JPS6048603A - Antenna system - Google Patents

Antenna system

Info

Publication number
JPS6048603A
JPS6048603A JP15631583A JP15631583A JPS6048603A JP S6048603 A JPS6048603 A JP S6048603A JP 15631583 A JP15631583 A JP 15631583A JP 15631583 A JP15631583 A JP 15631583A JP S6048603 A JPS6048603 A JP S6048603A
Authority
JP
Japan
Prior art keywords
sub
reflecting mirror
mirror
reflector
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15631583A
Other languages
Japanese (ja)
Other versions
JPH053762B2 (en
Inventor
Takashi Yamada
隆 山田
Kenichi Kagoshima
憲一 鹿子嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP15631583A priority Critical patent/JPS6048603A/en
Publication of JPS6048603A publication Critical patent/JPS6048603A/en
Publication of JPH053762B2 publication Critical patent/JPH053762B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/12Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave
    • H01Q19/17Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave the primary radiating source comprising two or more radiating elements

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

PURPOSE:To narrow the beam distance by arranging a main reflection mirror and a sub-reflection mirror symmetrically around a turning center axis and arranging a horn apart from the turning center axis in comparison with the sub-reflection mirror. CONSTITUTION:A radio wave radiated from the horn 1 is irradiated to the sub- reflection mirror 7, is reflected in the direction of the main reflection mirror 3 and goes to a propagating direction 5 of the radio wave. Similarly, the radio wave from a horn 1' goes to the sub-reflection mirror 7 and the main reflection mirror 3 and goes toward the propagating direction 5' of the radio wave. Since the main reflection mirror 3 and the sub-reflection mirror 7 are arranged symmetrically to the turning center axis 4, when the horn 1 is arranged symmetrically around the turning center axis 4 to the horn 1', the radio wave from the horn 1 and the radio wave from the horn 1' behave the same operation except the final propagating direction. Since the horn is placed apart from the turning center axis 4 in comparison with the sub-reflection mirror 7, the horn is arranged easily by keeping the angle from the turning center axis 4 to a constant value, and the beam distance is narrowed by arranging the horn approached nearly to be contacted conversely.

Description

【発明の詳細な説明】 (技術分野) 本発明は一つのアンテナから複数のビームを独立に放射
できる複数ビームアンテナに関するものであって、例え
ば衛星通信の地球局アンテナとして複数の衛星と通信す
る場合に用いる開口面アンテナに関するものである。
[Detailed Description of the Invention] (Technical Field) The present invention relates to a multiple beam antenna that can independently radiate multiple beams from one antenna, and for example, when communicating with multiple satellites as an earth station antenna for satellite communications. The present invention relates to an aperture antenna used for.

(背景技術) 従来、一枚の主反射鏡面から一次放射系の数え対応した
複数のビームを放射するアンテナとしては、それぞれの
目的に合わせて種々の形式が考えられている。一方、衛
星通信の地琴局アンテナとしては個々のビームのビーム
幅に比べ各ビーム相互の間隔が広くとれるアンテナ、言
い換えれば或ルーツのビームに着目した場合にはそのビ
ームを広い角度まで走査しても特性の劣化しないアンテ
ナが必要とされており、衛星の並ぶ面に垂直な軸に対し
て軸対称な構造を有するトーラスアンテナと呼ばれるア
ンテナが有効とされている。第1図に従来考えられてい
るトーラスアンテナの構成を示す。1および1′はそれ
ぞれ一次放射系として用いるホーン、2および2はそれ
ぞれホーン1および1′からの電波を反射する副反射鏡
、3はホーン1および1′からの電波に共通に用いる主
反射鏡、4は主反射鏡30回転中心軸、5およびダはそ
れぞれホーン1および1′に対応する電波の進行方向を
示す。6は主反射鏡の母線であって略放物線となってお
り、主反射鏡3はこの母線6を回転中心軸4の回りに回
転して得られた曲面により構成される0また、副反射鏡
2およびガは主反射鏡から放射される電波の通路外に配
置され、電波通路を邪魔しないようになっている。本ア
ンテナの動作を送信を例に説明する。ホーン1から出た
電波は副反射鏡2に当り、主反射鏡3の方向に反射され
る。ここで、副反射鏡2は鏡面修整されており、単に電
波の進行方向を折り返すのみならず、主反射鏡がトーラ
ス鏡面であるが故に発生する位相歪を打ち消すように機
能する。副反射鏡2から主反射鏡3に向かった電波は主
反射鏡3で反射され、電波の進行方向5に向かう。同様
に、ホーン1′から出た電波は副反射鏡グ、主反射鏡3
と当り、電波の進行方向ダに向かう。ここで、主反射鏡
3は回転中心軸4に対して回転対称であることに着目す
ると、ホーン1と副反射鏡2の組合せがホーン11と副
反射鏡/の組合せに対して回転中心軸4回りに回転対称
に配置されれば、ホーン1から出た電波とホーン1′か
ら出た電波とはその最終的な進行方向が異なることを除
き同様の動作をすることは明らかである。このため、主
反射鏡の大きさを十分にとれば、ビーム幅に比べて広い
ビーム相互の間隔を以って複数のビームを配置しても、
それぞれのビームの特性劣化のないアンテナを構成でき
る。これがトーラスアンテナの原理である。ところが、
実際上の要求はただ単にビーム相互の間隔が広くとれれ
ば良いというものではない。衛星が近接して置かれ、地
上からそれぞれの衛星を見込む角度が小さい場合には、
ビーム間隔がビーム幅に比べれば大きくとも、絶対角度
としては数度といった狭い間隔で配置しなければならな
い事態が生ずる。従来のトーラスアンテナではこのよう
な場合に欠点がある。即ち、ビーム間隔をどれだけ近接
できるかは回転中心軸からみた各副反射鏡間の角度をど
れだけ狭くできるかに係っており、ビーム間隔を狭くす
るには副反射鏡を近接して配置しなければならない。と
ころが、然るべき大きさの副反射鏡をそれぞれのビーム
に対して専用に用いているので、ビーム間隔を狭くしよ
うとしても、複数の副反射鏡が相互にぶつかるために、
ある程度以上ビーム間隔を狭くできないという欠点があ
った。このような問題は、副反射鏡径の選び方にもよる
が、概ねビーム間隔を数度以下にしよ5とした場合に起
こってくる。
(Background Art) Conventionally, various types of antennas that radiate a plurality of beams corresponding to the primary radiation system from a single main reflecting mirror surface have been considered depending on the purpose. On the other hand, a geokin station antenna for satellite communication is an antenna that allows the spacing between each beam to be wider than the beam width of each individual beam, or in other words, when focusing on a certain root beam, it is possible to scan the beam over a wide angle. There is a need for an antenna whose characteristics do not deteriorate, and an antenna called a torus antenna, which has a structure that is axially symmetrical with respect to an axis perpendicular to the plane where the satellites are lined up, is considered effective. FIG. 1 shows the configuration of a conventional torus antenna. 1 and 1' are horns used as primary radiation systems, 2 and 2 are sub-reflectors that reflect radio waves from horns 1 and 1', respectively, and 3 is a main reflector that is commonly used for radio waves from horns 1 and 1'. , 4 indicates the central axis of rotation of the main reflecting mirror 30, and 5 and DA indicate the traveling directions of radio waves corresponding to the horns 1 and 1', respectively. Reference numeral 6 denotes the generatrix of the main reflecting mirror, which is approximately a parabola. 2 and moth are arranged outside the path of the radio waves emitted from the main reflecting mirror so as not to obstruct the path of the radio waves. The operation of this antenna will be explained using transmission as an example. Radio waves emitted from the horn 1 hit the sub-reflector 2 and are reflected in the direction of the main reflector 3. Here, the sub-reflector 2 has been mirror-finished, and functions not only to simply reflect the direction of propagation of radio waves, but also to cancel phase distortion that occurs because the main reflector is a torus mirror. The radio waves traveling from the sub-reflector 2 to the main reflector 3 are reflected by the main reflector 3 and are directed in the radio wave traveling direction 5. Similarly, the radio waves emitted from the horn 1' are sent to the sub-reflector 3 and the main reflector 3.
When it hits, it heads in the direction of the radio waves. Here, paying attention to the fact that the main reflecting mirror 3 is rotationally symmetrical with respect to the rotation center axis 4, the combination of the horn 1 and the sub-reflector 2 is rotationally symmetrical with respect to the rotation center axis 4. It is clear that if they are arranged rotationally symmetrically, the radio waves emitted from the horn 1 and the radio waves emitted from the horn 1' operate in the same way except that their final traveling directions are different. Therefore, if the main reflector is sufficiently large, even if multiple beams are arranged with a wide beam spacing compared to the beam width,
It is possible to construct an antenna without deterioration of the characteristics of each beam. This is the principle of a torus antenna. However,
A practical requirement is not simply that the beams be spaced widely apart. If the satellites are placed close together and the viewing angle of each satellite from the ground is small,
Even if the beam spacing is large compared to the beam width, a situation may arise where the beams must be arranged at narrow intervals of several degrees in terms of absolute angles. Conventional torus antennas have drawbacks in such cases. In other words, how close the beam spacing can be made depends on how narrow the angle between each sub-reflector seen from the rotation center axis can be.To narrow the beam spacing, it is necessary to place the sub-reflectors close together. Must. However, since a sub-reflector of an appropriate size is used exclusively for each beam, even if you try to narrow the beam spacing, the multiple sub-reflectors will collide with each other, resulting in
There was a drawback that the beam spacing could not be narrowed beyond a certain level. Such a problem depends on how the diameter of the sub-reflecting mirror is selected, but generally occurs when the beam spacing is set to 5 degrees or less.

(発明の目的ン 本発明は以上の欠点を改善することを目的とし、その特
徴は、主反射鏡、副反射鏡、および該副反射鏡に電波を
照射する一次放射系から成り、主反射鏡の鏡面形状、と
じて略放物線から成る母線を主反射鏡から放射される電
波の進行方向と略垂直で主反射鏡前方に位置した軸回り
に回転して得られるトーラス鏡面を用い、前記副反射鏡
を主反射鏡から放射される電波の通路外に配置したトー
ラスアンテナにおいて、前記副反射鏡形状としてトーラ
ス鏡面を用いると共に、主反射鏡を形成するトーラス鏡
面の回転中心軸と前記副反射鏡を形成するl・−ラス鏡
面の回転中心軸とを一致させると共に、−次放射系を前
記副反射鏡に比べ回転中心軸から遠くに配置したアンテ
ナ装置にある。
(Objective of the Invention) The present invention aims to improve the above-mentioned drawbacks, and its characteristics include a main reflecting mirror, a sub-reflecting mirror, and a primary radiation system that irradiates radio waves to the sub-reflecting mirror. Using a torus mirror surface obtained by rotating a generatrix consisting of a substantially parabola around an axis located in front of the main reflector and approximately perpendicular to the direction of propagation of radio waves emitted from the main reflector, the sub-reflector In a torus antenna in which a mirror is placed outside the path of radio waves emitted from the main reflector, a torus mirror surface is used as the shape of the sub-reflector, and the rotation center axis of the torus mirror surface forming the main reflector is aligned with the sub-reflector. The antenna device is arranged such that the center axis of rotation of the l·-las mirror surface to be formed coincides with the center axis of rotation, and the -order radiation system is placed farther from the center axis of rotation than the sub-reflector.

舅、下、本発明を図面に基づいて詳細に説明する。The present invention will now be described in detail based on the drawings.

(発明の構成及び作用) 第2図は本発明の一実施例であって、7はホーン1およ
び1′から出たそれぞれの電波に対して共用する副反射
鏡であり、その鏡面形状は主反射鏡と同じくトーラス鏡
面となっている。即ち、副反射鏡の母線8を主反射鏡と
同じく回転中心軸4の回りに回転して得られる曲面でで
きている。本アンテナの動作を送信を例にとって説明す
る。ホーン1から出た電波は副反射鏡7に当り、主反射
鏡3の方向に反射され、更に主反射鏡3で反射されて電
波の進行方向5に向かう。同様に、ホーン1′から出た
電波も副反射鏡7、主反射鏡3と当り、電波の進行方向
ダに向かう。ここで、主反射鏡3および副反射鏡7が共
に回転中心軸4に対して回転対称であることに着目する
と、ホーン1がホーンl′に対して回転中心軸4回りに
回転対称に配置されれば、ホーン1から出た電波とホー
ン11から出た電波とはその最終的な進行方向が異なる
ことを除き同様の動作をすることは明らかである。
(Structure and operation of the invention) FIG. 2 shows an embodiment of the present invention, in which 7 is a sub-reflector commonly used for the radio waves emitted from the horns 1 and 1', and its mirror surface shape is the main one. Like the reflector, it has a torus mirror surface. That is, it is made of a curved surface obtained by rotating the generating line 8 of the sub-reflecting mirror around the rotation center axis 4 like the main reflecting mirror. The operation of this antenna will be explained using transmission as an example. The radio wave emitted from the horn 1 hits the sub-reflector 7, is reflected in the direction of the main reflector 3, is further reflected by the main reflector 3, and heads in the radio wave traveling direction 5. Similarly, the radio waves emitted from the horn 1' also hit the sub-reflector 7 and the main reflector 3, and are directed in the direction of propagation of the radio waves. Here, paying attention to the fact that both the main reflecting mirror 3 and the sub-reflecting mirror 7 are rotationally symmetrical about the rotational center axis 4, the horn 1 is arranged rotationally symmetrically about the rotational center axis 4 with respect to the horn l'. It is clear that the radio waves emitted from the horn 1 and the radio waves emitted from the horn 11 operate in the same way except that their final traveling directions are different.

従って、本発明は広い角度のビーム走査に対して特性劣
化なしに動作することが理解される。本発明においては
、従来のトーラスアンテナと異なり副反射鏡を共通に用
いており、各ビーム間のビーム間隔の限界はホーンがぶ
つかるか否かで決まることが理解される。ところが、ホ
ーンは副反射鏡に比べて回転中心軸から遠くに置くこと
ができる。
Therefore, it is understood that the present invention operates without characteristic deterioration for beam scanning over a wide angle. In the present invention, unlike conventional torus antennas, a sub-reflector is commonly used, and it is understood that the limit of the beam spacing between each beam is determined by whether or not the horns collide. However, the horn can be placed farther from the rotation center axis than the sub-reflector.

従って、回転中心軸からの角度を一定とすればホーンの
配置は楽になり、逆にホーンが接触するまで近づければ
ビーム間隔は狭くすることができる。
Therefore, if the angle from the rotation center axis is constant, the arrangement of the horns becomes easier, and conversely, if the horns are brought close together until they touch, the beam spacing can be narrowed.

以上、説明を簡単にするために二つのビームを例に述べ
たが、ビームの数は三つあるいはそれ以上であっても差
し支えない。ビーム数を増やすにはホーンの数を増やせ
ばよい。
Although two beams have been described above as an example to simplify the explanation, the number of beams may be three or more. To increase the number of beams, simply increase the number of horns.

本発明において、主反射鏡の母線としては放物線、副反
射鏡の母線としては双曲線あるいは楕円等の二次曲線を
用いるばかりでなく、これ等を目的に応じて修整した曲
線の組合せを用いることができる。特に、ビームの並ん
だ面と垂直な面内での衛星の位置変動を追尾する等の目
的でビームを走査する場合には、双焦点反射鏡と呼ばれ
る反射鏡の断面曲線を用いることは、走査に伴う利得低
下を少なくする上で有効である。また、母線として高能
率修整鏡面の断面曲線を用いることは、アンテナ能率を
向上する上で有効である。双焦点反射鏡はそれぞれの焦
点位置に対して位相歪なくビームを集束することのでき
るもので、その設計法は種々研究されており、そのいず
れを用いても差し支えない。また、高能率修整鏡面の断
面曲線についても設計法は確立しており、当該分野の技
術者には容易に設計できる。
In the present invention, it is possible to use not only a parabola as the generatrix of the main reflecting mirror and a quadratic curve such as a hyperbola or an ellipse as the generatrix of the sub-reflector, but also a combination of curves modified according to the purpose. can. In particular, when scanning a beam for the purpose of tracking positional fluctuations of a satellite in a plane perpendicular to the plane where the beams are lined up, it is difficult to use a cross-sectional curve of a reflector called a bifocal reflector. This is effective in reducing the decrease in gain associated with this. Furthermore, using a cross-sectional curve of a highly efficient modified mirror surface as a generating line is effective in improving antenna efficiency. A bifocal reflector is capable of focusing a beam without phase distortion at each focal position, and various design methods have been studied, and any of them may be used. Furthermore, a design method for the cross-sectional curve of a highly efficient modified mirror surface has been established, and can be easily designed by engineers in the field.

第3図は本発明の一実施例であって、ホーン1と集束反
射鏡9より成る一次放射系を示す斜視図である。該−次
放射系は第2図におけるホーン1または1′の代わりに
用いる。ここで、9は主反射鏡3および副反射鏡7で発
生する位相歪を打ち消すための集束反射鏡である。集束
反射鏡9を用いることにより、位相歪をなくし、アンテ
ナ開口能率を高くすることができる。集束反射鏡9の代
わりにレンズを用いても差し支えない。これら集束反射
鏡9またはレンズの設計は光路長一定の条件と呼ばれる
条件式を用いることにより簡単に行うことができる。
FIG. 3 is a perspective view showing a primary radiation system comprising a horn 1 and a focusing reflector 9, which is an embodiment of the present invention. The -order radiation system is used in place of horn 1 or 1' in FIG. Here, 9 is a focusing reflector for canceling the phase distortion generated in the main reflector 3 and the sub-reflector 7. By using the focusing reflector 9, phase distortion can be eliminated and antenna aperture efficiency can be increased. A lens may be used instead of the focusing mirror 9. The design of these focusing mirrors 9 or lenses can be easily performed by using a conditional expression called a constant optical path length condition.

(発明の効果) 以上説明したように、本発明により、一枚の主反射鏡か
ら複数のビームの出るアンテナのビーム間隔を狭くでき
るので、これを衛星通信の地球局アンテナとして用いれ
ば衛星の位置が近接していても一台のアンテナで済むの
で、方式の経済化に寄与することカζできる。
(Effects of the Invention) As explained above, according to the present invention, it is possible to narrow the beam spacing of an antenna that outputs multiple beams from one main reflecting mirror, so if this is used as an earth station antenna for satellite communication, the satellite position Since only one antenna is required even if the antennas are close to each other, it can contribute to making the system more economical.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のトーラスアンテナの斜視図、第2図は本
発明の一実施例を示す斜視図、第3図は本発明の一実施
例の一次放射系を示す斜視図である。 1.11・・・ホーン 2,2′・・・副反射鏡3・・
・・・・主反射鏡 4・・・・・・回転中心軸5.5′
・・・電波の進行方向 6・・・・・・主反射鏡の母線
7・・・・・・副反射鏡 8・・・・・・副反射鏡の母
線9・・・・・・集束反射鏡
FIG. 1 is a perspective view of a conventional torus antenna, FIG. 2 is a perspective view showing an embodiment of the present invention, and FIG. 3 is a perspective view showing a primary radiation system of an embodiment of the present invention. 1.11...Horn 2,2'...Sub-reflector 3...
...Main reflecting mirror 4 ...Rotation center axis 5.5'
... Direction of radio wave travel 6 ... Generatrix of main reflector 7 ... Sub-reflector 8 ... Generatrix of sub-reflector 9 ... Focused reflection mirror

Claims (4)

【特許請求の範囲】[Claims] (1)主反射鏡、副反射鏡、および該副反射鏡に電波を
照射する一次放射系から成り、主反射鏡の鏡面形状とし
て略放物線から成る母線を主反射鏡から放射される電波
の進行方向と略垂直で主反射鏡前方に位置した軸回りに
回転して得られるトーラス鏡面を用い、前記副反射鏡を
主反射鏡から放射される電波の通路外に配置したトーラ
スアンテナにおいて、前記副反射鏡形状としてトーラス
鏡面を用いると共に、主反射鏡を形成するトーラス鏡面
の回転中心軸と前記副反射鏡を形成するトーラス鏡面の
回転中心軸とを一致させると共に、−次放射系を前記副
反射鏡に比べ回転中心軸から遠くに配置したことを特徴
とするアンテナ装置。
(1) Consisting of a main reflecting mirror, a sub-reflecting mirror, and a primary radiation system that irradiates radio waves to the sub-reflecting mirror, the radio waves radiated from the main reflecting mirror progress along a generatrix that is approximately a parabola as the mirror surface shape of the main reflecting mirror. In a torus antenna that uses a torus mirror surface obtained by rotating around an axis located in front of the main reflector and substantially perpendicular to the direction, the sub reflector is placed outside the path of radio waves radiated from the main reflector. A torus mirror surface is used as the reflecting mirror shape, and the center axis of rotation of the torus mirror surface forming the main reflecting mirror is made to coincide with the center axis of rotation of the torus mirror surface forming the sub reflecting mirror. An antenna device characterized by being placed farther from the rotation center axis than a mirror.
(2)主反射鏡および副反射鏡を形成するトーラス鏡面
の母線として双焦点アンテナ鏡面の断面曲線としてめら
れる主反射鏡および副反射鏡の曲線形状をそれぞれ用い
たことを特徴とする特許請求範囲第1項に記載のアンテ
ナ装置。
(2) A claim characterized in that the curved shapes of the main reflector and the sub-reflector, which can be seen as the cross-sectional curve of the bifocal antenna mirror surface, are used as the generatrix of the torus mirror surface forming the main reflector and the sub-reflector, respectively. The antenna device according to item 1.
(3)主反射鏡および副反射鏡を形成するトーラス鏡面
の母線として高能率修整鏡面の断面曲線としてめられる
主反射鏡および副反射鏡の曲線形状をそれぞれ用いたこ
とを特徴とする特許請求範囲第1項に記載のアンテナ装
置。
(3) The scope of the patent characterized in that the curved shapes of the main reflecting mirror and the sub-reflecting mirror, which can be seen as the cross-sectional curves of the highly efficient modified mirror surfaces, are used as the generatrix of the torus mirror surface forming the main reflecting mirror and the sub-reflecting mirror, respectively. The antenna device according to item 1.
(4)前記主反射鏡および前記副反射鏡で生ずる位相歪
を打ち消すように鏡面修整された少なくとも一枚以上の
反射鏡またはレンズを備えた一次放射系を用いることを
特徴とする特許請求の範囲第1項ないし第3項のいずれ
か一項に記載のアンテナ装置。
(4) A primary radiation system comprising at least one reflecting mirror or lens whose surface has been mirror-finished so as to cancel phase distortion caused by the main reflecting mirror and the sub-reflecting mirror. The antenna device according to any one of Items 1 to 3.
JP15631583A 1983-08-29 1983-08-29 Antenna system Granted JPS6048603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15631583A JPS6048603A (en) 1983-08-29 1983-08-29 Antenna system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15631583A JPS6048603A (en) 1983-08-29 1983-08-29 Antenna system

Publications (2)

Publication Number Publication Date
JPS6048603A true JPS6048603A (en) 1985-03-16
JPH053762B2 JPH053762B2 (en) 1993-01-18

Family

ID=15625110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15631583A Granted JPS6048603A (en) 1983-08-29 1983-08-29 Antenna system

Country Status (1)

Country Link
JP (1) JPS6048603A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03191604A (en) * 1989-12-20 1991-08-21 Mitsubishi Electric Corp Antenna equipment
WO2019170541A1 (en) * 2018-03-05 2019-09-12 Technische Universiteit Eindhoven Extreme scanning focal-plane arrays using a double-reflector concept with uniform array illumination

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03191604A (en) * 1989-12-20 1991-08-21 Mitsubishi Electric Corp Antenna equipment
WO2019170541A1 (en) * 2018-03-05 2019-09-12 Technische Universiteit Eindhoven Extreme scanning focal-plane arrays using a double-reflector concept with uniform array illumination

Also Published As

Publication number Publication date
JPH053762B2 (en) 1993-01-18

Similar Documents

Publication Publication Date Title
US4145695A (en) Launcher reflectors for correcting for astigmatism in off-axis fed reflector antennas
JPS6311806B2 (en)
JPH0359603B2 (en)
JPH0417482B2 (en)
JPS6048603A (en) Antenna system
US5140337A (en) High aperture efficiency, wide angle scanning reflector antenna
JPS62154905A (en) Multibeam antenna
JP3034262B2 (en) Aperture antenna device
JPH0352246B2 (en)
JPH0720012B2 (en) Antenna device
JP2605939B2 (en) Multi-beam antenna
JPS6128247B2 (en)
JPS6129569B2 (en)
JP3668913B2 (en) Reflector antenna
JP2712922B2 (en) Double reflector antenna
JP2822768B2 (en) Antenna device
JPH0550882B2 (en)
JPH0347764B2 (en)
JPS5892106A (en) Multibeam antenna
JPH04140907A (en) Antenna system
JPS63296503A (en) Spherical mirror antenna
JPH04258002A (en) Antenna system
JPS598406A (en) Scanning type antenna
JP2002185244A (en) Four-piece reflector offset antenna
JPS6056003B2 (en) Double reflector antenna device