JP3668913B2 - Reflector antenna - Google Patents

Reflector antenna Download PDF

Info

Publication number
JP3668913B2
JP3668913B2 JP18231196A JP18231196A JP3668913B2 JP 3668913 B2 JP3668913 B2 JP 3668913B2 JP 18231196 A JP18231196 A JP 18231196A JP 18231196 A JP18231196 A JP 18231196A JP 3668913 B2 JP3668913 B2 JP 3668913B2
Authority
JP
Japan
Prior art keywords
mirror
reflector antenna
reflector
rotationally symmetric
horn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18231196A
Other languages
Japanese (ja)
Other versions
JPH1028014A (en
Inventor
幹夫 ▲高▼林
博之 出口
典夫 宮原
修治 浦崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP18231196A priority Critical patent/JP3668913B2/en
Publication of JPH1028014A publication Critical patent/JPH1028014A/en
Application granted granted Critical
Publication of JP3668913B2 publication Critical patent/JP3668913B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Waveguide Aerials (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は低交差偏差レベルを実現する通信用/コンパクトレンジ用反射鏡アンテナに関する。
【0002】
【従来の技術】
たとえば文献(古野ほか:波動的交差偏波消去条件を満足する三枚反射鏡オフセットアンテナ、信学論(B)、vol.J78−B−II、no.9、pp.585−592、1995)に示す従来の反射鏡アンテナは図10のように、一次放射器1からの放射電波を非回転対称に配置された第1と第2副反射鏡3と4で反射後、主反射鏡5から放射する鏡面系に対し各鏡面で電波が反射された後に発生し重畳して得られる主反射鏡5上での交差偏差が0になるように構成する。各鏡面で発生する交差偏差レベルは、交差偏差に最も寄与するモードだけを考慮しビームモード展開法で近似的に表され、波動的交差偏波消去条件を満足する範囲で各鏡面に入射する光線中心軸の反射角度σ1 とσ2 とσ3 の制限はない。
【0003】
上記従来の反射鏡アンテナは、一次放射器に続く非回転対称な3枚の反射鏡二次曲面系で各鏡面に入射する光線中心軸反射角度σ1 とσ2 とσ3 の制限がなく、ビームモード近似式で導出される波動的交差偏差消去条件を満足するように構成する方式(ビームモード展開法による波動的交差偏波消去方式)を採る。
【0004】
【発明が解決しようとする課題】
上記のような従来の反射鏡アンテナでは、ビームモード展開法による波動的交差偏差消去方式を採るから、垂直偏波で励振をするとき鏡面上の鏡軸方向電流成分と考慮されていない高次ビームモードの寄与とにより発生する交差偏波成分を抑圧できない問題点があった。
【0005】
この発明が解決しようとする課題は、反射鏡アンテナで一次放射器に続く非回転対称な複数の反射鏡二次曲面系でビームモード展開法による波動的交差偏波消去条件を満足し、かつ低交差偏差レベルを実現するように構成する方式(低交差偏差レベルを実現する波動的交差偏波消去方式)を提供することにある。
【0006】
【課題を解決するための手段】
この発明の反射鏡アンテナは、コルゲートホーン、複モードホーン、角錐ホーンまたはグリッド付円錐ホーンその他の一次放射器からの放射電波を非回転対象な3枚もしくは複数または2枚の反射鏡で反射後放射する鏡面系に対し、波動的または幾何的交差偏波消去条件の関係を満足しかつクリアランスを満たす範囲内で各鏡面に入射する光線中心軸の反射角度σを最小にする配置にする、またはさらにクリアランスを満たす範囲内で(ω/f)tan(σ/2)(fはレンズ系焦点、ωはビーム半径)を最小にするような構成で配置をする、または非回転対象な3枚の反射鏡で反射後放射する鏡面系で上記条件のほかさらに最初と2枚目および2枚目と3枚目の各鏡面間に焦点をもつような構成で配置をするもので、上記課題を解決するため、低交差偏差レベルを実現する波動的または幾何的交差偏波消去方式を採ることを特徴とする。
【0007】
【発明の実施の形態】
この発明の実施の一形態を示す反射鏡アンテナは図1のように、一次放射器1からの放射電波を非回転対称に配置された1〜N−1番目の反射鏡2で反射後、N番目の反射鏡2から放射する鏡面系に対し波動的交差偏波消去条件の関係を満足し、かつクリアランスを満たす範囲内で各鏡面に入射する光線中心軸の反射角度σn (n=1〜N)を最小にするように構成する。鏡面上の鏡軸方向電流成分により発生する交差偏波成分を低減できる。
【0008】
上記実施の形態の反射鏡アンテナは、一次放射器に続く非回転対称な複数の反射鏡二次曲面系でビームモード展開法による波動的交差偏波消去条件を満足し、かつ低交差偏波レベルを実現するように構成する方式(低交差偏波レベルを実現する波動的交差偏波消去方式)を採る。
【0009】
図2(a)のようにn番目の反射鏡2で入射と反射側焦点Fn とFn+1 および中心光線と鏡面との交点間の距離をRn とR´n とし、1/fn =1/Rn −1/R´n で表される焦点距離fn 、ビーム半径ωn 、nとn+1番目の鏡面間距離と各鏡面に入射する光線中心軸間角度σn を定義すると、N番目の鏡面で発生する主偏波の最大値で規格化された交差偏波の最大値Cは、ビームモード展開法により下記数1のようになる。
【0010】
【数1】

Figure 0003668913
【0011】
【数2】
Figure 0003668913
【0012】
鏡面上の鏡軸方向電流成分による二次パターンは、鏡面上の電流Jの鏡軸方向成分(J・k2 )を用い電流分布法で表される。
無限遠方交差偏波成分Fz 、xpol は、垂直偏波励振時次式のようになり、水平偏波励振時はFz 、xpol に比べ無視できる程小さくなる。
z 、xpol (θ2 ,φ2
≒−tanα/2 sinθ2 sinφ2copol (θ2 ,φ2
ここで、αはオフセット角度、Fcopol は垂直偏波励振時放射パターンの主偏波成分を表す。
一様の開口面照度分布時鏡面上の鏡軸方向電流成分により発生する交差偏波成分のピーク電力Pz 、xpol (dBi)は、次式のようになり、そのオフセット角度αだけに依存する量になる。
z 、xpol ≒1.4+20 Log10(tanα/2)
従って、交差偏波成分を低減するには、クリアランスを満たす範囲で一次放射器のオフセット角度αを小さくしてやればよい。
なお上記図2(b)に示す実施の形態によるパラボラアンテナ2aのほかの非回転対称な複数の反射鏡二次曲面上の鏡軸方向電流成分により発生する交差偏波成分も、各鏡面に入射する光線中心軸の反射角度を小さくすれば、低交差偏差レベルを実現できることは容易に類推される。
【0013】
なお上記図1に示す発明の実施の形態で非回転対称な複数の反射鏡2は波動的交差偏波消去条件の関係を満足し、かつクリアランスを満たす範囲内で各鏡面に入射する光線中心軸の反射角度σ1 とσ2 とσ3 を最小にするような構成で配置をするとして説明したが、図3のように上記従来例の図10に示す非回転対称な3枚の第1と第2副反射鏡3と4と主反射鏡5を用い、上記式C=|XN |/(2e)1/2 で鏡面数Nを3とすることにより得られる下記の波動的交差偏波消去条件の関係を満足し、かつクリアランスを満たす範囲内でσ1 とσ2 とσ3 を最小にするような構成で配置をしてもよい。上記と同じに鏡面上の鏡軸方向電流成分により発生する交差偏波成分を低減できる。
tanσ1 /2=(Δ312 /Δ131 )tanσ3 /2
tanσ2 /2
={−f22 (1/d1 +1/d2 −1/f2 )tanσ3 /2}/f3
ここで、f1 とf2 とf3 およびω1 とω2 とω3 は、第1と第2副反射鏡3と4と主反射鏡5のレンズ系焦点距離およびビーム半径、d1 およびd2 は、光線中心軸上の第1と第2副反射鏡間距離および第2副反射鏡と主反射鏡間距離を表す。
【0014】
また上記図1に示す発明の実施の形態で非回転対称な複数の反射鏡2は図4のように、非回転対称な2枚の反射鏡2を用い、下記の幾何光学的交差偏波消去条件の関係を満足し、かつクリアランスを満たす範囲内で各鏡面に入射する光線中心軸の反射角度σ1 とσ2 を最小にするような構成で配置をしてもよい。上記と同じに鏡面上の鏡軸方向電流成分により発生する交差偏波成分を低減できる。
δpe=sin(β/2)/sin(α−β/2)
ここで、eは反射鏡2の離心率、δおよびpは1と−1のとき、それぞれ凹と凸面鏡および回転楕円を非楕円面鏡を表す。また図4のようにαは線分OFと単位ベクトルkとのなす角度、βは点0を頂角として反射鏡2を見込む円錐の軸とZ軸とのなす角度を表す。
【0015】
また上記図1と3と4に示す発明の実施の形態でクリアランス満たす範囲内で各鏡面に入射する光線中心軸の反射角度σを最小にするとして説明したが、さらに(ω/f)tan(σ/2)(fはレンズ系焦点距離、ωはビーム半径)に対しクリアランスを満たす範囲内で最小にしてもよい。上記式C=|XN |/(2e)1/2 は項(ωn /fn )tan(δn /2)の値が十分小さいものとし当該2次項以上を無視して得られる結果だから、当該項が大きくなると各鏡面で発生する高次ビームモードの影響により交差偏波誤差も大きくなり、全鏡面系での交差偏波の劣化を招く。従って、当該誤差を小さくするために当該項を十分小さくする必要がある。
たとえば図3に示す第1副反射鏡3と主反射鏡5で発生する交差偏波C1 とC3 は、次式のようになる。ここで、Le3は主反射鏡5でのエッジレベルを表す。C1={ω0 (1−η2 ω2 /ω3 )(1+d0 /R0 )tan(σ3 /2)} /{(2e)1/21
3={D3 (8.69/Le3)tan(σ3/2)}/{2(2e)1/23
低交差偏波レベルを実現するには、C1 とC3 が十分低くなるようにパラメータを決定する必要があるが、各鏡面に入射する光線中心軸の反射角度σ3 を小さくすることで各鏡面で発生する高次ビームモードによる交差偏波を低減できる。このとき図3に示す第2副反射鏡4で発生する交差偏波も上記C1 とC3 が小さいから低く抑えられる。
【0016】
また上記図3に示す発明の実施の形態で非回転対称な3枚の第1と第2副反射鏡3と4と主反射鏡5は図5のように、第1と第2副反射鏡3と4との間および第2副反射鏡4と主反射鏡5との間に焦点をもち、波動的交差偏波消去条件の関係を満足し、かつクリアランスを満たす範囲内で各鏡面に入射する光線中心軸の反射角度σ1 とσ2 とσ3 を最小にするような構成で配置をしてもよい。σ1 とσ2 とσ3 を最小にしてもクリアランスを十分にとれ、上記と同じに鏡面上の鏡軸方向電流成分により発生する交差偏波成分を低減できる。
【0017】
また上記図1に示す発明の実施の形態で一次放射器1は図6、図7、図8または図9のように、コルゲートホーン1a、複モードホーン1b、角錐ホーン1cまたはグリッド付円錐ホーン1dを用いてもよい。コルゲートホーン1aは、交差偏波が低いから、一次放射器1としての交差偏波特性も含め、低交差偏波反射鏡アンテナを実現できる。また周波数に依存しない交差偏波消去条件で周波数に対応したコルゲートホーンを用いることにより、広帯域かつ低交差偏波を実現できる。複モードホーン1bは、交差偏波が低くかつコルゲートホーンに比べ加工が容易だから、高加工精度が要求される高周波でも使用できる。角錐ホーン1cは、交差偏波がなく、かつ加工が容易だから、一次放射器1としての交差偏波特性も含め低交差偏波反射鏡アンテナを実現できる。グリッド付円錐ホーン1dは、交差偏波が低くかつ加工が容易だから、複モードホーン1bと同じ効果が得られる。また当該ホーン1dを回転させることにより、垂直・水平両偏波を送受信できる。
【0018】
【発明の効果】
上記のようなこの発明の反射鏡アンテナでは、一次放射器に続く非回転対象な複数の反射鏡二次曲面系でビームモード展開法による波動的交差偏波消去条件を満足し、かつ低交差偏差レベルを実現するように構成する方式を採るから、従来のように各鏡面に入射する光線中心軸反射角度の制限がなく、ビームモード近似式で導出される波動的交差偏差消去条件を満足するように構成する方式に比べ、鏡面上の鏡軸方向電流成分や高次ビームモードにより発生する交差偏波成分の劣化を考慮した低交差偏波レベルの反射鏡アンテナを実現できる効果がある。また非回転対称な2枚の反射鏡を用いるときは、幾何光学的交差偏差消去条件を満足し、かつクリアランスを満たす範囲内で各鏡面に入射する光線中心軸の反射角度を最小にするような構成で配置する方式を採り、同じ効果を得る。
【図面の簡単な説明】
【図1】 この発明の実施の一形態を示す反射鏡アンテナの構成図。
【図2】 図1に示す反射鏡のパラメータと鏡軸方向電流成分による交差偏波とを説明する図。
【図3】 この発明の実施の他の一形態を示す構成図。
【図4】 この発明の実施の他の一形態を示す構成図。
【図5】 この発明の実施の他の一形態を示す構成図。
【図6】 この発明の実施の他の一形態を示す構成図。
【図7】 この発明の実施の他の一形態を示す構成図。
【図8】 この発明の実施の他の一形態を示す構成図。
【図9】 この発明の実施の他の一形態を示す構成図。
【図10】 従来の技術を示す反射鏡アンテナの構成図。
【符号の説明】
1 一次放射器、1a コルゲートホーン、1b 複モードホーン、1c 角錐ホーン、1d グリッド付円錐ホーン、2 反射鏡、2a パラボラアンテナ、3 第1副反射鏡、4 第2副反射鏡、5 主反射鏡。
なお図中、同一符号は同一または相当部分を示す。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a reflector antenna for communication / compact range that realizes a low crossing deviation level.
[0002]
[Prior art]
For example, literature (Furuno et al .: Three-mirror reflector antenna satisfying wave cross polarization cancellation condition, theory of theory (B), vol. J78-B-II, no. 9, pp. 585-592, 1995) As shown in FIG. 10, the conventional reflector antenna shown in FIG. 10 reflects the radiated radio wave from the primary radiator 1 with the first and second sub-reflectors 3 and 4 arranged in a non-rotationally symmetrical manner, and then from the main reflector 5. The crossing deviation on the main reflecting mirror 5 generated and superimposed after the radio wave is reflected on each mirror surface with respect to the radiating mirror surface system is configured to be zero. The level of cross deviation generated at each mirror surface is approximated by the beam mode expansion method considering only the mode that contributes most to the cross deviation, and the rays incident on each mirror surface within the range satisfying the wave cross polarization cancellation condition. There are no restrictions on the central axis reflection angles σ 1 , σ 2, and σ 3 .
[0003]
The above-mentioned conventional reflector antenna has no limitation on the light axis reflection angles σ 1 , σ 2, and σ 3 incident on each mirror surface in the non-rotationally symmetric reflector second curved surface system following the primary radiator, The system is constructed so as to satisfy the wave cross deviation cancellation condition derived by the beam mode approximate expression (wave cross polarization cancellation system using the beam mode expansion method).
[0004]
[Problems to be solved by the invention]
The conventional reflector antenna as described above adopts a wave cross-deviation elimination method based on the beam mode expansion method. Therefore, a high-order beam that is not considered as a current component in the mirror axis direction on the mirror surface when excited by vertical polarization. There is a problem that the cross polarization component generated by the mode contribution cannot be suppressed.
[0005]
The problem to be solved by the present invention is to satisfy the wave cross-polarization cancellation condition by the beam mode expansion method in a plurality of non-rotationally symmetric reflector second-order curved surface systems that follow the primary radiator in the reflector antenna, and low An object of the present invention is to provide a system configured to realize a cross deviation level (a wave cross polarization cancellation system that realizes a low cross deviation level).
[0006]
[Means for Solving the Problems]
The reflector antenna of the present invention radiates a reflected wave from a corrugated horn, a multimode horn, a pyramid horn, a cone-shaped horn with a grid, or other primary radiators after being reflected by three, a plurality, or two reflectors that are not rotated. The mirror surface system is arranged so that the reflection angle σ of the central axis of the light ray incident on each mirror surface is minimized within the range satisfying the relationship of the wave or geometric cross polarization cancellation condition and satisfying the clearance , or further Arrange in a configuration that minimizes (ω / f) tan (σ / 2) (f is the lens system focus, ω is the beam radius) within the range that satisfies the clearance , or three reflections that are not rotated In addition to the above conditions, the mirror system that radiates after reflection by a mirror is arranged in a configuration with a focal point between the first and second mirror surfaces and the second and third mirror surfaces. For Wherein the take wave or geometric cross polarization erase method to achieve low cross deviation level.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
As shown in FIG. 1, the reflector antenna showing an embodiment of the present invention reflects the radiated radio wave from the primary radiator 1 with the 1st to (N-1) th reflecting mirrors 2 arranged in a non-rotationally symmetrical manner, and N The reflection angle σ n (n = 1 to 1) of the central axis of the light ray incident on each mirror surface within the range satisfying the relationship of the wave cross polarization elimination condition with respect to the mirror surface system radiating from the second reflector 2 N) is minimized. The cross polarization component generated by the current component in the mirror axis direction on the mirror surface can be reduced.
[0008]
The reflector antenna of the above embodiment satisfies the wave cross polarization cancellation condition by the beam mode expansion method with a plurality of non-rotationally symmetric reflector second curved surface systems following the primary radiator, and has a low cross polarization level. (A wave cross polarization cancellation method that realizes a low cross polarization level) is adopted.
[0009]
As shown in FIG. 2A, the distances between the intersections of the incident and reflection side focal points F n and F n + 1 and the central ray and the mirror surface in the n-th reflecting mirror 2 are R n and R ′ n, and 1 / f When a focal length f n represented by n = 1 / R n −1 / R ′ n , a beam radius ω n , a distance between n and (n + 1) th mirror surface, and an angle σ n between light beam central axes incident on each mirror surface are defined. The maximum value C of the cross polarization normalized by the maximum value of the main polarization generated at the Nth mirror surface is expressed by the following equation 1 by the beam mode expansion method.
[0010]
[Expression 1]
Figure 0003668913
[0011]
[Expression 2]
Figure 0003668913
[0012]
The secondary pattern based on the mirror axis direction current component on the mirror surface is represented by the current distribution method using the mirror axis direction component (J · k 2 ) of the current J on the mirror surface.
The infinitely far cross-polarization components F z and x pol are as shown in the following equation at the time of vertical polarization excitation, and are negligibly smaller than those at F z and x pol at the time of horizontal polarization excitation.
F z , x pol2 , φ 2 )
≒ -tanα / 2 sinθ 2 sinφ 2 F copol2 , φ 2 )
Here, α represents the offset angle, and F copol represents the main polarization component of the radiation pattern during vertical polarization excitation.
The peak power P z and x pol (dBi) of the cross polarization component generated by the current component in the mirror axis direction on the mirror surface when the illuminance distribution is uniform is expressed by the following equation and depends only on the offset angle α. The amount to be.
P z , x pol ≈1.4 + 20 Log 10 (tan α / 2)
Therefore, in order to reduce the cross polarization component, the offset angle α of the primary radiator may be reduced within a range that satisfies the clearance.
Note that cross-polarized components generated by mirror-axis direction current components on a plurality of non-rotationally symmetric secondary mirror surfaces of the parabolic antenna 2a according to the embodiment shown in FIG. 2B are also incident on each mirror surface. It can be easily inferred that a low crossing deviation level can be realized by reducing the reflection angle of the central axis of the light beam.
[0013]
In the embodiment of the invention shown in FIG. 1, the plurality of non-rotationally symmetric reflecting mirrors 2 satisfy the relationship of the wave cross polarization cancellation condition and are incident on each mirror surface within the range satisfying the clearance. The reflection angles σ 1 , σ 2, and σ 3 are arranged so as to minimize the reflection angle. However, as shown in FIG. 3, the first non-rotationally symmetric first and third sheets shown in FIG. Using the second sub-reflecting mirrors 3 and 4 and the main reflecting mirror 5, the following wave cross-polarization obtained by setting the number of mirror surfaces N to 3 in the above formula C = | X N | / (2e) 1/2 The arrangement may be such that σ 1 , σ 2, and σ 3 are minimized within a range that satisfies the relationship of the erasing conditions and satisfies the clearance. As described above, the cross polarization component generated by the mirror axis direction current component on the mirror surface can be reduced.
tanσ 1/2 = (Δ 3 f 1 d 2 / Δ 1 f 3 d 1) tanσ 3/2
tanσ 2/2
= {- f 2 d 2 ( 1 / d 1 + 1 / d 2 -1 / f 2) tanσ 3/2} / f 3
Here, f 1 , f 2 , f 3, ω 1 , ω 2, and ω 3 are the lens system focal lengths and beam radii of the first and second sub-reflecting mirrors 3 and 4 and the main reflecting mirror 5, d 1 and d 2 represents the distance between the first and second sub-reflecting mirrors and the distance between the second sub-reflecting mirror and the main reflecting mirror on the central axis of the light beam.
[0014]
In the embodiment of the invention shown in FIG. 1, the non-rotationally symmetric reflectors 2 use two non-rotationally symmetric reflectors 2 as shown in FIG. The arrangement may be such that the reflection angles σ 1 and σ 2 of the central axis of the light rays incident on each mirror surface are minimized within the range satisfying the condition and satisfying the clearance. As described above, the cross polarization component generated by the mirror axis direction current component on the mirror surface can be reduced.
δpe = sin (β / 2) / sin (α−β / 2)
Here, e is the eccentricity of the reflecting mirror 2, and when δ and p are 1 and −1, the concave and convex mirrors and the rotating ellipse are non-elliptical mirrors, respectively. Further, as shown in FIG. 4, α represents the angle formed by the line segment OF and the unit vector k, and β represents the angle formed by the Z axis and the axis of the cone looking into the reflecting mirror 2 with the point 0 as the apex angle.
[0015]
Further, in the embodiment of the invention shown in FIGS. 1, 3 and 4 described above, the reflection angle σ of the central axis of the light ray incident on each mirror surface is minimized within the range satisfying the clearance , but further (ω / f) tan (Σ / 2) (f is the lens system focal length, ω is the beam radius), and may be minimized within a range satisfying the clearance. The above formula C = | X N | / (2e) 1/2 is a result obtained by ignoring the second-order term or more assuming that the value of the term (ω n / f n ) tan (δ n / 2) is sufficiently small. As the term increases, the cross polarization error also increases due to the influence of the higher-order beam mode generated on each mirror surface, leading to deterioration of the cross polarization in the entire mirror system. Therefore, it is necessary to make the term sufficiently small in order to reduce the error.
For example, cross polarized waves C 1 and C 3 generated in the first sub-reflecting mirror 3 and the main reflecting mirror 5 shown in FIG . Here, L e3 represents the edge level at the main reflecting mirror 5. C 1 = {ω 0 (1 -η 2 ω 2 / ω 3) (1 + d 0 / R 0) tan (σ 3/2)} / {(2e) 1/2 d 1}
C 3 = {D 3 (8.69 / L e3) tan (σ 3/2)} / {2 (2e) 1/2 f 3}
In order to realize a low cross polarization level, it is necessary to determine parameters so that C 1 and C 3 are sufficiently low. However, by reducing the reflection angle σ 3 of the central axis of the light incident on each mirror surface, Cross polarization due to higher-order beam mode generated on the mirror surface can be reduced. At this time, the cross polarization generated in the second sub-reflecting mirror 4 shown in FIG. 3 is also kept low because the above C 1 and C 3 are small.
[0016]
Further, the three first and second sub-reflecting mirrors 3 and 4 and the main reflecting mirror 5 which are non-rotationally symmetric in the embodiment of the invention shown in FIG. 3 are the first and second sub-reflecting mirrors as shown in FIG. 3 and 4 and between the second sub-reflecting mirror 4 and the main reflecting mirror 5, and is incident on each mirror surface within the range satisfying the relationship of wave cross polarization cancellation condition and satisfying the clearance. The arrangement may be such that the reflection angles σ 1 , σ 2, and σ 3 of the light beam central axis are minimized. Even if σ 1 , σ 2, and σ 3 are minimized, a sufficient clearance can be obtained, and the cross polarization component generated by the current component in the mirror axis direction on the mirror surface can be reduced as described above.
[0017]
In the embodiment of the invention shown in FIG. 1, the primary radiator 1 includes a corrugated horn 1a, a multimode horn 1b, a pyramid horn 1c or a cone-shaped horn 1d with a grid as shown in FIG. 6, FIG. 7, FIG. May be used. Since the corrugated horn 1a has a low cross polarization, a low cross polarization reflector antenna including the cross polarization characteristics as the primary radiator 1 can be realized. Further, by using a corrugated horn corresponding to the frequency under the cross polarization cancellation condition independent of the frequency, a wide band and low cross polarization can be realized. The multi-mode horn 1b has a low cross polarization and is easy to process as compared with the corrugated horn, so that it can be used even at high frequencies where high processing accuracy is required. Since the pyramid horn 1c has no cross polarization and is easy to process, a low cross polarization reflector antenna including the cross polarization characteristics as the primary radiator 1 can be realized. Since the conical horn 1d with a grid has low cross polarization and is easy to process, the same effect as the multimode horn 1b can be obtained. Further, by rotating the horn 1d, both vertical and horizontal polarized waves can be transmitted and received.
[0018]
【The invention's effect】
In the reflector antenna according to the present invention as described above, a plurality of non-rotating target secondary curved surface systems following the primary radiator satisfy the wave cross polarization cancellation condition by the beam mode expansion method and have a low cross deviation. Since the system is configured to realize the level, there is no limit on the reflection angle of the central axis of the light ray incident on each mirror surface as in the conventional case, and the wave cross deviation elimination condition derived by the beam mode approximate expression is satisfied. Compared with the above-described method, there is an effect that a mirror antenna with a low cross polarization level can be realized in consideration of the deterioration of the cross polarization component generated by the mirror axis direction current component on the mirror surface and the higher order beam mode. Further, when two non-rotationally symmetric reflectors are used, the reflection angle of the central axis of the light ray incident on each mirror surface is minimized within the range satisfying the geometric optical cross deviation elimination condition and satisfying the clearance. The same effect is obtained by adopting the arrangement method.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a reflector antenna showing an embodiment of the present invention.
FIG. 2 is a diagram for explaining parameters of the reflecting mirror shown in FIG. 1 and cross-polarization due to mirror axis direction current components;
FIG. 3 is a configuration diagram showing another embodiment of the present invention.
FIG. 4 is a configuration diagram showing another embodiment of the present invention.
FIG. 5 is a configuration diagram showing another embodiment of the present invention.
FIG. 6 is a configuration diagram showing another embodiment of the present invention.
FIG. 7 is a configuration diagram showing another embodiment of the present invention.
FIG. 8 is a configuration diagram showing another embodiment of the present invention.
FIG. 9 is a configuration diagram showing another embodiment of the present invention.
FIG. 10 is a configuration diagram of a reflector antenna showing a conventional technique.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Primary radiator, 1a Corrugated horn, 1b Double mode horn, 1c Pyramid horn, 1d Conical horn with grid, 2 Reflector, 2a Parabolic antenna, 3 First sub reflector, 4 Second sub reflector, 5 Main reflector .
In the drawings, the same reference numerals indicate the same or corresponding parts.

Claims (6)

一次放射器からの放射電波を非回転対称な複数の反射鏡で反射後放射する反射鏡アンテナにおいて、波動的交差偏波消去条件の関係を満足しかつ各反射鏡間でクリアランスを満たす範囲内で、各鏡面に入射する光線中心軸の反射角度を最小にするような構成で各反射鏡を配置する反射鏡アンテナ。In the reflector antenna that radiates the radiation wave from the primary radiator after being reflected by multiple non-rotationally symmetric reflectors, within the range that satisfies the relationship of wave cross polarization cancellation condition and satisfies the clearance between each reflector. , reflector antenna placing each reflecting mirror reflection angle of a light beam central axis incident on each mirror configuration so as to minimize. 非回転対称な複数の反射鏡非回転対称な3枚の反射鏡であることを特徴とする請求項1記載の反射鏡アンテナ。Reflector antenna according to claim 1, wherein the non-rotationally symmetric plurality of reflectors are non-rotationally symmetric three reflection mirrors. 非回転対称な複数の反射鏡非回転対称な2枚の反射鏡であり、波動的交差偏波消去条件に代えて幾何的交差偏波消去条件の関係を満足することを特徴とする請求項1記載の反射鏡アンテナ。Non-rotationally symmetric plurality of reflectors are non-rotationally symmetric two reflecting mirrors, claims, characterized by satisfying the relation of geometric cross polarization delete condition in place of the wave cross-polarization delete condition The reflector antenna according to 1. 各鏡面に入射する光線中心軸の反射角度をσ、レンズ系焦点距離をf、ビーム半径をωとし、(ω/f)tan(σ/2)に対しさらにクリアランスを満たす範囲内で最小にするような構成で各反射鏡を配置をすることを特徴とする請求項1乃至3の何れかに記載の反射鏡アンテナ。The reflection angle of the central axis of the light ray incident on each mirror surface is σ, the focal length of the lens system is f, the beam radius is ω, and is minimized within the range that satisfies the clearance with respect to (ω / f) tan (σ / 2). 4. The reflector antenna according to claim 1 , wherein the reflectors are arranged in such a configuration. 最初と2枚目および2枚目と3枚目の各鏡面間に焦点をもつような構成で配置をすることを特徴とする請求項2または4記載の反射鏡アンテナ。  5. The reflector antenna according to claim 2, wherein the reflector antennas are arranged in such a manner that focal points are provided between the first and second mirror surfaces and the second and third mirror surfaces. 一次放射器コルゲートホーン、複モードホーン、角錐ホーンまたはグリッド付円錐ホーンの何れか一を用いることを特徴とする請求項1乃至5の何れかに記載の反射鏡アンテナ。6. The reflector antenna according to claim 1, wherein the primary radiator is one of a corrugated horn, a multi-mode horn, a pyramid horn, or a cone-shaped horn with a grid.
JP18231196A 1996-07-11 1996-07-11 Reflector antenna Expired - Lifetime JP3668913B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18231196A JP3668913B2 (en) 1996-07-11 1996-07-11 Reflector antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18231196A JP3668913B2 (en) 1996-07-11 1996-07-11 Reflector antenna

Publications (2)

Publication Number Publication Date
JPH1028014A JPH1028014A (en) 1998-01-27
JP3668913B2 true JP3668913B2 (en) 2005-07-06

Family

ID=16116089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18231196A Expired - Lifetime JP3668913B2 (en) 1996-07-11 1996-07-11 Reflector antenna

Country Status (1)

Country Link
JP (1) JP3668913B2 (en)

Also Published As

Publication number Publication date
JPH1028014A (en) 1998-01-27

Similar Documents

Publication Publication Date Title
KR860000332B1 (en) A antenna
US4166276A (en) Offset antenna having improved symmetry in the radiation pattern
JP3668913B2 (en) Reflector antenna
CN113533864B (en) Three-reflector compact range antenna measurement system, structure and parameter determination method
JP2710416B2 (en) Elliptical aperture double reflector antenna
JPH0720012B2 (en) Antenna device
JP3860241B2 (en) Aperture antenna
JPS5892106A (en) Multibeam antenna
JP3034262B2 (en) Aperture antenna device
JP2822768B2 (en) Antenna device
JPS6128247B2 (en)
JPH0352246B2 (en)
JPS6019303A (en) Antenna
JP2001223522A (en) Four reflector type focused beam feeding system
JPS63109603A (en) Multi-beam antenna
JPH0347764B2 (en)
JPH04575Y2 (en)
JP2002185244A (en) Four-piece reflector offset antenna
JPS6048603A (en) Antenna system
JP2000151266A (en) Antenna system
JP2001156539A (en) Antenna system
JPS63283211A (en) Aperture plane antenna
JPH07135419A (en) Dual reflecting mirror antenna system
JP2001127539A (en) Antenna system
JPH11317617A (en) Spherical mirror antenna device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050331

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080422

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090422

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100422

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100422

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110422

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120422

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120422

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130422

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130422

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term