922,923に設けた貫通穴92aに、細長い平板状のガス検出体1が挿通保持され、先端部1aはハウジング91より排気管壁Wの内側に突出し、基部1bは蓋部材93より突出している。
【0015】
ガス検出体の排気管W内に突出する先端部はハウジング91の下端に固定される有底筒状の排気カバー95内に収容されている。排気カバー95は、ステンレススチール製で、内部側のカバー951と外部側のカバー952の二重構造となっており、これらカバー951,952の周壁には、被測定ガスたる排気ガスを排気カバー95内に取り込むためのガス流通孔953,954がそれぞれ形成してある。
【0016】
蓋部材93の上端には、筒状の大気カバー94が固定される。大気カバー94は、ハウジング91に取りつけられるメインカバー941とその後端部を被うサブカバー942からなり、その周壁の対向位置に大気導入口943,944をそれぞれ有し、これら大気導入口943,944より基準の酸素濃度の基準ガスたる大気を大気カバー94内に取り込むようになしてある。取り込まれた大気はガス検出体1の基部1bに導かれ、基部1b内に導入される。また大気導入口943,944の形成位置において、メインカバー941とサブカバー942の間に防水のために溌水性のフィルタ945が配設してあり、センサ部S内部には大気のみが導入され、水分が侵入することが防止される。
【0017】
また大気カバー94は上端が開口しており、ガス検出体1の後端部に接続するリード線96がこの上端開口より外部に延びている。
【0018】
図1(B)はガス検出体1の拡大断面図、図2はその分解図であり、ガス検出体1は、排気管W内に突出する先端部1a(図の左側)に中空部3、酸素センサ部たるセンサセル51、酸素ポンプ部たるポンプセル52、成分ガス検出部たる検出セル6等より構成され、これらを構成する部材が積層構造を有している。
【0019】
この積層構造は、図2において上側から平板状の酸素イオン導電性の固体電解質材11、アルミナからなる平板状のスペーサ12、平板状の酸素イオン導電性の固体電解質材13となっている。中間のスペーサ12は先端部側に四角形の肉抜き部12aが形成してあり、固体電解質材11,13で閉鎖された空間が中空部3を形成している。
【0020】
また図の下側は上記固体電解質材13の下側に、アルミナからなる平板状のスペーサ14、平板状の加熱ヒータ部15となっている。中間のスペーサ14には細長い肉抜き部14aが形成してあり、その一端側は、上記スペーサ12の肉抜き部12aと同じ形状で肉抜き部12aと対向しており、他端側はスリット状をなしてスペーサ14の基端に達している。固体電解質材13と加熱ヒータ部15とで閉鎖された肉抜き部14aの空間が、大気導入孔943,944(図1(A))より大気をガス検出体1内へ導入する基準ガス導入路たるダクト4となっている。
【0021】
固体電解質材11の下面の中空部3の内表面をなす位置にスクリーン印刷等によりスペーサ12の肉抜き部12aと略同一形状でPt −Au 製の第1の一対の電極の一方である電極522が形成されるとともに、固体電解質材11の上面には電極522と対向してPt 製の第1の一対の電極の他方の電極521が形成されている。固体電解質材11、電極521,522でポンプセル52を構成している。
【0022】
また固体電解質材11、電極521,522を貫通する被測定ガス導入路たるピンホール2が電極521,522の中心位置に形成してあり、ガス検出体1外部から中空部3に被測定ガスとして排気ガスを導入するようになっている。ピンホール2の拡散抵抗のため中空部3内から酸素が選択的に供給または排出されると、中空部3内と中空部3外とで被測定ガスの酸素濃度差ができる。
【0023】
固体電解質材13の上面には中空部3の内表面をなす位置にスクリーン印刷等によりPt −Au 製の第2の一対の電極の一方の電極511、Pt −Rh 製の第3の一対の電極の一方の電極61が形成してある。電極511は、ポンプセル52の電極522よりも小面積のもので、ピンホール2の開口と対向する位置に形成される。電極61は略コ字状で、電極511を囲むように配置され、ピンホール2の開口2aからの被測定ガスが電極61の各部に均等に到るようになっている。電極61はポンプセル52の電極522と畳重するように、その直下に形成される。
【0024】
固体電解質材13の下面には上記電極511,61のそれぞれに対向してPt 製の第2、第3の一対の電極の他方の電極512,62が形成してある。これらは固体電解質材13、電極511,512がセンサセル51を構成し、固体電解質材13、電極61,62が検出セル6を構成している。
【0025】
また加熱ヒータ部15はアルミナよりなる平板状の基板18の表面にPt 線17を形成し、これをアルミナよりなる平板状の被覆層16で被覆したもので、上記各セルを加熱し、検出感度を高めるようになっている。
【0026】
ガス検出体1の基部には、上記各電極511,512,521,522,61,62およびPt 線17の両端と導通する端子51a,51b,52a,52b,6a,6b,17a,17bが形成され、上記リード線96(図1(A))に通じている。
【0027】
またガス検出体1の表面には、ポンプセル52の電極521を被覆してアルミナ等からなる多孔質ペーストを塗布、焼き付けしてなるセラミック保護層18が形成してあり、ピンホール2が排気ガスに含まれるスス等の粒径の大きなパティキュレートで目詰まりすることを防止している。
【0028】
なお上記各固体電解質材11,13は、イットリア添加ジルコニアで、ドクターブレード法等のシート形成法により形成されたシートであり、その厚さは通常、50〜300μmの範囲とするのがよい。ただし電気抵抗とシート強度との兼ね合いを考慮すると、100〜200μmの範囲とすることが望ましい。また電極の厚さは通常、1〜20μmの範囲とするが、耐熱性とガス拡散性とを考慮すると5〜10μm程度とすることが望ましい。
【0029】
図3は上記ガス検出装置のブロック図で、ここでは上記回路部C(図1(A))について説明する。酸素ポンプ制御手段7はセンサセル51の一対の電極511,512間の電圧を入力とする起電力検出回路71と、これより出力される起電力信号を入力とする後段の酸素ポンプ制御回路72からなる。酸素ポンプ制御回路72の前段の比較回路721は起電力検出回路71から出力される起電力信号を起電力信号の基準信号値と比較し、その差を酸素ポンプ制御回路72のポンプ駆動部722に出力する。ポンプ駆動部722はポンプセル52の電極521,522間に電圧を印加するとともに、上記起電力信号と上記基準信号値の差を必要な修正量としてポンプセル52の一対の電極521,522間に印加する電圧を増減するようになっている。
【0030】
信号検出手段8は、検出セル6の一対の電極61,62間に電圧を印加する検出セル駆動回路81と、電極61,62を出入する電流を測定して検出セル6の固体電解質材13に流れるイオン電流を検出するイオン電流検出回路82とから構成してある。
【0031】
上記ガス検出装置の作動を図1〜図3により説明する。排気管W内を流れる排気ガスがカバーユニット95の各ガス流通孔953,954からカバーユニット95内に導入される。導入された排気ガスはガス検出体1のセラミック保護層18からピンホール2を通って中空部3に導かれる。一方、センサ部Sの大気導入孔944,945からセンサ部S内のダクト4に大気が導入され、これにセンサセル51、検出セル6Aの電極512,62が曝露する。
【0032】
ポンプセル52はガス検出体1外側の電極521側が正の電圧となっている場合には、中空部3内の酸素が電極522で電子を受け取って固体電解質材11内を移動し、電極521で電子を放出してセラミック保護層18から排気ガス中へ排出される。そしてピンホール2はガス検出体1の外側から中空部3へ向かう酸素の拡散を規制するから中空部3の酸素濃度が低下する。一方、センサセル51では中空部3とダクト4の酸素分圧比に応じて電極511,512間に起電力が発生する。この起電力を起電力検出回路71が検出し、検出された起電力信号と基準信号値とを比較回路721が比較し、その差分に基づいてポンプ駆動回路722が、検出された起電力が上記基準信号値に対応する基準の起電力を維持するように、すなわち検出された起電力が基準の起電力を外れると、ポンプセル52に印加する電圧を変更することでポンプセル52が中空部3へ供給する、または中空部3から排出する酸素量が調整される。
【0033】
センサセル51の中空部3内側の電極511がピンホール2の開口2a位置の近傍にあるから、ポンプセル52は、中空部3内に導入される被測定ガス中の酸素濃度変化に即応して作動する。検出セル6の電極61はピンホール2の開口2a位置から離れており、かつポンプセル52の電極522と畳重する位置としてあるから、リーン側ではポンプセル52のポンピング作動により、ピンホール2から中空部3に流入する被測定ガス中の酸素の影響を受けることなく、検出セル6の電極61近傍における被測定ガス中の酸素が速やかに排出される。検出セル6の電極61近傍における被測定ガスの酸素濃度は、ピンホール2の開口2aに対向する位置に形成されたセンサセル51の電極51表面における被測定ガスの酸素濃度よりも低い。しかして検出セル6の電極61の近傍における被測定ガスの酸素濃度は常に略0となる。
【0034】
かかる状態において、検出セル6の電極61,62間には、検出セル駆動回路81から電極62側が正となるように一定の電圧が印加される。
【0035】
電極61はPt −Rh 製であるからNOxに対して還元活性を示し、その表面において被測定ガス中のNOxが還元反応により分解して酸素が生成される。検出セル6の電極61の表面における被測定ガスの酸素濃度は略0であるから、電極61の表面に存在する酸素は被測定ガス中のNOxが分解した酸素であり、被測定ガスのNOx濃度に対応している。
【0036】
検出セル6の電極61,62間には検出セル駆動回路81により電圧が印加されているから、電極61表面において生成した酸素は電極61、固体電解質材13を通って電極62からダクト4へ排出される。このとき固体電解質材13を移動する酸素イオンをキャリアとする電流がイオン電流検出回路82により検出される。このイオン電流は、検出セル6の電極61表面において分解した酸素量すなわち被測定ガスのNOx 濃度に対応する。しかしてイオン電流検出回路82は、被測定ガスのNOx 濃度に対してオフセット電流のない線形な電流を出力する。
【0037】
またリッチ状態ではピンホール2の開口2aから流入する被測定ガスの酸素濃度に基づいてポンプセル52による中空部3への酸素供給量が決定される。検出セル6の中空部3側の電極61はポンプセル52の電極522と畳重する位置としてあるから検出セル6の電極61近傍の酸素濃度は速やかに一定値に収束する。
【0038】
図4は本発明のガス検出装置における、被測定ガスのNOx (ここではNO)濃度に対する、イオン電流検出回路82が検出したイオン電流の測定結果の一例である。拡散抵抗路を設ける必要がないので上記SAE960334号記載の厚膜ZrO2 NOx センサに比して約20倍の検出利得で、しかもオフセット電流のない線形な出力信号が得られた。
【0039】
またポンプセル52の中空部3内側の電極522およびセンサセル51の中空部3内側の電極511をNOx に不活性なPt −Au 製で構成したから、ポンプセル52の電極522表面およびセンサセル51の電極511表面におけるNOx の還元反応が防止され、中空部3内に導入される被測定ガスのNOx の濃度が変化することがない。
【0040】
なお検出セルの中空部側の電極は、検出対象であるNOx に対して還元活性を有する金属(Pt −Rh )で構成したが、電極の本体となる電気伝導性の薄膜の表面に、1種以上の貴金属元素を含み金属酸化物を有する触媒層を形成することで、電極がNOx に対して還元活性を有するようにしてもよい。
【0041】
酸素ポンプ制御手段は、センサセルで検出される酸素量に基づいてポンプセルの作動をフィードバック制御するものであれば実施形態記載のものに限定されるものではない。また酸素の供給量、排出量の制御はポンプセルの印加電圧の大きさの制御ではなく、デューティ制御で行ってもよい。
【0042】
センサセルと検出セルとは、固体電解質材を共用しているが、それぞれ別の固体電解質材で構成してもよい。この場合、センサセルの固体電解質材と検出セルの固体電解質材とを絶縁材で分離することによりセンサセルと検出セル間の信号の干渉が防止され、検出精度をさらに高めることができる。また上記実施形態では中空部や検出セル等の各セルを一体に構成したが必ずしもこれに限定されるものではなく、それぞれが別体の構成としてもよい。
【0043】
センサセルの電極と検出セルの電極とを、検出セルの電極がセンサセルの電極を囲むように配置したが、両者をポンプセルの電極の略半分の大きさの長方形としてポンプセルの電極の直下に並設してもよい。この場合、ピンホールはセンサセルの電極に対向する位置に寄せるか、もしくはガス検出体の先端から中空部のセンサセル側の側壁へ貫通するように形成してセンサセルの中空部内側の電極がピンホールの開口近傍となるようにする。
【0044】
ポンプセルからの酸素は排気ガス中に排出されるように構成したが必ずしもこれに限定されるものではなく、大気中に排出するようにしてもよい。この場合、酸素をセンサ部から排出する排出孔は大気カバーの大気導入孔から離して設け、大気導入孔から導入される大気の酸素濃度に影響しないようにするのがよい。
【図面の簡単な説明】
【図1】(A)は本発明のガス検出装置の全体断面図であり、(B)は本発明のガス検出装置の要部拡大断面図である。
【図2】本発明のガス検出装置の要部の分解図である。
【図3】本発明のガス検出装置のブロック図である。
【図4】本発明のガス検出装置の作動を説明するグラフである。
【符号の説明】
1 ガス検出体
11,13 固体電解質材
1a 先端部
1b 基部
2 ピンホール(被測定ガス導入路)
3 中空部
4 ダクト(基準ガス導入路)
51 センサセル(酸素センサ部)
511,512 センサセルの電極
52 ポンプセル(酸素ポンプ部)
521,522 ポンプセルの電極
6 検出セル(成分ガス検出部)
61,62 検出セルの電極
7 酸素ポンプ制御手段
8 信号検出手段
W 排気管壁(隔離壁)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a gas detection apparatus, for example, a gas detection apparatus that is disposed in an exhaust pipe of an internal combustion engine and is applied to detect the concentration of component gas contained in exhaust gas discharged from the internal combustion engine.
[0002]
[Prior art]
In an internal combustion engine such as a vehicle, in order to improve exhaust emission, for example, after feedback control of the fuel injection amount so that the air fuel ratio of the air-fuel mixture becomes the stoichiometric air fuel ratio, the exhaust gas discharged from the internal combustion engine Exhaust emission suppression technology is adopted in which the exhaust emission is removed by a three-way catalytic converter. In recent years, regulations on exhaust emissions have been strengthened, and self-diagnosis regulations (abbreviated as OBD-II) have already begun in the US, and it is obliged to detect failures of exhaust emission control related parts such as three-way catalytic converters and make them aware of them. As a result, drivers are now obligated to repair defective exhaust emission control related parts.
[0003]
As a deterioration diagnosis technique for a three-way catalytic converter, a so-called 2O 2 sensor system in which oxygen concentration sensors are provided upstream and downstream of a three-way catalytic converter in an exhaust pipe is known. However, if enhancement of emission control proceeds from the OBD-II of LEV (Low Emission Vehicle) to ULEV (Ultra Low Emission Vehicle), 2O 2 for detecting indirectly purification rate from a signal difference between the two oxygen concentration sensor In the sensor system, the detection accuracy is insufficient. Therefore, there is an increasing need for a gas detection device that directly detects exhaust emission components such as nitrogen oxide (NOx).
[0004]
As a gas detection device that directly detects a component gas that is a detection target, such as the above exhaust emission, it is exposed to an electrode exposed to a gas to be measured on both surfaces of an oxygen ion conductive solid electrolyte material and a reference gas having a reference oxygen concentration. Various solid-electrolyte gas detectors that use electrodes and change in electromotive force generated between the electrodes have been proposed. These are NOx decomposed by a catalyst or the like and the NOx concentration of the gas to be measured is detected as the oxygen concentration. Since NOx is detected by decomposing into oxygen, there is no selectivity for the oxygen in the gas to be measured and the gas to be measured It is necessary to keep the oxygen concentration of the gas constant.
[0005]
As such a solid electrolyte type gas detection device, there is a thick film ZrO 2 NOx sensor described in Society of Automotive Engineers (hereinafter referred to as SAE) 960334. In this thick film ZrO 2 NOx sensor, an oxygen sensor is provided in the first chamber into which the gas to be measured is introduced, and the first chamber exhausts oxygen in the first chamber so that the oxygen concentration detected thereby becomes a predetermined value. A pump cell is provided. The second chamber that communicates with the first chamber via the diffusion resistance path is provided with a second pump cell that exhausts oxygen in the chamber, and the electrode on the chamber side has a reducing activity with respect to NOx. The acidity concentration in the first chamber is detected by an oxygen sensor provided in the first chamber, and is fed back to the driving voltage of the first pump cell and kept constant. Therefore, the oxygen concentration of the gas to be measured diffusing into the second chamber is It is constant. In the second chamber, oxygen is newly generated by the decomposition of NOx, and the pump current of the second pump cell increases or decreases according to the NOx concentration. The NOx concentration is detected by measuring the increase and decrease of the pump current.
[0006]
[Problems to be solved by the invention]
However, in the thick film ZrO 2 NOx sensor described in SAE960334, a diffusion resistance path for separating the first chamber and the second chamber is provided in order to make the oxygen concentration of the gas to be measured diffused into the second chamber constant. Therefore, the structure is complicated and the response and detection gain are not sufficient. If the diffusion resistance path is simply removed, the oxygen concentration in the vicinity of the electrode of the second pump cell fluctuates due to oxygen flowing in and out, causing a detection error.
[0007]
Accordingly, an object of the present invention is to provide a gas detection device that has a simple configuration, high response, high detection gain, and high detection accuracy.
[0008]
[Means for Solving the Problems]
In the first aspect of the invention, the following configuration is provided in order to control the oxygen concentration in the hollow portion into which the measurement gas is introduced through the measurement gas introduction path having diffusion resistance. An oxygen sensor unit and an oxygen pump unit having a pair of electrodes formed on opposite surfaces of the oxygen ion conductive solid electrolyte material are provided. The oxygen sensor part is formed so that one electrode faces the hollow part and the other electrode is exposed to the reference gas outside the hollow part. The oxygen pump part is formed so that one electrode is exposed to the gas to be measured outside the hollow part and the other electrode faces the inside of the hollow part so that a pump current flows through the solid electrolyte material. Oxygen pump control means for feedback controlling the pump current of the oxygen pump unit based on the oxygen concentration detected by the oxygen sensor unit is provided. A pair of electrodes on opposite surfaces of an oxygen ion conductive solid electrolyte material to detect oxygen oxide by decomposing nitrogen oxides to be detected in the gas to be measured in the hollow portion to generate oxygen and to detect NOx concentration as oxygen concentration The component gas detection part which formed is provided. In the pair of electrodes, the electrode inside the hollow portion is an electrode having a reducing activity with respect to NOx. The other electrode is formed so as to be exposed to a reference gas having a reference oxygen concentration. A signal detection means for detecting an output signal between the electrodes of the component gas detection unit is provided. In addition, an electrode inside the hollow part of the oxygen sensor part is formed in the vicinity of the opening position inside the hollow part of the measured gas introduction path, and an electrode inside the hollow part of the component gas detection part is formed inside the hollow part of the oxygen sensor part. The electrode is formed so as to overlap the electrode inside the hollow portion of the oxygen pump portion at a position farther from the opening of the gas introduction path than the electrode.
[0009]
In the component gas detection unit, NOx is decomposed by a reduction reaction on the electrode surface inside the hollow portion to generate oxygen, and a detection signal corresponding to the oxygen generation amount is obtained by the signal detection means.
[0010]
Since the electrode inside the hollow part of the oxygen sensor part is in the vicinity of the opening of the measurement gas introduction path, the oxygen pump part operates in response to a change in the oxygen concentration in the measurement gas introduced into the hollow part. The electrode of the component gas detection unit is formed so as to overlap with the electrode of the oxygen pump unit at a position farther from the opening position of the measured gas introduction path than the electrode inside the hollow portion of the oxygen sensor unit. Oxygen in the measurement gas in the vicinity of the electrode inside the hollow portion of the gas detection unit is supplied or discharged by the oxygen pump unit in response to a change in the oxygen concentration of the measurement gas introduced into the hollow portion. Therefore, the gas under measurement in the vicinity of the electrode inside the hollow portion of the component gas detector is kept constant without separating it by a diffusion resistance path or the like, and the detection accuracy of the NOx concentration is good. Moreover, since the gas to be measured in the vicinity of the electrode inside the hollow part of the component gas detection part is not separated, the structure is simple and the response is good.
[0011]
According to the second aspect of the present invention, the electrodes facing the hollow portions of the oxygen pump section and the oxygen sensor section are made of a metal that is inert to NOx to be detected, so that It is possible to prevent NOx in the gas to be measured in the hollow portion from being decomposed by a reduction reaction, and to prevent a detection error of NOx.
[0012]
In the invention according to claim 3, the gas detector is provided so as to pass through the separating wall separating the measured gas side and the atmosphere, and the tip portion protrudes toward the measured gas side. The tip portion is provided with a hollow portion communicating with the outside of the gas detector through the gas introduction passage to be measured, and a reference gas introduction passage through which the reference gas is introduced. The reference gas introduction path is configured such that one end side extends to the vicinity of the hollow portion and the reference gas is introduced from the other end side on the base side of the gas detector. The oxygen pump part is formed with the solid electrolyte material in a part of a partition wall that separates the hollow part and the outside of the gas detector, and is opposed to both the inside and the outside of the hollow part of the solid electrolyte material. A pair of electrodes is formed. The oxygen sensor part forms the solid electrolyte material in a part of a partition wall that separates the hollow part and the reference gas introduction path, and forms a second pair of electrodes on the inside of the hollow part of the solid electrolyte material and the reference gas introduction path side. To do. The electrode inside the hollow portion has a smaller area than the electrode inside the hollow portion of the oxygen pump portion and is formed at a position facing the central portion of the electrode. The component gas detection part forms the solid electrolyte material in a part of a partition wall that separates the hollow part and the reference gas introduction path, and a third pair of electrodes is provided on the inside of the hollow part of the solid electrolyte material and the reference gas introduction path side. Form. The electrode inside the hollow part is formed so as to surround the electrode inside the hollow part of the oxygen sensor part so as to surround the electrode inside the hollow part of the oxygen sensor part so as to surround the electrode inside the hollow part of the oxygen sensor part.
[0013]
By adopting such a configuration, the main part of the gas detection device can be integrally configured in a compact manner.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 (A) shows a gas detection device of the present invention applied to detection of NOx concentration of exhaust gas discharged from an internal combustion engine, and comprises a sensor unit S and a circuit unit C installed at a detection location. It is. The sensor portion S penetrates the exhaust pipe wall W, which is an isolation wall of the internal combustion engine, and a cylindrical housing 91 is screwed. The insulating members 921, 922, and 923 inserted into the housing 91 are open at the upper end of the housing 91. It is fixed to the housing 91 by a lid member 93 that closes the cover. The elongated flat plate-shaped gas detector 1 is inserted and held in a through hole 92a provided in the insulating members 921, 922, and 923, the distal end portion 1a protrudes from the housing 91 to the inside of the exhaust pipe wall W, and the base portion 1b is a lid member. It protrudes from 93.
[0015]
The tip of the gas detector projecting into the exhaust pipe W is accommodated in a bottomed cylindrical exhaust cover 95 fixed to the lower end of the housing 91. The exhaust cover 95 is made of stainless steel and has a double structure of an internal cover 951 and an external cover 952. Exhaust gas as a gas to be measured is exhausted to the exhaust cover 95 on the peripheral walls of these covers 951 and 952. Gas flow holes 953 and 954 for taking in are formed respectively.
[0016]
A cylindrical atmospheric cover 94 is fixed to the upper end of the lid member 93. The atmospheric cover 94 includes a main cover 941 attached to the housing 91 and a sub-cover 942 covering the rear end thereof. The atmospheric cover 94 has atmospheric introduction ports 943 and 944 at positions opposed to the peripheral wall thereof, and these atmospheric introduction ports 943 and 944 are provided. The atmosphere, which is a reference gas having a reference oxygen concentration, is taken into the atmosphere cover 94. The taken-in air is guided to the base 1b of the gas detector 1 and introduced into the base 1b. Further, a water-repellent filter 945 is disposed between the main cover 941 and the sub-cover 942 at the positions where the air inlets 943 and 944 are formed, and only air is introduced into the sensor unit S. Intrusion of moisture is prevented.
[0017]
The atmospheric cover 94 has an upper end opened, and a lead wire 96 connected to the rear end of the gas detector 1 extends to the outside from the upper end opening.
[0018]
FIG. 1B is an enlarged cross-sectional view of the gas detector 1, and FIG. 2 is an exploded view thereof. The gas detector 1 has a hollow portion 3 at a tip portion 1a (left side in the drawing) protruding into the exhaust pipe W. The sensor cell 51 is an oxygen sensor unit, the pump cell 52 is an oxygen pump unit, the detection cell 6 is a component gas detection unit, and the like, and the members constituting these have a laminated structure.
[0019]
In FIG. 2, this laminated structure is a flat oxygen ion conductive solid electrolyte material 11, a flat spacer 12 made of alumina, and a flat oxygen ion conductive solid electrolyte material 13 from the upper side. The intermediate spacer 12 is formed with a rectangular hollow portion 12 a on the tip side, and a space closed by the solid electrolyte materials 11 and 13 forms a hollow portion 3.
[0020]
The lower side of the figure is a flat spacer 14 made of alumina and a flat heater portion 15 below the solid electrolyte material 13. The intermediate spacer 14 is formed with an elongated thinned portion 14a, one end of which is the same shape as the thinned portion 12a of the spacer 12 and is opposed to the thinned portion 12a, and the other end is slit-shaped. And the base end of the spacer 14 is reached. The reference gas introduction path for introducing the atmosphere into the gas detection body 1 through the air introduction holes 943, 944 (FIG. 1A) in the space of the lightening portion 14a closed by the solid electrolyte material 13 and the heater portion 15. It is a barrel duct 4.
[0021]
An electrode 522 which is one of the first pair of electrodes made of Pt-Au and having substantially the same shape as the hollow portion 12a of the spacer 12 by screen printing or the like at a position forming the inner surface of the hollow portion 3 on the lower surface of the solid electrolyte material 11. The other electrode 521 of the first pair of Pt electrodes is formed on the upper surface of the solid electrolyte material 11 so as to face the electrode 522. The solid electrolyte material 11 and the electrodes 521 and 522 constitute a pump cell 52.
[0022]
In addition, a pinhole 2 serving as a measurement gas introduction path that penetrates the solid electrolyte material 11 and the electrodes 521 and 522 is formed at the center position of the electrodes 521 and 522, and the measurement target gas is introduced into the hollow portion 3 from the outside of the gas detector 1. Exhaust gas is introduced. When oxygen is selectively supplied or discharged from the inside of the hollow portion 3 due to the diffusion resistance of the pinhole 2, a difference in oxygen concentration in the gas to be measured can be made between the inside of the hollow portion 3 and the outside of the hollow portion 3.
[0023]
On the upper surface of the solid electrolyte material 13, one electrode 511 of the second pair of electrodes made of Pt—Au and the third pair of electrodes made of Pt—Rh are formed on the inner surface of the hollow portion 3 by screen printing or the like. One electrode 61 is formed. The electrode 511 has a smaller area than the electrode 522 of the pump cell 52 and is formed at a position facing the opening of the pinhole 2. The electrode 61 is substantially U-shaped and is arranged so as to surround the electrode 511 so that the gas to be measured from the opening 2 a of the pinhole 2 reaches each part of the electrode 61 evenly. The electrode 61 is formed directly below the electrode 522 of the pump cell 52 so as to overlap.
[0024]
On the lower surface of the solid electrolyte material 13, the other electrodes 512 and 62 of the second and third pair of electrodes made of Pt are formed to face the electrodes 511 and 61, respectively. In these, the solid electrolyte material 13 and the electrodes 511 and 512 constitute the sensor cell 51, and the solid electrolyte material 13 and the electrodes 61 and 62 constitute the detection cell 6.
[0025]
The heater 15 is formed by forming a Pt wire 17 on the surface of a flat plate substrate 18 made of alumina, and coating this with a flat coating layer 16 made of alumina. To increase.
[0026]
Terminals 51 a, 51 b, 52 a, 52 b, 6 a, 6 b, 17 a, and 17 b are formed at the base of the gas detector 1 and are electrically connected to the electrodes 511, 512, 521, 522, 61, 62 and both ends of the Pt wire 17. And leads to the lead wire 96 (FIG. 1A).
[0027]
Further, a ceramic protective layer 18 is formed on the surface of the gas detector 1 by coating the electrode 521 of the pump cell 52 and applying and baking a porous paste made of alumina or the like, and the pinhole 2 serves as an exhaust gas. Clogging with particulates having a large particle size such as soot contained therein is prevented.
[0028]
The solid electrolyte materials 11 and 13 are yttria-added zirconia and are formed by a sheet forming method such as a doctor blade method, and the thickness thereof is preferably in the range of 50 to 300 μm. However, considering the balance between the electrical resistance and the sheet strength, it is desirable that the range be 100 to 200 μm. The thickness of the electrode is usually in the range of 1 to 20 μm, but is preferably about 5 to 10 μm in view of heat resistance and gas diffusibility.
[0029]
FIG. 3 is a block diagram of the gas detection device. Here, the circuit part C (FIG. 1A) will be described. The oxygen pump control means 7 includes an electromotive force detection circuit 71 that receives the voltage between the pair of electrodes 511 and 512 of the sensor cell 51 and a subsequent oxygen pump control circuit 72 that receives the electromotive force signal output therefrom. . The comparison circuit 721 in the previous stage of the oxygen pump control circuit 72 compares the electromotive force signal output from the electromotive force detection circuit 71 with the reference signal value of the electromotive force signal, and the difference is sent to the pump drive unit 722 of the oxygen pump control circuit 72. Output. The pump driving unit 722 applies a voltage between the electrodes 521 and 522 of the pump cell 52 and applies a difference between the electromotive force signal and the reference signal value as a necessary correction amount between the pair of electrodes 521 and 522 of the pump cell 52. The voltage is increased or decreased.
[0030]
The signal detection means 8 measures the current flowing in and out of the detection cell drive circuit 81 for applying a voltage between the pair of electrodes 61 and 62 of the detection cell 6 and the electrodes 61 and 62 to the solid electrolyte material 13 of the detection cell 6. It comprises an ion current detection circuit 82 for detecting the flowing ion current.
[0031]
The operation of the gas detection device will be described with reference to FIGS. Exhaust gas flowing through the exhaust pipe W is introduced into the cover unit 95 from the gas flow holes 953 and 954 of the cover unit 95. The introduced exhaust gas is guided from the ceramic protective layer 18 of the gas detector 1 through the pinhole 2 to the hollow portion 3. On the other hand, air is introduced into the duct 4 in the sensor unit S from the air introduction holes 944 and 945 of the sensor unit S, and the electrodes 512 and 62 of the sensor cell 51 and the detection cell 6A are exposed to this.
[0032]
In the pump cell 52, when the electrode 521 side outside the gas detector 1 has a positive voltage, oxygen in the hollow portion 3 receives electrons at the electrode 522, moves inside the solid electrolyte material 11, and moves to the electrons at the electrode 521. Is discharged from the ceramic protective layer 18 into the exhaust gas. And since the pinhole 2 regulates the diffusion of oxygen from the outside of the gas detector 1 toward the hollow portion 3, the oxygen concentration in the hollow portion 3 decreases. On the other hand, in the sensor cell 51, an electromotive force is generated between the electrodes 511 and 512 according to the oxygen partial pressure ratio between the hollow portion 3 and the duct 4. The electromotive force detection circuit 71 detects this electromotive force, the comparison circuit 721 compares the detected electromotive force signal and the reference signal value, and based on the difference, the pump drive circuit 722 detects the detected electromotive force The pump cell 52 is supplied to the hollow portion 3 by changing the voltage applied to the pump cell 52 so as to maintain the reference electromotive force corresponding to the reference signal value, that is, when the detected electromotive force deviates from the reference electromotive force. Or the amount of oxygen discharged from the hollow portion 3 is adjusted.
[0033]
Since the electrode 511 inside the hollow portion 3 of the sensor cell 51 is in the vicinity of the position of the opening 2 a of the pinhole 2, the pump cell 52 operates in response to a change in oxygen concentration in the gas to be measured introduced into the hollow portion 3. . Since the electrode 61 of the detection cell 6 is separated from the position of the opening 2a of the pinhole 2 and overlaps with the electrode 522 of the pump cell 52, the hollow portion is removed from the pinhole 2 by the pumping operation of the pump cell 52 on the lean side. The oxygen in the gas to be measured in the vicinity of the electrode 61 of the detection cell 6 is quickly discharged without being affected by the oxygen in the gas to be measured flowing into the gas. The oxygen concentration of the measurement gas in the vicinity of the electrode 61 of the detection cell 6 is lower than the oxygen concentration of the measurement gas on the surface of the electrode 51 of the sensor cell 51 formed at a position facing the opening 2 a of the pinhole 2. Therefore, the oxygen concentration of the measurement gas in the vicinity of the electrode 61 of the detection cell 6 is always substantially zero.
[0034]
In this state, a constant voltage is applied between the electrodes 61 and 62 of the detection cell 6 so that the electrode 62 side is positive from the detection cell driving circuit 81.
[0035]
Since the electrode 61 is made of Pt—Rh, it exhibits a reducing activity with respect to NOx, and NOx in the gas to be measured is decomposed on the surface by a reduction reaction to generate oxygen. Since the oxygen concentration of the measurement gas on the surface of the electrode 61 of the detection cell 6 is substantially 0, the oxygen present on the surface of the electrode 61 is oxygen obtained by decomposition of NOx in the measurement gas, and the NOx concentration of the measurement gas. It corresponds to.
[0036]
Since a voltage is applied between the electrodes 61 and 62 of the detection cell 6 by the detection cell driving circuit 81, oxygen generated on the surface of the electrode 61 passes through the electrode 61 and the solid electrolyte material 13 and is discharged from the electrode 62 to the duct 4. Is done. At this time, an ion current detection circuit 82 detects a current having oxygen ions moving through the solid electrolyte material 13 as carriers. This ion current corresponds to the amount of oxygen decomposed on the surface of the electrode 61 of the detection cell 6, that is, the NOx concentration of the gas to be measured. Therefore, the ion current detection circuit 82 outputs a linear current having no offset current with respect to the NOx concentration of the gas to be measured.
[0037]
In the rich state, the oxygen supply amount to the hollow portion 3 by the pump cell 52 is determined based on the oxygen concentration of the gas to be measured flowing from the opening 2a of the pinhole 2. Since the electrode 61 on the hollow portion 3 side of the detection cell 6 is positioned so as to overlap with the electrode 522 of the pump cell 52, the oxygen concentration in the vicinity of the electrode 61 of the detection cell 6 quickly converges to a constant value.
[0038]
FIG. 4 shows an example of the measurement result of the ion current detected by the ion current detection circuit 82 with respect to the NOx (NO in this case) concentration of the gas to be measured in the gas detection apparatus of the present invention. Since it is not necessary to provide a diffusion resistance path, a linear output signal having a detection gain of about 20 times that of the thick film ZrO 2 NOx sensor described in SAE960334 and having no offset current was obtained.
[0039]
In addition, since the electrode 522 inside the hollow portion 3 of the pump cell 52 and the electrode 511 inside the hollow portion 3 of the sensor cell 51 are made of Pt-Au that is inert to NOx, the surface of the electrode 522 of the pump cell 52 and the surface of the electrode 511 of the sensor cell 51 NOx reduction reaction is prevented, and the concentration of NOx in the gas to be measured introduced into the hollow portion 3 does not change.
[0040]
The electrode on the hollow portion side of the detection cell is made of a metal (Pt-Rh) having a reducing activity with respect to NOx to be detected. One type of electrode is formed on the surface of the electrically conductive thin film that becomes the main body of the electrode. The electrode may have a reducing activity with respect to NOx by forming a catalyst layer containing a metal oxide containing the above noble metal element.
[0041]
The oxygen pump control means is not limited to the one described in the embodiment as long as the operation of the pump cell is feedback controlled based on the amount of oxygen detected by the sensor cell. Further, the supply amount and the discharge amount of oxygen may be controlled not by controlling the magnitude of the applied voltage of the pump cell but by duty control.
[0042]
The sensor cell and the detection cell share a solid electrolyte material, but may be formed of different solid electrolyte materials. In this case, by separating the solid electrolyte material of the sensor cell and the solid electrolyte material of the detection cell with an insulating material, signal interference between the sensor cell and the detection cell can be prevented, and detection accuracy can be further improved. In the above-described embodiment, the cells such as the hollow portion and the detection cell are integrally configured. However, the present invention is not necessarily limited to this, and each may be a separate configuration.
[0043]
The electrode of the sensor cell and the electrode of the detection cell are arranged so that the electrode of the detection cell surrounds the electrode of the sensor cell, but both are arranged in parallel as a rectangle that is approximately half the size of the electrode of the pump cell. May be. In this case, the pinhole is moved to a position facing the electrode of the sensor cell, or formed so as to penetrate from the tip of the gas detector to the side wall on the sensor cell side of the hollow portion, and the electrode inside the hollow portion of the sensor cell is connected to the pinhole. Try to be near the opening.
[0044]
Although oxygen from the pump cell is configured to be discharged into the exhaust gas, the present invention is not necessarily limited to this, and it may be discharged into the atmosphere. In this case, it is preferable that the discharge hole for discharging oxygen from the sensor unit is provided separately from the air introduction hole of the air cover so as not to affect the oxygen concentration of the air introduced from the air introduction hole.
[Brief description of the drawings]
1A is an overall cross-sectional view of a gas detection device of the present invention, and FIG. 1B is an enlarged cross-sectional view of a main part of the gas detection device of the present invention.
FIG. 2 is an exploded view of a main part of the gas detection device of the present invention.
FIG. 3 is a block diagram of a gas detection device of the present invention.
FIG. 4 is a graph illustrating the operation of the gas detection device of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Gas detector 11, 13 Solid electrolyte material 1a Tip part 1b Base part 2 Pinhole (measurement gas introduction path)
3 Hollow part 4 Duct (reference gas introduction path)
51 Sensor cell (oxygen sensor part)
511, 512 Sensor cell electrode 52 Pump cell (oxygen pump part)
521, 522 Pump cell electrode 6 Detection cell (component gas detection unit)
61, 62 Detection cell electrode 7 Oxygen pump control means 8 Signal detection means W Exhaust pipe wall (isolation wall)

Claims (3)

被測定ガスが拡散抵抗を有する被測定ガス導入路を介して導入される中空部と、酸素イオン導電性の固体電解質材の相対向する両面に一対の電極を一方の電極が中空部内に面し、他方の電極が中空部外の基準の酸素濃度の基準ガスに曝露するように形成し、一方の電極の表面の酸素濃度を検出する酸素センサ部と、酸素イオン導電性の固体電解質材の相対向する両面に一対の電極を、一方の電極が中空部外の被測定ガスに曝露するように、他方の電極が中空部内に面して形成し、この一対の電極から上記固体電解質材にポンプ電流を流し、中空部内と外の間で酸素を移動せしめる酸素ポンプ部と、酸素センサ部で検出される酸素濃度に基づいて酸素ポンプ部のポンプ電流をフィードバック制御する酸素ポンプ制御手段と、酸素イオン導電性の固体電解質材の相対向する両面に一対の電極を、一方の電極が上記中空部に面し、他方の電極が基準ガスに曝露するように形成した成分ガス検出部と、成分ガス検出部の電極間の出力信号を検出する信号検出手段とを具備し、かつ酸素センサ部の中空部内側の電極を、被測定ガス導入路の中空部内側の開口位置の近傍に形成し、成分ガス検出部の中空部内側の電極を、酸素センサ部の中空部内側の電極よりもガス導入路の開口から離れた位置に酸素ポンプ部の中空部内側の電極と畳重するように形成し、かつ成分ガス検出部の中空部内側の電極を窒素酸化物に還元活性を有する電極としたことを特徴とするガス検出装置。A hollow portion where the measurement gas is introduced through a measurement gas introduction path having a diffusion resistance, and a pair of electrodes facing each other on the opposite surfaces of the oxygen ion conductive solid electrolyte material, with one electrode facing the inside of the hollow portion The other electrode is exposed to a reference gas having a reference oxygen concentration outside the hollow portion, and the oxygen sensor unit for detecting the oxygen concentration on the surface of the one electrode and the relative relationship between the oxygen ion conductive solid electrolyte material A pair of electrodes are formed on both sides facing each other, and the other electrode is formed facing the inside of the hollow portion so that one electrode is exposed to the gas to be measured outside the hollow portion, and the solid electrolyte material is pumped from the pair of electrodes. An oxygen pump unit that flows current between the inside and outside of the hollow portion, an oxygen pump control unit that feedback-controls the pump current of the oxygen pump unit based on the oxygen concentration detected by the oxygen sensor unit, and oxygen ions Conductive A component gas detector formed on the opposite surfaces of the body electrolyte material such that one electrode faces the hollow portion and the other electrode is exposed to the reference gas, and an electrode of the component gas detector And an electrode inside the hollow part of the oxygen sensor part is formed in the vicinity of the opening position inside the hollow part of the measured gas introduction path. The electrode inside the hollow part is formed so as to overlap with the electrode inside the hollow part of the oxygen pump part at a position farther from the opening of the gas introduction path than the electrode inside the hollow part of the oxygen sensor part, and component gas detection A gas detection apparatus characterized in that the electrode inside the hollow part of the part is an electrode having a reducing activity on nitrogen oxides. 請求項1に記載のガス検出装置において、上記酸素ポンプ部および酸素センサ部の上記中空部内側の電極を、窒素酸化物に対して不活性な金属で構成したガス検出装置。The gas detection apparatus according to claim 1, wherein an electrode inside the hollow part of the oxygen pump part and the oxygen sensor part is made of a metal inert to nitrogen oxides. 請求項1または2いずれか記載のガス検出装置において、被測定ガス側と大気とを隔てる隔離壁に貫通し、先端部が上記被測定ガス側に突出するガス検出体を備え、ガス検出体の内部には、先端部にガス検出体の外部と上記被測定ガス導入路を介して連通する上記中空部を設けるとともに、一端側が中空部の付近まで延び、他端側から基準ガスが導入される基準ガス導入路を設け、上記酸素ポンプ部は、これを中空部内と上記ガス検出体の外部とを隔てる隔壁の一部をなす固体電解質材と、その中空部内側と中空部外側との両面に対向して形成した第1の一対の電極とで構成し、上記酸素センサ部は、これを中空部内と基準ガス導入路とを隔てる隔壁の一部をなす固体電解質材と、その中空部内側と基準ガス導入路側との両面に形成した第2の一対の電極とで構成し、その中空部内側の電極を、酸素ポンプ部の中空部内側の電極よりも小面積とするとともに該電極の中央部と対向する位置に形成し、上記成分ガス検出部は、これを中空部と基準ガス導入路とを隔てる隔壁の一部をなす固体電解質材と、その中空部内側と基準ガス導入路側との両面に形成した第3の一対の電極とで構成し、その中空部内側の電極は中央部に肉抜き部を形成して酸素センサ部の中空部内側の電極を囲むようにかつ酸素ポンプ部の中空部内側の電極と畳重する位置に形成したガス検出装置。3. The gas detection device according to claim 1, further comprising a gas detector that penetrates through an isolation wall that separates the gas to be measured and the atmosphere, and has a tip projecting toward the gas to be measured. Inside, the tip portion is provided with the hollow portion that communicates with the outside of the gas detection body via the gas to be measured introduction path, and one end side extends to the vicinity of the hollow portion, and the reference gas is introduced from the other end side. A reference gas introduction path is provided, and the oxygen pump part is provided on both sides of the solid electrolyte material forming a part of the partition wall separating the inside of the hollow part and the outside of the gas detector, and the inside of the hollow part and the outside of the hollow part. The oxygen sensor unit includes a solid electrolyte material that forms a part of a partition wall that separates the inside of the hollow portion and the reference gas introduction path, and the inside of the hollow portion. The second formed on both sides of the reference gas introduction path The component gas detection unit is formed of a pair of electrodes, and the inner electrode of the hollow portion has a smaller area than the inner electrode of the hollow portion of the oxygen pump unit and is opposed to the central portion of the electrode. Is composed of a solid electrolyte material that forms part of a partition wall that separates the hollow portion and the reference gas introduction path, and a third pair of electrodes formed on both the inside of the hollow portion and the reference gas introduction path side. The gas inside the hollow part is formed in a position so as to surround the electrode inside the hollow part of the oxygen sensor part and overlap with the electrode inside the hollow part of the oxygen pump part by forming a hollow part in the center part. Detection device.
JP30738696A 1996-10-31 1996-10-31 Gas detector Expired - Fee Related JP3675997B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30738696A JP3675997B2 (en) 1996-10-31 1996-10-31 Gas detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30738696A JP3675997B2 (en) 1996-10-31 1996-10-31 Gas detector

Publications (2)

Publication Number Publication Date
JPH10132782A JPH10132782A (en) 1998-05-22
JP3675997B2 true JP3675997B2 (en) 2005-07-27

Family

ID=17968435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30738696A Expired - Fee Related JP3675997B2 (en) 1996-10-31 1996-10-31 Gas detector

Country Status (1)

Country Link
JP (1) JP3675997B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3560316B2 (en) * 1998-11-25 2004-09-02 日本特殊陶業株式会社 Gas sensor, method of manufacturing the same, and gas sensor system
JP4698041B2 (en) * 2001-02-28 2011-06-08 京セラ株式会社 Air-fuel ratio sensor element
JP3776386B2 (en) 2001-09-05 2006-05-17 株式会社デンソー Gas sensor element and gas concentration detection method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0672861B2 (en) * 1986-08-04 1994-09-14 日本碍子株式会社 NOx sensor
JP2885336B2 (en) * 1994-04-21 1999-04-19 日本碍子株式会社 Method and apparatus for measuring NOx concentration in gas to be measured
JP3450084B2 (en) * 1995-03-09 2003-09-22 日本碍子株式会社 Method and apparatus for measuring combustible gas components

Also Published As

Publication number Publication date
JPH10132782A (en) 1998-05-22

Similar Documents

Publication Publication Date Title
JP3863974B2 (en) Gas detector
US8409414B2 (en) Gas sensor and nitrogen oxide sensor
US5763763A (en) Method and sensing device for measuring predetermined gas component in measurement gas
US4755274A (en) Electrochemical sensing element and device incorporating the same
EP0769694B1 (en) NOx sensor and method of measuring NOx
EP0903576A2 (en) Gas sensor
JP3973900B2 (en) Gas sensor element
US5948964A (en) NOx sensor and method of measuring NOx
JPH07508100A (en) Sensor device for detecting gas components and/or gas concentration of gas mixture
EP1004877B1 (en) Gas sensor, method of manufacturing the same, and gas sensor system using the gas sensor
JP3993122B2 (en) Gas sensor element and method for measuring hydrogen-containing gas
JP2001141696A (en) Gas-detecting apparatus
JP4625189B2 (en) Method for defined rich / lean control of combustion mixtures with electrochemical gas sensors
JP2002139468A (en) Gas sensor
JP3675997B2 (en) Gas detector
JP3973851B2 (en) Gas sensor element
JPH11237366A (en) Gas sensor
JP3607453B2 (en) Gas sensor
JP3556790B2 (en) Exhaust gas sensor and exhaust gas sensor system
JP4010596B2 (en) Gas sensor
JP2003506712A (en) Sensor element for determining oxygen concentration in mixture and method for determining oxygen concentration in mixture
JPH11352096A (en) Gas sensor element
JP3762082B2 (en) Gas sensor
JP4101501B2 (en) Compound gas sensor element
JP3672681B2 (en) Gas sensor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050427

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110513

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees