JP2007278637A - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP2007278637A
JP2007278637A JP2006107389A JP2006107389A JP2007278637A JP 2007278637 A JP2007278637 A JP 2007278637A JP 2006107389 A JP2006107389 A JP 2006107389A JP 2006107389 A JP2006107389 A JP 2006107389A JP 2007278637 A JP2007278637 A JP 2007278637A
Authority
JP
Japan
Prior art keywords
heat exchange
gap
fluid
outlet
inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006107389A
Other languages
Japanese (ja)
Inventor
Taro Watanabe
太郎 渡邉
Sadayuki Jitsuhara
定幸 實原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xenesys Inc
Original Assignee
Xenesys Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xenesys Inc filed Critical Xenesys Inc
Priority to JP2006107389A priority Critical patent/JP2007278637A/en
Publication of JP2007278637A publication Critical patent/JP2007278637A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat exchanger capable of securing heat exchange performance by properly setting a flow direction between plates of a heat exchange fluid, and promoting heat transfer via the plates while positively maintaining isolated states between different fluid passages. <P>SOLUTION: Pairs of inflow port parts and outflow port parts for another heat exchange fluid in a shell 20 are arranged on two opposing faces in mutually facing states. An arrangement state is provided wherein a second gap part 52 passing the other heat exchange fluid is communicated with only one pair of the inflow port parts and the outflow port parts in diagonal positions of gaps between juxtaposed heat exchange plates 10, and communicated states with the inflow port parts and the outflow port parts of the second gap parts are alternately changed. By this, even if there is stagnation in one part of the second gap parts 52, its position is alternately changed, and influence of the stagnation can be minimized by carrying out heat exchange with the other heat exchange fluid in a flowing state in either one of a first gap part 51 or an adjacent second gap part. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は金属薄板を成形して得られる熱交換用プレートを複数並列状態で一体化した熱交換ユニットを要部とする熱交換器に関し、特に、各熱交換用プレート間での各熱交換用流体の流れ関係を適切に設定して熱交換効率の向上が図れる熱交換器に関する。   The present invention relates to a heat exchanger having a main part of a heat exchange unit in which a plurality of heat exchange plates obtained by forming a thin metal plate are integrated in a parallel state, and in particular, for each heat exchange between the heat exchange plates. The present invention relates to a heat exchanger capable of improving heat exchange efficiency by appropriately setting a fluid flow relationship.

高温流体と低温流体との間で熱の授受(熱交換)を行わせる熱交換器の使用にあたり、熱伝達率を大きくして熱交換性能を高めたい場合には、従来からプレート式の熱交換器が多く用いられていた。このプレート式の熱交換器は、複数の略板状のプレートを平行に所定間隔で重ね合せ、各プレート間をそれぞれ流路とし、各流路にはプレート一枚おきに高温流体と低温流体を交互に流して、各プレートを介して熱交換させる構造である。   When using a heat exchanger that transfers heat between a high-temperature fluid and a low-temperature fluid (heat exchange), if you want to increase the heat transfer rate and improve the heat exchange performance, then plate-type heat exchange has been used. Many vessels were used. In this plate heat exchanger, a plurality of substantially plate-like plates are stacked in parallel at a predetermined interval, and each plate is used as a flow path, and high temperature fluid and low temperature fluid are supplied to each flow path every other plate. It is a structure which makes it flow alternately and heat-exchanges through each plate.

このような従来のプレート式熱交換器においては、プレート間を一定間隔に保つと共に流体の通路部として区画する弾性素材製のガスケットを、各プレート間に配設するのが一般的であったが、ガスケットの耐えうる圧力範囲でしか熱交換用流体を用いることができないという問題があるため、近年、こうしたガスケット等を用いず、所定間隔で配置された金属薄板製の各プレート端部や開口孔周囲を互いに溶接等で直接接合して、各プレートの表裏両側に流体流路となる隙間部を形成しつつプレートを一体化する構成の熱交換器が提案されている。特に本発明者の発明した例が、特開2003−194490号公報に開示されている。この開示された従来例では、流体の流入出口が矩形の熱交換用プレートを積層した外周面に配置されることとなる。
特開2003−194490号公報
In such a conventional plate-type heat exchanger, a gasket made of an elastic material that keeps a constant space between the plates and is partitioned as a fluid passage portion is generally disposed between the plates. However, since there is a problem that the fluid for heat exchange can only be used within the pressure range that can be withstood by the gasket, in recent years, without using such a gasket or the like, each plate end or opening hole made of a thin metal plate arranged at a predetermined interval There has been proposed a heat exchanger having a configuration in which the plates are integrated with each other by directly joining the surroundings by welding or the like, and forming gap portions serving as fluid flow paths on both sides of each plate. In particular, an example invented by the present inventor is disclosed in Japanese Patent Application Laid-Open No. 2003-194490. In the disclosed conventional example, the fluid inflow / outlet is disposed on the outer peripheral surface in which rectangular heat exchange plates are stacked.
JP 2003-194490 A

従来からプレート式熱交換器では、熱交換性能効率を最大限に高めるために、熱交換用流体同士の流れがプレートを隔てて向流となる設計を求められる場合が多い。前記特許文献等に示されるような溶接でプレートを一体化するタイプの熱交換器で向流を実現する場合、外周面の一つに一方の流体の流入口と他方の流体の流出口、これと対向する面に一方の流体の流出口と他方の流体の流入口をそれぞれ設けるようにするのが、プレートのほぼ全体で確実に向流の流れ関係が得られる点で優れるものの、流入口と流出口が同一面上に混在する中で各流体流路間の水密状態を維持する構成が複雑となってしまうために、通常はこれに代えて、他方の流体の流入出口を一方の流体の流入出口が設けられる面とは異なる面にそれぞれ配置し、且つ流入口と流出口を互いに異なる端部側、すなわちプレートの対角に位置するようにそれぞれ設けて、プレートの少なくとも中央部分で向流の流れ関係が得られる構造としている。   Conventionally, in order to maximize the efficiency of heat exchange performance, plate-type heat exchangers often require a design in which the flow of heat exchange fluids is countercurrent across the plate. In the case where counter flow is realized by a heat exchanger in which plates are integrated by welding as shown in the above-mentioned patent document, one fluid inlet and the other fluid outlet are provided on one of the outer peripheral surfaces. Although it is excellent in that a countercurrent flow relationship can be reliably obtained over almost the entire plate, it is preferable to provide an outlet port for one fluid and an inlet port for the other fluid on the surface facing each other. Since the structure for maintaining the watertight state between the fluid flow paths becomes complicated while the outlets coexist on the same plane, normally, instead of this, the other fluid inlet / outlet is connected to one of the fluids. It is arranged on a surface different from the surface on which the inflow / outflow ports are provided, and the inflow port and the outflow port are provided at different end sides, i.e., at opposite sides of the plate. With a structure that provides To have.

しかしながら、このような流入出口配置の場合、流入出口がプレートの対角位置にそれぞれ配置される他方の熱交換用流体において、流入口から流出口へ向う流体が、実際には通過抵抗の少ない最短経路を流れようとするため、流体の大部分は流入口と流出口を結ぶ最短経路であるプレートの対角線に沿って流れ、流体にはこの対角線から離れるほど流速が遅くなるという速度分布が生じる状態となる。そして、この対角線位置から離れたプレート隅部では流体がよどんだ状態となり、この他方の流体のよどみ部分にプレートを介して隣合う流路部位とそうでない部位とで一方の流体に温度の偏りが生じ、各流体で所望の出口温度が得られないなど、伝熱面を介した一方の流体と他方の流体との熱交換が適切に行えない状況に至るという課題を有していた。   However, in the case of such an inflow / outlet arrangement, in the other heat exchange fluid in which the inflow / outflow positions are respectively arranged at diagonal positions of the plate, the fluid from the inflow port to the outflow port is actually the shortest passage resistance. In order to flow through the path, most of the fluid flows along the diagonal of the plate, which is the shortest path connecting the inlet and outlet, and the fluid has a velocity distribution in which the flow velocity decreases as the distance from the diagonal increases. It becomes. Then, the fluid is stagnated at the corner of the plate away from the diagonal position, and the temperature of one fluid is biased between the flow path portion adjacent to the other fluid stagnation portion through the plate and the other portion. Thus, there has been a problem that heat exchange between one fluid and the other fluid cannot be appropriately performed via the heat transfer surface, for example, each fluid cannot obtain a desired outlet temperature.

これに対し、他方の流体がよどんだ状態となりがちな隅部にも流体が流れるようにするため、この隅部近くに流入出口を設けた構造、例えば、一方の流体の流入口がある面にはこの流入口から離して新たな流出口を、一方の流体の流出口がある面にはこの流出口から離して新たな流入口をそれぞれ増設して一方の流体の流入出口を二つずつ備えた構造の熱交換器とすることも考えられるが、この場合も、各流入口から流出口へ向う一方の流体がより通過抵抗の少ない経路を進もうとする傾向は変らず、各流入口からそれぞれ隙間に入った一方の流体が、流入した流入口に最も近い同じ面側の流出口へ向けてそれぞれプレート端縁部に沿って進む状態となり、隅部の代りにプレート中央など大部分の領域で流れ状態が悪化してしまい、他方の流体との熱交換が適切に行えない状況の改善にはつながらないという課題を有していた。   On the other hand, in order to allow the fluid to flow to the corner where the other fluid tends to be stagnant, a structure in which an inlet / outlet is provided near the corner, for example, on the surface where the inlet of one fluid is located. Is provided with two new inflow outlets, one on the surface with one fluid outflow port, and two new inflow ports on the surface with one fluid outflow port. However, in this case as well, there is no change in the tendency of one fluid from each inlet to the outlet to travel along a path with less passage resistance. One of the fluids entering the gap moves along the edge of the plate toward the outlet on the same side closest to the inlet where it entered, and in most areas such as the center of the plate instead of the corner. The flow condition deteriorates and the other flow Heat exchange with had a problem that does not lead to improved properly in situations not be performed.

この場合、特に熱交換器をなす矩形又は方形のプレートにおけるアスペクト比が大きく、熱交換器における他方の流体の流入出口のある周面が一方の流体の流入出口のある周面に比べて極端に長い形状となっている場合、熱交換器の短辺側に設けられる一方の流体の流入口同士及び流出口同士が長辺方向に互いに大きく離れた構造となることから、流入口から流出口へ向う流体がより通過抵抗の少ない経路を進もうとする傾向がさらに強く現れることとなり、各流入口から隙間に入った一方の流体がそれぞれ流入口と同じ側の流出口へ向けて熱交換器の短辺に沿って大部分が進む状態となり、プレート中央などの領域で一方の流体の流れ状態が著しく悪化し、他方の流体との熱交換が適切に行えず十分な熱交換効率を確保できないという課題を有していた。   In this case, in particular, the aspect ratio of the rectangular or rectangular plate constituting the heat exchanger is large, and the peripheral surface of the heat exchanger with the other fluid inlet / outlet is extremely larger than the peripheral surface with the one fluid inlet / outlet. In the case of a long shape, the inlets and outlets of one of the fluids provided on the short side of the heat exchanger are structured to be greatly separated from each other in the long side direction. As a result, the tendency of the fluid to go along the path with less passage resistance appears more strongly, and one of the fluids that entered the gap from each inlet enters the outlet on the same side as the inlet. Most of the fluid travels along the short side, the flow state of one fluid in the center of the plate and other areas is significantly deteriorated, and heat exchange with the other fluid cannot be performed properly, and sufficient heat exchange efficiency cannot be ensured. Task It had.

本発明は前記課題を解消するためになされたもので、熱交換用流体の各プレート間における流れ方向を適切に設定し、異なる流体流路間の隔離状態を確実に維持しつつ、プレートを介した熱伝達を促して熱交換性能を確保できる熱交換器を提供することを目的とする。   The present invention has been made to solve the above-described problems. The flow direction of the heat exchange fluid between the plates is appropriately set, and the separation state between the different fluid flow paths is reliably maintained while the plates are interposed. An object of the present invention is to provide a heat exchanger that can promote heat transfer and ensure heat exchange performance.

本発明に係る熱交換器は、略矩形又は略方形状金属薄板からなる複数の熱交換用プレートを、表面同士及び裏面同士それぞれ向い合わせにして重ね合せた状態で一体化して形成され、各プレート間の隙間が一つおきにプレート表面間の第一隙間部とプレート裏面間の第二隙間部となる熱交換ユニット、並びに、当該熱交換ユニットの外周を覆いつつ、前記第一隙間部に流通する一の熱交換用流体及び第二隙間部に流通する他の熱交換用流体の、各隙間部への各々独立した流通状態を確保すると共に外部への漏れを防ぐシェルを備える熱交換器において、前記熱交換ユニットが、前記第一隙間部の周囲に対する開口部分を、前記各熱交換用プレートの所定の対向する二辺に沿ってそれぞれ配置される一方、前記第二隙間部の周囲に対する開口部分を、各熱交換用プレートの前記二辺と異なる他の二辺に沿ってそれぞれ配置され、前記第一隙間部と第二隙間部の各開口部分が互いに直角をなす配置関係とされてなり、前記シェルが、前記熱交換ユニットにおける各第一隙間部の開口部分の各外方となる対向状態の二面に、前記一の熱交換用流体用の流入出口部をそれぞれ配置され、また、熱交換ユニットにおける各第二隙間部の開口部分の各外方となる対向状態の他の二面に、前記他の熱交換用流体用の流入出口部をそれぞれ配置され、前記シェルにおける前記他の熱交換用流体用の流入出口部のうち、流入口部として、前記対向状態の二面における前記一の熱交換用流体用の流出口部寄り端部に、対向状態で第一流入口部と第二流入口部の二つを配設されると共に、流出口部として、前記対向状態の二面における前記流入口部配設側と逆側の端部に対向状態で第一流出口部と第二流出口部の二つを配設され、前記第一流入口部、並びに第一流入口部と異なる面側に設けられる前記第二流出口部が、各第二隙間部に対し一つおきに連通し、残りに連通しない状態とされ、前記第一流入口部と対向する前記第二流入口部、並びに第一流入口部と同じ面側に設けられる前記第一流出口部が、第一流入口部が連通しない一つおきの各第二隙間部に連通し、残りに連通しない状態とされるものである。   The heat exchanger according to the present invention is formed by integrating a plurality of heat exchange plates made of a substantially rectangular or substantially rectangular metal thin plate in a state in which the front and back surfaces face each other and overlap each other. A heat exchange unit that forms a first gap between the plate surfaces and a second gap between the back surfaces of the plate and every other gap between them, and the outer circumference of the heat exchange unit, while flowing through the first gap In a heat exchanger comprising a shell that secures an independent flow state of each heat exchange fluid and other heat exchange fluid that flows through the second gap to each gap and prevents leakage to the outside The heat exchanging unit is arranged such that an opening portion with respect to the periphery of the first gap portion is disposed along two predetermined opposite sides of each of the heat exchange plates, while an opening with respect to the periphery of the second gap portion is provided. Part Are arranged along two other sides different from the two sides of each heat exchanging plate, and the opening portions of the first gap portion and the second gap portion are arranged at right angles to each other, The shell is provided with an inlet / outlet part for the one heat exchange fluid on each of two opposing surfaces on the outer sides of the opening portions of the first gaps in the heat exchange unit, respectively. The other heat exchange fluid inlet / outlet portions are respectively arranged on the other two surfaces facing each other on the outer sides of the opening portions of the second gap portions in the exchange unit, and the other heat in the shell. Among the inflow / outlet portions for the replacement fluid, the first inflow portion and the second in the opposed state are arranged as the inflow portion at the end near the outflow portion for the one heat exchange fluid on the two faces in the opposed state. As two outflow parts are arranged, as outflow part, Two ends, the first outlet portion and the second outlet portion, are arranged in the opposite state at the opposite ends of the two faces in the opposite state, the first inlet portion, and the first The second outlet portions provided on the surface side different from the one inlet portion communicate with every other second gap portion, and do not communicate with the rest, the second inlet portion facing the first inlet portion. A state where the first inlet portion provided on the same surface side as the second inlet portion and the first inlet portion communicates with every other second gap portion where the first inlet portion does not communicate, and does not communicate with the rest It is what is done.

このように本発明によれば、熱交換用プレートを複数並列状態で一体化して二つの熱交換用流体が一つおきに流れる隙間を生じさせつつ、シェルにおける一の熱交換用流体の流入出口部と他の熱交換用流体の流入出口部をそれぞれ異なる面に配設し、且つ他の熱交換用流体の流入口部と流出口部を対向する二つの面にそれぞれ対向状態で二つずつ配設し、流入口部から流出口部へ向けてそのまま直線状に流れる一の熱交換用流体に対し、他の熱交換用流体の通る第二隙間部を対角配置の流入口部と流出口部の組の一方にのみ連通させ、且つ第二隙間部一つおきに流入口部と流出口部との連通状態を入替えた配置状態として、第二隙間部一つおきに他の熱交換用流体の最短距離で進もうとする流れ方向を異ならせることにより、他の熱交換用流体側の隙間の隅部によどみが生じた場合にも、その位置が一つおきに入れ替ることとなり、プレートを隔てた第一隙間部に、第二隙間部のよどみ部分に両側から挟まれた部位が一切生じず、第一隙間部における一の熱交換用流体と隣合う第二隙間部のうちいずれかの側における流動状態の他の熱交換用流体との間で熱交換を行わせて、一の熱交換用流体の隙間部内各位置ごとの温度の偏りを小さくすることができ、プレートのアスペクト比が大で流体の流入口と流出口のある各面が互いに離れている場合でも、熱交換用流体同士の熱交換を行える状態が確保され、よどみの影響を必要最小限とすることができる。   As described above, according to the present invention, a plurality of heat exchanging plates are integrated in a parallel state to create a gap through which two heat exchanging fluids flow every other one, and the inlet / outlet of one heat exchanging fluid in the shell. And the other heat exchange fluid inlet and outlet portions are arranged on different surfaces, and the other heat exchange fluid inlet and outlet portions are respectively opposed to the two opposing surfaces. For the one heat exchange fluid that flows straight from the inlet to the outlet, the second gap through which the other heat exchange fluid passes is diagonally connected to the inlet Communicating with only one of the sets of outlets and arranging the other inlets and outlets for every other second gap, and other heat exchange every other second gap By changing the direction of the flow to be advanced in the shortest distance of the industrial fluid, Even when stagnation occurs in the corner of the gap on the side, every other position is replaced, and it is sandwiched from both sides by the stagnation part of the second gap part in the first gap part across the plate No part is generated, and heat exchange is performed between one heat exchange fluid in the first gap and another heat exchange fluid in a flow state on either side of the adjacent second gap. The temperature deviation at each position in the gap of the heat exchange fluid can be reduced, even when the aspect ratio of the plate is large and the surfaces where the fluid inlet and outlet are separated from each other, A state in which heat exchange between the heat exchange fluids can be performed is ensured, and the influence of stagnation can be minimized.

また、本発明に係る熱交換器は必要に応じて、前記熱交換ユニットにおける各第二隙間部の開口部分のうち、少なくとも前記各流入出口部に面する範囲で、且つ各流入出口に連通させない隙間部に該当する開放部分に、所定の閉塞部材を固定配設するものである。   In addition, the heat exchanger according to the present invention is not communicated with each inflow / outlet at least in a range facing each inflow / outlet portion of the opening portion of each second gap portion in the heat exchange unit, if necessary. A predetermined closing member is fixedly disposed in an open portion corresponding to the gap.

このように本発明によれば、他の熱交換用流体の流入出口に面するもののちょうど流体を通さない位置にあたる第二隙間部の開口部分に閉塞部材を配置し、外部に通じる開口位置における開口の一部を閉塞部材で塞いで流体の流出入を制限することにより、簡略な構成で容易に各第二隙間部を区分して第二隙間部が一つおきに流れ状態を異ならせた状態を設定でき、熱交換用流体同士の適切な熱交換を確実に実現させられる。   As described above, according to the present invention, the closing member is arranged at the opening portion of the second gap portion that faces the inflow / outlet of the other heat exchange fluid but does not pass the fluid, and the opening at the opening position leading to the outside is provided. A state in which each second gap is easily divided with a simple configuration and every second gap is made different by restricting the flow of fluid by blocking a part of it with a blocking member. Therefore, appropriate heat exchange between the heat exchange fluids can be realized with certainty.

以下、本発明の一実施形態を図1ないし図10に基づいて説明する。図1は本実施形態に係る熱交換器の正面図、図2は本実施形態に係る熱交換器の一部切欠拡大右側面図、図3は本実施形態に係る熱交換器の一部切欠拡大平面図、図4は本実施形態に係る熱交換器の一部切欠拡大底面図、図5は本実施形態に係る熱交換器における熱交換ユニットの概略構成説明図、図6は本実施形態に係る熱交換器における熱交換ユニット右側開口部への閉塞部材配置状態説明図、図7は本実施形態に係る熱交換器における熱交換ユニット左側開口部への閉塞部材配置状態説明図、図8は本実施形態に係る熱交換器における第二隙間部の一方での熱交換用流体流れ状態説明図、図9は本実施形態に係る熱交換器における第二隙間部の他方での熱交換用流体流れ状態説明図、図10は本実施形態に係る熱交換器の熱交換ユニットにおける熱交換用流体流出口部分の要部拡大断面図である。   Hereinafter, an embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a front view of a heat exchanger according to the present embodiment, FIG. 2 is a partially cutaway right side view of the heat exchanger according to the present embodiment, and FIG. 3 is a partially cutout of the heat exchanger according to the present embodiment. FIG. 4 is a partially cutaway bottom view of the heat exchanger according to the present embodiment, FIG. 5 is a schematic configuration explanatory view of the heat exchange unit in the heat exchanger according to the present embodiment, and FIG. 6 is the present embodiment. FIG. 7 is an explanatory diagram of the state of the closing member disposed in the left side opening of the heat exchanger according to the present embodiment. FIG. FIG. 9 is an explanatory diagram of a fluid flow state for heat exchange in one of the second gap portions in the heat exchanger according to this embodiment, and FIG. 9 is for heat exchange in the other of the second gap portions in the heat exchanger according to this embodiment. FIG. 10 is an explanatory diagram of a fluid flow state, and FIG. 10 shows a heat exchange unit of the heat exchanger according to this embodiment. It is an enlarged sectional view of the fluid outlet portion for heat exchange in.

前記各図において本実施の形態に係る熱交換器1は、金属薄板製の熱交換用プレート10を複数並列させ一体化した熱交換ユニット50と、この熱交換ユニットの周囲を覆う状態で配設される略箱状のシェル20とを備える構成である。   In each of the drawings, the heat exchanger 1 according to the present embodiment is arranged in such a manner that a heat exchange unit 50 in which a plurality of heat exchange plates 10 made of thin metal plates are arranged in parallel and covers the periphery of the heat exchange unit. The substantially box-shaped shell 20 is provided.

前記熱交換用プレート10は、矩形状の金属薄板を素材とし、所定のプレス工程を経て凹凸のある伝熱面11を略中央部分に成型されると共に、伝熱面11を囲む外周各辺のうち、プレートの平行な二つの短辺に沿う所定範囲に壇状部12として他部分より高い平坦***部分を成型される一方、平行な二つの長辺に沿う部位を***させない平面部13とされてなる構成である。   The heat exchanging plate 10 is made of a rectangular thin metal plate, and a heat transfer surface 11 having projections and depressions is formed in a substantially central portion through a predetermined pressing process, and each outer peripheral side surrounding the heat transfer surface 11 is formed. Among them, a flat raised portion higher than the other portions is formed as a stepped portion 12 in a predetermined range along two parallel short sides of the plate, while a flat portion 13 that does not raise a portion along two parallel long sides is formed. It is the composition which consists of.

前記伝熱面11は、一方の面に高温の熱交換用流体、他方の面に低温の熱交換用流体がそれぞれ接触して熱伝達を行うのに最適化された凹凸形状を有する領域であり、熱伝達特性に優れた波形断面形状や、凝縮水を速やかに排出可能な溝状部分などを有する公知の凹凸形状となっており、詳細な説明を省略する。   The heat transfer surface 11 is a region having a concavo-convex shape optimized for heat transfer by contacting a high temperature heat exchange fluid on one surface and a low temperature heat exchange fluid on the other surface. A well-known concavo-convex shape having a corrugated cross-sectional shape excellent in heat transfer characteristics, a groove-like portion capable of quickly discharging condensed water, and the like will be omitted.

この熱交換用プレート10からなる熱交換ユニット50は、熱交換用プレート10における壇状部12の***する側とは反対面を表面、壇状部12の***する側を裏面とすると、複数の熱交換用プレート10を、表面同士は長辺をなす端部、すなわち平面部13でこの長辺全長にわたり溶接等により接合すると共に、裏面同士は短辺をなす端部で前記表面側での接合対象に含まれる両端の平面部13を残して接合する、すなわち壇状部12で接合するようにして、複数並列状態で接合一体化して形成される。   The heat exchanging unit 50 including the heat exchanging plate 10 has a surface opposite to the protruding side of the stepped portion 12 of the heat exchanging plate 10 as a front surface, and a protruding side of the stepped portion 12 as a rear surface. The heat exchange plate 10 is joined by welding or the like over the entire length of the long side at the end portion where the surfaces form long sides, that is, the flat portion 13, and the back surface is joined at the surface side at the end portion forming the short side. It joins leaving the plane part 13 of the both ends contained in object, ie, it joins in the step-like part 12, and it joins and integrates and forms in multiple parallel state.

この熱交換ユニット50では、各熱交換用プレート10間の隙間が一つおきに、プレート表面間の第一隙間部51と、プレート裏面間の第二隙間部52、53とをなし、第一隙間部51が一の熱交換用流体を流通させる一方、第二隙間部52、53が他の熱交換用流体を流通させることとなる。第一隙間部51は、各熱交換用プレート10の短辺に沿ってそれぞれ開口する隙間であり、各壇状部12に挟まれた各第一開口部51aを通じて一の熱交換用流体を流入出させる。また、第二隙間部52、53は、前記短辺と直角をなす二つの長辺に沿ってそれぞれ開口する隙間であり、各平面部13に挟まれた各第二開口部52a、53aを通じて他の熱交換用流体を流入出させる。この第二隙間部52、53の各第二開口部52a、53aのうち、一部には閉塞部材54が挿入配設されて第二開口部52a、53aを塞いだ状態となっている。   In this heat exchange unit 50, every other gap between the heat exchange plates 10 is provided with a first gap 51 between the plate surfaces and second gaps 52 and 53 between the back surfaces of the plates. While the gap 51 allows one heat exchange fluid to flow, the second gaps 52 and 53 allow other heat exchange fluid to flow. The first gap 51 is a gap that opens along the short side of each heat exchange plate 10, and flows in one heat exchange fluid through each first opening 51 a sandwiched between the steps 12. Let it come out. The second gaps 52 and 53 are gaps that open along two long sides that are perpendicular to the short sides, and the second gaps 52 and 53 pass through the second openings 52a and 53a sandwiched between the flat portions 13. The heat exchange fluid is allowed to flow in and out. Among the second openings 52a and 53a of the second gaps 52 and 53, a blocking member 54 is inserted and disposed in a part of the second openings 52a and 53a to block the second openings 52a and 53a.

前記シェル20は、一部を熱交換ユニット50隅部における各熱交換用プレート10間の空隙に挿入させた状態で溶接一体化される基礎隔壁部21と、互いに連結されて熱交換ユニット50における各面をそれぞれ覆う状態で配設される隔壁体22、23と、熱交換ユニット50の開口部分外方に取付けられ、流体を集合状態で適切に流入出させるヘッダ24、25とを備える構成であり、ヘッダ24、25における流体流入出用の開口以外で、熱交換ユニット50の各隙間部51、52、53を外部に対し確実に隔離状態とするものである。   In the heat exchange unit 50, the shell 20 is connected to the base partition wall portion 21 which is welded and integrated in a state where a part of the shell 20 is inserted into the space between the heat exchange plates 10 at the corners of the heat exchange unit 50. The structure includes partition bodies 22 and 23 disposed in a state of covering each surface, and headers 24 and 25 that are attached to the outside of the opening portion of the heat exchange unit 50 and appropriately allow fluid to flow in and out in an assembled state. Yes, the gaps 51, 52, 53 of the heat exchange unit 50 are surely separated from the outside except for the fluid inflow / outflow openings in the headers 24, 25.

前記基礎隔壁部21は、熱交換用プレート10と同素材の略板状体で形成され、熱交換ユニット50をなす熱交換用プレート10間の空隙形状に対応させた凹凸形状部分を備え、熱交換ユニット50の各隅部で各第一開口部51aにおける側端部に一部を挿入すると共に、これら各第一開口部51aの側方に位置するプレート10の平面部13間の空隙55に別の部分を挿入し、これら挿入部分に挟まれる各熱交換用プレート10と溶接して、熱交換ユニット50と一体化される構成である。各基礎隔壁部21が熱交換ユニット50の各隅部に熱交換用プレート10と一体化して配置されることで、第一開口部51aと第二開口部52a、53aとが互いに連通することなく確実に隔離された状態となる。   The basic partition wall portion 21 is formed of a substantially plate-like body made of the same material as the heat exchange plate 10, and has an uneven portion corresponding to the shape of the gap between the heat exchange plates 10 constituting the heat exchange unit 50. In the corners of the replacement unit 50, a part is inserted into the side end of each first opening 51a, and the gap 55 between the flat portions 13 of the plate 10 located on the side of each first opening 51a. Another part is inserted and welded to each heat exchange plate 10 sandwiched between these insertion parts, so that the heat exchange unit 50 is integrated. Since each basic partition wall portion 21 is disposed integrally with each heat exchange plate 10 at each corner of the heat exchange unit 50, the first opening 51a and the second openings 52a and 53a do not communicate with each other. It will be surely isolated.

前記隔壁体22、23は、熱交換ユニット50に導入される各熱交換用流体から加わる圧力では変形しない程度の強度を有する厚い板状体で形成され、熱交換ユニット50の各側面を覆う状態で配設され、隔壁体各端部相互をそれぞれ溶接あるいはボルト26等による締結で一体に且つ水密維持状態で連結一体化される他、必要に応じて各基礎隔壁部21にも水密維持状態で連結され、シェル20として一体化される構成である。この隔壁体22、23は、一枚の厚板で構成する他、複数の板状体の組合わせ構造とすることもできる。この隔壁体22、23の素材は、適切な強度及び熱交換用流体との接触で変化しない性質を備えるものであればよい。   The partition bodies 22 and 23 are formed of thick plate-like bodies having such a strength that they are not deformed by pressure applied from each heat exchange fluid introduced into the heat exchange unit 50, and cover each side surface of the heat exchange unit 50. In addition to being integrally connected to each end of the partition wall by welding or fastening with bolts 26 and the like in a watertight state, the base partition walls 21 are also maintained in a watertight state as necessary. It is connected and integrated as a shell 20. The partition bodies 22 and 23 may be formed of a single thick plate, or may be a combined structure of a plurality of plate-like bodies. The material of the partition bodies 22 and 23 may be any material as long as it has an appropriate strength and does not change upon contact with the heat exchange fluid.

前記隔壁体22は、熱交換ユニット50における熱交換用プレート10表面及び/又は裏面全体のあらわれる二つの端面に重なる状態で配設されて前記各端面を覆う構成であり、基礎隔壁部21端部にボルト26や溶接等により連結一体化される構成である。   The partition wall 22 is arranged in such a manner that it overlaps the two end faces of the heat exchange plate 10 in the heat exchange unit 50, and covers the respective end faces. Are connected and integrated by bolts 26, welding, or the like.

また、隔壁体23は、熱交換ユニット50における各第二隙間部52、53の第二開口部52a、53aのある二つの端面の外方にそれぞれ配設されるものであり、幅が熱交換ユニット50のプレート並列方向寸法に略一致すると共に、縦寸法が熱交換ユニット50より短い矩形状の略板状体とされ、その両端部を第二開口部52a、53aの長手方向端部からそれぞれ離隔させて配置され、第二開口部52a、53aの中央部分を外側から覆って外部から隔離した状態で、側端部を隔壁体22と連結固定される構成である。   The partition wall 23 is disposed outside the two end faces of the second gap portions 52 and 53 of the second gap portions 52 and 53 in the heat exchange unit 50, and the width is heat exchange. A substantially plate-like body having a rectangular shape that is substantially the same as the plate parallel direction dimension of the unit 50 and whose longitudinal dimension is shorter than that of the heat exchange unit 50, and that both end portions are respectively extended from the longitudinal end portions of the second openings 52 a and 53 a. The side ends are connected and fixed to the partition wall body 22 in a state of being spaced apart and covering the central portions of the second openings 52a and 53a from the outside and being isolated from the outside.

この隔壁体23の両端より外側の開放部分が、他の熱交換用流体の流入出口として第二開口部52a(53a)を通じ第二隙間部52(53)と連通する開口孔23a、23b、23c、23dをなす。これら各開口孔23a、23b、23c、23dの周囲には、基礎隔壁部21や隔壁体23と水密維持状態で一体化されるリテーナ27、28が配設され、これらリテーナ27、28及び隔壁体22が互いに水密維持状態で連結一体化されて熱交換用流体を漏れ無く導く流路部分をなし、さらにその外側には、熱交換用流体の供給、送出管等を接続可能な略箱状のヘッダ部29が水密維持状態で一体に取付けられる仕組みである。   The open portions outside the both ends of the partition wall 23 are open holes 23a, 23b, 23c that communicate with the second gap 52 (53) through the second opening 52a (53a) as inflow / outflow ports of other heat exchange fluids. , 23d. Around these opening holes 23a, 23b, 23c, and 23d, retainers 27 and 28 that are integrated with the basic partition wall portion 21 and the partition wall body 23 in a watertight state are disposed. The retainers 27 and 28 and the partition wall body 22 are connected and integrated with each other in a watertight state to form a flow path portion that guides the heat exchange fluid without leakage, and on the outer side thereof is a substantially box-like shape that can be connected to a supply of heat exchange fluid, a delivery pipe, etc. This is a mechanism in which the header portion 29 is integrally attached in a watertight state.

各開口孔23a、23b、23c、23dは、対角配置となる開口孔23a、23dと開口孔23b、23cの各組ごとに連通する第二隙間部52、53を異ならせており、前記第一流入口部としての開口孔23aと前記第二流出口部としての開口孔23dのみ連通する第二隙間部52と、前記第二流入口部としての開口孔23bと前記第一流出口部としての開口孔23cのみ連通する第二隙間部53とが、一つおきに位置するよう、開口孔23a、23dと各第二隙間部52、53との連通関係、並びに開口孔23b、23cと各第二隙間部52、53との連通関係を、所定の開口孔に連通させない第二開口部52a、53aを閉塞部材54で塞ぐことにより設定される。   Each of the opening holes 23a, 23b, 23c, and 23d has different second gap portions 52 and 53 that communicate with each pair of the opening holes 23a and 23d and the opening holes 23b and 23c that are diagonally arranged. An opening hole 23a serving as one inlet portion and a second gap portion 52 communicating only with an opening hole 23d serving as the second outlet portion, an opening hole 23b serving as the second inlet portion, and an opening serving as the first outlet portion. The communication relationship between the opening holes 23a and 23d and the second gap portions 52 and 53 and the opening holes 23b and 23c and the second gap portions 53 and 53 are arranged so that every other second gap portion 53 communicating with only the hole 23c is located. The communication relationship with the gaps 52 and 53 is set by closing the second openings 52a and 53a that do not communicate with the predetermined opening holes with the closing member 54.

詳細には、開口孔23a、23dに連通する第二隙間部52における、連通させない開口孔23b、23cに面する第二開口部52aには、閉塞部材54が挿入配設されてこれを塞ぎ、開口孔23b、23c位置では第二開口部53aのみ開口した状態として、前記第二隙間部52に対し開口孔23b、23cを介した他の熱交換用流体の流出入を阻止している。同様に、開口孔23b、23cに連通する第二隙間部53における、連通させない開口孔23a、23dに面する開口53aにも閉塞部材54が挿入配設されてこれを塞ぎ、開口孔23a、23d位置では第二開口部52aのみ開口した状態として、前記第二隙間部53に対し開口孔23a、23dを介した他の熱交換用流体の流出入を阻止している(図6、7参照)。   Specifically, a closing member 54 is inserted and disposed in the second opening 52a facing the opening holes 23b and 23c that are not communicated in the second gap 52 that communicates with the opening holes 23a and 23d. Only the second opening 53a is opened at the positions of the opening holes 23b and 23c, and other heat exchange fluids are prevented from flowing into and out of the second gap 52 through the opening holes 23b and 23c. Similarly, in the second gap portion 53 communicating with the opening holes 23b and 23c, the closing member 54 is inserted and disposed also in the opening 53a facing the opening holes 23a and 23d not to be communicated, thereby closing the opening holes 23a and 23d. At the position, only the second opening 52a is opened, and the flow of other heat exchange fluid through the opening holes 23a and 23d is prevented from entering and leaving the second gap 53 (see FIGS. 6 and 7). .

こうして、他の熱交換用流体は縦方向一端側の開口孔23aから対角位置の開口孔23dへ向けて第二隙間部52を進み、また開口孔23bから対角位置の開口孔23cへ向けて第二隙間部53を進むこととなり(図8、9参照)、第二開口部52a、53aに対し他の熱交換用流体を横から出し入れしつつ第二隙間部52、53で前記流体を縦方向に向わせ、第一隙間部51における流れに対し擬似的に向流を実現できる。開口孔23a、23dの連通する第二隙間部52と、開口孔23b、23cに連通する第二隙間部53では、それぞれの流れ状態がちょうどプレート中心線を軸として左右に反転した関係となっている。   In this way, the other heat exchange fluid advances through the second gap 52 from the opening hole 23a at one end in the longitudinal direction toward the opening hole 23d at the diagonal position, and toward the opening hole 23c at the diagonal position from the opening hole 23b. The second gap portion 53 is advanced (see FIGS. 8 and 9), and other fluids for heat exchange are taken into and out of the second openings 52a and 53a from the side, and the fluid is passed through the second gap portions 52 and 53. The counter flow can be realized in a pseudo manner with respect to the flow in the first gap 51 in the vertical direction. In the second gap portion 52 that communicates with the opening holes 23a and 23d and the second gap portion 53 that communicates with the opening holes 23b and 23c, the respective flow states are reversed to the left and right about the plate center line. Yes.

前記ヘッダ24、25は、基礎隔壁部21及び隔壁体22に一体に連結されて熱交換ユニット50における各第一隙間部51の第一開口部51aのある二つの端面の外方にそれぞれ配設されるものであり、略中央位置に開口孔24a、25aを穿設され、熱交換ユニット50と一体化した状態では各第一隙間部51の各第一開口部51aを開口孔24a、25a部分のみ残して外側から覆い、外部から隔離する構成である。この開口孔24a、25aが、第一開口部51aを通じて各第一隙間部51と連通する前記一の熱交換用流体の流入出口部位となる。   The headers 24 and 25 are integrally connected to the basic partition wall portion 21 and the partition wall body 22 and are respectively disposed on the outer sides of the two end surfaces of the first gap portions 51 of the heat exchange unit 50 where the first opening portions 51a are provided. In the state where the opening holes 24a and 25a are formed at substantially the center position and are integrated with the heat exchange unit 50, the first opening portions 51a of the first gap portions 51 are formed as the opening holes 24a and 25a portions. It is the structure which covers only from the outside and leaves it isolated from the outside. The opening holes 24a and 25a serve as an inlet / outlet portion of the one heat exchange fluid that communicates with each first gap 51 through the first opening 51a.

前記ヘッダ24は、略箱状体として形成され、開口孔24aのある中央の突出部分先端のフランジ状部分に熱交換用流体の供給、送出管等を接続される構成である。一方、下側のヘッダ25は、略板状体として形成され、前記ヘッダ24同様、開口孔25aのある中央の突出部分先端におけるフランジ状部分に熱交換用流体の供給、送出管等を接続される構成である。   The header 24 is formed as a substantially box-like body, and is configured to connect a heat exchange fluid supply, a delivery pipe, and the like to a flange-like portion at the tip of a central protruding portion having an opening hole 24a. On the other hand, the lower header 25 is formed as a substantially plate-like body, and like the header 24, the supply of heat exchange fluid, a delivery pipe, etc. are connected to the flange-like portion at the tip of the central protruding portion with the opening hole 25a. This is a configuration.

次に、本実施の形態に係る熱交換器における熱交換状態について説明する。前提として、熱交換器1はあらかじめ適切な設置箇所に据付けられると共に、上下のヘッダ24、25や側部のヘッダ部29を用いて熱交換用流体の供給、送出用の管路等と接続されているものとする。この熱交換器1では、開口孔24a、25a及び各第一開口部51aを通じて第一隙間部51に一の熱交換用流体を流通させる一方、開口孔23a、23b、23c、23d及び各第二開口部52a、53aを通じて熱交換ユニット50の第二隙間部52、53に他の熱交換用流体を流通させることで、二つの熱交換用流体間での熱交換が行えることとなる。   Next, the heat exchange state in the heat exchanger according to the present embodiment will be described. As a premise, the heat exchanger 1 is installed in advance at an appropriate installation location, and is connected to a heat exchange fluid supply, a delivery pipeline, and the like using the upper and lower headers 24, 25 and the side header 29. It shall be. In this heat exchanger 1, one heat exchange fluid is circulated to the first gap 51 through the opening holes 24a and 25a and the first openings 51a, while the opening holes 23a, 23b, 23c and 23d and the second holes By causing another heat exchange fluid to flow through the second gaps 52 and 53 of the heat exchange unit 50 through the openings 52a and 53a, heat exchange between the two heat exchange fluids can be performed.

開口孔23b、23cの位置で第二隙間部52、53における一つおきの第二開口部52aを閉塞部材54で塞ぎ、開口孔23a、23dのみを一つおきの第二隙間部52に対し連通させる一方、開口孔23a、23dの位置では逆に開口53aを閉塞部材54で塞いで、第二隙間部53には開口孔23b、23cのみを連通させていることから、第二隙間部52、53を通る他の熱交換用流体の流れが対角位置にある開口孔間でそれぞれ生じることとなる。   At the positions of the opening holes 23b and 23c, every other second opening 52a in the second gaps 52 and 53 is closed with the closing member 54, and only the opening holes 23a and 23d are closed with respect to every other second gap 52. On the other hand, at the positions of the opening holes 23 a and 23 d, the opening 53 a is closed by the closing member 54, and only the opening holes 23 b and 23 c are communicated with the second gap portion 53. , 53, the flow of other heat exchange fluids occurs respectively between the opening holes at the diagonal positions.

こうして、第二隙間部52で他の熱交換用流体を縦方向一端側の開口孔23aから対角に配置された開口孔23dへ向わせる状態と、第二隙間部53で他の熱交換用流体を縦方向一端側の開口孔23bから対角に配置された開口孔23cへ向わせる状態を一つおきに設定していることで、第二開口部52a、53aに対し他の熱交換用流体を横から出し入れする位置は互いに異なるものの、第二隙間部52、53で流体を縦方向一端側から他端側へ流すことができ、熱交換用プレート10を挟んだ反対側で第一隙間部51を縦方向に流れる一の熱交換用流体と、この第二隙間部52、53を流れる他の熱交換用流体との流れ関係は擬似的に向流となる。一の熱交換用流体と他の熱交換用流体との間では向流の場合と同様に最大限熱交換が行える。   Thus, another heat exchange fluid is directed from the opening hole 23 a on one end side in the longitudinal direction to the opening hole 23 d arranged diagonally in the second gap portion 52, and another heat exchange is performed in the second gap portion 53. By setting every other state in which the working fluid is directed from the opening hole 23b at one end in the longitudinal direction to the opening hole 23c arranged diagonally, other heat is applied to the second openings 52a and 53a. Although the positions where the replacement fluid is taken in and out from the side are different from each other, the fluid can be flowed from one end side to the other end side in the vertical direction in the second gap portions 52 and 53, and the second side is located on the opposite side across the heat exchange plate 10. The flow relationship between one heat exchange fluid flowing in the gap 51 in the vertical direction and the other heat exchange fluid flowing in the second gaps 52 and 53 is pseudo countercurrent. The maximum heat exchange can be performed between one heat exchange fluid and the other heat exchange fluid as in the case of counterflow.

第二隙間部52、53で一つおきに流体の流れ方向を変化させることで、第二隙間部52、53におけるプレート隅部位置等によどみSが生じた場合でも、そのよどみ位置が一つおきに左右に反転した状態で入れ替ることとなり、第二隙間部52、53における同じ箇所のよどみSが一つおきとなるため、プレートを隔てた第一隙間部51にプレートを介して両側からよどみ部分に挟まれた部位が生じず、第一隙間部51を流れる一の熱交換用流体は少なくともいずれか一方のプレート側でプレートを隔てた第二隙間部52、53を流動する他の熱交換用流体と熱交換可能となる(図10参照)。こうして、第一隙間部51を挟む第二隙間部52、53のうちいずれかの側における流動状態の他の熱交換用流体と一の熱交換用流体との間で熱交換を行わせて、熱交換した一の熱交換用流体におけるプレート各位置ごとの温度の偏りを小さくすることができ、流体間の熱交換を確実に行わせることができる。   Even if the stagnation S occurs due to the position of the plate corners or the like in the second gaps 52 and 53 by changing the flow direction of the fluid every other gap in the second gaps 52 and 53, there is one stagnation position. Every other stagnation S at the same location in the second gap portions 52 and 53 is alternated, so that the first gap portion 51 across the plate is inserted into the first gap portion 51 from both sides via the plate. The portion sandwiched between the stagnation portions does not occur, and one heat exchange fluid flowing through the first gap 51 is the other heat flowing through the second gaps 52 and 53 that separate the plates on at least one of the plates. Heat exchange with the replacement fluid is possible (see FIG. 10). In this way, heat exchange is performed between the other heat exchange fluid in a flow state on one side of the second gap portions 52 and 53 sandwiching the first gap portion 51 and the one heat exchange fluid, It is possible to reduce the temperature deviation at each position of the plate in the heat exchange fluid that has undergone heat exchange, and to reliably perform heat exchange between the fluids.

このように、本実施の形態に係る熱交換器においては、熱交換用プレート10を複数並列状態で一体化して二つの熱交換用流体が一つおきに流れる隙間を生じさせつつ、シェル20における一の熱交換用流体の流入出口部と他の熱交換用流体の流入出口部をそれぞれ異なる面に配設し、且つ他の熱交換用流体の流入口部と流出口部を対向する二つの面にそれぞれ対向状態で二つずつ配設し、第一隙間部51を一様に流れる一の熱交換用流体に対し、他の熱交換用流体の通る第二隙間部52、53を対角配置の流入口部と流出口部の組の一方にのみ連通させ、且つ第二隙間部一つおきに流入口部と流出口部との連通状態を入替えた配置状態として、第二隙間部一つおきに他の熱交換用流体の最短距離で進もうとする流れ方向を異ならせることにより、他の熱交換用流体側の隙間の隅部によどみが生じた場合にも、その位置が一つおきに入れ替ることとなり、プレートを隔てた第一隙間部51に、第二隙間部52、53のよどみ部分に両側から挟まれた部位が一切生じず、第一隙間部51における一の熱交換用流体と隣合う第二隙間部52、53のうちいずれかの側における流動状態の他の熱交換用流体との間で熱交換を行わせて、一の熱交換用流体の隙間部内各位置ごとの温度の偏りを小さくすることができ、プレートのアスペクト比が大で流体の流入口と流出口のある各面が互いに離れている場合でも、熱交換用流体同士の熱交換を行える状態が確保され、よどみの影響を必要最小限とすることができる。   Thus, in the heat exchanger according to the present embodiment, a plurality of heat exchange plates 10 are integrated in a parallel state to create a gap through which every other two heat exchange fluids flow. Two heat exchange fluid inflow / outflow portions and another heat exchange fluid inflow / outflow portion are disposed on different surfaces, and the other heat exchange fluid inflow / outflow portions are opposed to each other. The two gap portions 52 and 53 through which the other heat exchange fluid passes are diagonally arranged with respect to one heat exchange fluid that flows through the first gap portion 51 in a two-sided manner. As the arrangement state in which the communication state between the inflow port portion and the outflow port portion is changed every other second gap portion, the second gap portion is made to communicate with only one of the arrangement of the inlet portion and the outlet portion. To change the flow direction of the other heat exchanging fluids at the shortest distance Thus, even when stagnation occurs in the corners of the gaps on the other heat exchange fluid side, every other position is replaced, and the second gap part is replaced with the first gap part 51 across the plate. No part of the stagnation part of 52, 53 is sandwiched from both sides, and the flow state on either side of the second gap part 52, 53 adjacent to one heat exchange fluid in the first gap part 51 By exchanging heat with other heat exchange fluids, it is possible to reduce the temperature deviation at each position in the gap of one heat exchange fluid, the plate aspect ratio is large, and the fluid flow Even when the surfaces having the inlet and the outlet are separated from each other, a state in which heat exchange between the heat exchange fluids can be ensured, and the influence of stagnation can be minimized.

本発明の一実施形態に係る熱交換器の正面図である。It is a front view of the heat exchanger which concerns on one Embodiment of this invention. 本発明の一実施形態に係る熱交換器の一部切欠拡大右側面図である。It is a partial notch expansion right view of the heat exchanger which concerns on one Embodiment of this invention. 本発明の一実施形態に係る熱交換器の一部切欠拡大平面図である。It is a partially cutaway enlarged plan view of a heat exchanger according to an embodiment of the present invention. 本発明の一実施形態に係る熱交換器の一部切欠拡大底面図である。It is a partially notched enlarged bottom view of the heat exchanger which concerns on one Embodiment of this invention. 本発明の一実施形態に係る熱交換器における熱交換ユニットの概略構成説明図である。It is a schematic structure explanatory view of the heat exchange unit in the heat exchanger concerning one embodiment of the present invention. 本発明の一実施形態に係る熱交換器における熱交換ユニット右側開口部への閉塞部材配置状態説明図である。It is an obstruction | occlusion member arrangement | positioning explanatory drawing to the heat exchange unit right side opening part in the heat exchanger which concerns on one Embodiment of this invention. 本発明の一実施形態に係る熱交換器における熱交換ユニット左側開口部への閉塞部材配置状態説明図である。It is an obstruction | occlusion member arrangement | positioning explanatory drawing to the heat exchange unit left side opening part in the heat exchanger which concerns on one Embodiment of this invention. 本発明の一実施形態に係る熱交換器における第二隙間部の一方での熱交換用流体流れ状態説明図である。It is a fluid flow state explanatory view of one side of the 2nd crevice part in a heat exchanger concerning one embodiment of the present invention. 本発明の一実施形態に係る熱交換器における第二隙間部の他方での熱交換用流体流れ状態説明図である。It is a fluid flow state explanatory view of heat exchange in the other of the 2nd crevice part in a heat exchanger concerning one embodiment of the present invention. 本発明の一実施形態に係る熱交換器の熱交換ユニットにおける熱交換用流体流出口部分の要部拡大断面図である。It is a principal part expanded sectional view of the fluid outlet for heat exchange in the heat exchange unit of the heat exchanger which concerns on one Embodiment of this invention.

符号の説明Explanation of symbols

1 熱交換器
10 熱交換用プレート
11 伝熱面
12 壇状部
13 平面部
20 シェル
21 基礎隔壁部
22、23 隔壁体
23a、23b、23c 開口孔
23d 開口孔
24、25 ヘッダ
24a、25a 開口孔
26 ボルト
27、28 リテーナ
29 ヘッダ部
50 熱交換ユニット
51 第一隙間部
51a 第一開口部
52、53 第二隙間部
52a、53a 第二開口部
54 閉塞部材
55 空隙
S よどみ
DESCRIPTION OF SYMBOLS 1 Heat exchanger 10 Heat exchange plate 11 Heat-transfer surface 12 Floor-shaped part 13 Plane part 20 Shell 21 Base partition part 22, 23 Partition body 23a, 23b, 23c Open hole 23d Open hole 24, 25 Header 24a, 25a Open hole 26 Bolts 27, 28 Retainer 29 Header part 50 Heat exchange unit 51 First gap part 51a First opening part 52, 53 Second gap part 52a, 53a Second opening part 54 Closure member 55 Gap S Stagnation

Claims (2)

略矩形又は略方形状金属薄板からなる複数の熱交換用プレートを、表面同士及び裏面同士それぞれ向い合わせにして重ね合せた状態で一体化して形成され、各プレート間の隙間が一つおきにプレート表面間の第一隙間部とプレート裏面間の第二隙間部となる熱交換ユニット、並びに、当該熱交換ユニットの外周を覆いつつ、前記第一隙間部に流通する一の熱交換用流体及び第二隙間部に流通する他の熱交換用流体の、各隙間部への各々独立した流通状態を確保すると共に外部への漏れを防ぐシェルを備える熱交換器において、
前記熱交換ユニットが、前記第一隙間部の周囲に対する開口部分を、前記各熱交換用プレートの所定の対向する二辺に沿ってそれぞれ配置される一方、前記第二隙間部の周囲に対する開口部分を、各熱交換用プレートの前記二辺と異なる他の二辺に沿ってそれぞれ配置され、前記第一隙間部と第二隙間部の各開口部分が互いに直角をなす配置関係とされてなり、
前記シェルが、前記熱交換ユニットにおける各第一隙間部の開口部分の各外方となる対向状態の二面に、前記一の熱交換用流体用の流入出口部をそれぞれ配置され、また、熱交換ユニットにおける各第二隙間部の開口部分の各外方となる対向状態の他の二面に、前記他の熱交換用流体用の流入出口部をそれぞれ配置され、
前記シェルにおける前記他の熱交換用流体用の流入出口部のうち、流入口部として、前記対向状態の二面における前記一の熱交換用流体用の流出口部寄り端部に、対向状態で第一流入口部と第二流入口部の二つを配設されると共に、流出口部として、前記対向状態の二面における前記流入口部配設側と逆側の端部に対向状態で第一流出口部と第二流出口部の二つを配設され、
前記第一流入口部、並びに第一流入口部と異なる面側に設けられる前記第二流出口部が、各第二隙間部に対し一つおきに連通し、残りに連通しない状態とされ、
前記第一流入口部と対向する前記第二流入口部、並びに第一流入口部と同じ面側に設けられる前記第一流出口部が、第一流入口部が連通しない一つおきの各第二隙間部に連通し、残りに連通しない状態とされることを
特徴とする熱交換器。
A plurality of heat exchanging plates made of a substantially rectangular or substantially rectangular metal thin plate are integrally formed in a state where the front and back surfaces are opposed to each other, and every other gap between the plates is a plate. A heat exchange unit serving as a first gap between the front surfaces and a second gap between the back surfaces of the plate, and a heat exchange fluid that flows through the first gap while covering the outer periphery of the heat exchange unit In the heat exchanger having a shell for preventing the leakage to the outside while securing the independent flow state to each gap portion of the other heat exchange fluid flowing in the two gap portions,
While the heat exchange unit is arranged with an opening portion around the first gap portion along two predetermined opposite sides of each of the heat exchange plates, an opening portion with respect to the circumference of the second gap portion Are arranged along two other sides different from the two sides of each heat exchanging plate, and the opening portions of the first gap portion and the second gap portion are arranged at right angles to each other,
The shell is provided with an inlet / outlet part for the one heat exchange fluid on each of two opposing surfaces on the outer sides of the opening portions of the first gaps in the heat exchange unit, respectively. On the other two surfaces facing each other outside the opening portion of each second gap portion in the exchange unit, the inflow / outlet portions for the other heat exchange fluid are respectively disposed,
Among the inflow / outflow portions for the other heat exchange fluid in the shell, as an inflow port portion, in an opposed state to an end portion near the outflow port portion for the one heat exchange fluid on the two surfaces in the opposed state. The first inlet port portion and the second inlet port portion are disposed, and the second outlet port portion is opposed to the end portion on the opposite side to the inlet portion arrangement side in the two opposite surfaces. Two outlets, the first outlet and the second outlet,
The first inlet part, and the second outlet part provided on the side different from the first inlet part communicate with every other second gap part, and are not in communication with the rest,
The second inlet portion facing the first inlet portion, and the first outlet portion provided on the same surface side as the first inlet portion, every second gap portion where the first inlet portion does not communicate with each other. A heat exchanger characterized in that it is in a state where it communicates with the other and does not communicate with the rest.
前記請求項1に記載の熱交換器において、
前記熱交換ユニットにおける各第二隙間部の開口部分のうち、少なくとも前記各流入出口部に面する範囲で、且つ各流入出口に連通させない隙間部に該当する開放部分に、所定の閉塞部材を固定配設することを
特徴とする熱交換器。
The heat exchanger according to claim 1, wherein
A predetermined closing member is fixed to an open portion corresponding to a gap portion that is not communicated with each inflow / outlet portion, at least in a range facing each inflow / outlet portion, of the opening portion of each second gap portion in the heat exchange unit. A heat exchanger characterized by being disposed.
JP2006107389A 2006-04-10 2006-04-10 Heat exchanger Pending JP2007278637A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006107389A JP2007278637A (en) 2006-04-10 2006-04-10 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006107389A JP2007278637A (en) 2006-04-10 2006-04-10 Heat exchanger

Publications (1)

Publication Number Publication Date
JP2007278637A true JP2007278637A (en) 2007-10-25

Family

ID=38680247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006107389A Pending JP2007278637A (en) 2006-04-10 2006-04-10 Heat exchanger

Country Status (1)

Country Link
JP (1) JP2007278637A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011096324A1 (en) * 2010-02-02 2011-08-11 国立大学法人東京大学 Heat exchanger
WO2012014269A1 (en) * 2010-07-26 2012-02-02 株式会社ゼネシス Heat exchanger system
US20140245737A1 (en) * 2011-09-09 2014-09-04 Saga University Steam power cycle system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011096324A1 (en) * 2010-02-02 2011-08-11 国立大学法人東京大学 Heat exchanger
JP2011158200A (en) * 2010-02-02 2011-08-18 Univ Of Tokyo Heat exchanger
CN102822617A (en) * 2010-02-02 2012-12-12 国立大学法人东京大学 Heat exchanger
WO2012014269A1 (en) * 2010-07-26 2012-02-02 株式会社ゼネシス Heat exchanger system
JP5476475B2 (en) * 2010-07-26 2014-04-23 株式会社ゼネシス Heat exchanger system
US20140245737A1 (en) * 2011-09-09 2014-09-04 Saga University Steam power cycle system
US9945263B2 (en) * 2011-09-09 2018-04-17 Saga University Steam power cycle system

Similar Documents

Publication Publication Date Title
US8844611B2 (en) Plate stacking type heat exchanger
KR100407767B1 (en) Self-enclosing heat exchangers
US7377308B2 (en) Dual two pass stacked plate heat exchanger
JP4666142B2 (en) Heat exchanger outer shell structure
JP5882179B2 (en) Internal heat exchanger with external manifold
JPH11513785A (en) Plate heat exchanger
EP2792988B1 (en) Integrated heat exchanger for a vehicle
KR101151758B1 (en) Plate Type Heat Exchanger
JPH08114393A (en) Laminated heat exchanger
JP2006010130A (en) Multi-fluid heat exchanger
KR20150075103A (en) A plate heat exchanger plate and a plate heat exchanger
JP2007278637A (en) Heat exchanger
KR20180136257A (en) Plate heat exchanger
JP5085723B2 (en) Plate heat exchanger
EP3467422B1 (en) Heat exchanger assembly
JPWO2018216165A1 (en) Plate heat exchanger
KR101151754B1 (en) Plate Type Heat Exchanger
KR20200027773A (en) Plate type heat exchanger
JP5855467B2 (en) Heat exchanger
JPH10300371A (en) Plate type heat-exchanger
KR101155463B1 (en) A heat exchanger
JP2000154978A (en) Heat exchanger
JP3707289B2 (en) Plate heat exchanger
JP4060283B2 (en) Plate heat exchanger
WO2024061824A1 (en) Heat exchanger and parting plate thereof