JP3669321B2 - Optical axis adjusting device for vehicle headlamp - Google Patents

Optical axis adjusting device for vehicle headlamp Download PDF

Info

Publication number
JP3669321B2
JP3669321B2 JP2001313529A JP2001313529A JP3669321B2 JP 3669321 B2 JP3669321 B2 JP 3669321B2 JP 2001313529 A JP2001313529 A JP 2001313529A JP 2001313529 A JP2001313529 A JP 2001313529A JP 3669321 B2 JP3669321 B2 JP 3669321B2
Authority
JP
Japan
Prior art keywords
vehicle
optical axis
ultrasonic
inclination
sensors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001313529A
Other languages
Japanese (ja)
Other versions
JP2003118476A (en
Inventor
雅行 栢野
信章 武田
学 藤澤
謙二 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Fuso Truck and Bus Corp
Original Assignee
Mitsubishi Fuso Truck and Bus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Fuso Truck and Bus Corp filed Critical Mitsubishi Fuso Truck and Bus Corp
Priority to JP2001313529A priority Critical patent/JP3669321B2/en
Priority to EP02015519A priority patent/EP1275555A3/en
Priority to US10/194,454 priority patent/US6870319B2/en
Priority to KR1020020040597A priority patent/KR100561764B1/en
Publication of JP2003118476A publication Critical patent/JP2003118476A/en
Application granted granted Critical
Publication of JP3669321B2 publication Critical patent/JP3669321B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Lighting Device Outwards From Vehicle And Optical Signal (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To appropriately adjust the optical axis of a headlight by correctly determining the inclined state of a vehicle in an optical axis adjusting device of the headlight of a vehicle. SOLUTION: The optical axis adjusting device has an inclination sensor 6 comprising two sets of ultrasonic sensors 9 and 10 for transmitting/receiving in the vehicle width direction, and is disposed so that the directions of the transmission/reception by transmitting sensors 9a, 10a and receiving sensors 9b, 10b are nearly parallel with each other and nearly orthogonally cross the front/rear direction of the vehicle. The difference in distance ΔS is found based on the difference in time of receiving (receiving phase difference) ΔT between ultrasonic sensors 9 and 10 and the angle of inclination Δα is operated to determine the inclined state of the vehicle. Then, based on the result of the determination, the optical axis of the headlight 5 is adjusted.

Description

【0001】
【発明の属する技術分野】
本発明は、車両傾斜状態に応じてヘッドランプの光軸を調整する光軸調整装置に関し、特に、キャブと荷台がフレーム上に設けられたトラックに適用して好適である。
【0002】
【従来の技術】
近年、安全性の観点から高輝度ランプが採用されるようになってきている。高輝度ランプは安全性の寄与度が高い反面、対向車両へ眩感を与える虞が高くなる。そこで、従来から、車両の傾斜状態に応じてヘッドランプの光軸を調整し、対向車両のドライバに眩感を与えないようにする技術が種々検討されている。フレームにキャブと荷台が設けられたトラック等に光軸調整装置を適用する場合、前後のアクスルとフレーム間の上下方向のストロークを検出し、上下方向のストローク差によりキャブ側の傾斜状態を判定してヘッドランプの光軸を調整することが考えられる。
【0003】
【発明が解決しようとする課題】
しかし、フレームに荷台が設けられたトラックでは、積荷の積載によりフレームにたわみが生じ、正確な傾斜状態を判定することが困難となっている。即ち、積荷の位置によっては、フレームにたわみが生じてフレーム先端部(キャブ側)が上方に傾斜しているにも拘らず前後のアクスルとフレーム間の上下方向のストロークが略同じになることが考えられる。このため、ヘッドランプの光軸を下側に調整する必要があるにも拘らず上下方向にストローク差がない、即ち、傾斜状態にないと判定されてヘッドランプの光軸を調整することができない状態になる虞がある。フレームのたわみ量を考慮してヘッドランプの光軸を調整することも考えられるが、積荷の積載量や積載位置は一定ではなく、結果的に正確な傾斜状態を判定することが困難となる。
【0004】
そこで、本出願人は、このような問題を解決するものとして、特願 2001−211714「車両用ヘッドランプの光軸調整装置」を出願した。この「車両用ヘッドランプの光軸調整装置」は、車両前部に車両前部の路面に対する傾斜状態を判定する傾斜判定手段として、一つの信号発信部と、この信号発信部を挟んで車両前後方向に配設されて信号発信部から発信された信号を路面を経由して受信する二つの信号受信部とを有する超音波センサを設け、各信号受信部での受信時間差(あるいは受信位相差)に基づいて車両の傾斜状態を判定し、この判定結果に基づいてヘッドランプの光軸を調整するものである。
【0005】
ところが、この「車両用ヘッドランプの光軸調整装置」では、超音波センサに対する走行風の影響が考慮されておらず、車両の傾斜状態の高精度な判定が望まれている。
【0006】
本発明はこのような問題を解決するものであって、車両の傾斜状態を正確に判定してヘッドランプの光軸を適切に調整することができる車両用ヘッドランプの光軸調整装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
上述の目的を達成するために請求項1の発明の車両用ヘッドランプの光軸調整装置では、車両の前部にのみ装着されて、車幅方向に並設された2組の超音波受信素子及び超音波発信素子を含む超音波センサと、前記各超音波受信素子及び超音波発信素子における受信時間差に基づいて路面に対する車両の傾斜状態を判定する傾斜判定手段と、前記車両に設けられたヘッドランプの光軸を調整可能な光軸調整手段と、前記傾斜判定手段の判定結果に基づいて前記光軸調整手段を制御する制御手段とを具え、前記超音波センサは、前記超音波発信素子から発信される送信波は、互いに車幅方向に並行状態で夫々送信され、前記超音波受信素子は、路面で反射された前記送信波が夫々受信されるように構成されている。
【0008】
従って、傾斜判定手段では、各超音波センサは車幅方向の送受信信号から両者の時間差に基づいて路面に対する車両の傾斜状態を判定するため、各超音波センサからは同時に送信波を発信して受信波を検出することとなり、同時に各超音波センサから発信される送信波が受ける走行風の影響は同様となり、誤差が吸収されて車両の傾斜状態を正確に判定することができ、ヘッドランプの光軸を適切に調整することができる。
【0009】
また請求項1の発明の車両用ヘッドランプの光軸調整装置では、各超音波センサからの送信波を略平行状態で送信するようにしている。従って、各超音波センサから発信される送信波はほぼ同様に走行風の影響を受けることとなり、両者間の検出誤差が減少して高精度に車両の傾斜状態を判定することができる。
【0010】
また請求項1の発明の車両用ヘッドランプの光軸調整装置では、超音波センサを車幅方向に並設した信号発信部及び信号受信部とで構成し、信号発信部から発信された信号を路面を経由して信号受信部が受信するようにしている。従って、構造の簡素化並びに低コスト化を図ることができる。
【0012】
請求項2の発明の車両用ヘッドランプの光軸調整装置では、超音波センサをフロントアクスル部の前方に装着している。従って、車両の撓みを排除して車両の傾斜状態を判定することができる。
【0013】
以下、図面に基づいて本発明の実施形態を詳細に説明する。
【0014】
【発明の実施の形態】
図1に本発明の一実施形態に係る車両用ヘッドランプの光軸調整装置を搭載したトラックの概略構成、図2にトラックのフレームの平面視、図3に超音波センサの取付状態を表すトラックのフレーム前部の概略、図4に図3のIV−IV断面、図5に超音波センサの取付状態を表す概略、図6に超音波センサの取付状態を表す平面視、図7に傾斜状態の判定方法の説明、図8に光軸調整装置が装着されたヘッドランプ部の水平断面、図9に図8のIX−IX断面、図10に本実施形態の光軸調整装置の制御ブロック、図11に本実施形態の光軸調整装置による初期設定のフローチャートを示す。
【0015】
本実施形態の車両用ヘッドランプの光軸調整装置において、図1及び図2に示すように、左右一組のサイドフレーム1にはこれに直交する複数のクロスメンバ2が組み付けられ、このサイドフレーム1及びクロスメンバ2により構成されるフレーム上にキャブ3及び荷台4が搭載されている。車両前端部のクロスメンバ2の両側には左右のヘッドランプ5が装着され、このクロスメンバ2の略中央部には傾斜判定手段としての傾斜センサ6が配置されている。この傾斜センサ6の検出信号は制御手段としてのECU7に入力され、ECU7では傾斜センサ6からの検出情報に基づいて車両前部の路面に対する傾斜状態が判定される。
【0016】
なお、左右ヘッドランプ5はキャブ3側に設けてもよい。また、傾斜センサ6はフロントアクスル8上やこのフロントアクスル8より前側であれば車両端部のクロスメンバ2以外(例えば、キャブ3側)に設けてもよい。
【0017】
ここで、傾斜センサ6について詳細に説明する。図3乃至図6に示すように、傾斜センサ6は車幅方向に送受信を行う2組の超音波センサ9,10であって、信号発信部としての2つの送信センサ9a,10aと、信号受信部としての受信センサ9b,10bとを有している。送信センサ9a,10aは車両の左側に配置され、受信センサ9b,10bは車両の右側に配置されており、各超音波センサ9,10の送受信波の方向は略平行状態をなし、車両の前後方向に対してほぼ直交する方向となっている。
【0018】
そして、この超音波センサ9,10は下部の送受信面が露出するように箱形のケース11に収納され、このケース11がコ字形状をなすブラケット12を介してクロスメンバ2の中間部に取付けられることで、傾斜センサ6が車両の前部に路面Rと対向して取付けられる。これにより、傾斜センサ6の取付スペースを車両の前後方向に短くすることができ、また、超音波センサ9,10をケース11内に収納したことにより、傾斜センサ6をコンパクトにすることができ、クロスメンバ2への取付が容易となる。
【0019】
なお、超音波センサ9,10は送信センサ9a,10aと受信センサ9b,10bとが別体のものを前後に2組に設けたが、これに限定されるものではなく、3組以上設けてもよく、また、送信センサと受信センサとが一体のものを前後に2つ設けてもよい。
【0020】
この傾斜センサ6は、2つの超音波センサ9,10の受信時間差に基づいて路面Rに対する車両の傾斜状態を判定するものであり、各送信センサ9a,10aからの超音波は路面Rを反射して各受信センサ9b,10bで受信され、この受信センサ9b,10bの受信時間差に基づいて路面Rに対する車両の傾斜状態が判定される。即ち、送信センサ9a,10a及び受信センサ9b,10bの信号はECU7に入力され、受信センサ9b,10bの超音波の受信時間差に基づいて路面に対する前部のクロスメンバ2の傾斜状態(車両前部の傾斜状態)がECU7で判定される。なお、傾斜センサ6は受信時間差に基づいて路面Rに対する車両の傾斜状態を判定するようにしたが、受信位相差に基づいて路面Rに対する車両の傾斜状態を判定してもよい。
【0021】
図6及び図7に基づいて傾斜センサ6による車両の傾斜状態の判定方法を詳細に説明する。
【0022】
図6に示すように、2つの超音波センサ9,10にて、各送信センサ9a,10aは路面Rに向けて且つ各受信センサ9b,10bに反射するように超音波を発信するものである。
【0023】
そして、図7(a)で示すように、路面Rに対し車両前部(前部クロスメンバ2)が傾斜していない場合、前方の送信センサ9aから受信センサ9bに送信される超音波の経路Laと、後方の送信センサ10aから受信センサ10bに送信される超音波の経路Lbが等しくなり、受信センサ9b,10bの受信時間差ΔTはゼロとなる。一方、図7(b)で示すように、荷台4に荷物を積んだことにより車両の後部が沈んで、路面Rに対して車両前部が後方(上方)に傾斜している場合、前方の送信センサ9aから受信センサ9aに送信される超音波の経路Laが、後方の送信センサ10aから受信センサ10bに送信される超音波の経路Lbよりも長くなり、受信センサ9b,10bに受信時間差ΔTが生じる。
【0024】
このように車両前部が後方に傾斜している場合、距離Lだけ離れた送信センサ9a,10aの間には高さ方向に距離差ΔSが生じる。この距離差ΔSは、受信時間差ΔTと雰囲気温度及び音速により決められ、距離差ΔSと受信センサ9b,10bの間の前後方向の距離Lにより、傾斜角Δαは次式(1)により求めることができる。
Δα=tan -1(ΔS/L) ・・・(1)
従って、ECU7は、受信センサ9b,10bの受信時間差ΔTに基づいて距離差ΔSを導出し、上述した(1)式により傾斜角Δαを演算することで、車両の傾斜状態を判定することができる。
【0025】
なお、図7(b)で示すものとは逆に、荷台4に荷物を積んだことにより車両の前部が沈んで、路面Rに対して車両前部が前方(下方)に傾斜している場合、経路Laより経路Lbの方が長くなり、受信センサ9b,10bに受信時間差ΔTが生じることとなり、前述と同様に、上述した(1)式により傾斜角Δαを演算することで、車両の傾斜状態を判定することができる。
【0026】
また、図8及び図9に基づいてヘッドランプ5及びその光軸調整装置について説明する。
【0027】
図8及び図9に示すように、ヘッドランプ5はHi側のランプ15とLow 側のランプ16で構成され、Low 側のランプ16が、例えば、高輝度ランプ(例えば、ディスチャージヘッドランプ)となっている。Low 側のランプ16はリフレクタホルダ17に高輝度バルブ18が取り付けられ、集光レンズ19が設けられている。Hi側のランプ15は、例えば、ハロゲンバルブ20を備えている。そして、高輝度バルブ18はリフレクタホルダ17と共に光軸調整手段としてのアクチュエータ21により傾動駆動され、光軸が上下方向に調整されるようになっている。アクチュエータ21は、傾斜センサ6からの情報によりECU7で判定された傾斜状態に応じたECU7からの指令により駆動され、高輝度バルブ18の光軸が調整される。
【0028】
また、Low 側のランプ16にはリフレクタホルダ17を手動で調整して高輝度バルブ18の光軸を調整する手動ねじ22が設けられている。手動ねじ22は傾斜センサ6の初期値に対する高輝度バルブ18の光軸位置を設定するときに用いられる。
【0029】
なお、Hi側のランプ15をLow 側のランプ16と同様にアクチュエータ21により上下方向に調整するようにすることも可能である。また、ヘッドランプとしては、リフレクタとバルブが一体の構成のものもあり、リフレクタとバルブが一体の場合、リフレクタをアクチュエータにより傾動駆動させることでバルブの光軸を調整することができる。
【0030】
このように構成された本実施形態の車両用ヘッドランプの光軸調整装置では、図10に示すように、ECU7には車速センサ23からの情報が入力されると共に傾斜センサ6(送信センサ9a,10a及び受信センサ9b,10b)からの検出情報が入力される。このECU7では、車速センサ23が検出した車速に基づいて車両の停車時及び停車脱出時が判断されると共に、送信センサ9a,10a及び受信センサ9b,10bからの検出結果に基づいて上述した傾斜角Δαが演算される。そして、リフレクタホルダ17を傾動させるアクチュエータ(左右のヘッドランプ5のアクチュエータ)21に駆動指令が出力され、車両の状況及び傾斜状態に基づいて高輝度バルブ18の光軸が所定状態に調整される。
【0031】
また、ECU7には、車両が空車で且つ平坦路にあるときの傾斜角Δαの結果を初期値とする機能(初期値記憶機能)が備えられ、着脱自在の故障判断ツール24により初期値を記憶するように指令が出力される。車両が空車で且つ平坦路にあるときの傾斜角Δαの結果を初期値とし、この状態で手動ねじ22により高輝度バルブ18の光軸を所定状態に調整する。そして、記憶された初期値を基にして傾斜センサ6からの情報により演算される傾斜角Δαに応じてアクチュエータ21を駆動し、高輝度バルブ18の光軸が傾斜状態に応じて調整される。
【0032】
これにより、傾斜センサ6の検出状況にばらつきがある場合でも、常に一定の精度を維持して傾斜状態を判定して高輝度バルブ18の光軸を調整することができる。また、故障判断ツール24により初期値を記憶するように指令がだされるようになっているので、既存の装置を利用することで容易に初期設定を行うことができる。
【0033】
即ち、車両の工場出荷時には、図11に示すように、ステップS1で初期値セットが終了していないか否かが判断され、初期値セットが終了していないと判断された場合、ステップS2で路面が平面か否かが判断される。ステップS2で路面が平面であると判断されると、ステップS3で送信センサ9a,10a及び受信センサ9b,10bの検出情報により傾斜角Δαを演算する。そして、ステップS5で故障判断ツールによりその時に演算された傾斜角Δαを初期値と記憶する指令が出力され、ECU7にて初期値が記憶される。また、ステップS2で路面が平面ではないと判断された場合、ステップS4で車両を平面な路面にセットしてステップS3に移行する。一方、ステップS1で初期値セットが終了していると判断された場合、そのまま終了となる。
【0034】
そして、平面路で送信センサ9a,10a及び受信センサ9b,10bの検出情報により演算された傾斜角Δαを初期値とした後、手動ねじ22によりリフレクタホルダ17と共に高輝度バルブ18を傾動させて高輝度バルブ18の光軸を平面路での光軸の状態に調整する。これにより、平面路で演算された傾斜角Δαを基準にした傾斜センサ6の検出情報に応じた制御(オートレベリング)が可能となる。
【0035】
即ち、車両の工場出荷後には、車両の停止時における傾斜角Δαが演算され、この傾斜角Δαと前述した初期値と比較し、両者の差に基づいてアクチュエータ21を駆動し、高輝度バルブ18の光軸が自動的に調整されてヘッドランプ5の傾斜角が補正される。なお、車両の停止時における傾斜角Δαの演算を行って車両の傾斜状態を判定したが、車両が一定車速で走行しているときに、傾斜角Δαの演算を行って車両の傾斜状態を判定してもよい。
【0036】
このように本実施形態の車両用ヘッドランプの光軸調整装置にあっては、傾斜センサ6を車幅方向に送受信を行う2組の超音波センサ9,10とし、送信センサ9a,10aと受信センサ9b,10bの送受信波の方向が略平行状態で、車両の前後方向にほぼ直交する方向となるように配設し、各超音波センサ9,10の受信時間差ΔTから距離差ΔSを求め、傾斜角Δαを演算して車両の傾斜状態を判定し、この判定結果に基づいてヘッドランプ5の光軸を調整している。
【0037】
従って、各超音波センサ9,10の送信センサ9a,10aは送信波を発信し、受信センサ9b,10bが路面Rからの反射波を受信することとなり、各超音波センサ9,10から発信される送信波は走行風からほぼ同様の影響を受けることとなり、走行風による検出誤差が吸収されて車両の傾斜状態を正確に判定することができ、ヘッドランプ5の光軸を適切に調整することができる。
【0038】
また、車両の前部のクロスメンバ2で傾斜を判定することができ、サイドフレーム1に撓みが生じても撓み状態を排除して車両の傾斜角Δαを演算することができ、ヘッドランプ5の傾斜状態を車両の傾斜角Δαに応じて適切に自動的に補正することができる。これにより、車両の傾斜状況を正確に判断して高輝度ランプ18の光軸を適切に調整することができ、対向車両のドライバに眩感を与えないようにすることが可能になる。更に、停車時及び停車脱出時である定常時にヘッドランプ5の傾斜状態を車両の傾斜角Δαに応じて補正できるので、光軸の傾斜が規制される場合等に容易に規制に適合させることができる。
【0039】
【発明の効果】
以上、実施形態において詳細に説明したように請求項1の発明の車両用ヘッドランプの光軸調整装置によれば、車両の前部にのみ装着されて、車幅方向に並設された2組の超音波受信素子及び超音波発信素子を含む超音波センサと、前記各超音波受信素子及び超音波発信素子における受信時間差に基づいて路面に対する車両の傾斜状態を判定する傾斜判定手段と、前記車両に設けられたヘッドランプの光軸を調整可能な光軸調整手段と、前記傾斜判定手段の判定結果に基づいて前記光軸調整手段を制御する制御手段とを具え、前記超音波センサは、前記超音波発信素子から発信される送信波は、互いに車幅方向に並行状態で夫々送信され、前記超音波受信素子は、路面で反射された前記送信波が夫々受信されるように構成されている。
このため、傾斜判定手段では、各超音波センサは車幅方向の送受信信号から両者の時間差に基づいて路面に対する車両の傾斜状態を判定するため、各超音波センサからは同時に送信波を発信して受信波を検出することとなり、同時に各超音波センサから発信される送信波が受ける走行風の影響は同様となり、誤差が吸収されて車両の傾斜状態を正確に判定することができ、ヘッドランプの光軸を適切に調整することができる。
【0040】
また請求項1の発明の車両用ヘッドランプの光軸調整装置によれば、各超音波センサからの送信波を略平行状態で送信するので、各超音波センサから発信される送信波はほぼ同様に走行風の影響を受けることとなり、両者間の検出誤差が減少して高精度に車両の傾斜状態を判定することができる。
【0041】
また請求項1の発明の車両用ヘッドランプの光軸調整装置によれば、超音波センサを車幅方向に並設した信号発信部及び信号受信部とで構成し、信号発信部から発信された信号を路面を経由して信号受信部が受信するので、構造の簡素化並びに低コスト化を図ることができる。
【0043】
請求項2の発明の車両用ヘッドランプの光軸調整装置によれば、超音波センサをフロントアクスル部の前方に装着するので、車両の撓みを排除して車両の傾斜状態を判定することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る車両用ヘッドランプの光軸調整装置を搭載したトラックの概略構成図である。
【図2】トラックのフレームの平面図である。
【図3】超音波センサの取付状態を表すトラックのフレーム前部の概略図である。
【図4】図3のIV−IV断面図である。
【図5】超音波センサの取付状態を表す概略図である。
【図6】超音波センサの取付状態を表す平面図である。
【図7】傾斜状態の判定方法の説明図である。
【図8】光軸調整装置が装着されたヘッドランプ部の水平断面図である。
【図9】図8のIX−IX断面図である。
【図10】本実施形態の光軸調整装置の制御ブロック図である。
【図11】本実施形態の光軸調整装置による初期設定のフローチャートである。
【符号の説明】
1 サイドフレーム
2 クロスメンバ
3 キャブ
5 ヘッドランプ
6 傾斜センサ(傾斜判定手段)
7 ECU(制御手段)
9,10 超音波センサ
9a,10a 送信センサ(信号発信部)
9b,10b 受信センサ(信号受信部)
18 高輝度バルブ
21 アクチュエータ(光軸調整手段)
22 手動ねじ
23 車速センサ
24 故障診断ツール
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical axis adjustment device that adjusts the optical axis of a headlamp in accordance with a vehicle inclination state, and is particularly suitable for application to a truck in which a cab and a loading platform are provided on a frame.
[0002]
[Prior art]
In recent years, high-intensity lamps have been adopted from the viewpoint of safety. A high-intensity lamp has a high contribution to safety, but has a high risk of giving glare to oncoming vehicles. In view of this, various techniques for adjusting the optical axis of the headlamp in accordance with the inclination state of the vehicle so as not to give glare to the driver of the oncoming vehicle have been studied. When the optical axis adjustment device is applied to a truck with a cab and loading platform on the frame, the vertical stroke between the front and rear axles and the frame is detected, and the inclination on the cab side is determined by the vertical stroke difference. It is possible to adjust the optical axis of the headlamp.
[0003]
[Problems to be solved by the invention]
However, in a truck in which a loading platform is provided on the frame, the frame is bent due to the loading of the load, and it is difficult to determine an accurate inclination state. That is, depending on the position of the load, the vertical stroke between the front and rear axles and the frame may be substantially the same even though the frame is deflected and the front end of the frame (cab side) is inclined upward. Conceivable. For this reason, although it is necessary to adjust the optical axis of the headlamp downward, it is determined that there is no stroke difference in the vertical direction, that is, it is determined that the optical axis of the headlamp is not tilted, and the optical axis of the headlamp cannot be adjusted. There is a risk of becoming a condition. Although it is conceivable to adjust the optical axis of the headlamp in consideration of the deflection amount of the frame, the load amount and load position of the load are not constant, and as a result, it is difficult to determine an accurate inclination state.
[0004]
The present applicant, as to solve such a problem, filed a patent application No. 2001 -211714 "optical axis adjusting apparatus for a vehicle headlamp." This “vehicle headlamp optical axis adjusting device” is a tilt determination means for determining the tilt state of the front of the vehicle with respect to the road surface at the front of the vehicle. An ultrasonic sensor having two signal receiving units arranged in a direction and receiving a signal transmitted from a signal transmitting unit via a road surface is provided, and a reception time difference (or reception phase difference) at each signal receiving unit The vehicle inclination state is determined based on the above, and the optical axis of the headlamp is adjusted based on the determination result.
[0005]
However, this “vehicle headlamp optical axis adjusting device” does not take into account the influence of the traveling wind on the ultrasonic sensor, and it is desired to determine the inclination state of the vehicle with high accuracy.
[0006]
The present invention solves such a problem, and provides an optical axis adjustment device for a headlamp for a vehicle that can accurately determine the inclination state of the vehicle and adjust the optical axis of the headlamp appropriately. For the purpose.
[0007]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, in the optical axis adjusting device for a vehicle headlamp according to the first aspect of the present invention, two sets of ultrasonic receiving elements are mounted only in the front portion of the vehicle and arranged in parallel in the vehicle width direction. And an ultrasonic sensor including an ultrasonic transmission element, an inclination determination means for determining an inclination state of the vehicle with respect to the road surface based on a difference in reception time between each ultrasonic reception element and the ultrasonic transmission element, and a head provided in the vehicle An optical axis adjusting means capable of adjusting the optical axis of the lamp, and a control means for controlling the optical axis adjusting means based on a determination result of the inclination determining means, wherein the ultrasonic sensor is connected to the ultrasonic transmitting element. The transmitted transmission waves are transmitted in parallel with each other in the vehicle width direction, and the ultrasonic receiving element is configured to receive the transmission waves reflected on the road surface.
[0008]
Therefore, in the inclination determination means, each ultrasonic sensor determines the vehicle inclination state with respect to the road surface from the transmission / reception signal in the vehicle width direction based on the time difference between the two, so that each ultrasonic sensor simultaneously transmits and receives a transmission wave. At the same time, the influence of the traveling wind received by the transmitted waves transmitted from each ultrasonic sensor is the same, the error is absorbed, and the inclination state of the vehicle can be accurately determined. The axis can be adjusted appropriately.
[0009]
In the vehicle headlamp optical axis adjusting device according to the first aspect of the present invention, the transmission waves from the respective ultrasonic sensors are transmitted in a substantially parallel state. Therefore, the transmission waves transmitted from the respective ultrasonic sensors are affected by the traveling wind in substantially the same manner, so that the detection error between them can be reduced and the inclination state of the vehicle can be determined with high accuracy.
[0010]
In the optical axis adjusting apparatus for a headlamp for a vehicle according to the first aspect of the present invention, the ultrasonic sensor is composed of a signal transmission unit and a signal reception unit arranged in parallel in the vehicle width direction, and a signal transmitted from the signal transmission unit is transmitted. The signal receiving unit receives the signal via the road surface. Accordingly, the structure can be simplified and the cost can be reduced.
[0012]
In the vehicle headlamp optical axis adjusting device according to the second aspect of the present invention, the ultrasonic sensor is mounted in front of the front axle portion. Therefore, it is possible to determine the inclination state of the vehicle by eliminating the bending of the vehicle.
[0013]
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows a schematic configuration of a truck on which an optical axis adjusting device for a vehicle headlamp according to an embodiment of the present invention is mounted, FIG. 2 is a plan view of a truck frame, and FIG. 3 shows a mounting state of an ultrasonic sensor. FIG. 4 is a cross-sectional view taken along the line IV-IV in FIG. 3, FIG. 5 is a schematic view showing the attachment state of the ultrasonic sensor, FIG. 6 is a plan view showing the attachment state of the ultrasonic sensor, and FIG. 8, FIG. 8 is a horizontal cross-section of the headlamp unit on which the optical axis adjusting device is mounted, FIG. 9 is a cross-sectional view taken along the line IX-IX of FIG. 8, and FIG. FIG. 11 shows a flowchart of initial setting by the optical axis adjusting apparatus of the present embodiment.
[0015]
In the vehicle headlamp optical axis adjusting device of the present embodiment, as shown in FIGS. 1 and 2, a plurality of cross members 2 orthogonal to the left and right side frames 1 are assembled. A cab 3 and a loading platform 4 are mounted on a frame constituted by 1 and a cross member 2. Left and right headlamps 5 are mounted on both sides of the cross member 2 at the front end of the vehicle, and an inclination sensor 6 as an inclination determining means is disposed at a substantially central part of the cross member 2. The detection signal of the inclination sensor 6 is input to an ECU 7 as control means, and the ECU 7 determines the inclination state of the vehicle front portion with respect to the road surface based on detection information from the inclination sensor 6.
[0016]
The left and right headlamps 5 may be provided on the cab 3 side. Further, the tilt sensor 6 may be provided on the front axle 8 or on the front side of the front axle 8 other than the cross member 2 at the vehicle end (for example, on the cab 3 side).
[0017]
Here, the tilt sensor 6 will be described in detail. As shown in FIGS. 3 to 6, the inclination sensor 6 is two sets of ultrasonic sensors 9 and 10 that transmit and receive in the vehicle width direction, and includes two transmission sensors 9 a and 10 a serving as signal transmission units, and signal reception. And receiving sensors 9b and 10b. The transmission sensors 9a and 10a are arranged on the left side of the vehicle, and the reception sensors 9b and 10b are arranged on the right side of the vehicle. The directions of the transmission / reception waves of the ultrasonic sensors 9 and 10 are substantially parallel to each other. The direction is substantially perpendicular to the direction.
[0018]
The ultrasonic sensors 9 and 10 are housed in a box-shaped case 11 so that the lower transmitting / receiving surface is exposed, and the case 11 is attached to an intermediate portion of the cross member 2 via a bracket 12 having a U-shape. As a result, the inclination sensor 6 is attached to the front portion of the vehicle so as to face the road surface R. Thereby, the installation space of the inclination sensor 6 can be shortened in the vehicle front-rear direction, and the inclination sensor 6 can be made compact by housing the ultrasonic sensors 9 and 10 in the case 11, Attachment to the cross member 2 becomes easy.
[0019]
Although the ultrasonic sensors 9 and 10 are provided with two sets of transmission sensors 9a and 10a and reception sensors 9b and 10b in the front and rear, it is not limited to this, and three or more sets are provided. Alternatively, two transmission sensors and reception sensors may be provided at the front and rear.
[0020]
The inclination sensor 6 determines the inclination state of the vehicle with respect to the road surface R based on the difference in reception time between the two ultrasonic sensors 9 and 10, and the ultrasonic waves from the transmission sensors 9a and 10a reflect the road surface R. The vehicle is received by the receiving sensors 9b and 10b, and the inclination state of the vehicle with respect to the road surface R is determined based on the reception time difference between the receiving sensors 9b and 10b. That is, the signals of the transmission sensors 9a and 10a and the reception sensors 9b and 10b are input to the ECU 7, and the inclination state of the front cross member 2 with respect to the road surface based on the difference in ultrasonic reception time of the reception sensors 9b and 10b (vehicle front Is determined by the ECU 7. In addition, although the inclination sensor 6 determined the inclination state of the vehicle with respect to the road surface R based on the reception time difference, the inclination state of the vehicle with respect to the road surface R may be determined based on the reception phase difference.
[0021]
Based on FIGS. 6 and 7, a method of determining the tilt state of the vehicle by the tilt sensor 6 will be described in detail.
[0022]
As shown in FIG. 6, in two ultrasonic sensors 9 and 10, the transmission sensor 9a, 10a is intended to transmit ultrasonic waves to reflect and the receiving sensor 9b, and 10b toward the road surface R .
[0023]
As shown in FIG. 7A, when the vehicle front portion (front cross member 2) is not inclined with respect to the road surface R, the path of the ultrasonic wave transmitted from the front transmission sensor 9a to the reception sensor 9b. La and the path Lb of the ultrasonic wave transmitted from the rear transmission sensor 10a to the reception sensor 10b are equal, and the reception time difference ΔT between the reception sensors 9b and 10b is zero. On the other hand, as shown in FIG. 7 (b), when the rear part of the vehicle sinks due to the load loaded on the loading platform 4, and the front part of the vehicle is inclined rearward (upward) with respect to the road surface R, The ultrasonic path La transmitted from the transmission sensor 9a to the reception sensor 9a is longer than the ultrasonic path Lb transmitted from the rear transmission sensor 10a to the reception sensor 10b, and the reception time difference ΔT between the reception sensors 9b and 10b. Occurs.
[0024]
Thus, when the front part of the vehicle is inclined rearward, a distance difference ΔS occurs in the height direction between the transmission sensors 9a and 10a separated by the distance L. This distance difference ΔS is determined by the reception time difference ΔT, the ambient temperature and the sound speed, and the inclination angle Δα can be obtained by the following equation (1) based on the distance difference ΔS and the distance L in the front-rear direction between the reception sensors 9b and 10b. it can.
Δα = tan −1 (ΔS / L) (1)
Therefore, the ECU 7 can determine the inclination state of the vehicle by deriving the distance difference ΔS based on the reception time difference ΔT between the reception sensors 9b and 10b and calculating the inclination angle Δα using the above-described equation (1). .
[0025]
Contrary to what is shown in FIG. 7 (b), the front part of the vehicle is sunk by loading the load on the loading platform 4, and the front part of the vehicle is inclined forward (downward) with respect to the road surface R. In this case, the route Lb is longer than the route La, and a reception time difference ΔT is generated in the reception sensors 9b and 10b. Similarly to the above, by calculating the inclination angle Δα by the above-described equation (1), The inclination state can be determined.
[0026]
The headlamp 5 and its optical axis adjusting device will be described with reference to FIGS.
[0027]
As shown in FIGS. 8 and 9, the headlamp 5 is composed of a Hi-side lamp 15 and a Low-side lamp 16, and the Low-side lamp 16 is, for example, a high-intensity lamp (for example, a discharge headlamp). ing. The low-side lamp 16 has a high-intensity bulb 18 attached to a reflector holder 17 and a condenser lens 19. The Hi-side lamp 15 includes, for example, a halogen bulb 20. The high-intensity bulb 18 is driven to tilt together with the reflector holder 17 by an actuator 21 as an optical axis adjusting means so that the optical axis is adjusted in the vertical direction. The actuator 21 is driven by a command from the ECU 7 corresponding to the tilt state determined by the ECU 7 based on information from the tilt sensor 6, and the optical axis of the high-intensity bulb 18 is adjusted.
[0028]
The low-side lamp 16 is provided with a manual screw 22 for adjusting the optical axis of the high-intensity bulb 18 by manually adjusting the reflector holder 17. The manual screw 22 is used when setting the optical axis position of the high-intensity bulb 18 with respect to the initial value of the tilt sensor 6.
[0029]
It is also possible to adjust the Hi-side lamp 15 in the vertical direction by the actuator 21 in the same manner as the Low-side lamp 16. Some headlamps have a configuration in which the reflector and the bulb are integrated. When the reflector and the bulb are integrated, the optical axis of the bulb can be adjusted by tilting the reflector with an actuator.
[0030]
In the vehicular headlamp optical axis adjusting apparatus of the present embodiment configured as described above, as shown in FIG. 10, the ECU 7 receives information from the vehicle speed sensor 23 and the tilt sensor 6 (transmission sensor 9a, 10a and detection information from the receiving sensors 9b and 10b) are input. The ECU 7 determines when the vehicle is stopped and when the vehicle is exiting based on the vehicle speed detected by the vehicle speed sensor 23, and the inclination angle described above based on the detection results from the transmission sensors 9a and 10a and the reception sensors 9b and 10b. Δα is calculated. Then, a drive command is output to an actuator (an actuator for the left and right headlamps 5) 21 that tilts the reflector holder 17, and the optical axis of the high-intensity bulb 18 is adjusted to a predetermined state based on the vehicle state and the tilt state.
[0031]
Further, the ECU 7 is provided with a function (initial value storage function) for setting the result of the inclination angle Δα when the vehicle is empty and on a flat road as an initial value, and the initial value is stored by the detachable failure determination tool 24. Command is output. The result of the inclination angle Δα when the vehicle is empty and on a flat road is set as an initial value, and the optical axis of the high-intensity bulb 18 is adjusted to a predetermined state by the manual screw 22 in this state. Then, the actuator 21 is driven according to the inclination angle Δα calculated from the information from the inclination sensor 6 based on the stored initial value, and the optical axis of the high-intensity bulb 18 is adjusted according to the inclination state.
[0032]
Thereby, even when there is variation in the detection state of the tilt sensor 6, the optical axis of the high-intensity bulb 18 can be adjusted by always determining the tilt state while maintaining a certain accuracy. In addition, since the failure determination tool 24 issues a command to store the initial value, the initial setting can be easily performed by using an existing apparatus.
[0033]
That is, when the vehicle is shipped from the factory, as shown in FIG. 11, it is determined whether or not the initial value set has been completed in step S1, and if it is determined that the initial value set has not been completed, the process proceeds to step S2. It is determined whether or not the road surface is a flat surface. If it is determined in step S2 that the road surface is a flat surface, the inclination angle Δα is calculated based on the detection information of the transmission sensors 9a and 10a and the reception sensors 9b and 10b in step S3. In step S5, the failure determination tool outputs a command for storing the inclination angle Δα calculated at that time as an initial value, and the ECU 7 stores the initial value. When it is determined in step S2 that the road surface is not flat, the vehicle is set on a flat road surface in step S4, and the process proceeds to step S3. On the other hand, if it is determined in step S1 that the initial value set has been completed, the process ends as it is.
[0034]
Then, after setting the inclination angle Δα calculated based on the detection information of the transmission sensors 9a, 10a and the reception sensors 9b, 10b on the plane path as an initial value, the high-intensity bulb 18 is tilted together with the reflector holder 17 by the manual screw 22. The optical axis of the luminance valve 18 is adjusted to the state of the optical axis in the plane path. As a result, control (auto-leveling) according to the detection information of the tilt sensor 6 based on the tilt angle Δα calculated on the plane road becomes possible.
[0035]
That is, after the vehicle is shipped from the factory, the inclination angle Δα when the vehicle is stopped is calculated, and the actuator 21 is driven based on the difference between the inclination angle Δα and the above-described initial value. Are automatically adjusted to correct the tilt angle of the headlamp 5. Although the inclination angle Δα when the vehicle is stopped is calculated to determine the inclination state of the vehicle, the inclination angle Δα is calculated to determine the inclination state of the vehicle when the vehicle is traveling at a constant vehicle speed. May be.
[0036]
As described above, in the optical axis adjustment device for a vehicle headlamp according to the present embodiment, the tilt sensor 6 is composed of two sets of ultrasonic sensors 9 and 10 that transmit and receive in the vehicle width direction, and the transmission sensors 9a and 10a and the receiver. The sensors 9b and 10b are arranged so that the directions of the transmitted and received waves are substantially parallel and substantially perpendicular to the longitudinal direction of the vehicle, and the distance difference ΔS is obtained from the reception time difference ΔT of each of the ultrasonic sensors 9, 10; The inclination angle Δα is calculated to determine the inclination state of the vehicle, and the optical axis of the headlamp 5 is adjusted based on the determination result.
[0037]
Accordingly, the transmission sensors 9a and 10a of the ultrasonic sensors 9 and 10 transmit transmission waves, and the reception sensors 9b and 10b receive the reflected waves from the road surface R, and are transmitted from the ultrasonic sensors 9 and 10. The transmitted wave is affected by the driving wind almost in the same way, and the detection error due to the driving wind is absorbed so that the vehicle inclination state can be accurately determined, and the optical axis of the headlamp 5 is adjusted appropriately. Can do.
[0038]
Further, the inclination can be determined by the cross member 2 at the front of the vehicle, and even if the side frame 1 is bent, the bending state can be eliminated and the vehicle inclination angle Δα can be calculated. The inclination state can be automatically and appropriately corrected according to the vehicle inclination angle Δα. Thereby, it is possible to accurately determine the inclination state of the vehicle and appropriately adjust the optical axis of the high-intensity lamp 18 so that the driver of the oncoming vehicle is not dazzled. Furthermore, since the inclination state of the headlamp 5 can be corrected in accordance with the inclination angle Δα of the vehicle at the stationary time when the vehicle is stopped and at the time of stopping, it can be easily adapted to the restriction when the inclination of the optical axis is restricted. it can.
[0039]
【The invention's effect】
As described above in detail in the embodiment, according to the optical axis adjustment device for a vehicle headlamp of the invention of claim 1, two sets that are mounted only in the front portion of the vehicle and arranged in parallel in the vehicle width direction. An ultrasonic sensor including an ultrasonic receiving element and an ultrasonic transmitting element, an inclination determining means for determining an inclination state of the vehicle with respect to a road surface based on a reception time difference between the ultrasonic receiving element and the ultrasonic transmitting element, and the vehicle Comprising: an optical axis adjusting means capable of adjusting an optical axis of a headlamp provided in the headlamp; and a control means for controlling the optical axis adjusting means based on a determination result of the tilt determining means. Transmission waves transmitted from the ultrasonic transmission elements are transmitted in parallel with each other in the vehicle width direction, and the ultrasonic reception elements are configured to receive the transmission waves reflected on the road surface, respectively. .
For this reason, in the inclination determination means, each ultrasonic sensor determines the vehicle inclination state with respect to the road surface based on the time difference between the transmission / reception signals in the vehicle width direction. The received wave is detected, and the influence of the traveling wind received by the transmission wave transmitted from each ultrasonic sensor is the same, the error is absorbed, and the inclination state of the vehicle can be accurately determined. The optical axis can be adjusted appropriately.
[0040]
According to the optical axis adjusting device for a headlamp for a vehicle according to the first aspect of the invention, since the transmission waves from the respective ultrasonic sensors are transmitted in a substantially parallel state, the transmission waves transmitted from the respective ultrasonic sensors are substantially the same. Therefore, the detection error between the two is reduced and the inclination state of the vehicle can be determined with high accuracy.
[0041]
According to the vehicle headlamp optical axis adjusting device of the invention of claim 1, the ultrasonic sensor is composed of the signal transmitting unit and the signal receiving unit arranged in parallel in the vehicle width direction, and transmitted from the signal transmitting unit. Since the signal receiving unit receives the signal via the road surface, the structure can be simplified and the cost can be reduced.
[0043]
According to the optical axis adjusting device for a headlamp for a vehicle according to the second aspect of the invention, since the ultrasonic sensor is mounted in front of the front axle portion, it is possible to determine the inclination state of the vehicle by eliminating the bending of the vehicle. .
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a truck equipped with an optical axis adjustment device for a vehicle headlamp according to an embodiment of the present invention.
FIG. 2 is a plan view of a frame of a track.
FIG. 3 is a schematic view of a front portion of a frame of a track showing an attachment state of an ultrasonic sensor.
4 is a cross-sectional view taken along the line IV-IV in FIG. 3;
FIG. 5 is a schematic diagram illustrating an attachment state of an ultrasonic sensor.
FIG. 6 is a plan view showing an attachment state of the ultrasonic sensor.
FIG. 7 is an explanatory diagram of a determination method of an inclined state.
FIG. 8 is a horizontal sectional view of a headlamp unit to which an optical axis adjusting device is attached.
9 is a cross-sectional view taken along the line IX-IX in FIG.
FIG. 10 is a control block diagram of the optical axis adjustment apparatus of the present embodiment.
FIG. 11 is a flowchart of initial setting by the optical axis adjusting apparatus of the present embodiment.
[Explanation of symbols]
1 Side frame 2 Cross member 3 Cab 5 Headlamp 6 Tilt sensor (Tilt judging means)
7 ECU (control means)
9, 10 Ultrasonic sensor 9a, 10a Transmission sensor (signal transmitter)
9b, 10b Receiving sensor (signal receiving unit)
18 High-intensity bulb 21 Actuator (Optical axis adjustment means)
22 Manual screw 23 Vehicle speed sensor 24 Fault diagnosis tool

Claims (2)

車両の前部にのみ装着されて車幅方向に並設された2組の超音波受信素子及び超音波発信素子を含む超音波センサと
前記各超音波受信素子及び超音波発信素子における受信時間差に基づいて路面に対する車両の傾斜状態を判定する傾斜判定手段と、
前記車両に設けられたヘッドランプの光軸を調整可能な光軸調整手段と、
前記傾斜判定手段の判定結果に基づいて前記光軸調整手段を制御する制御手段とを具え
前記超音波センサは、
前記超音波発信素子から発信される送信波は、互いに車幅方向に並行状態で夫々送信され、
前記超音波受信素子は、路面で反射された前記送信波が夫々受信されるように構成されたことを特徴とする車両用ヘッドランプの光軸調整装置。
Only mounted at the front of the vehicle, an ultrasonic sensor comprising two sets of ultrasonic receiving elements and ultrasonic wave emitting element which is arranged in the vehicle width direction,
Inclination determination means for determining the inclination state of the vehicle with respect to the road surface based on the reception time difference in each of the ultrasonic reception elements and the ultrasonic transmission elements ;
An optical axis adjusting means capable of adjusting an optical axis of a headlamp provided in the vehicle ;
Control means for controlling the optical axis adjustment means based on the determination result of the inclination determination means ,
The ultrasonic sensor is
Transmission waves transmitted from the ultrasonic transmission elements are transmitted in parallel with each other in the vehicle width direction,
The optical axis adjusting device for a vehicle headlamp, wherein the ultrasonic wave receiving element is configured to receive each of the transmitted waves reflected on a road surface .
請求項1記載の車両用ヘッドランプの光軸調整装置において、前記超音波センサは、フロントアクスル部の前方に装着されたことを特徴とする車両用ヘッドランプの光軸調整装置。  2. The vehicle headlamp optical axis adjustment device according to claim 1, wherein the ultrasonic sensor is mounted in front of a front axle portion.
JP2001313529A 2001-07-12 2001-10-11 Optical axis adjusting device for vehicle headlamp Expired - Fee Related JP3669321B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2001313529A JP3669321B2 (en) 2001-10-11 2001-10-11 Optical axis adjusting device for vehicle headlamp
EP02015519A EP1275555A3 (en) 2001-07-12 2002-07-10 Optical axis adjusting system for vehicle head lamp
US10/194,454 US6870319B2 (en) 2001-07-12 2002-07-12 Optical axis adjusting system for vehicle head lamp
KR1020020040597A KR100561764B1 (en) 2001-07-12 2002-07-12 Optical axis adjusting system for vehicle head lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001313529A JP3669321B2 (en) 2001-10-11 2001-10-11 Optical axis adjusting device for vehicle headlamp

Publications (2)

Publication Number Publication Date
JP2003118476A JP2003118476A (en) 2003-04-23
JP3669321B2 true JP3669321B2 (en) 2005-07-06

Family

ID=19131984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001313529A Expired - Fee Related JP3669321B2 (en) 2001-07-12 2001-10-11 Optical axis adjusting device for vehicle headlamp

Country Status (1)

Country Link
JP (1) JP3669321B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005217755A (en) 2004-01-29 2005-08-11 Mitsubishi Electric Corp Ultrasonic sensor apparatus
JP4798271B2 (en) * 2009-08-07 2011-10-19 株式会社デンソー Vehicle presence notification device
JP5102859B2 (en) * 2010-05-07 2012-12-19 本田技研工業株式会社 Arrangement structure of tilt angle sensor

Also Published As

Publication number Publication date
JP2003118476A (en) 2003-04-23

Similar Documents

Publication Publication Date Title
US8820986B2 (en) Control device for vehicle lamp, vehicle lamp, and method of controlling vehicle lamp
JP3128611B2 (en) Illumination direction control device for vehicle lighting
CN102563546B (en) Vehicle lamp controller, vehicle lamp system, and vehicle lamp control method
JP2000211423A (en) Irradiating direction controller of vehicle lamp fitting
JP2002178827A (en) Device for automatically correcting orientation of head lamp in vertical direction automobile
JP4394540B2 (en) Irradiation direction control device for vehicular lamp
JP2000085458A (en) Automatic leveling device for automobile headlight
JP2003127754A (en) Optical axis adjusting device of headlamp for vehicle
US6870319B2 (en) Optical axis adjusting system for vehicle head lamp
KR100555436B1 (en) Light axis adjusting apparatus for vehicle headlamp
JP3669321B2 (en) Optical axis adjusting device for vehicle headlamp
JP2001260777A (en) Vehicle headlight device
US7093963B2 (en) Light axis adjusting apparatus for vehicle headlamp
JP4158664B2 (en) Optical axis control device for vehicle headlamp
CN106274648B (en) Curved lighting device for vehicle
US20230098061A1 (en) Optical axis adjustment device
JP2002248985A (en) Control device for radiation direction of vehicle light
JP2003127757A (en) Optical axis adjusting device of headlamp for vehicle
JP2010149766A (en) Optical axis adjusting method of vehicular headlamp
JP3941426B2 (en) Optical axis adjustment device for vehicle headlamp
JP3820299B2 (en) Irradiation direction control device for vehicular lamp
JP2007176296A (en) Optical axis control device of head lamp for vehicle
JP2021138278A (en) Controller for vehicular lighting fixture and vehicular lighting fixture system
JP2003200778A (en) Optical axis adjuster for vehicular head lamp
JP2002337600A (en) Automatic optical axis adjusting device of head light for vehicle

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050404

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080422

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090422

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090422

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100422

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100422

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110422

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120422

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130422

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees