JP3654668B2 - Plate heat exchanger - Google Patents

Plate heat exchanger Download PDF

Info

Publication number
JP3654668B2
JP3654668B2 JP23256094A JP23256094A JP3654668B2 JP 3654668 B2 JP3654668 B2 JP 3654668B2 JP 23256094 A JP23256094 A JP 23256094A JP 23256094 A JP23256094 A JP 23256094A JP 3654668 B2 JP3654668 B2 JP 3654668B2
Authority
JP
Japan
Prior art keywords
fluid
passages
passage
pass
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23256094A
Other languages
Japanese (ja)
Other versions
JPH0894273A (en
Inventor
淳一 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hisaka Works Ltd
Original Assignee
Hisaka Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hisaka Works Ltd filed Critical Hisaka Works Ltd
Priority to JP23256094A priority Critical patent/JP3654668B2/en
Publication of JPH0894273A publication Critical patent/JPH0894273A/en
Application granted granted Critical
Publication of JP3654668B2 publication Critical patent/JP3654668B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、熱交換を行う複数のパスを有する多パス編成のプレート式熱交換器に関するものである。
【0002】
【従来の技術】
一般に、プレート式熱交換器では、扱う流体の温度変化が大きい場合、流体が複数のパスで熱交換を行う構成となっている所謂多パス編成を採用している。
【0003】
図4は多パス編成のプレート式熱交換器の模式図であり、この図示例の場合、低温側(被熱源側)のA流体と高温側(熱源側)のB流体との熱交換が、第1パス(I)と第2パス(II)で行われ、A流体の出口温度を管理するようになっている。
【0004】
図4において、実線はA流体の流れを示し、点線はB流体の流れを示す。また、(1a)〜(8a)はA流体の通路を示し、(1b)〜(8b)はB流体の通路を示す。
【0005】
上記プレート式熱交換器は、A流体の通路(1a)〜(4a)とB流体の通路(1b)〜(4b)を交互に並列してなる4+4並列の第1パス(I)と、A流体の通路(5a)〜(8a)とB流体の通路(5b)〜(8b)を交互に並列してなる4+4並列の第2パス(II)とを直列に連結した2パスの状態に編成されており、A流体は第1パス(I)で通路(1a)〜(4a)を通過する際に、通路(1b)〜(5b)を通過するB流体により先ず昇温され、第2パス(II)で通路(5a)〜(8a)を通過する際に、通路(5b)〜(8b)を通過するB流体により最終昇温される。
【0006】
【発明が解決しようとする課題】
上記多パス編成のプレート式熱交換器において、第2パス(II)のA流体の通路(5a)〜(8a)のうち、3つの通路(5a)(6a)(7a)は両側をB流体の通路(5b)(6b)(7b)(8b)によりそれぞれ包み込まれているが、図中右端の出口側の通路(8a)は片側のみであるため、通路(8a)を通過するA流体の温度上昇は、通路(5a)(6a)(7a)を通過するA流体より著しく小さくなる。従って、通路(8a)を通過するA流体は、通路(5a)(6a)(7a)を通過するA流体の出口温度よりも低い出口温度となる。
【0007】
そのため、通路(8a)を通過するA流体を所定温度まで昇温させるためには、熱源側のB流体の入口温度を大きく上昇させなければならない。ところが、熱源側のB流体の入口温度を大きく上昇させることにより、通路(5a)(6a)(7a)を通過するA流体は過剰な温度上昇となって品質などの低下を招く結果となる。
【0008】
それを避けるために通常、熱交換器を出た後、A流体をミキシングしたり、温度の均一化を図るためにホールドタンク、ホールドパイプ等でA流体をホールドする工程が設けられている。しかし、これらの後工程が設けられても、プレート式熱交換器の内部での温度バラツキが大きい場合には、完全な温度の均一化は難しい。
【0009】
本発明は上記の如き問題に鑑みてなされたもので、熱交換器出口部における温度管理する側の流体の温度バラツキをなくしたプレート式熱交換器を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明は上記目的を達成するため、低温側のA流体が通過する複数の通路と、高温側のB流体が通過する複数の通路とを交互に並列して形成し、A流体が通過する通路の流体流れ方向とB流体が通過する通路の流体流れ方向を互いに逆方向にして各通路で均一的に熱交換を行う複数のパスを有し、この複数のパスを並列して直列に連結して、直列方向片端の最終パスにA流体の出口とB流体の入口を設け、直列方向他端のパスにA流体の入口とB流体の出口を設けた多パス編成のプレート式熱交換器において、前記最終パスを、流体が通過する複数の通路と、この通路より1つ多い流体が通過する複数の通路とを交互に並列して形成し、流体が通過する各々の通路の両側を、B流体が通過する通路によりそれぞれ包み込み、かつ、前記最終パスとそれと隣接するパスとの間に仕切板を設け、最終パスを仕切板で隣接するパスから熱的に遮断したものである。
【0011】
【作用】
本発明によれば、最終パスの温度管理する流体が通過する各々の通路の両側を、他方の流体が通過する通路によりそれぞれ包み込んだことにより、最終パスの温度管理する流体の出口温度がより均一となり、熱交換器出口部における温度管理する側の流体の温度バラツキが少なくなる。
【0012】
【実施例】
以下、本発明のプレート式熱交換器を図面に基づいて説明する。
【0013】
図1は本発明の第1実施例の前提例を示すものであり、図4に示す従来例と同一符号は同一部材乃至同一部分を示し、重複する事項の説明を省略する。
【0014】
本発明のプレート式熱交換器は、図1に示すように、A流体の通路(1a)〜(4a)とB流体の通路(1b)〜(4b)を交互に並列してなる4+4並列の第1パス(I)と、A流体の通路(5a)〜(8a)とB流体の通路(5b)〜(9b)を交互に並列してなる4+5並列の第2パス(II)とを直列に連結した2パスの状態に編成されており、A流体は第1パス(I)で通路(1a)〜(4a)を通過する際に、通路(1b)〜(5b)を通過するB流体により先ず昇温され、第2パス(II)で通路(5a)〜(8a)を通過する際に、通路(5b)〜(9b)を通過するB流体により最終昇温される。
【0015】
本発明のプレート式熱交換器によれば、第2パス(II)のA流体の出口側の通路(8a)の両側がB流体の通路(8b)(9b)に包み込まれているため、通路(8a)を通過するA流体の温度上昇は通路(5a)(6a)(7a)を通過するA流体に近づくこととなる。従って、第2パス(II)の通路(5a)(6a)(7a)(8a)を通過するA流体の出口温度はより均一になり、熱交換器出口部におけるA流体の温度のバラツキが少なくなる。
【0016】
図2は本発明の第実施例を示すもので、図1に示す実施例の第1パス(I)の図中右端のA流体の通路(4a)と、第2パス(II)の図中左端のB流体の通路(5b)との仕切板(10)を設け、第2パス(II)を仕切板(10)で第1パス(I)から遮断している。このようにすれば、第2パス(II)は第1パスからの温度影響を受けなくなり、熱交換器出口部におけるA流体の温度のバラツキがより少なくなる。
【0017】
図3は本発明の第実施例を示すもので、図2に示す実施例の仕切板(10)の代わりに流体の流れないA流体の捨て通路(11a)とB流体の捨て通路(11b)を形成したもので、図2に示す実施例の仕切板(10)と同様の効果を達成することができる。
【0018】
なお、上記実施例では2パスの状態で編成された多パス編成のプレート式熱交換器について述べているが、本発明は2パス以上の状態で編成された多パス編成のプレート式熱交換器に適用できることは云うまでもない。但し、2パス以上の状態で編成された多パス編成のプレート式熱交換器に適用する場合は、最終パスのA流体の出口側の通路をB流体の通路で包み込む。また、上記実施例では最終パス、即ち、第2パス(II)のA流体の通路とB流体の通路を4+5並列にしているが、4+5並列以外でも良い。
【0019】
【発明の効果】
以上説明したように、本発明は最終パスの温度管理する側の流体が通過する複数の通路の両側を、他方の流体が通過する複数の通路によりそれぞれ包み込ませたから、最終パスの複数の通路を通過する温度管理する側の流体の出口温度がより均一となり、熱交換器出口部における温度管理する側の流体の温度バラツキが少なくなり、ミキシングやホールドタンク、ホールドパイプ等の後工程を省略することができる。
【0020】
また、最終パスとそれと隣接するパスとの間に仕切板または捨て通路を設け、最終パスをそれと隣接するパスから仕切板または捨て通路で遮断したから、最終パスはそれと隣接するパスからの温度影響を受けなくなり、熱交換器出口部における温度管理をする流体の温度バラツキがより生じなくなる。
【図面の簡単な説明】
【図1】 本発明のプレート式熱交換器の第1実施例の前提例の模式図である。
【図2】 本発明のプレート式熱交換器の第実施例の模式図である。
【図3】 本発明のプレート式熱交換器の第実施例の模式図である。
【図4】 従来の多パス編成のプレート式熱交換器の模式図である。
【符号の説明】
I 第1パス
II 第2(最終)パス
1a〜8a A流体(温度管理する側の流体)の通路
2b〜8b B流体(他方の流体)の通路
10 仕切板
11a A流体の捨て通路
11b B流体の捨て通路
[0001]
[Industrial application fields]
The present invention relates to a multi-pass knitted plate heat exchanger having a plurality of passes for performing heat exchange.
[0002]
[Prior art]
In general, the plate heat exchanger employs a so-called multi-pass knitting in which the fluid exchanges heat in a plurality of passes when the temperature change of the fluid to be handled is large.
[0003]
FIG. 4 is a schematic diagram of a plate-type heat exchanger of multi-pass knitting. In this example, heat exchange between the A fluid on the low temperature side (heat source side) and the B fluid on the high temperature side (heat source side) It is performed in the first pass (I) and the second pass (II), and the outlet temperature of the fluid A is managed.
[0004]
In FIG. 4, the solid line indicates the flow of fluid A, and the dotted line indicates the flow of fluid B. Further, (1a) to (8a) indicate the A fluid passage, and (1b) to (8b) indicate the B fluid passage.
[0005]
The plate-type heat exchanger includes a first path (I) of 4 + 4 parallel that includes A fluid passages (1a) to (4a) and B fluid passages (1b) to (4b) in parallel, and A The fluid passages (5a) to (8a) and the fluid fluid passages (5b) to (8b) are alternately arranged in parallel, and a 4 + 4 parallel second path (II) is knitted into a two-pass state. When the fluid A passes through the passages (1a) to (4a) in the first pass (I), the fluid A is first heated by the fluid B passing through the passages (1b) to (5b), and the second pass When passing through the passages (5a) to (8a) in (II), the temperature is finally raised by the B fluid passing through the passages (5b) to (8b).
[0006]
[Problems to be solved by the invention]
In the plate heat exchanger having the multi-pass knitting, among the passages (5a) to (8a) of the A fluid in the second pass (II), the three passages (5a), (6a) and (7a) The passage (8a) on the right end in the figure is only one side, so that the A fluid passing through the passage (8a) is surrounded by the passages (5b), (6b), (7b), and (8b). The temperature rise is significantly smaller than the fluid A passing through the passages (5a) (6a) (7a). Accordingly, the fluid A passing through the passage (8a) has an outlet temperature lower than the outlet temperature of the fluid A passing through the passages (5a), (6a), and (7a).
[0007]
Therefore, in order to raise the temperature of the A fluid passing through the passage (8a) to a predetermined temperature, the inlet temperature of the B fluid on the heat source side must be greatly increased. However, by greatly increasing the inlet temperature of the fluid B on the heat source side, the fluid A passing through the passages (5a), (6a), and (7a) excessively increases in temperature, resulting in deterioration of quality and the like.
[0008]
In order to avoid this, usually, after exiting the heat exchanger, a process of mixing the A fluid or holding the A fluid by a hold tank, a hold pipe or the like is provided in order to equalize the temperature. However, even if these post-processes are provided, it is difficult to achieve a uniform temperature when the temperature variation in the plate heat exchanger is large.
[0009]
The present invention has been made in view of the above problems, and an object of the present invention is to provide a plate heat exchanger that eliminates the temperature variation of the fluid on the temperature management side at the outlet of the heat exchanger.
[0010]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the present invention forms a plurality of passages through which the low-temperature side A fluid passes and a plurality of passages through which the high-temperature side B fluid passes alternately in parallel, and a passage through which the A fluid passes. The fluid flow direction of the B and the fluid flow direction of the passage through which the B fluid passes are opposite to each other, and there are a plurality of paths for performing heat exchange uniformly in each passage, and the plurality of paths are connected in series in parallel. A multi-pass plate type heat exchanger in which an A fluid outlet and a B fluid inlet are provided at the final path at one end in the series direction, and an A fluid inlet and a B fluid outlet are provided at the other end in the series direction . , said final pass, and a plurality of passages passing through the a fluid, either side of each of the passages often B fluid one than this passage is formed in parallel alternately and a plurality of passages passing through, a fluid passes a look write wrapped respectively by passage B fluid passes, and, prior to Final pass and therewith the partition plate is provided between the adjacent paths, in which the final pass was blocked from the adjacent path thermally by the partition plate.
[0011]
[Action]
According to the present invention, the outlet temperature of the fluid whose temperature is controlled in the final pass is more uniform by wrapping both sides of each passage through which the fluid whose temperature is controlled in the final pass is surrounded by the passage through which the other fluid passes. Thus, the temperature variation of the fluid on the temperature management side at the outlet portion of the heat exchanger is reduced.
[0012]
【Example】
Hereinafter, a plate heat exchanger of the present invention will be described with reference to the drawings.
[0013]
FIG. 1 shows a premise example of the first embodiment of the present invention. The same reference numerals as those in the conventional example shown in FIG.
[0014]
As shown in FIG. 1, the plate-type heat exchanger of the present invention has a 4 + 4 parallel arrangement in which the A fluid passages (1a) to (4a) and the B fluid passages (1b) to (4b) are alternately arranged in parallel. The first path (I) and the 4 + 5 parallel second path (II) formed by alternately arranging the A fluid passages (5a) to (8a) and the B fluid passages (5b) to (9b) in series are connected in series. The B fluid passes through the passages (1b) to (5b) when passing through the passages (1a) to (4a) in the first pass (I). First, the temperature is raised, and when passing through the passages (5a) to (8a) in the second pass (II), the temperature is finally raised by the B fluid passing through the passages (5b) to (9b).
[0015]
According to the plate heat exchanger of the present invention, both sides of the passage (8a) on the outlet side of the A fluid in the second path (II) are encased in the passages (8b) and (9b) of the B fluid. The temperature rise of the A fluid passing through (8a) approaches the A fluid passing through the passages (5a), (6a) and (7a). Therefore, the outlet temperature of the fluid A passing through the passages (5a), (6a), (7a), and (8a) of the second path (II) becomes more uniform, and the variation in the temperature of the fluid A at the heat exchanger outlet is small. Become.
[0016]
FIG. 2 shows a first embodiment of the present invention. FIG. 2 is a diagram of the A fluid passage (4a) at the right end of the first path (I) of the embodiment shown in FIG. 1 and a second path (II). A partition plate (10) with the B fluid passage (5b) at the middle left end is provided, and the second path (II) is blocked from the first path (I) by the partition plate (10). In this way, the second pass (II) is not affected by the temperature from the first pass, and the temperature variation of the A fluid at the outlet of the heat exchanger is further reduced.
[0017]
FIG. 3 shows a second embodiment of the present invention. Instead of the partition plate (10) of the embodiment shown in FIG. 2, the A fluid discard passage (11a) and the B fluid discard passage (11b) in which no fluid flows are shown. ) And the same effect as the partition plate (10) of the embodiment shown in FIG. 2 can be achieved.
[0018]
Although the above embodiment describes a multi-pass knitted plate heat exchanger knitted in a two-pass state, the present invention is a multi-pass knitted plate heat exchanger knitted in two or more passes. Needless to say, this can be applied to. However, when applied to a multi-pass knitted plate heat exchanger knitted in a state of two or more passes, the passage on the outlet side of the A fluid in the final pass is wrapped with the passage of B fluid. In the above-described embodiment, the passage of the A fluid and the passage of the B fluid in the final pass, that is, the second pass (II) are arranged in 4 + 5 in parallel, but other than 4 + 5 in parallel may be used.
[0019]
【The invention's effect】
As described above, the present invention wraps both sides of the plurality of passages through which the fluid on the temperature control side of the final path passes by the plurality of passages through which the other fluid passes, so The outlet temperature of the fluid on the temperature management side that passes through becomes more uniform, the temperature variation of the fluid on the temperature management side at the outlet of the heat exchanger decreases, and the post-process such as mixing, hold tank, hold pipe, etc. is omitted Can do.
[0020]
In addition, since a partition plate or a waste passage is provided between the final pass and the adjacent pass, and the final pass is blocked by the partition plate or the waste passage, the final pass is affected by the temperature from the adjacent pass. The temperature variation of the fluid for temperature management at the outlet portion of the heat exchanger is less likely to occur.
[Brief description of the drawings]
FIG. 1 is a schematic view of a premise example of a first embodiment of a plate heat exchanger according to the present invention.
FIG. 2 is a schematic view of a first embodiment of a plate heat exchanger according to the present invention.
FIG. 3 is a schematic view of a second embodiment of the plate heat exchanger of the present invention.
FIG. 4 is a schematic view of a conventional plate-type heat exchanger with multi-pass knitting.
[Explanation of symbols]
I 1st pass II 2nd (final) pass 1a-8a Passage of fluid A (fluid on the temperature control side) 2b-8b Passage of fluid B (the other fluid)
10 Partition plate
11a A Fluid Disposal Path
11b B fluid discard passage

Claims (2)

低温側のA流体が通過する複数の通路と、高温側のB流体が通過する複数の通路とを交互に並列して形成し、A流体が通過する通路の流体流れ方向とB流体が通過する通路の流体流れ方向を互いに逆方向にして各通路で均一的に熱交換を行う複数のパスを有し、この複数のパスを並列して直列に連結して、直列方向片端の最終パスにA流体の出口とB流体の入口を設け、直列方向他端のパスにA流体の入口とB流体の出口を設けた多パス編成のプレート式熱交換器において、
前記最終パスを、流体が通過する複数の通路と、この通路より1つ多い流体が通過する複数の通路とを交互に並列して形成し、流体が通過する各々の通路の両側を、B流体が通過する通路によりそれぞれ包み込み、かつ、前記最終パスとそれと隣接するパスとの間に仕切板を設け、最終パスを仕切板で隣接するパスから熱的に遮断したことを特徴とするプレート式熱交換器。
A plurality of passages through which the A fluid on the low temperature side and a plurality of passages through which the B fluid on the high temperature side pass are alternately formed in parallel, and the fluid flow direction of the passage through which the A fluid passes and the B fluid pass. A plurality of paths that perform heat exchange uniformly in each passage with the fluid flow directions of the passages in opposite directions are connected, and the plurality of paths are connected in series in parallel, and the final path at one end in the series direction is A In a plate-type heat exchanger of multi-pass knitting in which a fluid outlet and a B fluid inlet are provided, and an A fluid inlet and a B fluid outlet are provided at the other end in the series direction ,
The final path is formed by alternately arranging a plurality of passages through which the A fluid passes and a plurality of passages through which one more B fluid passes through the passage, and both sides of each passage through which the A fluid passes are formed. , see write wrapped respectively by passage B fluid passes, and the partition plate between the final pass and therewith adjacent path provided, characterized in that blocked from the adjacent path thermally the final pass by the partition plate A plate heat exchanger.
最終パスとそれと隣接するパスとの間に捨て通路を設け、最終パスを捨て通路で隣接するパスから熱的に遮断したことを特徴とする請求項1のプレート式熱交換器。2. The plate heat exchanger according to claim 1, wherein a discard passage is provided between the final path and the adjacent path, and the final path is thermally blocked from the adjacent path by the discard path.
JP23256094A 1994-09-28 1994-09-28 Plate heat exchanger Expired - Fee Related JP3654668B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23256094A JP3654668B2 (en) 1994-09-28 1994-09-28 Plate heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23256094A JP3654668B2 (en) 1994-09-28 1994-09-28 Plate heat exchanger

Publications (2)

Publication Number Publication Date
JPH0894273A JPH0894273A (en) 1996-04-12
JP3654668B2 true JP3654668B2 (en) 2005-06-02

Family

ID=16941250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23256094A Expired - Fee Related JP3654668B2 (en) 1994-09-28 1994-09-28 Plate heat exchanger

Country Status (1)

Country Link
JP (1) JP3654668B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4884162B2 (en) * 2006-10-25 2012-02-29 トヨタ自動車株式会社 Heat exchanger
JP5100860B2 (en) * 2011-04-27 2012-12-19 株式会社日阪製作所 Plate heat exchanger
CN108895862A (en) * 2018-07-19 2018-11-27 山东鲁台集团枣庄市鲁都造纸机械有限公司 A kind of rotary porous multi-cavity conduction oil exchanger

Also Published As

Publication number Publication date
JPH0894273A (en) 1996-04-12

Similar Documents

Publication Publication Date Title
JP4011648B2 (en) Plate stack heat exchanger
US7021371B2 (en) Heat exchanger
GB2303910A (en) Heat exchanger with a stacked plate structure
US5492171A (en) Plate heat exchanger, a method of producing a plate heat exchanger and means for performing the method
JP3654668B2 (en) Plate heat exchanger
DK1097346T3 (en) Multi-circuit heat exchanger
JP3543992B2 (en) Plate heat exchanger
ATE166450T1 (en) HEAT EXCHANGER MADE OF SEVERAL EXCHANGE TUBES PARALLEL TO EACH OTHER
KR950029748A (en) Stacked Heat Exchanger
JPH11294973A (en) Heat exchanger of absorption water cooler/heater
US20130081794A1 (en) Layered core heat exchanger
JP3654677B2 (en) Plate heat exchanger
JPH01169295A (en) Heat exchanger
JP3381255B2 (en) Heat exchange coil for small amount of water
JP2003181837A (en) Hot plate having cooling mechanism
US10222130B2 (en) Work machine heat exchanger
JPH03177791A (en) Lamination type heat exchanger
JP2007278637A (en) Heat exchanger
JP3776966B2 (en) Combustion device
EP3791124B1 (en) Heat exchanger, heat pump system and method for heat exchange
JPH08338633A (en) Steam cooled combustor
KR100736846B1 (en) Multi-channel heat exchanger with transverse by-pass
JP2001280886A (en) Plate type heat exchanger
JPH0624691Y2 (en) Plate fin type heat exchanger
JPH053902Y2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050301

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080311

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100311

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110311

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120311

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120311

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130311

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130311

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140311

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees