JP3663389B2 - Magnet valve for control of injection valve of internal combustion engine - Google Patents

Magnet valve for control of injection valve of internal combustion engine Download PDF

Info

Publication number
JP3663389B2
JP3663389B2 JP2002133207A JP2002133207A JP3663389B2 JP 3663389 B2 JP3663389 B2 JP 3663389B2 JP 2002133207 A JP2002133207 A JP 2002133207A JP 2002133207 A JP2002133207 A JP 2002133207A JP 3663389 B2 JP3663389 B2 JP 3663389B2
Authority
JP
Japan
Prior art keywords
armature
plate
valve
magnet valve
guide member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002133207A
Other languages
Japanese (ja)
Other versions
JP2002371939A (en
Inventor
ガウドゥル アンドレアス
ミーレ ティルマン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of JP2002371939A publication Critical patent/JP2002371939A/en
Application granted granted Critical
Publication of JP3663389B2 publication Critical patent/JP3663389B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • F02M47/027Electrically actuated valves draining the chamber to release the closing pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0014Valves characterised by the valve actuating means
    • F02M63/0015Valves characterised by the valve actuating means electrical, e.g. using solenoid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0014Valves characterised by the valve actuating means
    • F02M63/0015Valves characterised by the valve actuating means electrical, e.g. using solenoid
    • F02M63/0017Valves characterised by the valve actuating means electrical, e.g. using solenoid using electromagnetic operating means
    • F02M63/0021Valves characterised by the valve actuating means electrical, e.g. using solenoid using electromagnetic operating means characterised by the arrangement of mobile armatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0014Valves characterised by the valve actuating means
    • F02M63/0015Valves characterised by the valve actuating means electrical, e.g. using solenoid
    • F02M63/0017Valves characterised by the valve actuating means electrical, e.g. using solenoid using electromagnetic operating means
    • F02M63/0021Valves characterised by the valve actuating means electrical, e.g. using solenoid using electromagnetic operating means characterised by the arrangement of mobile armatures
    • F02M63/0022Valves characterised by the valve actuating means electrical, e.g. using solenoid using electromagnetic operating means characterised by the arrangement of mobile armatures the armature and the valve being allowed to move relatively to each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/007Details not provided for in, or of interest apart from, the apparatus of the groups F02M63/0014 - F02M63/0059
    • F02M63/0075Stop members in valves, e.g. plates or disks limiting the movement of armature, valve or spring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/30Fuel-injection apparatus having mechanical parts, the movement of which is damped
    • F02M2200/304Fuel-injection apparatus having mechanical parts, the movement of which is damped using hydraulic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/80Fuel injection apparatus manufacture, repair or assembly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2547/00Special features for fuel-injection valves actuated by fluid pressure
    • F02M2547/003Valve inserts containing control chamber and valve piston

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fluid Mechanics (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関の噴射弁の制御のための、請求項1の上位概念に記載の形式のマグネット弁に関する。
【0002】
【従来の技術】
例えばドイツ連邦共和国特許出願公開第19708104A1号明細書により公知のマグネット弁は、噴射弁、例えばコモンレール形噴射装置のインジェクターの制御圧力室内の燃料圧力の制御のために用いられる。制御圧力室内の燃料圧力によって、弁プランジャーの運動が制御されて、噴射弁の噴射開口が開かれ若しくは閉じられる。該公知のマグネット弁は、ケーシング部分内に配置された電磁石、運動可能な接極子及び、該接極子と一緒に運動可能でかつ閉鎖ばねによって閉鎖方向に負荷された制御弁部材を有しており、制御弁部材がマグネット弁の弁座と協働して、制御圧力室からの燃料流出を制御する。
【0003】
接極子プレートと接極子ピンとを一体的に形成し成るマグネット弁においては欠点がいわゆる接極子バウンド(跳ね返り)にある。電磁石の遮断に際して、接極子及び該接極子と一緒に制御弁部材が閉鎖ばねによって弁座に向けて加速され、制御圧力室からの燃料流出通路を閉鎖するようになっている。弁座への制御弁部材の衝突が、弁座での制御弁部材の不都合なバウンド及び/又は振動を生ぜしめ、これによって噴射過程の制御が損なわれる。従って、ドイツ連邦共和国特許出願公開第19708104A1号明細書により公知のマグネット弁においては、接極子が接極子ピンと該接極子ピンに摺動可能に支承された接極子プレートとの二部構造で形成されており、その結果、接極子プレートが制御弁部材と弁座との間の衝突に際して戻しばねの締め付け力に抗して引き続き運動する。その後で、戻しばねが接極子プレートを再び、接極子ピンのストッパに隣接する出発位置へ戻す。
【0004】
接極子の二部構造の構成によって、慣性質量が効果的に制動され、ひいては弁座にぶつかる接極子の、バウンドの原因となる運動エネルギーが減少されるものの、接極子プレートがマグネット弁の閉鎖の後に接極子ピン上で不都合に振動(後振動)する。マグネット弁の制御は、接極子プレートが振動しない場合にのみ規定された噴射量を生ぜしめるので、接極子プレートの振動を減少させるための手段が必要である。このことは特に、例えばパイロット噴射と主噴射との間の時間的な間隔を短くするために必要である。このために、ドイツ連邦共和国特許出願公開第19708104A1号明細書に記載の技術では、滑り案内部材に載設された過行程調節プレート若しくは慣性運動行程距離調節プレートの形の過行程ストッパが設けられており、該過行程調節ストッパによって、接極子ピンに沿って接極子プレートを移動させ得る行程長さが制限されるようになっている。過行程調節プレートが接極子プレートと接極子ピンを案内する滑り案内部材との間で不動(定置)にマグネット弁のケーシング内に配置されている。過行程調節プレートへの接極子プレートの接近に際して、接極子プレートと過行程調節プレートの互いに向き合わされた平らな面間に液圧式の減衰室が生じる。減衰室内にある燃料が、接極子プレートの運動と逆向きの力を形成する。これによって接極子プレートの振動(後振動)が強く減衰される。
【0005】
前記公知のマグネット弁においては、接極子プレートの必要な過行程が、マグネット弁をマグネット弁のケーシング内で組み立てる際に調節されねばならず、この場合、制御弁部材と弁座との接触の後に戻しばねの力に抗して接極子プレートを運動(移動)させ得る距離(行程)が、過行程調節プレートの厚さによって調節される。該マグネット弁においては欠点として、過行程調節プレートを接極子プレートの戻しばねの下側に組み込むことは煩雑で時間を必要とする。過行程調節プレートを接極子プレートの戻しばねの下側に組み込むために、過行程調節プレートに複雑な鍵穴状の切欠きが必要である。さらに過行程調節プレートは電磁石の磁極面と接極子プレートとの間の間隔にも影響を及ぼすので、過行程調節プレートの厚さの変更によって残留空隙が損なわれ、このことは組み立てを困難にする。
【0006】
【発明の効果】
請求項1に記載の特徴を有する本発明に基づくマグネット弁は、前記公知技術の欠点を排除して、接極子プレートの著しく簡単な組み立てを可能にする。有利には、接極子が噴射弁の組み立てラインの外側で接極子プレート、接極子ピン、戻しばね及び中間部材で以て前もって組み立てられ、かつ接極子ピン上での接極子プレートの必要な移動距離若しくは過行程距離が噴射弁のケーシングの外側で中間部材の厚さの選択によって調節される。接極子プレート、滑り案内部材及び接極子ピンの軸線方向の寸法がわかっているので、中間部材のための正しい厚さが決められる。前もって組み立てられて完成した接極子ユニット(構成群)が、次のプロセスでマグネット弁のケーシング内に組み込まれる。この組み込みに際して、滑り案内部材とマグネット弁ケーシングの内側肩部との間に配置する調節プレートを用いて接極子ピンの最大の開放行程が調節される。
【0007】
本発明の有利な改善及び実施態様が、従属項に記載の手段によって可能である。特に有利には、中間部材が鎌形プレートとして形成され、鎌形プレートが側方から接極子ピンに差しはめられる。
【0008】
有利には、滑り案内部材に被せはめられた確保スリーブ若しくは保持スリーブが、接極子ピンからの鎌形プレートの外れ(滑り落ち)を防止する。確保スリーブ若しくは保持スリーブが、有利には係止エレメントを介して滑り案内部材に取り付けられ、即ち結合される。
【0009】
【発明の実施の形態】
図1は、公知技術の燃料噴射弁の上側の部分を示しており、該燃料噴射弁は燃料蓄圧器を備えた燃料噴射装置内への使用に適しており、燃料蓄圧器が高圧フィードポンプによって高圧燃料を連続的に供給されるようになっている。図示の燃料噴射弁は弁ケーシング4を有しており、弁ケーシングが縦孔(軸線方向に延びる孔)を備えており、縦孔内に弁プランジャー6を配置してあり、弁プランジャーが一方の端部で以て、図示していないノズル本体内に配置された弁ニードルに作用している。弁ニードルが圧力室内に配置されており、圧力室が圧力孔を介して高圧の燃料を供給されるようになっている。弁プランジャー6の開放行程運動に際して、弁ニードルが圧力室内の、弁ニードルの圧力肩部に常に作用する燃料高圧によって持ち上げられるようになっている。これによって圧力室に接続された噴射開口を通して、内燃機関の燃焼室内への燃料の噴射が行われる。弁プランジャー6の降下運動によって、弁ニードルが閉鎖方向で燃料噴射弁の弁座に圧着されて、噴射過程が終了される。
【0010】
弁プランジャー6は弁ニードルと逆の側の端部でシリンダー孔内に案内されており、シリンダー孔が弁部材12内に形成されており、弁部材が弁ケーシング4内に挿入されている。弁プランジャー6の端面13がシリンダー孔内で制御圧力室14を閉鎖しており、制御圧力室が流入通路を介して図示していない燃料高圧接続部に接続されている。流入通路は実質的に三部構造で構成されている。弁部材12の壁を半径方向に貫いて延びていて内壁側で該壁の厚さの一部分にわたって流入絞り15を形成してなる孔が、弁部材の外周を取り囲むリング室16に常に接続されており、リング室自体は燃料高圧接続部に常に接続されている。制御圧力室14が流入絞り15を介して、燃料蓄圧器内に作用する高い燃料圧力を受けている。弁プランジャー6に対して同軸的に制御圧力室14から分岐して弁部材12内を延びる孔を設けてあり、該孔が燃料流出通路17を形成しており、燃料流出通路が流出絞り18を備えていて、放圧室19内に開口しており、放圧室が燃料低圧接続部(図示せず)に接続されており、燃料低圧接続部が燃料噴射弁の燃料戻し通路に接続されている。弁部材12からの燃料流出通路17の出口が、弁部材12の外側に位置する端部に円錐形に凹設された部分21の領域に設けられている。弁部材12がフランジ区分22でねじ部材23を用いて弁ケーシング4に堅く締め付けられている。
【0011】
円錐形の部分(凹設部)21に弁座24を形成してあり、弁座が、噴射弁を制御するマグネット弁30の制御弁部材25と協働するようになっている。制御弁部材25が、接極子ピン27及び接極子プレート28の形の二部構造の接極子に連結されており、接極子がマグネット弁30の電磁石29と協働するようになっている。マグネット弁30がさらに、電磁石29の受容のためのケーシング部分60を有しており、該ケーシング部分がねじはめ可能な結合部材7を用いて弁ケーシング4に堅く結合されている。公知のマグネット弁においては、接極子プレート28が自体の慣性質量の作用下で戻しばね35の初期荷重(締め付け力)に抗して運動力学的に移動可能に接極子ピン27に支承されていて、かつ静止状態では前記戻しばねによって、接極子ピンに固定されたストップリング26に向けて圧着されている。戻しばね35は他方の端部で行程調節プレート70に支えられており、行程調節プレートが滑り案内部材34に支持されており、滑り案内部材が接極子ピン27を案内している。滑り案内部材34がフランジ32を有しており、該フランジが行程調節プレート70及び別の調節プレート38と一緒に弁ケーシング4の締め付け肩部42とケーシング部分60の環状の縁部41との間に堅く締め付けられている。接極子ピン27、接極子プレート28及び前記接極子ピンに連結された制御弁部材25が、ケーシングに支えられた閉鎖ばね31によって常に閉鎖方向に負荷されており、従って、制御弁部材25が通常は閉鎖位置で弁座24に接触している。電磁石の励磁に際して、接極子プレート28及び接極子ピン27が電磁石によって引き寄せられ、これによって流出通路17が放圧室19に向けて開放される。接極子ピン27が電磁石29と逆の側の端部にリング肩部33を有しており、該リング肩部が電磁石の励磁の際に滑り案内部材34のリング状のストッパ面37に当接して、制御弁部材25の開放行程を制限するようになっている。該開放行程の調節のために、フランジ32と締め付け肩部42との間に配置された調節プレート38が役立っている。
【0012】
燃料噴射弁の開閉がマグネット弁30によって次に述べるように行われる。すでに説明してあるように、接極子ピン27が閉鎖ばね31によって常に閉鎖方向に負荷されており、従って、制御弁部材25が電磁石の非励磁状態では閉鎖位置で弁座24に接触しており、制御圧力室14が放圧室19に対して閉鎖されており、その結果、制御圧力室内に流入通路を介して、燃料蓄圧器内に作用している高い圧力が著しく急速に形成される。制御圧力室14内の該圧力が弁プランジャー6の端面13を介して該弁プランジャーに、ひいては弁ニードルに閉鎖力を生ぜしめ、該閉鎖力は他方で開放方向に作用する力よりも大きくなっている。マグネット弁の開放によって制御圧力室14を放圧室19に向けて開放すると、容積の小さな制御圧力室14内の圧力が著しく急速に降下し、それというのは制御圧力室と高圧側との間に流入絞り15があるからである。その結果、弁ニードルに作用する燃料高圧の、弁ニードルを開放方向へ負荷する力が上回り、従って弁ニードルが上方へ運動させられ、これによって少なくとも1つの噴射開口が噴射のために開かれる。これに対して、マグネット弁30が燃料流出通路17を閉鎖すると、制御圧力室14内に圧力が流入絞り15を介して補充された燃料によって再び形成され、その結果、もとの閉鎖力が生じて、燃料噴射弁の弁ニードルを閉鎖する。
【0013】
マグネット弁の閉鎖に際して、閉鎖ばね31が接極子ピン27を制御弁部材25と一緒に弁座24に向けて衝撃的に押圧する。弁座で制御弁部材、ひいては接極子ピンをストップさせる、即ち止めることによって接極子ピンの弾性的な変形が生じて、接極子ピンが蓄力器として作用することに基づき、制御弁部材の不都合なバウンド若しくは振動が生じ、この場合、エネルギーの一部分は再び制御弁部材に伝達され、制御弁部材が接極子ピンと一緒に弁座24からバウンドすることになる。従って、図1に示す公知のマグネット弁は、接極子ピン27及び該接極子ピンから連結解除可能な接極子プレート28から成る二部構造の接極子を用いている。これによって、弁座24にぶつから慣性質量が減少されるものの、接極子プレート28が不都合に振動してしまうことになる。このような理由から、図1に示す公知のマグネット弁においては、接極子プレート28と滑りスリーブ34との間に過行程調節プレート70が設けられている。図1には、マグネット弁は電磁石29の遮断によって閉じられた状態で示してある。過行程調節プレート70は、接極子ピンのための煩雑な鍵穴状の開口71を有している。このような開口71は、組み立てに際して接極子プレート28が管状部65で以て開口71を通して移動させられて、次いで鎌形プレート26を接極子ピン27に差しはめるようにするために必要である。過行程調節プレート70が接極子ピン27に沿った接極子プレート28の移動距離を所定の寸法dに制限している。接極子プレート28の振動運動が過行程調節プレート70によって減少せしめられ、かつ接極子プレート28が迅速に再び、鎌形プレートとして形成されたストッパ26に隣接の出発位置(図1に示す位置)に戻される。調節プレート38、滑り案内部材34のフランジ32及び、過行程調節プレート70がマグネット弁ケーシング内に締め付けて固定される。過行程調節プレート70の厚さが接極子プレート28と電磁石29との間の間隔に影響を及ぼす。従って、公知のマグネット弁及び該マグネット弁を備えた噴射弁の製造はまさに費用がかかり、かつ面倒である。
【0014】
図2は、本発明に基づくマグネット弁の実施例を示している。同じ部材には同じ符号が付けてある。本発明に基づくマグネット弁においては、接極子ピン27の最大の開放行程が調節プレート38を用いて調節される。滑り案内部材34の環状のフランジ32が、調節プレート38及び、電磁石29の磁極面と接極子プレート28との間の間隔の調節のための別の調節プレート70aを介在して、ケーシング部分60の環状の縁部41とケーシング部分4の締め付け肩部42との間に緊締されている。調節プレート70aは接極子プレート28の過行程距離を調節するものではない。
【0015】
本発明の理解を容易にするために図3に、接極子プレート28、接極子ピン27、戻しばね35、中間部材50及び滑り案内部材34から成る接極子ユニットが拡大して示してある。該接極子ユニットの組み立てが有利には燃料噴射弁のケーシングの外側で行われてよい。図3には、接極子ピン27が図2と異なって、電磁石29によって接極子プレート28を引き寄せてマグネット弁を完全に開放した状態に対応する位置で示してある。接極子プレート28が戻しばね35を用いて、接極子ピン27の環状の突出部によって形成されたストッパ26aに圧着されている。接極子ピン27の、電磁石と逆の側の端部が、滑り案内部材に向いたリング肩部33を有しており、該リング肩部が、接極子ピン上へ差しはめられた中間部材50に接触している。中間部材50が滑り案内部材34のリング状のストッパ面37に支えられている。マグネット弁の開放に際して中間部材50を介在してリング肩部33をストッパ面37でストップさせる、即ち支持若しくは受け止めることによって、接極子ピン27及び該接極子ピンに結合された制御弁部材25の最大の開放行程が制限される。中間部材が一体構造で若しくは複数構造で、かつ特にプレート状に形成されていてよい。ここに示す実施例では中間部材は、図4及び図5に図示してあるように、鎌形プレート(Sichelscheibe)として形成されている。鎌形プレート、即ち中間部材50の互いに相対する面51,52間の間隔c、つまり厚さcによって、接極子プレート28の過行程距離dが規定されている。鎌形プレートの内径gが接極子ピン27のリング溝44の溝直径よりもわずかに大きく構成されており、該リング溝内に鎌形プレートが差し込まれている。リング溝44の幅は、使用されるすべての鎌形プレートの厚さcよりも大きく設定されている。接極子プレートの軸線方向の寸法a、滑り案内部材の軸線方向の寸法b、及び接極子ピンのストッパ26aからリング肩部33までの軸線方向の寸法(距離若しくは間隔)fが予め設定されている。
【0016】
f=a+b+c+d+eの関係(数式)、換言すればd+e=f−a−b−cの関係から、d+eの量(寸法)が鎌形プレート(中間部材)の厚さcに依存して規定される。d+eの量は、接極子ピンの最大の開放行程eと滑り案内部材34のストッパ面36に当接するまでの接極子プレート28の最大の過行程距離dとの合計から成っている。調節すべき最大の開放行程eが決められると、接極子プレート28の最大の過行程距離dが、接極子ユニットの組み立て(前組み立て)時に鎌形プレート50の厚さcに依存して正確に生ぜしめられる。接極子ピンに差しはめられた鎌形プレート50が、スリーブ80によって半径方向の位置を確保されて、即ち半径方向で位置決めされている。スリーブ80が図6及び図7に示してある。スリーブ80の内径は鎌形プレート50の外径hよりも大きくなっている。スリーブ80の一方の端部が内側へ突出するリブ83を備えている。軸線方向に延びる切欠き82によってスリーブ80に係止エレメント81が形成されている。スリーブ80が、図2及び図3に示してあるように、滑り案内部材34のストッパ面36と逆の側の管状部45に差しはめられて、係止エレメント81が管状部45の外周壁の凹設部46内に係合している。この場合、スリーブ81が鎌形プレート50の外周に沿って滑動して、該鎌形プレートを内部に収容しており、これによって鎌形プレート50が半径方向の位置を確保されている。
【0017】
前もって組み立てられた接極子ユニット(図3)が、図2に示してあるように、弁ケーシング内に挿入される。調節プレート38の厚さは、制御弁部材25と弁座24との間の所定の最大の開放行程eを正確に保つように選ばれる。調節プレート70aによって接極子プレート28と電磁石との間の間隔(j、図1参照)が規定される。
【0018】
すでに述べてあるように、マグネット弁の閉鎖に際して閉鎖ばね(接極子ばね)31が接極子ピン27を介して制御弁部材25を弁座24内へ押圧し、さらに接極子プレート28が戻しばね35の締め付け力に抗して接極子ピン27に沿って引き続き運動して、滑り案内部材34のストッパ面36に接触する。接極子プレート28の、滑り案内部材に向かって突出する管状部65の、ストッパ面36に向いた面66(図3)が、ストッパ面36と協働して液圧式の減衰室を形成する。面66とストッパ面36との間の減衰室(間隙)内にある燃料によって、接極子プレートの衝突若しくは振動が効果的に減衰される。本発明に基づくマグネット弁においては、ストッパ面36が有利には平らな面(ebene Flaeche)として形成されている。開口71を備えた調節プレート70に接極子プレートを接近させる従来形式のマグネット弁(図1)に比べ、図3に示す本発明に基づくマグネット弁においては減衰作用の改善が達成され、それというのは減衰室が広く形成されるからである。
【0019】
図示の実施例の変化例として、中間部材(中間片)が複数のプレート若しくはディスクによって構成されてよい。プレート状でない中間部材も考えられる。中間部材を形状係合的に、即ち形状による束縛に基づき接極子ピンに保持する場合には、中間部材を半径方向で保持するスリーブが省略されてよい。中間部材を弾性的に変形可能に構成して、接極子ピンのリング溝44内にいわばクリップのようにはめ込むことも考えられる。
【図面の簡単な説明】
【図1】公知技術のマグネット弁を備えた燃料噴射弁の上側の部分の断面図。
【図2】本発明に基づくマグネット弁の実施例の上側の部分の断面図。
【図3】図2の実施例の接極子ユニットの断面図。
【図4】中間部材の実施例の断面図。
【図5】図4の中間部材の平面図。
【図6】スリーブの、図7のA−A線に沿って部分的に破断した側面図。
【図7】図6のスリーブの平面図。
【符号の説明】
4 弁ケーシング、 6 弁プランジャー、 7 結合部材、 12 弁部材、 13 端面、 14 制御圧力室、 15 流入絞り、 16 リング室、17 燃料流出通路、 18 流出絞り、 19 放圧室、 21 部分、 22 フランジ区分、 23 ねじ部材、 24 弁座、 25 制御弁部材、26 ストップリング、 27 接極子ピン、 28 接極子プレート、 29 電磁石、 30 マグネット弁、 31 閉鎖ばね、 32 フランジ、 33 リング肩部、 34 滑り案内部材、 35 戻しばね、 36,37 ストッパ面、 38 調節プレート、 41 環状の縁部、 42 締め付け肩部、 45 管状部、 50 中間部材、 60 ケーシング部分、 70 行程調節プレート、 65 管状部、 66 面、 80 スリーブ、 81 係止エレメント、 82 切欠き、 83 リブ
[0001]
BACKGROUND OF THE INVENTION
The invention relates to a magnet valve of the type according to the superordinate concept of claim 1 for the control of an injection valve of an internal combustion engine.
[0002]
[Prior art]
For example, a magnet valve known from DE 19708104 A1 is used for the control of the fuel pressure in the control pressure chamber of an injector, for example an injector of a common rail injector. The fuel pressure in the control pressure chamber controls the movement of the valve plunger and opens or closes the injection opening of the injection valve. The known magnet valve has an electromagnet arranged in a casing part, a movable armature, and a control valve member which can move with the armature and is loaded in the closing direction by a closing spring. The control valve member cooperates with the valve seat of the magnet valve to control the fuel outflow from the control pressure chamber.
[0003]
In the magnet valve in which the armature plate and the armature pin are integrally formed, there is a drawback in the so-called armature bounce. When the electromagnet is shut off, the control valve member is accelerated toward the valve seat by the closing spring together with the armature and the armature so as to close the fuel outflow passage from the control pressure chamber. The impact of the control valve member on the valve seat can cause undesired bounce and / or vibration of the control valve member at the valve seat, thereby impairing control of the injection process. Accordingly, in a magnet valve known from German Patent Application No. 19708104 A1, the armature is formed of a two-part structure of an armature pin and an armature plate slidably supported on the armature pin. As a result, the armature plate continues to move against the clamping force of the return spring upon a collision between the control valve member and the valve seat. Thereafter, the return spring returns the armature plate again to its starting position adjacent to the armature pin stopper.
[0004]
The structure of the two-part structure of the armature effectively brakes the inertial mass and, in turn, reduces the kinetic energy of the armature that strikes the valve seat, but the armature plate closes the magnet valve. Later, it vibrates undesirably (post-vibration) on the armature pin. Since the control of the magnet valve produces a specified injection amount only when the armature plate does not vibrate, a means for reducing the vibration of the armature plate is required. This is particularly necessary, for example, in order to shorten the time interval between pilot injection and main injection. For this purpose, the technology described in DE 19708104 A1 is provided with an overstroke stopper in the form of an overstroke adjustment plate or an inertial movement stroke distance adjustment plate mounted on a sliding guide member. In addition, the length of the stroke that can move the armature plate along the armature pin is limited by the overstroke adjusting stopper. An over-travel adjustment plate is disposed in the casing of the magnet valve so as not to move (stationary) between the armature plate and the sliding guide member for guiding the armature pin. Upon approach of the armature plate to the overstroke adjustment plate, a hydraulic damping chamber is created between the opposed flat surfaces of the armature plate and the overstroke adjustment plate. The fuel in the damping chamber creates a force opposite to the movement of the armature plate. As a result, the vibration (post vibration) of the armature plate is strongly damped.
[0005]
In the known magnet valve, the necessary overtravel of the armature plate must be adjusted when the magnet valve is assembled in the casing of the magnet valve, in this case after contact between the control valve member and the valve seat. The distance (stroke) by which the armature plate can be moved (moved) against the force of the return spring is adjusted by the thickness of the overstroke adjusting plate. As a disadvantage of the magnet valve, it is complicated and time-consuming to incorporate the over-travel adjusting plate under the return spring of the armature plate. In order to incorporate the overstroke adjustment plate under the return spring of the armature plate, the overstroke adjustment plate requires a complicated keyhole-shaped notch. In addition, the over-travel adjustment plate also affects the spacing between the pole face of the electromagnet and the armature plate, so changing the thickness of the over-travel adjustment plate damages the residual air gap, which makes assembly difficult. .
[0006]
【The invention's effect】
The magnet valve according to the invention with the features of claim 1 eliminates the disadvantages of the known art and allows a significantly simpler assembly of the armature plate. Advantageously, the armature is pre-assembled with the armature plate, armature pin, return spring and intermediate member outside the assembly line of the injector and the required travel distance of the armature plate on the armature pin Alternatively, the overstroke distance is adjusted by the choice of the thickness of the intermediate member outside the casing of the injection valve. Knowing the axial dimensions of the armature plate, the sliding guide member and the armature pin, the correct thickness for the intermediate member is determined. The armature unit (component group) that has been assembled in advance is assembled into the casing of the magnet valve in the following process. During this incorporation, the maximum opening stroke of the armature pin is adjusted using an adjustment plate disposed between the sliding guide member and the inner shoulder of the magnet valve casing.
[0007]
Advantageous refinements and embodiments of the invention are possible by means of the dependent claims. Particularly preferably, the intermediate member is formed as a sickle plate, which is inserted into the armature pin from the side.
[0008]
Advantageously, a securing sleeve or holding sleeve fitted over the sliding guide member prevents the sickle plate from slipping off the armature pin. A securing sleeve or holding sleeve is preferably attached, i.e. joined to the sliding guide member via a locking element.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows the upper part of a known fuel injection valve, which is suitable for use in a fuel injection device with a fuel pressure accumulator, which is connected by a high pressure feed pump. High-pressure fuel is continuously supplied. The illustrated fuel injection valve has a valve casing 4, the valve casing has a vertical hole (a hole extending in the axial direction), a valve plunger 6 is disposed in the vertical hole, and the valve plunger is One end acts on a valve needle arranged in a nozzle body (not shown). A valve needle is disposed in the pressure chamber, and the high pressure fuel is supplied to the pressure chamber through the pressure hole. During the opening stroke movement of the valve plunger 6, the valve needle is lifted by a high fuel pressure which always acts on the pressure shoulder of the valve needle in the pressure chamber. Thus, fuel is injected into the combustion chamber of the internal combustion engine through the injection opening connected to the pressure chamber. Due to the downward movement of the valve plunger 6, the valve needle is pressed against the valve seat of the fuel injection valve in the closing direction, and the injection process is terminated.
[0010]
The valve plunger 6 is guided into the cylinder hole at the end opposite to the valve needle, the cylinder hole is formed in the valve member 12, and the valve member is inserted into the valve casing 4. The end face 13 of the valve plunger 6 closes the control pressure chamber 14 in the cylinder hole, and the control pressure chamber is connected to a fuel high pressure connection portion (not shown) via an inflow passage. The inflow passage is substantially constituted by a three-part structure. A hole which extends through the wall of the valve member 12 in the radial direction and forms an inflow throttle 15 over a part of the thickness of the wall on the inner wall side is always connected to a ring chamber 16 surrounding the outer periphery of the valve member. The ring chamber itself is always connected to the fuel high pressure connection. The control pressure chamber 14 receives a high fuel pressure acting in the fuel accumulator via the inflow throttle 15. A hole branched coaxially with respect to the valve plunger 6 from the control pressure chamber 14 and extending through the valve member 12 is formed. The hole forms a fuel outflow passage 17. The pressure release chamber is connected to a fuel low pressure connection portion (not shown), and the fuel low pressure connection portion is connected to a fuel return passage of the fuel injection valve. ing. An outlet of the fuel outflow passage 17 from the valve member 12 is provided in a region of a portion 21 that is recessed in a conical shape at an end located outside the valve member 12. The valve member 12 is fastened to the valve casing 4 by means of a screw member 23 at the flange section 22.
[0011]
A valve seat 24 is formed in a conical portion (concave portion) 21, and the valve seat cooperates with a control valve member 25 of a magnet valve 30 that controls the injection valve. The control valve member 25 is connected to a two-part armature in the form of an armature pin 27 and an armature plate 28 so that the armature cooperates with the electromagnet 29 of the magnet valve 30. The magnet valve 30 further has a casing part 60 for receiving the electromagnet 29, which is rigidly connected to the valve casing 4 by means of a screw-fastening coupling member 7. In the known magnet valve, the armature plate 28 is supported on the armature pin 27 so as to be movable kinematically against the initial load (clamping force) of the return spring 35 under the action of its own inertial mass. In a stationary state, it is pressed against the stop ring 26 fixed to the armature pin by the return spring. The return spring 35 is supported by the stroke adjusting plate 70 at the other end, and the stroke adjusting plate is supported by the slide guide member 34, and the slide guide member guides the armature pin 27. The sliding guide member 34 has a flange 32, which, together with the stroke adjusting plate 70 and another adjusting plate 38, is between the clamping shoulder 42 of the valve casing 4 and the annular edge 41 of the casing part 60. Tightened to The armature pin 27, the armature plate 28, and the control valve member 25 connected to the armature pin are always loaded in the closing direction by a closing spring 31 supported by the casing. Is in contact with the valve seat 24 in the closed position. When the electromagnet is excited, the armature plate 28 and the armature pin 27 are attracted by the electromagnet, whereby the outflow passage 17 is opened toward the pressure release chamber 19. The armature pin 27 has a ring shoulder 33 at the end opposite to the electromagnet 29, and the ring shoulder abuts against the ring-shaped stopper surface 37 of the sliding guide member 34 when the electromagnet is excited. Thus, the opening stroke of the control valve member 25 is limited. An adjustment plate 38 arranged between the flange 32 and the clamping shoulder 42 is useful for adjusting the opening stroke.
[0012]
The fuel injection valve is opened and closed by the magnet valve 30 as described below. As already explained, the armature pin 27 is always loaded in the closing direction by the closing spring 31, so that the control valve member 25 is in contact with the valve seat 24 in the closed position when the electromagnet is not energized. The control pressure chamber 14 is closed with respect to the pressure release chamber 19, and as a result, a high pressure acting in the fuel pressure accumulator is remarkably rapidly formed in the control pressure chamber via the inflow passage. The pressure in the control pressure chamber 14 creates a closing force on the valve plunger and thus on the valve needle via the end face 13 of the valve plunger 6, which is on the other hand greater than the force acting in the opening direction. It has become. When the control pressure chamber 14 is opened toward the pressure release chamber 19 by opening the magnet valve, the pressure in the control pressure chamber 14 having a small volume drops remarkably rapidly, between the control pressure chamber and the high pressure side. This is because there is an inflow throttle 15. As a result, the force of the high pressure fuel acting on the valve needle, which loads the valve needle in the opening direction, is increased, so that the valve needle is moved upward, thereby opening at least one injection opening for injection. On the other hand, when the magnet valve 30 closes the fuel outflow passage 17, the pressure is again formed in the control pressure chamber 14 by the fuel replenished through the inflow throttle 15, and as a result, the original closing force is generated. Then, the valve needle of the fuel injection valve is closed.
[0013]
When closing the magnet valve, the closing spring 31 impactively presses the armature pin 27 together with the control valve member 25 toward the valve seat 24. The control valve member, and thus the armature pin, is stopped at the valve seat, that is, the armature pin is elastically deformed by the stop, and the armature pin acts as a power accumulator. In this case, a part of the energy is transmitted again to the control valve member, and the control valve member bounces from the valve seat 24 together with the armature pin. Therefore, the known magnet valve shown in FIG. 1 uses a two-part armature composed of an armature pin 27 and an armature plate 28 that can be disconnected from the armature pin. As a result, the inertial mass is reduced from hitting the valve seat 24, but the armature plate 28 vibrates undesirably. For this reason, in the known magnet valve shown in FIG. 1, an overtravel adjustment plate 70 is provided between the armature plate 28 and the sliding sleeve 34. In FIG. 1, the magnet valve is shown in a closed state by the electromagnet 29 being cut off. The overtravel adjustment plate 70 has a complicated keyhole-shaped opening 71 for the armature pin. Such an opening 71 is necessary in order for the armature plate 28 to be moved through the opening 71 with the tubular portion 65 during assembly and then to fit the sickle plate 26 onto the armature pin 27. The overtravel adjusting plate 70 limits the moving distance of the armature plate 28 along the armature pin 27 to a predetermined dimension d. The oscillating motion of the armature plate 28 is reduced by the overtravel adjustment plate 70 and the armature plate 28 is quickly returned again to the starting position (position shown in FIG. 1) adjacent to the stopper 26 formed as a sickle plate. It is. The adjusting plate 38, the flange 32 of the sliding guide member 34, and the overstroke adjusting plate 70 are fastened and fixed in the magnet valve casing. The thickness of the over-travel adjustment plate 70 affects the distance between the armature plate 28 and the electromagnet 29. Therefore, the production of known magnet valves and injection valves equipped with such magnet valves is very expensive and cumbersome.
[0014]
FIG. 2 shows an embodiment of a magnet valve according to the present invention. The same symbols are assigned to the same members. In the magnet valve according to the present invention, the maximum opening stroke of the armature pin 27 is adjusted using the adjusting plate 38. The annular flange 32 of the sliding guide member 34 interposes the adjustment plate 38 and another adjustment plate 70a for adjusting the distance between the pole face of the electromagnet 29 and the armature plate 28, so that It is clamped between the annular edge 41 and the clamping shoulder 42 of the casing part 4. The adjustment plate 70a does not adjust the overtravel distance of the armature plate 28.
[0015]
In order to facilitate understanding of the present invention, FIG. 3 is an enlarged view of the armature unit including the armature plate 28, the armature pin 27, the return spring 35, the intermediate member 50, and the sliding guide member 34. The assembly of the armature unit may advantageously take place outside the casing of the fuel injection valve. In FIG. 3, the armature pin 27 is shown in a position corresponding to a state in which the magnet valve is completely opened by pulling the armature plate 28 by the electromagnet 29, unlike FIG. The armature plate 28 is pressure-bonded to a stopper 26 a formed by an annular protrusion of the armature pin 27 using a return spring 35. An end of the armature pin 27 opposite to the electromagnet has a ring shoulder 33 facing the sliding guide member, and the ring shoulder is inserted on the armature pin. Touching. The intermediate member 50 is supported by the ring-shaped stopper surface 37 of the sliding guide member 34. When the magnet valve is opened, the ring shoulder 33 is stopped by the stopper surface 37 with the intermediate member 50 interposed therebetween, that is, the armature pin 27 and the maximum of the control valve member 25 coupled to the armature pin are supported. The opening process is limited. The intermediate member may be formed in a single structure or a plurality of structures and in particular in the form of a plate. In the embodiment shown here, the intermediate member is formed as a sickle plate, as shown in FIGS. The overtravel distance d of the armature plate 28 is defined by the distance c between the opposing surfaces 51 and 52 of the sickle plate, that is, the intermediate member 50, that is, the thickness c. An inner diameter g of the sickle plate is configured to be slightly larger than a groove diameter of the ring groove 44 of the armature pin 27, and the sickle plate is inserted into the ring groove. The width of the ring groove 44 is set larger than the thickness c of all the sickle plates used. The axial dimension a of the armature plate, the axial dimension b of the sliding guide member, and the axial dimension (distance or interval) f from the armature pin stopper 26a to the ring shoulder 33 are preset. .
[0016]
From the relationship of f = a + b + c + d + e (formula), in other words, from the relationship of d + e = f−a−b−c, the amount (size) of d + e is defined depending on the thickness c of the sickle plate (intermediate member). The amount of d + e consists of the sum of the maximum opening stroke e of the armature pin and the maximum overstroke distance d of the armature plate 28 until it contacts the stopper surface 36 of the sliding guide member 34. When the maximum opening stroke e to be adjusted is determined, the maximum overtravel distance d of the armature plate 28 is accurately generated depending on the thickness c of the sickle plate 50 during assembly (pre-assembly) of the armature unit. Squeezed. The sickle plate 50 inserted into the armature pin is secured in the radial direction by the sleeve 80, that is, is positioned in the radial direction. A sleeve 80 is shown in FIGS. The inner diameter of the sleeve 80 is larger than the outer diameter h of the sickle plate 50. One end of the sleeve 80 is provided with a rib 83 protruding inward. A locking element 81 is formed in the sleeve 80 by a notch 82 extending in the axial direction. As shown in FIGS. 2 and 3, the sleeve 80 is fitted into the tubular portion 45 on the side opposite to the stopper surface 36 of the sliding guide member 34, and the locking element 81 is placed on the outer peripheral wall of the tubular portion 45. It engages in the recessed portion 46. In this case, the sleeve 81 slides along the outer periphery of the sickle-shaped plate 50 to accommodate the sickle-shaped plate therein, thereby securing the position of the sickle-shaped plate 50 in the radial direction.
[0017]
A preassembled armature unit (FIG. 3) is inserted into the valve casing as shown in FIG. The thickness of the adjustment plate 38 is selected so as to accurately maintain a predetermined maximum opening stroke e between the control valve member 25 and the valve seat 24. An interval (j, see FIG. 1) between the armature plate 28 and the electromagnet is defined by the adjustment plate 70a.
[0018]
As already described, when the magnet valve is closed, the closing spring (armature spring) 31 presses the control valve member 25 into the valve seat 24 via the armature pin 27, and the armature plate 28 further returns the return spring 35. It continues to move along the armature pin 27 against the tightening force and contacts the stopper surface 36 of the sliding guide member 34. A surface 66 (FIG. 3) of the tubular portion 65 of the armature plate 28 protruding toward the sliding guide member and facing the stopper surface 36 cooperates with the stopper surface 36 to form a hydraulic damping chamber. The fuel in the damping chamber (gap) between the surface 66 and the stopper surface 36 effectively attenuates the collision or vibration of the armature plate. In the magnet valve according to the invention, the stopper surface 36 is preferably formed as a flat surface (ebene Flaeche). Compared to the conventional type of magnetic valve (FIG. 1) in which the armature plate is brought close to the adjusting plate 70 with the opening 71 (FIG. 1), the damping action is improved in the magnetic valve according to the present invention shown in FIG. This is because the attenuation chamber is widely formed.
[0019]
As a variation of the illustrated embodiment, the intermediate member (intermediate piece) may be constituted by a plurality of plates or disks. Non-plate intermediate members are also conceivable. In the case where the intermediate member is held on the armature pin in a shape-engagement manner, that is, based on the constraint due to the shape, the sleeve for holding the intermediate member in the radial direction may be omitted. It is also conceivable that the intermediate member is configured to be elastically deformable and is fitted like a clip into the ring groove 44 of the armature pin.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of an upper portion of a fuel injection valve provided with a known magnetic valve.
FIG. 2 is a cross-sectional view of the upper portion of an embodiment of a magnet valve according to the present invention.
FIG. 3 is a cross-sectional view of the armature unit of the embodiment of FIG.
FIG. 4 is a cross-sectional view of an embodiment of an intermediate member.
FIG. 5 is a plan view of the intermediate member of FIG.
6 is a side view of the sleeve, partly broken along the line AA in FIG. 7. FIG.
7 is a plan view of the sleeve of FIG. 6. FIG.
[Explanation of symbols]
4 valve casing, 6 valve plunger, 7 coupling member, 12 valve member, 13 end face, 14 control pressure chamber, 15 inflow restrictor, 16 ring chamber, 17 fuel outflow passage, 18 outflow restrictor, 19 release chamber, 21 part, 22 flange section, 23 screw member, 24 valve seat, 25 control valve member, 26 stop ring, 27 armature pin, 28 armature plate, 29 electromagnet, 30 magnet valve, 31 closing spring, 32 flange, 33 ring shoulder, 34 Slide guide member, 35 Return spring, 36, 37 Stopper surface, 38 Adjustment plate, 41 Annular edge, 42 Tightening shoulder, 45 Tubular part, 50 Intermediate member, 60 Casing part, 70 Stroke adjustment plate, 65 Tubular part , 66 face, 80 sleeve, 81 locking element, 82 notch, 83 rib

Claims (6)

内燃機関の噴射弁の制御のためのマグネット弁であって、電磁石(29)、接極子プレート(28)及び定置の滑り案内部材(34)の開口(40)内に摺動可能に支承された接極子ピン(27)から成る運動可能な接極子、燃料貫通路(17)の開閉のために接極子と一緒に運動可能でかつ弁座(24)と協働する制御弁部材(25)、並びに接極子ピン(27)の、電磁石(29)と逆の側の端部に形成された肩部(33)を備えており、肩部がマグネット弁の開放に際して接極子ピンの開放行程を、滑り案内部材(34)の、弁座(24)に向けられたストッパ面(37)での支持によって制限するようになっており、接極子プレート(28)が慣性質量の作用下で制御弁部材(25)の閉鎖方向へ接極子ピン(27)に沿って摺動可能に支承されており、接極子ピン(27)に形成された肩部(33)が、中間部材(50)を介在して滑り案内部材(35)のストッパ面(37)に支持されるようになっており、中間部材(50)が、接極子ピン(27)に差しはめ可能な鎌形プレートとして形成されており、鎌形プレート(50)の半径方向の位置の確保のための手段(80)を設けてあり、該手段が接極子ピン(27)からの鎌形プレートの外れを防止している形式のものにおいて、鎌形プレート(50)の半径方向の位置の確保のための手段(80)が、鎌形プレート(50)に被せはめられかつ滑り案内部材(34)に固定されたスリーブを含んでいる特徴とする、内燃機関の噴射弁の制御のためのマグネット弁。A magnet valve for controlling an injection valve of an internal combustion engine, and is slidably supported in an opening (40) of an electromagnet (29), an armature plate (28), and a stationary sliding guide member (34). A movable armature comprising an armature pin (27), a control valve member (25) movable with the armature for opening and closing the fuel passage (17) and cooperating with the valve seat (24); And a shoulder portion (33) formed at the end of the armature pin (27) opposite to the electromagnet (29), and the shoulder portion opens the armature pin when the magnet valve is opened. The sliding guide member (34) is limited by the support on the stopper surface (37) facing the valve seat (24), and the armature plate (28) is controlled by the inertial mass. Sliding along the armature pin (27) in the closing direction of (25) Are supported, as shoulder formed on the armature pin (27) (33), is supported on the stop surface of the sliding guide member interposed an intermediate member (50) (35) (37) The intermediate member (50) is formed as a sickle plate that can be inserted into the armature pin (27), and means (80) for securing the radial position of the sickle plate (50) is provided. Means (80) for securing the radial position of the sickle plate (50), wherein the means prevents the sickle plate from coming off the armature pin (27), A magnet valve for controlling an injection valve of an internal combustion engine, characterized in that it comprises a sleeve that is fitted over a sickle plate (50) and is fixed to a sliding guide member (34) . スリーブ(80)が滑り案内部材(34)の、弁座(24)に向かって突出する管状部(45)に差しはめられており、スリーブの内径が鎌形プレート(50)の外径よりもわずかに大きく構成されている請求項記載のマグネット弁。The sleeve (80) is inserted into the tubular portion (45) of the sliding guide member (34) protruding toward the valve seat (24), and the inner diameter of the sleeve is slightly smaller than the outer diameter of the sickle plate (50). The magnet valve according to claim 1 , wherein the magnet valve is configured to be large. スリーブ(80)に係止手段(81)を設けてあり、該係止手段が該スリーブの固定のために、滑り案内部材(34)の管状部(45)に形成された凹所(46)内に係合している請求項記載のマグネット弁。The sleeve (80) is provided with a locking means (81), and the locking means is formed in a recess (46) formed in the tubular portion (45) of the sliding guide member (34) for fixing the sleeve. The magnet valve according to claim 2 , wherein the magnet valve is engaged with the magnet valve. 接極子プレート(28)が接極子ピン(27)上に、滑り案内部材(34)に支えられた戻しばね(35)の締め付け力に抗して、接極子ピンに形成された第1のストッパ(26a)と第2のストッパとの間で運動可能に支承されており、前記第2のストッパが滑り案内部材(34)の、電磁石(29)に向けられた別のストッパ面(36)によって形成されている請求項1からのいずれか1項記載のマグネット弁。A first stopper formed on the armature pin with the armature plate (28) on the armature pin (27) against the clamping force of the return spring (35) supported by the sliding guide member (34). (26a) and a second stopper, which is movably supported, said second stopper being supported by another stopper surface (36) of the sliding guide member (34) directed to the electromagnet (29) magnet valve of any one of claims 1 formed 3. 滑り案内部材の別のストッパ面(36)と接極子プレート(38)の、前記別のストッパ面に向けられた面(66)とによって、接極子ピン(27)に沿った接極子プレート(28)の運動の減衰のための液圧式の減衰室が形成されるようになっている請求項記載のマグネット弁。The armature plate (28) along the armature pin (27) by the other stop surface (36) of the sliding guide member and the surface (66) of the armature plate (38) directed to the further stop surface. 5. A magnet valve according to claim 4, wherein a hydraulic damping chamber is formed for damping the movement of 接極子ピン(27)、接極子プレート(28)、滑り案内部材(34)及び中間部材(50)から成る構成ユニットが、前もって組み立てられた構成群としてマグネット弁(30)のケーシング部分(60)内に挿入されるようになっている請求項1からのいずれか1項記載のマグネット弁。The casing unit (60) of the magnet valve (30) as a component group in which the constituent units composed of the armature pin (27), the armature plate (28), the sliding guide member (34) and the intermediate member (50) are assembled in advance. magnet valve of any one of claims from which claim 1 adapted to be inserted in the 5 within.
JP2002133207A 2001-05-08 2002-05-08 Magnet valve for control of injection valve of internal combustion engine Expired - Fee Related JP3663389B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10122168A DE10122168A1 (en) 2001-05-08 2001-05-08 Solenoid valve for controlling an injection valve of an internal combustion engine
DE10122168.1 2001-05-08

Publications (2)

Publication Number Publication Date
JP2002371939A JP2002371939A (en) 2002-12-26
JP3663389B2 true JP3663389B2 (en) 2005-06-22

Family

ID=7683921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002133207A Expired - Fee Related JP3663389B2 (en) 2001-05-08 2002-05-08 Magnet valve for control of injection valve of internal combustion engine

Country Status (4)

Country Link
EP (1) EP1256709B1 (en)
JP (1) JP3663389B2 (en)
DE (2) DE10122168A1 (en)
TW (1) TW575715B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4840145B2 (en) * 2006-01-17 2011-12-21 株式会社デンソー Solenoid valve device
DE102006020724A1 (en) * 2006-05-04 2007-11-08 Robert Bosch Gmbh Solenoid valve with self-centering anchor bolt
DE102007011790A1 (en) 2007-03-12 2008-09-18 Robert Bosch Gmbh Control valve means
DE102007059265A1 (en) 2007-12-10 2009-06-18 Robert Bosch Gmbh Switching valve for injectors
EP2218904B1 (en) * 2009-02-16 2011-09-07 C.R.F. Società Consortile per Azioni Method for manufacturing a fuel injector servo valve
DE102014207937A1 (en) * 2014-04-28 2015-10-29 Robert Bosch Gmbh Solenoid valve for a fuel injection system
DE102014214655A1 (en) * 2014-07-25 2016-01-28 Robert Bosch Gmbh System consisting of a control valve with controlled by a controller electromagnetic actuation

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1257958B (en) * 1992-12-29 1996-02-19 Mario Ricco ELECTROMAGNETIC CONTROL DOSING VALVE REGISTRATION DEVICE, FOR A FUEL INJECTOR
DE19708104A1 (en) * 1997-02-28 1998-09-03 Bosch Gmbh Robert magnetic valve

Also Published As

Publication number Publication date
EP1256709B1 (en) 2008-08-27
EP1256709A2 (en) 2002-11-13
DE50212693D1 (en) 2008-10-09
JP2002371939A (en) 2002-12-26
TW575715B (en) 2004-02-11
EP1256709A3 (en) 2004-12-01
DE10122168A1 (en) 2002-11-14

Similar Documents

Publication Publication Date Title
US6161813A (en) Solenoid valve for an electrically controlled valve
JP4138481B2 (en) Magnet valve for control of injection valve of internal combustion engine
JP4106669B2 (en) Electromagnetic measuring valve for fuel injection system
RU2190119C2 (en) Magnetic valve
KR101223851B1 (en) Fuel injection system with high repeatability and stability of operation for an internal-combustion engine
EP1602821A1 (en) Fuel injection valve
US20090140080A1 (en) Optimized armature assembly guidance for solenoid valves
CN101990597B (en) Solenoid valve with multiple-part armature without armature guide
JP2004516425A (en) Solenoid valve for controlling the injection valve of an internal combustion engine
US20030052291A1 (en) Electromagnetic valve for controlling an injection valve of an internal combustion engine
JP4058349B2 (en) Solenoid valve for controlling an injection valve of an internal combustion engine
US6811138B2 (en) Magnetic valve for controlling an injection valve of an internal combustion engine
US20030141475A1 (en) Electromagnetic valve for controlling an injection valve of an internal combustion engine
JP3663389B2 (en) Magnet valve for control of injection valve of internal combustion engine
JP3145108B2 (en) Solenoid valves, especially for fuel injection pumps
ITTO20001230A1 (en) FUEL INJECTOR FOR AN INTERNAL COMBUSTION ENGINE.
KR102139895B1 (en) Injection valve with magnetic ring element
US6315531B1 (en) Jerk pump provided for an internal combustion engine, with a dampened integral solenoid valve
JP2001263193A (en) Control valve for fuel injection nozzle
US20050056712A1 (en) Fuel injection valve
US11629678B2 (en) Fuel injection valve and method for assembling same
JP2022146786A (en) electromagnetic fuel injection valve
JP2022139378A (en) electromagnetic fuel injection valve
JP2004108219A (en) Fuel injection valve

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040721

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20041018

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20041021

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050328

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080401

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090401

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees