JP3653083B2 - Road construction method - Google Patents

Road construction method Download PDF

Info

Publication number
JP3653083B2
JP3653083B2 JP2003014547A JP2003014547A JP3653083B2 JP 3653083 B2 JP3653083 B2 JP 3653083B2 JP 2003014547 A JP2003014547 A JP 2003014547A JP 2003014547 A JP2003014547 A JP 2003014547A JP 3653083 B2 JP3653083 B2 JP 3653083B2
Authority
JP
Japan
Prior art keywords
road
columnar body
construction method
additive
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003014547A
Other languages
Japanese (ja)
Other versions
JP2003239276A (en
Inventor
哲彦 三浦
和之 藤川
章 浜武
英樹 田中
茂 吉田
功 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Tenox Corp
Tenox Kyusyu Corp
Original Assignee
Mitsubishi Materials Corp
Tenox Corp
Tenox Kyusyu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp, Tenox Corp, Tenox Kyusyu Corp filed Critical Mitsubishi Materials Corp
Priority to JP2003014547A priority Critical patent/JP3653083B2/en
Publication of JP2003239276A publication Critical patent/JP2003239276A/en
Application granted granted Critical
Publication of JP3653083B2 publication Critical patent/JP3653083B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Road Paving Structures (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、軟弱地盤上に盛土により道路を構築する際の構築工法に関する。また軟弱地盤上に設けられた暗渠などの地下構造物の上を横断する道路を盛土により構築する工法に関するものである。
【0002】
【従来の技術】
埋土層や沖積層の層厚が厚い軟弱地盤の上に盛土により道路を構築する場合には次の工法が採られている。先ず図9に示すように軟弱地盤1の浅層部分にセメント系固化材を乾式混合した後固化して浅層改良土層2aを形成することにより、浅層の剛性を高めた改良地盤2とするか、或いは図10に示すように軟弱地盤1の浅層部分に生石灰を乾式混合した後固化して浅層改良土層2bを形成し、更にこの浅層改良土層2bの上にFe石灰を乾式混合した後固化して浅層改良土層2cを形成することにより、浅層の剛性を高めた改良地盤2とする。次いで図9及び図10に示すように、この改良地盤2を路床として、この上にクラッシャーラン層3a及び粒度調整用砕石層3bからなる盛土を設けて路盤3とした後、路盤3の上にアスファルト・コンクリート層4を設けて舗装している。
なお、本明細書では、路盤と舗装とを分離せずに両者を合せて道路舗装という。
【0003】
また図11又は図12に示すように、埋土層や沖積層の層厚が厚い軟弱地盤1の浅層部分に沈下を抑制された暗渠などの地下構造物6を設け、この地下構造物6を横断する道路をこの地下構造物6及び地下構造物以外の軟弱地盤1の上を道路舗装することにより構築する場合には、先ず軟弱地盤1の深層部分に軟弱地盤の下方の支持層7に到達する支持杭8で地下構造物6を支持した後、地下構造物以外の軟弱地盤1の浅層部分に、図9又は図10と同様に改良地盤2及び路盤3を形成した後、路盤3の上にアスファルト・コンクリート層4を設けて舗装している。橋梁の取付部においては、橋台の埋戻し土層或いは盛土層の沈下による橋台付近での段差防止策として、踏掛版工法が用いられている。
【0004】
【発明が解決しようとする課題】
道路の路床には盛土による静的荷重とともに自動車の走行による動的荷重が加わり、これらの荷重が路床に伝達される。動的荷重の大きさは、盛土厚さが1.0m程度と薄い場合には、静的荷重に匹敵し、かつ、長期間繰り返し作用する性質がある。そのため、地盤の改良の程度が十分でない場合、静的荷重による圧密沈下には十分に耐えられても、その数倍の動的荷重には耐えられず、道路が動的荷重により圧密沈下し続けることになる。一方、地盤を十分に改良すれば、動的荷重による圧密沈下を抑制することは可能であるが、地盤改良の程度と動的荷重による圧密沈下の抑制効果との関連が十分に把握されていないため、圧密沈下を抑制しようとするあまり、過剰に地盤改良を行って無用に工期が長引かせ、無駄な工費の支出を招くことが多かった。
【0005】
また地下構造物及び地下構造物以外の軟弱地盤の上を道路舗装することにより構築する場合には、地下構造物は支持杭で支持されているため、沈下することはなく、沈下してもごく僅かである。この殆ど沈下しない地下構造物を横断して構築した道路に上述した静的荷重と動的荷重が加わると、図11又は図12の破線で示すように道路の地下構造物6の上の部分とそれに隣接する部分との境界に段差Aを生じ、自動車の円滑な走行を阻害していた。このような段差は、補修しても繰り返し生じる。
【0006】
本発明の目的は、比較的短い工期で安価に構築でき、軟弱地盤上に盛土により構築された道路が使用された際に、動的荷重による圧密沈下を抑制する道路の構築工法を提供することにある。
本発明の別の目的は、比較的短い工期で安価に構築でき、軟弱地盤上に設けられた暗渠などの地下構造物の上を横断する道路が使用された際に、道路の地下構造物の上の部分とそれに隣接する部分との境界に段差を生じさせない道路の構築工法を提供することにある。
【0007】
【課題を解決するための手段】
請求項1に係る発明は、図1に示すように、道路基礎の軟弱地盤11に複数本の柱状体20を軟弱地盤下方の支持層に到達しない長さでかつ10〜50%の改良率で構築し、これら複数本の柱状体20の上に補強用網状体21を敷設し、この補強用網状体21の上に土砂と固化材に添加材又は添加剤のいずれか一方又は双方を更に加えて混合して固化することにより浅層改良土層13を敷設し、この浅層改良土層13の上に道路舗装18を構築することを特徴とする道路の構築工法である。
柱状体20の上に補強用網状体21を敷設し、この上に土砂と固化材に添加材又は添加剤のいずれか一方又は双方を更に加えて混合して固化することにより浅層改良土層13を敷設し、更に道路舗装18を行うことにより、図9及び図10に示したクラッシャーラン層3aの厚さを小さくして、道路の動的荷重による圧密沈下をより一層抑制することができる。また柱状体20は軟弱地盤11の下方の支持層に到達しない長さであるため、工期の短縮と工費の節減につながる。
【0008】
請求項2に係る発明は、図2に示すように、道路基礎の軟弱地盤11に埋設され沈下を抑制された地下構造物12の近傍の軟弱地盤11に複数本の柱状体20を軟弱地盤下方の支持層16に到達しない長さで地下構造物12から遠ざかるに従って段々に短くなるように10〜50%の改良率で構築し、これら複数本の柱状体20の上に補強用網状体21を敷設し、地下構造物12及び補強用網状体21の上に道路舗装18を構築することを特徴とする道路の構築工法である。
柱状体20の上に補強用網状体21を介して道路舗装18を行うことにより、図11及び図12に示した改良地盤2を省略して、道路の動的荷重による圧密沈下を抑制することができ、また複数本の柱状体20を地下構造物12から遠ざかるに従って段々に短くなるようにしたので、道路が使用された際に、地下構造物12の近傍では圧密沈下を極力抑制し、離れるに従って徐々にある程度の圧密沈下を許容するようにする。これにより、道路の地下構造物12の上の部分とそれに隣接する部分との境界に発生する段差を抑制することができる。また柱状体20は軟弱地盤11の下方の支持層16に到達しない長さであるため、工期の短縮と工費の節減につながる。
【0009】
請求項3に係る発明は、図3に示すように、道路基礎の軟弱地盤11に埋設され沈下を抑制された地下構造物12の近傍の軟弱地盤11に複数本の柱状体20を軟弱地盤下方の支持層16に到達しない長さで地下構造物12から遠ざかるに従って段々に短くなるように10〜50%の改良率で構築し、これら複数本の柱状体20の上に土砂と固化材を混合して固化することにより浅層改良土層13を敷設し、この地下構造物12及び浅層改良土層13の上に道路舗装18を構築することを特徴とする道路の構築工法である。
請求項4に係る発明は、請求項3に係る発明であって、土砂と固化材に添加材又は添加剤のいずれか一方又は双方を更に加えて混合して固化することにより浅層改良土層13を敷設する道路の構築工法である。
柱状体20の上に、土砂と固化材に添加材又は添加剤のいずれか一方又は双方を更に加えて混合して固化することにより浅層改良土層13を敷設し、この上に道路舗装18を行うことにより、図11及び図12に示したクラッシャーラン層3aの厚さを小さくして、道路の動的荷重による圧密沈下を抑制することができ、また複数本の柱状体20を地下構造物12から遠ざかるに従って段々に短くなるようにしたので、請求項2に係る発明と同様に、道路が使用された際に、道路の地下構造物12の上の部分とそれに隣接する部分との境界に段差を生じさせない。また柱状体20は軟弱地盤11の下方の支持層16に到達しない長さであるため、工期の短縮と工費の節減につながる。
【0010】
請求項5に係る発明は、図4に示すように、道路基礎の軟弱地盤11に埋設され沈下を抑制された地下構造物12の近傍の軟弱地盤11に複数本の柱状体20を軟弱地盤下方の支持層16に到達しない長さで地下構造物12から遠ざかるに従って段々に短くなるように10〜50%の改良率で構築し、これら複数本の柱状体20の上に補強用網状体21を敷設し、この補強用網状体21の上に土砂と固化材に添加材又は添加剤のいずれか一方又は双方を更に加えて混合して固化することにより浅層改良土層13を敷設し、地下構造物12及び浅層改良土層13の上に道路舗装18を構築することを特徴とする道路の構築工法である。
柱状体20の上に補強用網状体21を敷設し、この上に土砂と固化材に添加材又は添加剤のいずれか一方又は双方を更に加えて混合して固化することにより浅層改良土層13を敷設し、更に道路舗装18を行うことにより、図11及び図12に示したクラッシャーラン層3aの厚さを小さくして、道路の動的荷重による圧密沈下をより一層抑制することができ、また複数本の柱状体20を地下構造物12から遠ざかるに従って段々に短くなるようにしたので、請求項2に係る発明と同様に、道路が使用された際に、道路の地下構造物12の上の部分とそれに隣接する部分との境界に発生する段差を抑制することができる。また柱状体20は軟弱地盤11の下方の支持層16に到達しない長さであるため、工期の短縮と工費の節減につながる。
【0011】
請求項6に係る発明は、請求項1、4又は5に係る発明であって、土砂と固化材に添加材又は添加剤のいずれか一方又は双方を更に加えて湿式混合して固化することにより浅層改良土層13を敷設する道路の構築工法である。
湿式混合することにより、施工現場における粉体による発塵が抑制され、現場近隣の環境を粉体で汚染することがなくなる。また湿式混合方式では締め固めを必要とせず、品質のばらつきも少なくできる。
【0012】
請求項7に係る発明は、請求項1、4、5又は6に係る発明であって、添加材が発泡ビーズ又は籾殻からなり、添加剤が気泡発生体からなり、添加材又は添加剤のいずれか一方又は双方が発泡ビーズ、籾殻及び気泡発生体からなる群より選ばれた1種又は2種以上の低密度体である道路の構築工法である。
添加材又は添加剤として低密度体を加えることにより、浅層改良土層13を軽量化でき、浅層改良土層による静的荷重を低減することができる。また低密度体が動的荷重による振動を吸収するため、動的圧密沈下量を低減することができる。
【0013】
請求項8に係る発明は、請求項1、4、5又は6に係る発明であって、添加材が産業廃棄物の焼却により形成されたクリンカである道路の構築工法である。
この工法によれば、産業廃棄物の焼却により形成された、処分に困窮しているクリンカを有効利用することができる。
【0014】
請求項9に係る発明は、請求項1、4、5又は6に係る発明であって、添加材が無機繊維又は合成繊維である道路の構築工法である。
添加材として上記繊維を加えることにより、浅層改良土層13が補強され、交通荷重による改良地盤の割れを防止し、改良地盤の耐久性が向上する。また繊維を含まない浅層改良土層より層厚を薄くしても繊維を含まない浅層改良土層と同等の耐久性が得られる。
【0015】
請求項10に係る発明は、請求項1ないし3又は5いずれか1項に係る発明であって、柱状体20が既製杭又は地盤改良柱状体である道路の構築工法である。柱状体に既製杭を用いることにより、より短い工期で安価に施工でき、地盤改良柱状体を用いることにより、道路の圧密沈下をより確実に防止できる。
【0016】
請求項11に係る発明は、図5に示すように、請求項1ないし3又は5いずれか1項に係る発明であって、柱状体20が地盤改良柱状体であって、この柱状体20の胴部20aに節部20bを有する道路の構築工法である。
地盤改良柱状体の胴部に節部20bを設けることにより、地盤改良柱状体の沈下抵抗力が高まり、道路の圧密沈下を更により確実に防止できる。
【0017】
請求項12に係る発明は、図6に示すように、請求項1ないし3、5又は11いずれか1項に係る発明であって、柱状体20が地盤改良柱状体であって、この柱状体20の先端が胴部20aより大径の拡大部20cを有する道路の構築工法である。
地盤改良柱状体の先端に胴部より大径の拡大部20cを設けることにより、地盤改良柱状体の沈下抵抗力が高まり、道路の圧密沈下を更により確実に防止できる。
【0018】
請求項13に係る発明は、請求項1ないし3、5、11又は12いずれか1項に係る発明であって、柱状体20が地盤改良柱状体であって、柱状体20が無機繊維又は合成繊維を含む道路の構築工法である。
柱状体に上記繊維を含ませることにより、軟弱地盤の側方流動により柱状体に亀裂が生じても、柱状体の曲げ抵抗力が発揮されて、その後の側方流動を抑えることができる。
【0019】
請求項14に係る発明は、請求項1ないし3、5又は11ないし13いずれか1項に係る発明であって、柱状体20が地盤改良柱状体であって、この柱状体20を機械撹拌法又は高圧噴射撹拌法により構築する道路の構築工法である。
地盤改良柱状体を機械撹拌法により構築することにより、安価でかつ土質にかかわらず改良体の外径を一定に築造することができる。また地盤改良柱状体を高圧噴射撹拌法により構築することにより、施工機械を小型化、軽量化することができるようになり、狭い場所や既設の踏掛版の下にも施工することができる。
【0020】
【発明の実施の形態】
本発明は、軟弱地盤にこの軟弱地盤下方の支持層に到達しない柱状体を構築し、柱状体の上に補強用網状体又は浅層改良土層或いは補強用網状体と浅層改良土層の双方を敷設したものである。上記組合せを採用する際には、柱状体の長さと道路舗装の厚さに、浅層改良土層の厚さを加えた値Lが交通荷重、即ち動的荷重による圧密沈下を抑制するための大きな条件である。柱状体の改良率を10〜50%の範囲に構築し、かつこの値Lを4m以上にすれば、動的荷重による圧密沈下を実質的に解消することができる。ここで、柱状体の改良率とは、図7及び図8に示すように柱状体を上方から視たときの改良地盤の単位面積に占める柱状体断面積の百分率をいう。柱状体の改良率が10%未満では圧密沈下を十分に抑制することができず、50%を越えた場合、かえって工期及び工費がかさむ不具合がある。好ましくはこの改良率は15〜30%である。
【0021】
上記値Lは4m以上必要ではあるが、大きくしてもそれ程動的圧密沈下の抑制効果は大きくならない。しかし、値Lが大きくなればそれに応じて静的圧密沈下の抑制効果は大きくなる。本発明では、過剰な地盤改良を避けるために、図2〜図4に示すように柱状体の下端は軟弱地盤11の下方の支持層16にまで到達しない。図1には支持層を示していないが、同様に柱状体20は支持層まで到達しない。軟弱地盤の層厚及びその軟弱程度、荷重条件、経済性などを考慮して、この値Lの最大値は適宜決められる。図2に示すように浅層改良土層を設けずに、補強用網状体21の上に直接道路舗装18が施される場合には、柱状体20の改良率を大きくする必要がある。
図2〜図4に示すように、地下構造物の近傍には長い柱状体を構築し、この地下構造物から離れるに従って段々に短い柱状体を構築する場合の段差解消工法では、効率的かつ経済的に行う必要から、地下構造物近傍の地盤改良の諸条件は、図1に示す道路全長にわたって改良する場合と同じ条件が適用され、地下構造物から離れるに従って柱状体の長さが段々に短くなり、最後にはゼロになる点が異なる。
【0022】
図1、図2及び図4に示す、本発明の補強用網状体21は無機繊維、合成繊維、合成樹脂、スチールなどの材料から形成された網状体である。無機繊維又は合成繊維からなる網状体は、この繊維から紐状体を作り、これを製網したものである。無機繊維にはガラス繊維が、また合成繊維にはポリアミド系のナイロン繊維、ポリオレフィン系のポリエチレン繊維、ポリプロピレン繊維等が例示される。合成樹脂にはポリエチレンやポリプロピレン樹脂等が例示される。スチールからなる網状体は、板状のスチールに周縁を残して多数本の切れ目を平行に入れた後、切れ目と直交する方向に板状のスチールの両縁を引張ることにより形成される。上記網状体の網目の間隔は10〜200mmであり、要求される補強程度により、補強用網状体を1枚で使用するか、或いは複数枚重ね合せて使用する。
【0023】
図1、図3及び図4に示す、本発明の浅層改良土層13は土砂と、粉体又はスラリー状のセメント、セメント系固化材、生石灰等の固化材と、添加材又は添加剤のいずれか一方又は双方とを均一に混合して固化することにより敷設される。対象地盤の含水状態により、混合して締め固めて浅層改良土層を形成する場合と、締め固めずに形成する場合がある。対象地盤の含水率が少ない場合で、スラリー状の固化材を用いて、この固化材と土砂に添加材又は添加剤のいずれか一方又は双方を更に加えて湿式混合すれば、施工現場における粉体による発塵が抑制され、現場近隣の環境を粉体で汚染することがなくなる。
【0024】
本発明の添加材には、発泡ビーズ、籾殻等の低密度体や、産業廃棄物の焼却により形成されたクリンカや、無機繊維又は合成繊維等が挙げられる。また本発明の添加剤には気泡発生体が挙げられる。上記添加材又は添加剤は1種類でも、2種以上混合して添加してもよい。添加材と添加剤とを混合してもよい。発泡ビーズは浅層改良土層を形成する材料100体積%に対して20〜50体積%添加する。20体積%未満では添加目的を達成できず、50体積%を越えると固化したときの浅層改良土層の強度が低下する。上記低密度体を加えることによって、浅層改良土層が軽量化され、静的圧密沈下量を小さくできるとともに、浅層改良土層の弾性係数が小さくなり、交通荷重による動的荷重を吸収する。これに伴って柱状体の長さを短くしても圧密沈下を防止することができる。
【0025】
低密度体の気泡発生体としてはポリオキシエチレンアルキルエーテル系化合物や高級アルコール硫酸エステル系化合物等が例示される。この気泡発生体は混合前は液体であるが、浅層改良土層を造成するときに層中に気泡を連行させる物質である。籾殻を低密度体とした場合、籾殻はSiO2分を多く含むため、耐食性が大きく、かつその形状から長期にわたって浅層改良土層の剪断強度を増大させるために交通荷重に対して抵抗力が大きい。
産業廃棄物の焼却により形成された直径が5mm以下のクリンカを添加材とする場合、この処分に困窮しているクリンカを有効利用することができる。
【0026】
無機繊維又は合成繊維を添加材とする場合、好ましくは長さ2〜4cm程度のスチール繊維等の無機繊維、又は長さ4〜7cm程度のポリアミド系のナイロン繊維、ポリオレフィン系のポリエチレン繊維、ポリプロピレン繊維からなる合成繊維が用いられる。長さが上記下限値未満では補強効果に乏しく、上記上限値を越えると、他の材料との混合時に取扱いにくくなる。添加材として上記繊維を加えることにより、浅層改良土層が補強され、交通荷重による改良地盤の割れを防止し、改良地盤の耐久性が向上する。また繊維を含まない浅層改良土層より層厚を薄くしても繊維を含まない浅層改良土層と同等の耐久性が得られる。
上記目的を達成するために、浅層改良土層を形成する材料100体積%に対して、籾殻、無機繊維又は合成繊維等は0.1〜5.0体積%、好ましくは0.2〜2.0体積%添加し、クリンカは30体積%以下で添加する。また気泡発生体は浅層改良土層を形成する材料100重量%に対して0.01〜1.0重量%、好ましくは0.1〜0.5重量%添加する。
【0027】
柱状体の構築工法には、木杭、既製コンクリート杭、鋼杭等のような既製杭を深層地盤に打込む工法と、地盤改良柱状体を構築する工法がある。柱状体に既製杭を用いることにより、より短い工期で安価に施工でき、地盤改良柱状体を用いることにより、道路の圧密沈下をより確実に防止できる。この地盤改良柱状体を構築工法には機械撹拌法と高圧噴射撹拌法があるが、機械撹拌法により地盤改良柱状体を構築すると、安価でかつ土質にかかわらず改良体の外径を一定に築造することができる。また高圧噴射撹拌法により構築することにより、施工機械を小型化、軽量化することができるようになり、狭い場所や既設の踏掛版の下にも施工することができる。この地盤改良柱状体を構築する場合、図5に示すように地盤改良柱状体20の胴部20aに節部20bを形成することもできる。これにより地盤改良柱状体の周面の摩擦力が大きくなり、沈下抵抗力が高まって道路の圧密沈下を更により確実に防止できる。また軟弱地盤の側方流動を発生しにくくする利点もある。また地盤改良柱状体を構築する場合に、図6に示すように地盤改良柱状体20の先端に胴部20aより大径の拡大部20cを形成することもできる。これにより、地盤改良柱状体の沈下抵抗力がより高まり、道路の圧密沈下を更により確実に防止できる。
【0028】
更に地盤改良柱状体20に無機繊維又は合成繊維を含ませることもできる。この場合、好ましくは、無機繊維に長さ2〜4cm程度のスチール繊維が、また合成繊維に長さ4〜7cm程度のポリアミド系のナイロン繊維、ポリオレフィン系のポリエチレン繊維、ポリプロピレン繊維が用いられる。長さが上記下限値未満では補強効果に乏しく、上記上限値を越えると、他の材料との混合時に取扱いにくくなる。この繊維は地盤改良柱状体を形成する全ての材料に対して0.2〜2.0体積%程度含有する。柱状体に上記繊維を含ませることにより、軟弱地盤の側方流動により柱状体に亀裂が生じても、柱状体の曲げ抵抗力が発揮されて、その後の側方流動を抑えることができる。
【0029】
柱状体を構築することにより、動的荷重による地盤の側方流動を防止することができる。上方から視た場合の柱状体の構築の仕方を図7及び図8に基づいて説明する。工事の効率及び経済性を考慮して、柱状体の平面配置は図7に示すような格子状配置にするか、或いは図8に示すような非接触形千鳥配置にして、改良率をできるだけ低く抑えるのが好ましい。改良率を10〜50%の範囲にして図7に示す格子状配置にした場合には、格子間隔d1(但し、格子間隔d1≧格子間隔d2)が柱状体の上端から道路舗装面までの高さの2倍以下であれば、また同様に改良率を10〜50%の範囲にして図8に示す非接触形千鳥配置にした場合にも、道路の方向をDとしたときに、柱状体間隔d3(但し、柱状体間隔d3≧柱状体間隔d4)が柱状体の上端から道路舗装面までの高さの2倍以下であれば、それぞれ静的荷重、動的荷重は柱状体に確実に伝達され、十分地盤の側方流動を防止することができる。
【0030】
図1〜図4に示すように、本発明の道路舗装18はクラッシャーラン層18a、粒度調整砕石層18b及びアスファルト・コンクリート18cからなる。図1〜図4において、クラッシャーラン層18aは5〜15cmの厚さに、粒度調整砕石層18bは10〜30cmの厚さに、またアスファルト・コンクリート18cは10〜40cmの厚さにそれぞれ敷設される。
【0031】
【実施例】
次に本発明の実施例を比較例とともに図面に基づいて説明する。
<実施例1>
図1に示すように、対象軟弱地盤11に機械撹拌法により地盤改良柱状体20を軟弱地盤11の下方の支持層に到達しない長さで構築した。このとき柱状体はそれぞれ直径aが80cm、長さL4が400cmであって、図8に示す間隔d3,d4がそれぞれ125cm、改良率25.7%で、非接触形千鳥配置に構築した。
地盤改良柱状体20の上に、ガラス繊維からなる補強用網状体21を敷設し、この上に、掘削土及び別に用意した土砂にセメント粉を加え、更に添加材として低密度体である籾殻を材料全体の20重量%加えて、乾式混合した後、締め固めることにより浅層改良土層13をL5=60cmの厚さに敷設した。この上にクラッシャーラン層18aを30cmの厚さに敷設し、更にこの上に粒度調整砕石層18bを10cmの厚さに敷設し、その上を5cmの厚さのアスファルト・コンクリート18bで舗装した。図1に示す総合長さLは505cmであった。
<比較例1>
図9に示すように、実施例1と同一の対象軟弱地盤1を掘削し、この掘削土及び別に用意した土砂にセメント系固化材を加えて、乾式混合した後、締め固めることにより浅層改良土層2aを60cmの厚さに敷設した。この上にクラッシャーラン層3aを30cmの厚さに設けた後、更にこの上に粒度調整用砕石層3bを10cmの厚さに敷設し、その上を5cmの厚さのアスファルト・コンクリート4で舗装した。図9に示す総合長さLは105cmであった。
<比較例2>
図10に示すように、実施例1と同一の対象軟弱地盤1を掘削し、この掘削土及び別に用意した土砂に生石灰を固化材として加えて、乾式混合した後、締め固めることにより浅層改良土層2bを150cmの厚さに敷設した。この浅層改良土層2bの上にFe石灰を乾式混合した後固化して浅層改良土層2cを30cmの厚さに形成した。この浅層改良土層2cの上にクラッシャーラン層3aを30cmの厚さに設けた後、更にこの上に粒度調整用砕石層3bを10cmの厚さに敷設し、その上を5cmの厚さのアスファルト・コンクリート4で舗装した。図10に示す総合長さLは225cmであった。
<実施例2>
図2に示すように、実施例1と同一の軟弱地盤11を掘削し、地下構造物12である暗渠を支持杭17を介して支持層16に支持した後、この暗渠の近傍の対象軟弱地盤11に機械撹拌法によりそれぞれ直径aが80cmの地盤改良柱状体20を軟弱地盤11の下方の支持層16に到達しない長さで構築した。このとき柱状体が暗渠から遠ざかるに従って段々に短くなるように地盤改良柱状体20を構築した。暗渠に最も近い柱状体の長さL7は400cmであって、柱状体は図8に示す間隔d1,d2がそれぞれ125cm、改良率25.7%で、非接触形千鳥配置に構築した。
地盤改良柱状体20の上にガラス繊維からなる補強用網状体21を敷設し、この上にクラッシャーラン層18aを30cmの厚さに敷設し、更にこの上に粒度調整砕石層18bを10cmの厚さに敷設し、その上を5cmの厚さのアスファルト・コンクリート18cで舗装した。図2に示す最長の地盤改良柱状体の下端から支持層16までの深さL6は20mであり、総合長さLは445cmであった。
<実施例3>
図3に示すように、実施例1と同一の軟弱地盤11を掘削し、実施例2と同様にして暗渠12を支持層16に支持した後、この暗渠の近傍の軟弱地盤11に機械撹拌法によりそれぞれ直径aが80cmの地盤改良柱状体20を実施例2と同様に柱状体が暗渠から遠ざかるに従って段々に短くなるようにかつ軟弱地盤11の下方の支持層16に到達しない長さで構築した。暗渠に最も近い柱状体の長さL9は400cmであって、柱状体は図8に示す間隔d3,d4がそれぞれ125cm、改良率25.7%で、非接触形千鳥配置に構築した。
地盤改良柱状体20の上に、掘削土及び別に用意した土砂にスラリー状のセメント系固化材を加え、更に添加材として低密度体である発泡ビーズを材料全体の30体積%加えて、湿式混合し浅層改良土層13をL10=30cmの厚さに敷設した。この上にクラッシャーラン層18aを30cmの厚さに敷設し、更にこの上に粒度調整砕石層18bを10cmの厚さに敷設し、その上を5cmの厚さのアスファルト・コンクリート18cで舗装した。図3に示す最長の地盤改良柱状体の下端から支持層16までの深さL8は20mであり、総合長さLは475cmであった。
<実施例4>
図4に示すように、実施例1と同一の軟弱地盤11を掘削し、実施例2と同様にして暗渠12を支持層16に支持した後、この暗渠の近傍の軟弱地盤11に機械撹拌法によりそれぞれ直径aが80cmの地盤改良柱状体20を実施例2と同様に柱状体が暗渠から遠ざかるに従って段々に短くなるようにかつ軟弱地盤11の下方の支持層16に到達しない長さで構築した。暗渠に最も近い柱状体の長さL12は400cmであって、柱状体は図8に示す間隔d3,d4がそれぞれ125cm、改良率25.7%で、非接触形千鳥配置に構築した。
地盤改良柱状体20の上に、ガラス繊維からなる補強用網状体21を敷設し、この上に、掘削土及び別に用意した土砂にセメント粉を加え、更に添加材として低密度体である籾殻を材料全体の20体積%加えて、乾式混合した後、締め固めることにより浅層改良土層13をL13=30cmの厚さに敷設した。この上にクラッシャーラン層18aを30cmの厚さに敷設し、更にこの上に粒度調整砕石層18bを10cmの厚さに敷設し、その上を5cmの厚さのアスファルト・コンクリート18cで舗装した。図4に示す最長の地盤改良柱状体の下端から支持層16までの深さL11は20mであり、総合長さLは475cmであった。
<比較例3>
図11に示すように、実施例1と同一の軟弱地盤1を掘削し、実施例2と同様にして暗渠6を支持杭8を介して支持層7に支持した後、この暗渠の近傍の軟弱地盤1を掘削し、この掘削土及び別に用意した土砂にセメント系固化材を加えて、乾式混合した後、締め固めることにより浅層改良土層2aを60cmの厚さに敷設した。この上にクラッシャーラン層3aを30cmの厚さに設けた後、更にこの上に粒度調整用砕石層3bを10cmの厚さに敷設し、その上を5cmの厚さのアスファルト・コンクリート4で舗装した。図11に示す総合長さLは105cmであった。
<比較例4>
図12に示すように、実施例1と同一の軟弱地盤1を掘削し、実施例2と同様にして暗渠6を支持杭8を介して支持層7に支持した後、この暗渠の近傍の軟弱地盤1を掘削し、この掘削土及び別に用意した土砂に生石灰を固化材として加えて、乾式混合した後、締め固めることにより浅層改良土層2bを150cmの厚さに敷設した。この浅層改良土層2bの上にFe石灰を乾式混合した後固化して浅層改良土層2cを30cmの厚さに形成した。この浅層改良土層2cの上にクラッシャーラン層3aを30cmの厚さに設けた後、更にこの上に粒度調整用砕石層3bを10cmの厚さに敷設し、その上を5cmの厚さのアスファルト・コンクリート4で舗装した。図12に示す総合長さLは225cmであった。
<比較例5>
図3に示した地盤改良柱状体20を長くして、その柱状体の下端を軟弱地盤の下部の支持層16に埋設するようにした(図示せず)以外は、実施例3と同様にして地盤を改良した。
<比較試験とその結果>
実施例1〜実施例4及び比較例1〜比較例5の各種工法で構築された道路の沈下量及び段差の発生状況について、構築してから使用開始されるまでの間と、使用開始してから720日経過するまでの間を測定した。また道路構築に要した工費について、実施例1を100としたときの他の実施例及び比較例の概算値について調べた。これらの結果を表1に示す。
【0032】
【表1】

Figure 0003653083
【0033】
(a) 沈下量及び段差の発生状況について:
表1から明らかなように、実施例1の工法により構築された道路も、比較例1及び2の工法により構築された道路も、使用が開始されるまでの静的荷重による沈下量はいずれも小さく、実施例1の工法と比較例1及び2の工法との間に有意差は認められなかった。しかし、道路が使用されてからは動的荷重に起因して、比較例1,2の工法による道路の沈下量が大きかったのに対して、実施例1の工法による道路の沈下量は小さかった。
【0034】
また地下構造物である暗渠の近傍に柱状体を構築した場合、実施例2〜4の工法により構築された道路も、比較例5の工法により構築された道路も、使用が開始されるまでの静的荷重による沈下量はいずれも小さく、図11及び図12に示される段差Aは見られず、実施例2〜4の工法と比較例5の工法との間に有意差は認められなかった。また3個の実施例の間でも有意差があるとは言えなかった。
しかし比較例3及び4の工法により構築された道路は使用が開始されるまでの静的荷重による沈下量が比較的大きく、他の実施例2〜4の工法と比較例5の工法との間に有意差が認められた。また道路が使用されてからは動的荷重に起因して、比較例3,4の工法による道路の沈下量は著しく大きく、段差Aがはっきりと現れたのに対して、実施例2〜4及び比較例5の工法による道路の沈下量はすべて小さく、段差は全く生じなかった。実施例2〜4の工法による道路の中で、特に実施例2及び3はその沈下量が比較的小さく、比較例5に匹敵する値を示した。
(b) 工費について:
実施例1の工法の工費を100としたときの他の実施例2〜4の各工法の工費の概算値は、沈下量の大きな比較例1〜4の各工法の工費の概算値よりも高価であったが、柱状体の下端を支持層に埋設するようにした比較例5の工法の工費の概算値の約20%〜約27%の低いものであった。
【0035】
【発明の効果】
以上述べたように、本発明によれば、工期を無用に長引かせる過剰な地盤改良を行わずに、比較的短い工期で安価に道路を構築することができ、軟弱地盤上に盛土により構築された道路が使用された際に、動的荷重による圧密沈下を抑制することができる。
また、軟弱地盤上に設けられた暗渠などの地下構造物の上を横断する道路が使用された際に、道路の地下構造物の上の部分とそれに隣接する部分との境界に段差を生じさせることがない優れた効果を奏する。
【図面の簡単な説明】
【図1】本発明の実施例1の工法で構築した道路方向に直交する方向から視た断面図。
【図2】本発明の実施例2の工法で構築した道路方向に直交する方向から視た断面図。
【図3】本発明の実施例3の工法で構築した道路方向に直交する方向から視た断面図。
【図4】本発明の実施例4の工法で構築した道路方向に直交する方向から視た断面図。
【図5】本発明の胴部に節部を有する地盤改良柱状体の正面図。
【図6】本発明の先端に拡大部を有する地盤改良柱状体の正面図。
【図7】本発明の格子状に配置した地盤改良柱状体の平面図。
【図8】本発明の非接触形千鳥に配置した地盤改良柱状体の平面図。
【図9】比較例1の工法で構築した道路方向に直交する方向から視た断面図。
【図10】比較例2の工法で構築した道路方向に直交する方向から視た断面図。
【図11】比較例3の工法で構築した道路方向に直交する方向から視た断面図。
【図12】比較例4の工法で構築した道路方向に直交する方向から視た断面図。
【符号の説明】
11 軟弱地盤
12 地下構造物
13 浅層改良土層
16 支持層
17 支持杭
18 道路舗装
18a クラッシャーラン層
18b 粒度調整砕石層
18c アスファルト・コンクリート
20 柱状体
20a 胴部
20b 節部
20c 拡大部
21 補強用網状体[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a construction method for constructing a road by embankment on soft ground. The present invention also relates to a method for constructing a road that crosses an underground structure such as a culvert provided on soft ground by embankment.
[0002]
[Prior art]
When building roads by embankment on soft ground with thick buried or alluvium layers, the following method is adopted. First, as shown in FIG. 9, the improved ground 2 with improved rigidity of the shallow layer is obtained by dry mixing the cement-based solidified material in the shallow layer portion of the soft ground 1 and then solidifying to form the shallow improved soil layer 2 a. Alternatively, as shown in FIG. 10, quick lime is dry-mixed in the shallow layer portion of the soft ground 1 and then solidified to form the shallow improved soil layer 2b, and the Fe lime is further formed on the shallow improved soil layer 2b. The dry ground is solidified and then solidified to form the shallow improved soil layer 2c, whereby the improved ground 2 with improved shallow layer rigidity is obtained. Next, as shown in FIG. 9 and FIG. 10, the improved ground 2 is used as a road bed, and the embankment composed of a crusher run layer 3 a and a crushed stone layer 3 b for particle size adjustment is provided thereon to form the road bed 3. Asphalt / concrete layer 4 is provided and paved.
In this specification, the roadbed and the pavement are referred to as road pavement without combining them.
[0003]
Further, as shown in FIG. 11 or FIG. 12, an underground structure 6 such as a culvert with subsidence suppressed is provided in a shallow layer portion of the soft ground 1 having a thick buried layer or alluvial layer, and the underground structure 6 When the road crossing the road is constructed by road paving on the underground structure 6 and the soft ground 1 other than the underground structure, first, a deep layer portion of the soft ground 1 is provided with a support layer 7 below the soft ground. After supporting the underground structure 6 with the support pile 8 that reaches, after forming the improved ground 2 and the roadbed 3 in the shallow layer portion of the soft ground 1 other than the underground structure, as in FIG. 9 or FIG. The asphalt concrete layer 4 is provided on the pavement. At the bridge mounting part, a stepping plate method is used as a measure to prevent a step near the abutment due to the sinking of the backfill or embankment layer of the abutment.
[0004]
[Problems to be solved by the invention]
A dynamic load due to the traveling of an automobile is applied to the road bed as well as a static load due to embankment, and these loads are transmitted to the road bed. When the embankment thickness is as thin as about 1.0 m, the dynamic load is comparable to a static load and has a property of repeatedly acting for a long time. Therefore, if the degree of ground improvement is not enough, even if it can sufficiently withstand consolidation settlement due to static load, it cannot withstand several times the dynamic load, and the road will continue to settle due to dynamic load. It will be. On the other hand, if the ground is sufficiently improved, consolidation settlement due to dynamic load can be suppressed, but the relationship between the degree of ground improvement and the suppression effect of consolidation settlement due to dynamic load is not fully understood. For this reason, excessive attempts to suppress consolidation settlement caused excessive ground improvement, unnecessarily prolonging the construction period, and incurring unnecessary construction costs.
[0005]
In addition, when building by building roads on soft ground other than underground structures and underground structures, the underground structures are supported by support piles, so they will not sink, There are few. When the static load and the dynamic load described above are applied to the road constructed across the underground structure that hardly sinks, as shown by the broken line in FIG. 11 or FIG. A step A was produced at the boundary with the adjacent portion, and the smooth running of the automobile was hindered. Such a step is repeatedly generated even after repair.
[0006]
An object of the present invention is to provide a road construction method that can be constructed inexpensively in a relatively short construction period and suppresses consolidation settlement due to dynamic load when a road constructed by embankment on soft ground is used. It is in.
Another object of the present invention is that it can be constructed inexpensively with a relatively short construction period, and when a road crossing over an underground structure such as a culvert provided on soft ground is used, the underground structure of the road An object of the present invention is to provide a road construction method that does not cause a step at the boundary between the upper part and the adjacent part.
[0007]
[Means for Solving the Problems]
As shown in FIG. 1, the invention according to claim 1 has a length that does not reach the support layer below the soft ground and the improvement rate of 10 to 50% on the soft ground 11 on the road foundation. Then, a reinforcing mesh 21 is laid on the plurality of columnar bodies 20, and either one or both of an additive or an additive is further added to the earth and sand and the solidifying material on the reinforcing mesh 21. This is a road construction method characterized in that a shallow improved soil layer 13 is laid by mixing and solidifying, and a road pavement 18 is constructed on the shallow improved soil layer 13.
A reinforcing net-like body 21 is laid on the columnar body 20, and either one or both of an additive or an additive is further added to the earth and sand and the solidifying material, and the mixture is solidified to be solidified. By laying 13 and further performing road pavement 18, the thickness of the crusher run layer 3 a shown in FIGS. 9 and 10 can be reduced, and the consolidation settlement due to the dynamic load on the road can be further suppressed. Moreover, since the columnar body 20 has a length that does not reach the support layer below the soft ground 11, it leads to a shortened construction period and a reduction in construction costs.
[0008]
In the invention according to claim 2, as shown in FIG. 2, a plurality of columnar bodies 20 are provided on the soft ground 11 in the vicinity of the underground structure 12 embedded in the soft ground 11 of the road foundation and settling suppressed. It is constructed at a rate of improvement of 10 to 50% so as to gradually shorten as it gets away from the underground structure 12 with a length that does not reach the support layer 16, and a reinforcing mesh 21 is provided on the plurality of columnar bodies 20. The road construction method is characterized in that a road pavement 18 is constructed on the underground structure 12 and the reinforcing net 21 by laying.
By performing the road pavement 18 on the columnar body 20 via the reinforcing mesh body 21, the improved ground 2 shown in FIG. 11 and FIG. 12 is omitted and the consolidation settlement due to the dynamic load on the road is suppressed. In addition, since the plurality of columnar bodies 20 are gradually shortened as they move away from the underground structure 12, when the road is used, in the vicinity of the underground structure 12, the consolidation settlement is suppressed as much as possible and separated. Gradually allow a certain amount of consolidation settlement. Thereby, the level | step difference which generate | occur | produces in the boundary of the part on the underground structure 12 of a road and the part adjacent to it can be suppressed. Moreover, since the columnar body 20 has a length that does not reach the support layer 16 below the soft ground 11, it leads to a shortening of the construction period and a reduction in construction costs.
[0009]
As shown in FIG. 3, the invention according to claim 3, as shown in FIG. 3, places a plurality of columnar bodies 20 on the soft ground 11 in the vicinity of the underground structure 12 buried in the soft ground 11 of the road foundation and restrained from sinking below the soft ground. It is constructed at a rate of improvement of 10 to 50% so that the length does not reach the support layer 16 and gradually decreases as it moves away from the underground structure 12, and earth and sand and solidified material are mixed on the plurality of columnar bodies 20. Then, the shallow improved soil layer 13 is laid by solidifying, and the road pavement 18 is constructed on the underground structure 12 and the shallow improved soil layer 13.
The invention according to claim 4 is the invention according to claim 3, wherein either one or both of an additive or an additive is further added to the earth and the solidifying material, and the mixture is solidified to be solidified. This is a construction method of a road laying 13.
A shallow soil improvement soil layer 13 is laid on the columnar body 20 by further adding one or both of an additive or an additive to the sand and the solidifying material, and mixing and solidifying, and a road pavement 18 is formed thereon. 11 and 12, the thickness of the crusher run layer 3a shown in FIGS. 11 and 12 can be reduced to suppress consolidation settlement due to the dynamic load of the road, and the plurality of columnar bodies 20 can be connected to the underground structure. As the distance from 12 is gradually shortened, as in the invention according to claim 2, when the road is used, the boundary between the upper portion of the underground structure 12 of the road and the portion adjacent thereto is used. Does not cause a step. Moreover, since the columnar body 20 has a length that does not reach the support layer 16 below the soft ground 11, it leads to a shortening of the construction period and a reduction in construction costs.
[0010]
As shown in FIG. 4, the invention according to claim 5, as shown in FIG. 4, places a plurality of columnar bodies 20 on the soft ground 11 near the underground structure 12 embedded in the soft ground 11 of the road foundation and restrained from sinking below the soft ground. It is constructed at a rate of improvement of 10 to 50% so as to gradually shorten as it gets away from the underground structure 12 with a length that does not reach the support layer 16, and a reinforcing mesh 21 is provided on the plurality of columnar bodies 20. Laying on the reinforcing net-like body 21, the shallow improvement soil layer 13 is laid by adding one or both of the additive and / or additive to the earth and sand and further solidifying by mixing. The road construction method is characterized in that a road pavement 18 is constructed on the structure 12 and the shallow improved soil layer 13.
A reinforcing net-like body 21 is laid on the columnar body 20, and either one or both of an additive or an additive is further added to the earth and sand and the solidifying material, and the mixture is solidified to be solidified. 13 and further road pavement 18, the thickness of the crusher run layer 3 a shown in FIGS. 11 and 12 can be reduced, and the consolidation settlement due to the dynamic load of the road can be further suppressed. Further, since the plurality of columnar bodies 20 are gradually shortened as the distance from the underground structure 12 increases, when the road is used, the top of the road underground structure 12 is removed. Can be suppressed from occurring at the boundary between this part and the part adjacent thereto. Moreover, since the columnar body 20 has a length that does not reach the support layer 16 below the soft ground 11, it leads to a shortening of the construction period and a reduction in construction costs.
[0011]
The invention according to claim 6 is the invention according to claim 1, 4 or 5, by further adding either one or both of an additive or an additive to earth and sand and a solidifying material, followed by wet mixing and solidifying. This is a road construction method for laying the shallow improved soil layer 13.
By wet mixing, dust generation by powder at the construction site is suppressed, and the environment in the vicinity of the site is not contaminated with powder. In addition, the wet mixing method does not require compaction, and variation in quality can be reduced.
[0012]
The invention according to claim 7 is the invention according to claim 1, 4, 5 or 6, wherein the additive is made of foam beads or rice husk, the additive is made of a bubble generator, and the additive or additive is either One or both of them are road construction methods that are one or more low-density bodies selected from the group consisting of foam beads, rice husks, and bubble generators.
By adding a low-density material as an additive or additive, the shallow improved soil layer 13 can be reduced in weight, and the static load caused by the shallow improved soil layer can be reduced. Moreover, since the low density body absorbs vibration due to a dynamic load, the amount of dynamic consolidation settlement can be reduced.
[0013]
The invention according to claim 8 is the invention according to claim 1, 4, 5, or 6, wherein the additive is a clinker formed by incineration of industrial waste.
According to this construction method, it is possible to effectively use a clinker that is formed by incineration of industrial waste and is difficult to dispose of.
[0014]
The invention according to claim 9 is the invention according to claim 1, 4, 5 or 6, and is a road construction method in which the additive is an inorganic fiber or a synthetic fiber.
By adding the above fibers as an additive, the shallow improved soil layer 13 is reinforced, cracking of the improved ground due to traffic load is prevented, and the durability of the improved ground is improved. Further, even if the layer thickness is made thinner than that of the shallow improved soil layer not containing fibers, durability equivalent to that of the shallow improved soil layer not containing fibers can be obtained.
[0015]
The invention according to claim 10 is the invention according to any one of claims 1 to 3 or 5, and is a road construction method in which the columnar body 20 is a ready-made pile or a ground improvement columnar body. By using ready-made piles for the columnar body, construction can be carried out at a lower cost in a shorter construction period, and by using the ground improved columnar body, consolidation consolidation of the road can be prevented more reliably.
[0016]
The invention according to claim 11 is the invention according to any one of claims 1 to 3 or 5 as shown in FIG. 5, wherein the columnar body 20 is a ground improvement columnar body. This is a road construction method having a node portion 20b in a trunk portion 20a.
By providing the node portion 20b in the trunk portion of the ground improvement columnar body, the settlement resistance of the ground improvement columnar body is increased, and the consolidation settlement of the road can be prevented more reliably.
[0017]
The invention according to claim 12 is the invention according to any one of claims 1 to 3, 5 or 11 as shown in FIG. 6, wherein the columnar body 20 is a ground improvement columnar body, and this columnar body. This is a road construction method in which the tip of 20 has an enlarged portion 20c having a diameter larger than that of the trunk portion 20a.
By providing the enlarged portion 20c having a diameter larger than that of the trunk portion at the tip of the ground improvement columnar body, the settlement resistance force of the ground improvement columnar body is increased, and the consolidation settlement of the road can be prevented more reliably.
[0018]
The invention according to claim 13 is the invention according to any one of claims 1 to 3, 5, 11, or 12, wherein the columnar body 20 is a ground improvement columnar body, and the columnar body 20 is an inorganic fiber or a synthetic fiber. This is a road construction method that contains fiber.
By including the fiber in the columnar body, even if the columnar body is cracked due to the lateral flow of the soft ground, the bending resistance of the columnar body is exhibited and the subsequent lateral flow can be suppressed.
[0019]
The invention according to claim 14 is the invention according to any one of claims 1 to 3, 5 or 11 to 13, wherein the columnar body 20 is a ground improvement columnar body, and the columnar body 20 is mechanically stirred. Or it is the construction method of the road constructed | assembled by the high pressure jet stirring method.
By constructing the ground improved columnar body by the mechanical stirring method, the outer diameter of the improved body can be built at a low price regardless of the soil quality. In addition, by constructing the ground improvement columnar body by the high-pressure jet stirring method, the construction machine can be reduced in size and weight, and can be constructed even in a narrow place or under an existing hanging plate.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
The present invention constructs a columnar body that does not reach the support layer below the soft ground on the soft ground, and the reinforcing net or shallow improved soil layer or the reinforcing net and shallow improved soil layer are formed on the columnar body. Both are laid. When adopting the above combination, the value L, which is the length of the columnar body and the thickness of the road pavement plus the thickness of the shallow improved soil layer, is used to suppress consolidation settlement due to traffic load, that is, dynamic load. It is a big condition. If the improvement rate of the columnar body is constructed in the range of 10 to 50% and the value L is set to 4 m or more, consolidation settlement due to dynamic load can be substantially eliminated. Here, the improvement rate of the columnar body means the percentage of the cross-sectional area of the columnar body in the unit area of the improved ground when the columnar body is viewed from above as shown in FIGS. 7 and 8. If the improvement rate of the columnar body is less than 10%, consolidation settlement cannot be sufficiently suppressed, and if it exceeds 50%, there is a problem that the construction period and the construction cost are increased. Preferably the improvement is 15-30%.
[0021]
Although the value L is required to be 4 m or more, even if it is increased, the effect of suppressing the dynamic consolidation settlement does not increase so much. However, as the value L increases, the effect of suppressing static consolidation settlement increases accordingly. In the present invention, in order to avoid excessive ground improvement, the lower end of the columnar body does not reach the support layer 16 below the soft ground 11 as shown in FIGS. Although the support layer is not shown in FIG. 1, the columnar body 20 does not reach the support layer as well. The maximum value of this value L is appropriately determined in consideration of the layer thickness of the soft ground and its degree of softness, load conditions, economy, and the like. As shown in FIG. 2, when the road pavement 18 is applied directly on the reinforcing net 21 without providing the shallow improvement soil layer, it is necessary to increase the improvement rate of the columnar body 20.
As shown in FIGS. 2 to 4, in the step elimination method when a long columnar body is constructed in the vicinity of the underground structure and a shorter columnar body is constructed step by step as the distance from the underground structure increases, it is efficient and economical. Therefore, the conditions for ground improvement in the vicinity of the underground structure are the same as in the case of improvement over the entire road length shown in FIG. 1, and the length of the columnar body gradually decreases as the distance from the underground structure increases. The difference is that it becomes zero at the end.
[0022]
1, 2, and 4, the reinforcing network 21 of the present invention is a network formed of a material such as inorganic fiber, synthetic fiber, synthetic resin, or steel. A net-like body made of inorganic fiber or synthetic fiber is a string-like body made from this fiber and made from the net. Examples of inorganic fibers include glass fibers, and examples of synthetic fibers include polyamide-based nylon fibers, polyolefin-based polyethylene fibers, and polypropylene fibers. Examples of the synthetic resin include polyethylene and polypropylene resin. A net-like body made of steel is formed by pulling both edges of a plate-shaped steel in a direction perpendicular to the cuts, after making a number of cuts parallel to the plate-like steel, leaving a peripheral edge. The mesh spacing of the mesh body is 10 to 200 mm. Depending on the required degree of reinforcement, the reinforcing mesh body is used as a single sheet or a plurality of sheets are used in combination.
[0023]
The shallow improved soil layer 13 of the present invention shown in FIGS. 1, 3 and 4 is composed of earth and sand, solidified material such as powder or slurry cement, cement-based solidified material, quicklime, etc., and additive or additive. Either one or both are mixed uniformly and solidified. Depending on the water content of the target ground, there may be a case where a shallow improved soil layer is formed by mixing and compacting, or a case where the shallow ground improvement soil layer is formed without compaction. When the moisture content of the target ground is low, if a slurry-like solidifying material is used and either or both of the additive and / or additive are further added to the solidified material and the earth and wet-mixed, the powder at the construction site The generation of dust is suppressed and the environment in the vicinity of the site is not contaminated with powder.
[0024]
Examples of the additive of the present invention include low-density bodies such as foam beads and rice husks, clinker formed by incineration of industrial waste, inorganic fibers, and synthetic fibers. The additive of the present invention includes a bubble generator. The above additives or additives may be added alone or in combination of two or more. You may mix an additive and an additive. The expanded beads are added in an amount of 20 to 50% by volume based on 100% by volume of the material forming the shallow improved soil layer. If it is less than 20% by volume, the purpose of addition cannot be achieved, and if it exceeds 50% by volume, the strength of the shallow improved soil layer when solidified decreases. By adding the low-density body, the shallow improved soil layer is reduced in weight, the static consolidation settlement can be reduced, the elastic modulus of the shallow improved soil layer is reduced, and the dynamic load due to traffic load is absorbed. . Accordingly, even if the length of the columnar body is shortened, consolidation settlement can be prevented.
[0025]
Examples of the low-density bubble generator include polyoxyethylene alkyl ether compounds and higher alcohol sulfate compounds. This bubble generator is a liquid before mixing, but is a substance that entrains bubbles in the layer when forming a shallow improved soil layer. When the rice husk is made of a low density body, the rice husk is made of SiO. 2 Because it contains a large amount, the corrosion resistance is high, and the resistance to the traffic load is large in order to increase the shear strength of the shallow improved soil layer over the long term from its shape.
When a clinker having a diameter of 5 mm or less formed by incineration of industrial waste is used as an additive, a clinker that is in need of this disposal can be used effectively.
[0026]
When inorganic fiber or synthetic fiber is used as an additive, it is preferably an inorganic fiber such as steel fiber having a length of about 2 to 4 cm, or a polyamide-type nylon fiber, a polyolefin-type polyethylene fiber, or a polypropylene fiber having a length of about 4 to 7 cm. A synthetic fiber consisting of If the length is less than the above lower limit value, the reinforcing effect is poor, and if the length exceeds the above upper limit value, it becomes difficult to handle when mixing with other materials. By adding the fiber as an additive, the shallow improved soil layer is reinforced, cracking of the improved ground due to traffic load is prevented, and durability of the improved ground is improved. Further, even if the layer thickness is made thinner than that of the shallow improved soil layer not containing fibers, durability equivalent to that of the shallow improved soil layer not containing fibers can be obtained.
In order to achieve the above object, rice husks, inorganic fibers or synthetic fibers are 0.1 to 5.0% by volume, preferably 0.2 to 2% with respect to 100% by volume of the material forming the shallow improved soil layer. 0.0% by volume is added, and the clinker is added at 30% by volume or less. The bubble generator is added in an amount of 0.01 to 1.0% by weight, preferably 0.1 to 0.5% by weight, based on 100% by weight of the material forming the shallow improved soil layer.
[0027]
There are two methods for constructing a columnar body: a method of driving a prefabricated pile such as a wooden pile, a prefabricated concrete pile, a steel pile or the like into a deep ground, and a method of constructing a ground improved columnar body. By using ready-made piles for the columnar body, construction can be carried out at a lower cost in a shorter construction period, and by using the ground improved columnar body, consolidation consolidation of the road can be prevented more reliably. There are two methods for constructing this soil-improved columnar body: mechanical stirring and high-pressure jet stirring.However, when the ground-improved columnar body is constructed by mechanical stirring, it is inexpensive and has a constant outer diameter regardless of the soil quality. can do. Moreover, by constructing by a high-pressure jet stirring method, the construction machine can be reduced in size and weight, and can be constructed even in a narrow place or under an existing tread plate. When constructing this ground improvement columnar body, the node part 20b can also be formed in the trunk | drum 20a of the ground improvement columnar body 20, as shown in FIG. As a result, the frictional force on the peripheral surface of the ground improvement columnar body is increased, the settlement resistance is increased, and the consolidation settlement of the road can be prevented more reliably. There is also an advantage that it is difficult to generate a lateral flow of the soft ground. Moreover, when constructing a ground improvement columnar body, an enlarged portion 20c having a diameter larger than that of the trunk portion 20a can be formed at the tip of the ground improvement columnar body 20, as shown in FIG. Thereby, the settlement resistance of the ground improvement columnar body is further increased, and the consolidation settlement of the road can be prevented more reliably.
[0028]
Furthermore, the ground improvement columnar body 20 can also contain an inorganic fiber or a synthetic fiber. In this case, steel fibers having a length of about 2 to 4 cm are preferably used for the inorganic fibers, and polyamide-type nylon fibers, polyolefin-type polyethylene fibers and polypropylene fibers having a length of about 4 to 7 cm are used for the synthetic fibers. If the length is less than the above lower limit value, the reinforcing effect is poor, and if the length exceeds the above upper limit value, it becomes difficult to handle when mixing with other materials. This fiber contains about 0.2-2.0 volume% with respect to all the materials which form a ground improvement columnar body. By including the fiber in the columnar body, even if the columnar body is cracked due to the lateral flow of the soft ground, the bending resistance of the columnar body is exhibited and the subsequent lateral flow can be suppressed.
[0029]
By constructing the columnar body, lateral flow of the ground due to dynamic load can be prevented. A method of constructing the columnar body when viewed from above will be described with reference to FIGS. Considering the construction efficiency and economy, the planar arrangement of the columnar bodies should be a grid arrangement as shown in FIG. 7 or a non-contact type staggered arrangement as shown in FIG. It is preferable to suppress. When the improvement rate is in the range of 10 to 50% and the lattice arrangement shown in FIG. 1 (However, lattice spacing d 1 ≧ lattice spacing d 2 ) Is less than twice the height from the top of the columnar body to the road pavement, and also when the non-contact staggered arrangement shown in FIG. , When the road direction is D, the columnar spacing d Three (However, columnar spacing d Three ≧ Distance between columnar bodies d Four ) Is less than twice the height from the upper end of the columnar body to the road pavement surface, the static load and the dynamic load are reliably transmitted to the columnar body, respectively, and the lateral flow of the ground can be sufficiently prevented. it can.
[0030]
As shown in FIGS. 1-4, the road pavement 18 of this invention consists of the crusher run layer 18a, the particle size adjustment crushed stone layer 18b, and asphalt concrete 18c. 1 to 4, the crusher run layer 18a is laid to a thickness of 5 to 15 cm, the particle size-adjusted crushed stone layer 18b is laid to a thickness of 10 to 30 cm, and the asphalt concrete 18c is laid to a thickness of 10 to 40 cm. .
[0031]
【Example】
Next, examples of the present invention will be described based on the drawings together with comparative examples.
<Example 1>
As shown in FIG. 1, the ground improved columnar body 20 was constructed on the target soft ground 11 by a mechanical stirring method so as not to reach the support layer below the soft ground 11. At this time, each columnar body has a diameter a of 80 cm and a length L. Four Is 400 cm and the distance d shown in FIG. Three , D Four Were constructed in a non-contact staggered arrangement with 125 cm and an improvement rate of 25.7%, respectively.
A reinforcing net-like body 21 made of glass fiber is laid on the ground improvement columnar body 20, and cement powder is added to the excavated soil and separately prepared earth and sand, and a rice husk which is a low-density body is further added as an additive. After adding 20% by weight of the entire material, dry mixing, and then compacting the shallow improved soil layer 13 by L Five = Laying to a thickness of 60 cm. A crusher run layer 18a was laid on this to a thickness of 30 cm, a particle size-adjusted crushed stone layer 18b was further laid on the thickness of 10 cm, and the asphalt concrete 18b having a thickness of 5 cm was paved thereon. The total length L shown in FIG. 1 was 505 cm.
<Comparative Example 1>
As shown in FIG. 9, the same soft ground 1 as in Example 1 is excavated, a cement-based solidifying material is added to the excavated soil and separately prepared soil, dry-mixed, and then compacted by compaction. The soil layer 2a was laid to a thickness of 60 cm. After the crusher run layer 3a was provided on this to a thickness of 30 cm, a crushed stone layer 3b for adjusting the particle size was further laid on the thickness of 10 cm, and the asphalt concrete 4 having a thickness of 5 cm was paved thereon. . The total length L shown in FIG. 9 was 105 cm.
<Comparative example 2>
As shown in FIG. 10, the same soft ground 1 as in Example 1 is excavated, and quick lime is added as a solidifying material to the excavated soil and separately prepared sand, and after dry mixing, the shallow layer is improved by compaction. The soil layer 2b was laid to a thickness of 150 cm. Fe lime was dry-mixed on the shallow improved soil layer 2b and then solidified to form a shallow improved soil layer 2c having a thickness of 30 cm. After providing the crusher run layer 3a to a thickness of 30 cm on the shallow improved soil layer 2c, a crushed stone layer 3b for adjusting the particle size is further laid to a thickness of 10 cm, and a thickness of 5 cm is provided thereon. Paved with asphalt concrete 4. The total length L shown in FIG. 10 was 225 cm.
<Example 2>
As shown in FIG. 2, after excavating the same soft ground 11 as in the first embodiment and supporting the underdrain which is the underground structure 12 on the support layer 16 via the support pile 17, the target soft ground in the vicinity of the underdrain 11, a ground improvement columnar body 20 having a diameter a of 80 cm was constructed by a mechanical stirring method so as not to reach the support layer 16 below the soft ground 11. At this time, the ground improvement columnar body 20 was constructed so that the columnar body gradually shortened as it moved away from the culvert. The length L of the columnar body closest to the culvert 7 Is 400 cm, and the columnar body has an interval d shown in FIG. 1 , D 2 Were constructed in a non-contact staggered arrangement with 125 cm and an improvement rate of 25.7%, respectively.
A reinforcing mesh body 21 made of glass fiber is laid on the ground improvement columnar body 20, a crusher run layer 18a is laid thereon to a thickness of 30 cm, and a particle size-adjusted crushed stone layer 18b is further formed thereon to a thickness of 10 cm. And then paved with 5 cm thick asphalt concrete 18c. Depth L from the lower end of the longest ground improvement columnar body shown in FIG. 6 Was 20 m and the overall length L was 445 cm.
<Example 3>
As shown in FIG. 3, the same soft ground 11 as in Example 1 is excavated, and after the underdrain 12 is supported by the support layer 16 in the same manner as in Example 2, mechanical agitation is applied to the soft ground 11 in the vicinity of the underdrain. Thus, the ground improvement columnar body 20 having a diameter a of 80 cm was constructed in such a manner that the columnar body was gradually shortened as it moved away from the underdrain as in Example 2, and the length did not reach the support layer 16 below the soft ground 11. . The length L of the columnar body closest to the culvert 9 Is 400 cm, and the columnar body has an interval d shown in FIG. Three , D Four Were constructed in a non-contact staggered arrangement with 125 cm and an improvement rate of 25.7%, respectively.
On the ground improvement columnar body 20, a slurry-like cement-based solidifying material is added to excavated soil and separately prepared sand, and further, 30% by volume of low-density foam beads are added as an additive, and wet mixing is performed. L shallow shallow improved soil layer 13 Ten = Laying to a thickness of 30 cm. A crusher run layer 18a was laid on this to a thickness of 30 cm, a particle size-adjusted crushed stone layer 18b was further laid on the thickness of 10 cm, and the asphalt concrete 18c having a thickness of 5 cm was paved thereon. Depth L from the lower end of the longest ground improvement columnar body shown in FIG. 8 Was 20 m and the overall length L was 475 cm.
<Example 4>
As shown in FIG. 4, the same soft ground 11 as in Example 1 is excavated, and after the underdrain 12 is supported on the support layer 16 in the same manner as in Example 2, mechanical agitation is applied to the soft ground 11 near the underdrain. Thus, the ground improvement columnar body 20 having a diameter a of 80 cm was constructed in such a manner that the columnar body gradually shortened as it moved away from the underdrain as in Example 2, and had a length that did not reach the support layer 16 below the soft ground 11. . The length L of the columnar body closest to the culvert 12 Is 400 cm, and the columnar body has an interval d shown in FIG. Three , D Four Were constructed in a non-contact staggered arrangement with 125 cm and an improvement rate of 25.7%, respectively.
A reinforcing net-like body 21 made of glass fiber is laid on the ground improvement columnar body 20, and cement powder is added to the excavated soil and separately prepared earth and sand, and a rice husk which is a low-density body is further added as an additive. After adding 20% by volume of the entire material, dry mixing, and then compacting, the shallow improved soil layer 13 can be reduced to L 13 = Laying to a thickness of 30 cm. A crusher run layer 18a was laid on this to a thickness of 30 cm, a particle size-adjusted crushed stone layer 18b was further laid on the thickness of 10 cm, and the asphalt concrete 18c having a thickness of 5 cm was paved thereon. Depth L from the lower end of the longest ground improvement columnar body shown in FIG. 11 Was 20 m and the overall length L was 475 cm.
<Comparative Example 3>
As shown in FIG. 11, after excavating the same soft ground 1 as in Example 1 and supporting the underdrain 6 on the support layer 7 through the support pile 8 in the same manner as in Example 2, the soft ground near this underdrain is shown. The ground 1 was excavated, and a cement-based solidifying material was added to the excavated soil and separately prepared sand, mixed dry, and then compacted to lay the shallow improved soil layer 2a to a thickness of 60 cm. After the crusher run layer 3a was provided on this to a thickness of 30 cm, a crushed stone layer 3b for adjusting the particle size was further laid on the thickness of 10 cm, and the asphalt concrete 4 having a thickness of 5 cm was paved thereon. . The total length L shown in FIG. 11 was 105 cm.
<Comparative example 4>
As shown in FIG. 12, the same soft ground 1 as in Example 1 is excavated, and after the underdrain 6 is supported by the support layer 7 through the support pile 8 in the same manner as in Example 2, the soft ground near this underdrain is shown. The ground 1 was excavated, and quick lime was added as a solidifying material to this excavated soil and separately prepared sand, and after dry mixing, the shallow improved soil layer 2b was laid to a thickness of 150 cm by compaction. Fe lime was dry-mixed on the shallow improved soil layer 2b and then solidified to form a shallow improved soil layer 2c having a thickness of 30 cm. After providing the crusher run layer 3a to a thickness of 30 cm on the shallow improved soil layer 2c, a crushed stone layer 3b for adjusting the particle size is further laid to a thickness of 10 cm, and a thickness of 5 cm is provided thereon. Paved with asphalt concrete 4. The total length L shown in FIG. 12 was 225 cm.
<Comparative Example 5>
3 except that the ground improvement columnar body 20 shown in FIG. 3 is lengthened and the lower end of the columnar body is embedded in the support layer 16 below the soft ground (not shown). Improved ground.
<Comparison test and results>
About the amount of subsidence of roads and the state of occurrence of steps formed by various methods of Examples 1 to 4 and Comparative Examples 1 to 5, until the start of use after construction, Until 720 days elapse. Moreover, about the construction cost required for road construction, when Example 1 was set to 100, the approximate value of another Example and a comparative example was investigated. These results are shown in Table 1.
[0032]
[Table 1]
Figure 0003653083
[0033]
(a) About the amount of subsidence and the occurrence of steps:
As is apparent from Table 1, both the road constructed by the construction method of Example 1 and the road constructed by the construction method of Comparative Examples 1 and 2 are both subsidized by static load until the use is started. There was no significant difference between the construction method of Example 1 and the construction methods of Comparative Examples 1 and 2. However, after the road was used, due to dynamic load, the amount of road subsidence by the method of Comparative Examples 1 and 2 was large, whereas the amount of road subsidence by the method of Example 1 was small. .
[0034]
Moreover, when a columnar body is constructed in the vicinity of a culvert that is an underground structure, both the road constructed by the construction method of Examples 2 to 4 and the road constructed by the construction method of Comparative Example 5 are used until the start of use. The amount of subsidence due to static load was small, the step A shown in FIGS. 11 and 12 was not seen, and no significant difference was found between the construction methods of Examples 2 to 4 and the construction method of Comparative Example 5. . Also, it could not be said that there was a significant difference among the three examples.
However, the road constructed by the construction methods of Comparative Examples 3 and 4 has a relatively large subsidence amount due to static load until the start of use. Between the construction methods of other Examples 2 to 4 and the construction method of Comparative Example 5 A significant difference was observed. In addition, since the road was used, the amount of subsidence of the road by the method of Comparative Examples 3 and 4 was remarkably large due to the dynamic load, and the level difference A appeared clearly. The amount of subsidence of the road by the construction method of Comparative Example 5 was all small, and no steps were generated. Among the roads according to the construction methods of Examples 2 to 4, in particular, Examples 2 and 3 had a relatively small subsidence and showed values comparable to Comparative Example 5.
(b) About construction cost:
When the construction cost of the construction method of Example 1 is set to 100, the estimated value of the construction cost of each of the other construction methods of Examples 2 to 4 is higher than the estimated value of the construction cost of each construction method of Comparative Examples 1 to 4 having a large amount of subsidence. However, it was a low value of about 20% to about 27% of the estimated cost of the method of Comparative Example 5 in which the lower end of the columnar body was embedded in the support layer.
[0035]
【The invention's effect】
As described above, according to the present invention, a road can be constructed inexpensively in a relatively short construction period without excessive ground improvement that unnecessarily prolongs the construction period, and is constructed by embankment on soft ground. When a road is used, consolidation settlement due to dynamic load can be suppressed.
In addition, when a road crossing over underground structures such as underdrains provided on soft ground is used, a step is generated at the boundary between the upper part of the road underground structure and the adjacent part. There is an excellent effect that never happens.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view seen from a direction perpendicular to a road direction constructed by a construction method according to a first embodiment of the present invention.
FIG. 2 is a cross-sectional view seen from a direction perpendicular to the road direction constructed by the construction method of Embodiment 2 of the present invention.
FIG. 3 is a cross-sectional view seen from a direction perpendicular to the road direction constructed by the construction method of Embodiment 3 of the present invention.
FIG. 4 is a cross-sectional view seen from a direction orthogonal to the road direction constructed by the construction method of Example 4 of the present invention.
FIG. 5 is a front view of a ground improvement columnar body having a node portion in a trunk portion of the present invention.
FIG. 6 is a front view of a ground improvement columnar body having an enlarged portion at the tip of the present invention.
FIG. 7 is a plan view of a ground improvement columnar body arranged in a lattice shape of the present invention.
FIG. 8 is a plan view of a ground improvement columnar body arranged in a non-contact type staggered pattern according to the present invention.
9 is a cross-sectional view seen from a direction orthogonal to the road direction constructed by the construction method of Comparative Example 1. FIG.
10 is a cross-sectional view seen from a direction orthogonal to the road direction constructed by the construction method of Comparative Example 2. FIG.
11 is a cross-sectional view seen from a direction orthogonal to the road direction constructed by the construction method of Comparative Example 3. FIG.
12 is a cross-sectional view seen from a direction orthogonal to the road direction constructed by the construction method of Comparative Example 4. FIG.
[Explanation of symbols]
11 Soft ground
12 Underground structures
13 Shallow improved soil layer
16 Support layer
17 Support pile
18 Road paving
18a Crusher run layer
18b Particle size-adjusted crushed stone layer
18c Asphalt and concrete
20 Columnar body
20a trunk
20b node
20c Enlarged part
21 Reinforcing mesh

Claims (14)

道路基礎の軟弱地盤(11)に複数本の柱状体(20)を前記軟弱地盤(11)の下方の支持層に到達しない長さでかつ10〜50%の改良率で構築し、前記複数本の柱状体(20)の上に補強用網状体(21)を敷設し、前記補強用網状体(21)の上に土砂と固化材に添加材又は添加剤のいずれか一方又は双方を更に加えて混合して固化することにより浅層改良土層(13)を敷設し、前記浅層改良土層(13)の上に道路舗装(18)を構築することを特徴とする道路の構築工法。A plurality of columnar bodies (20) are constructed on a soft ground (11) of a road foundation with a length that does not reach the support layer below the soft ground (11) and an improvement rate of 10 to 50%. A reinforcing mesh (21) is laid on the columnar body (20), and one or both of an additive or an additive is further added to the earth and sand and the solidifying material on the reinforcing mesh (21). A road construction method characterized in that a shallow improved soil layer (13) is laid by mixing and solidifying and a road pavement (18) is constructed on the shallow improved soil layer (13). 道路基礎の軟弱地盤(11)に埋設され沈下を抑制された地下構造物(12)の近傍の前記軟弱地盤(11)に複数本の柱状体(20)を前記軟弱地盤(11)の下方の支持層(16)に到達しない長さで前記地下構造物(12)から遠ざかるに従って段々に短くなるように10〜50%の改良率で構築し、前記複数本の柱状体(20)の上に補強用網状体(21)を敷設し、前記地下構造物(12)及び補強用網状体(21)の上に道路舗装(18)を構築することを特徴とする道路の構築工法。A plurality of columnar bodies (20) are placed below the soft ground (11) on the soft ground (11) in the vicinity of the underground structure (12) buried in the soft ground (11) of the road foundation and subsidized. It is constructed with an improvement rate of 10 to 50% so as to gradually shorten as it moves away from the underground structure (12) with a length that does not reach the support layer (16), and is formed on the plurality of columnar bodies (20). A road construction method characterized by laying a reinforcing mesh (21) and constructing a road pavement (18) on the underground structure (12) and the reinforcing mesh (21). 道路基礎の軟弱地盤(11)に埋設され沈下を抑制された地下構造物(12)の近傍の前記軟弱地盤(11)に複数本の柱状体(20)を前記軟弱地盤(11)の下方の支持層(16)に到達しない長さで前記地下構造物(12)から遠ざかるに従って段々に短くなるように10〜50%の改良率で構築し、前記複数本の柱状体(20)の上に土砂と固化材を混合して固化することにより浅層改良土層(13)を敷設し、前記地下構造物(12)及び浅層改良土層(13)の上に道路舗装(18)を構築することを特徴とする道路の構築工法。A plurality of columnar bodies (20) are placed below the soft ground (11) on the soft ground (11) in the vicinity of the underground structure (12) buried in the soft ground (11) of the road foundation and subsidized. It is constructed with an improvement rate of 10 to 50% so as to gradually shorten as it moves away from the underground structure (12) with a length that does not reach the support layer (16), and is formed on the plurality of columnar bodies (20). A shallow improved soil layer (13) is laid by mixing and solidifying the earth and sand, and a road pavement (18) is constructed on the underground structure (12) and the shallow improved soil layer (13). A road construction method characterized by 土砂と固化材に添加材又は添加剤のいずれか一方又は双方を更に加えて混合して固化することにより浅層改良土層(13)を敷設する請求項3記載の道路の構築工法。The road construction method according to claim 3, wherein the shallow soil improvement soil layer (13) is laid by further adding one or both of an additive or an additive to the earth and sand and the solidifying material, and mixing and solidifying. 道路基礎の軟弱地盤(11)に埋設され沈下を抑制された地下構造物(12)の近傍の前記軟弱地盤(11)に複数本の柱状体(20)を前記軟弱地盤(11)の下方の支持層(16)に到達しない長さで前記地下構造物(12)から遠ざかるに従って段々に短くなるように10〜50%の改良率で構築し、前記複数本の柱状体(20)の上に補強用網状体(21)を敷設し、前記補強用網状体(21)の上に土砂と固化材に添加材又は添加剤のいずれか一方又は双方を更に加えて混合して固化することにより浅層改良土層(13)を敷設し、前記地下構造物(12)及び浅層改良土層(13)の上に道路舗装(18)を構築することを特徴とする道路の構築工法。A plurality of columnar bodies (20) are placed below the soft ground (11) on the soft ground (11) in the vicinity of the underground structure (12) buried in the soft ground (11) of the road foundation and subsidized. It is constructed with an improvement rate of 10 to 50% so as to gradually shorten as it moves away from the underground structure (12) with a length that does not reach the support layer (16), and is formed on the plurality of columnar bodies (20). A reinforcing mesh (21) is laid, and by adding one or both of additive or additive to earth and sand and solidifying material on the reinforcing mesh (21), the mixture is solidified to be shallow. A road construction method characterized by laying a layer improvement soil layer (13) and constructing a road pavement (18) on the underground structure (12) and the shallow layer improvement soil layer (13). 土砂と固化材に添加材又は添加剤のいずれか一方又は双方を更に加えて湿式混合して固化することにより浅層改良土層(13)を敷設する請求項1、4又は5記載の道路の構築工法。The road according to claim 1, 4 or 5, wherein the shallow improvement soil layer (13) is laid by further adding one or both of an additive or an additive to the earth and sand and the solidifying material and wet-mixing and solidifying. Construction method. 添加材が発泡ビーズ又は籾殻からなり、添加剤が気泡発生体からなり、前記添加材又は添加剤のいずれか一方又は双方が発泡ビーズ、籾殻及び気泡発生体からなる群より選ばれた1種又は2種以上の低密度体である請求項1、4、5又は6記載の道路の構築工法。The additive is made of foam beads or rice husks, the additive is made of bubble generators, and either one or both of the additives or additives are selected from the group consisting of foam beads, rice husks and bubble generators or The road construction method according to claim 1, wherein the road construction method is two or more kinds of low-density bodies. 添加材が産業廃棄物の焼却により形成されたクリンカである請求項1、4、5又は6記載の道路の構築工法。The road construction method according to claim 1, 4, 5, or 6, wherein the additive is a clinker formed by incineration of industrial waste. 添加材が無機繊維又は合成繊維である請求項1、4、5又は6記載の道路の構築工法。The road construction method according to claim 1, 4, 5, or 6, wherein the additive is an inorganic fiber or a synthetic fiber. 柱状体(20)が既製杭又は地盤改良柱状体である請求項1ないし3又は5いずれか1項に記載の道路の構築工法。The road construction method according to any one of claims 1 to 3 or 5, wherein the columnar body (20) is a ready-made pile or a ground improvement columnar body. 柱状体(20)が地盤改良柱状体であって、前記柱状体(20)の胴部(20a)に節部(20b)を有する請求項1ないし3又は5いずれか1項に記載の道路の構築工法。The road body according to any one of claims 1 to 3 or 5, wherein the columnar body (20) is a ground improvement columnar body, and the body (20a) of the columnar body (20) has a node (20b). Construction method. 柱状体(20)が地盤改良柱状体であって、前記柱状体(20)の先端が胴部(20a)より大径の拡大部(20c)を有する請求項1ないし3、5又は11いずれか1項に記載の道路の構築工法。The columnar body (20) is a ground improvement columnar body, and the tip of the columnar body (20) has an enlarged portion (20c) larger in diameter than the trunk portion (20a). The road construction method according to item 1. 柱状体(20)が地盤改良柱状体であって、前記柱状体(20)が無機繊維又は合成繊維を含む請求項1ないし3、5、11又は12いずれか1項に記載の道路の構築工法。The road construction method according to any one of claims 1 to 3, 5, 11, or 12, wherein the columnar body (20) is a ground improvement columnar body, and the columnar body (20) includes an inorganic fiber or a synthetic fiber. . 柱状体(20)が地盤改良柱状体であって、前記柱状体(20)を機械撹拌法又は高圧噴射撹拌法により構築する請求項1ないし3、5、又は11ないし13いずれか1項に記載の道路の構築工法。The columnar body (20) is a ground improvement columnar body, and the columnar body (20) is constructed by a mechanical stirring method or a high-pressure jet stirring method, according to any one of claims 1 to 3, 5, or 11 to 13. Road construction method.
JP2003014547A 2003-01-23 2003-01-23 Road construction method Expired - Lifetime JP3653083B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003014547A JP3653083B2 (en) 2003-01-23 2003-01-23 Road construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003014547A JP3653083B2 (en) 2003-01-23 2003-01-23 Road construction method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP12844497A Division JP3528950B2 (en) 1997-05-19 1997-05-19 Road construction method

Publications (2)

Publication Number Publication Date
JP2003239276A JP2003239276A (en) 2003-08-27
JP3653083B2 true JP3653083B2 (en) 2005-05-25

Family

ID=27785729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003014547A Expired - Lifetime JP3653083B2 (en) 2003-01-23 2003-01-23 Road construction method

Country Status (1)

Country Link
JP (1) JP3653083B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102605699A (en) * 2012-03-23 2012-07-25 河海大学 Technology for settlement control of hollow rigid plate after construction of deep soft soil foundation of high-level embankment
CN103290751A (en) * 2013-06-13 2013-09-11 铁道第三勘察设计院集团有限公司 Roadbed reinforcement structure of oblique anchor cable cement earth pile
CN103334357A (en) * 2013-06-07 2013-10-02 上海嘉实(集团)有限公司 Viaduct road embankment structure with lower pile foundation bearing platform extending in roadbed, and construction method
CN103556554A (en) * 2013-10-09 2014-02-05 广州市市政集团有限公司 Bored pile composite foundation structure used for reinforcing soft foundations of embankment and construction method thereof
CN103628378A (en) * 2013-11-12 2014-03-12 江苏省镇江市路桥工程总公司 Waterside road broadened embankment structure and construction method thereof
CN103993533A (en) * 2014-06-13 2014-08-20 北京市政建设集团有限责任公司 Comprehensive compacting method for highfill embankment in loess area
CN105780619A (en) * 2014-12-26 2016-07-20 上海勘测设计研究院有限公司 Seaside soft foundation road structure
CN106522074A (en) * 2016-11-21 2017-03-22 苏交科集团股份有限公司 Construction technology for gravel-pebble-soil roadbed of expressway
CN106567303A (en) * 2016-11-21 2017-04-19 康颖 Road bed structure of road
CN109958016A (en) * 2017-12-22 2019-07-02 张远凤 A kind of extremely frigid zones marshland roadbed anti-sedimentation structure

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4624292B2 (en) * 2006-03-31 2011-02-02 株式会社竹中工務店 High-strength, high-toughness cementitious ground improvement by fiber reinforcement
CN102296509B (en) * 2011-06-21 2013-09-18 北京航空航天大学 Foundation treatment method for exactly regulating foundation settlement, and construction device
CN102505598B (en) * 2011-10-09 2014-03-19 中铁六局集团有限公司 Method for reinforcement construction of soft soil foundation by exchange-filling with foam lightweight soil
CN103572680B (en) * 2012-08-02 2016-01-20 五冶集团上海有限公司 The roadbed filling construction method of coal mine gob
CN102767128B (en) * 2012-08-14 2014-10-29 天津二十冶建设有限公司 Construction method capable of controlling top surface elevation for surcharge load soil of subgrade
CN102817298B (en) * 2012-08-29 2014-12-10 中铁十五局集团有限公司 Construction method on frozen soil
CN102900001B (en) * 2012-10-22 2015-04-29 中国水电建设集团路桥工程有限公司 Construction method for road foundation
CN103726425B (en) * 2013-12-23 2016-06-08 中铁四局集团第一工程有限公司 Foam lightweight soil construction method
CN104746399A (en) * 2015-04-10 2015-07-01 成军 Construction method for preventing vehicle bump at bridge head
CN105113350A (en) * 2015-08-27 2015-12-02 苏州同尚工程设计咨询有限公司 Pier abutment roadbed structure and construction method
CN105220620A (en) * 2015-10-20 2016-01-06 合肥市市政设计院有限公司 The bumping at bridge-head processing method of darker mud soft soil foundation after platform
CN105926395B (en) * 2016-06-22 2018-01-02 山西省交通科学研究院 A kind of road structure and construction method for eliminating newly-built roadbed consolidation settlement
CN106381774B (en) * 2016-08-30 2018-05-15 中铁十九局集团矿业投资有限公司 Construction method and device with film geotextiles reinforcing flexible foundation
CN106381790A (en) * 2016-10-26 2017-02-08 朱育盼 Method and device for reinforcing foundation bed
CN109826066A (en) * 2019-03-14 2019-05-31 广西双象建设工程有限责任公司 A kind of road structure and construction method of light soil roadbed combination steel-pipe pile
CN110670435A (en) * 2019-09-19 2020-01-10 东南大学 Method for treating collapsible loess subgrade through dynamic compaction and curing
CN111663391B (en) * 2020-07-06 2024-07-09 西安科技大学 Roadbed double-crust layer on-site reinforcing and filling structure and method in muddy soft soil area
CN113584979A (en) * 2021-06-25 2021-11-02 中冶天工集团有限公司 Collapsible loess area road construction method
CN113718569B (en) * 2021-08-16 2022-08-12 广东万业建设集团有限公司 Construction method for constructing road on soft soil foundation
CN114016493B (en) * 2021-09-23 2023-09-12 中国化学工程重型机械化有限公司 Soft foundation reclamation construction method
CN114575209A (en) * 2022-03-31 2022-06-03 浙江数智交院科技股份有限公司 Road rigid pile and preloading soft foundation treatment transition structure and construction method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2819025B2 (en) * 1988-10-14 1998-10-30 清水建設株式会社 Soft ground improvement method
JPH0473310A (en) * 1990-07-12 1992-03-09 Nishi Nippon Eng Kk Construction technique of structure in wear subsoil
JP2842747B2 (en) * 1993-01-18 1999-01-06 株式会社テノックス Ground improvement body

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102605699A (en) * 2012-03-23 2012-07-25 河海大学 Technology for settlement control of hollow rigid plate after construction of deep soft soil foundation of high-level embankment
CN103334357B (en) * 2013-06-07 2015-07-15 上海嘉实(集团)有限公司 Viaduct road embankment structure with lower pile foundation bearing platform extending in roadbed, and construction method
CN103334357A (en) * 2013-06-07 2013-10-02 上海嘉实(集团)有限公司 Viaduct road embankment structure with lower pile foundation bearing platform extending in roadbed, and construction method
CN103290751A (en) * 2013-06-13 2013-09-11 铁道第三勘察设计院集团有限公司 Roadbed reinforcement structure of oblique anchor cable cement earth pile
CN103290751B (en) * 2013-06-13 2016-03-02 铁道第三勘察设计院集团有限公司 Inclining anchor cable cement earth pile subgrade strengthening structure
CN103556554A (en) * 2013-10-09 2014-02-05 广州市市政集团有限公司 Bored pile composite foundation structure used for reinforcing soft foundations of embankment and construction method thereof
CN103556554B (en) * 2013-10-09 2016-05-11 广州市市政集团有限公司 Reinforce the construction method of the drilled pile composite foundation structure of the soft base of embankment
CN103628378A (en) * 2013-11-12 2014-03-12 江苏省镇江市路桥工程总公司 Waterside road broadened embankment structure and construction method thereof
CN103993533A (en) * 2014-06-13 2014-08-20 北京市政建设集团有限责任公司 Comprehensive compacting method for highfill embankment in loess area
CN103993533B (en) * 2014-06-13 2016-03-02 北京市政建设集团有限责任公司 For the comprehensive debulking methods of Canal in Loess Area high-filled embankment
CN105780619A (en) * 2014-12-26 2016-07-20 上海勘测设计研究院有限公司 Seaside soft foundation road structure
CN106522074A (en) * 2016-11-21 2017-03-22 苏交科集团股份有限公司 Construction technology for gravel-pebble-soil roadbed of expressway
CN106567303A (en) * 2016-11-21 2017-04-19 康颖 Road bed structure of road
CN106567303B (en) * 2016-11-21 2018-12-21 广东恒普建设工程有限公司 A kind of road foundation structure
CN109958016A (en) * 2017-12-22 2019-07-02 张远凤 A kind of extremely frigid zones marshland roadbed anti-sedimentation structure

Also Published As

Publication number Publication date
JP2003239276A (en) 2003-08-27

Similar Documents

Publication Publication Date Title
JP3653083B2 (en) Road construction method
JP3528950B2 (en) Road construction method
CN104278608A (en) Novel highway embankment widened structure and construction method
CN109914173B (en) Foam light soil pouring table back structure in expressway reconstruction and extension project and construction method thereof
JP6335569B2 (en) Ground preparation method and ground structure
CN210766223U (en) Roadbed structure capable of preventing settlement during drainage
TW200412388A (en) Vibration-proof construction method
CN210066390U (en) Punishment structure suitable for deep weak soil roadbed
CN114508011A (en) Pile-supported soft soil roadbed reinforcing structure and method
RU102220U1 (en) ROAD DESIGN
WO2008126956A1 (en) Block having a load divergence function and manufacturing and road constructing method for the same
CN103195051A (en) Limestone soil and pervious concrete pile composite foundation and treatment method thereof
CN102839647A (en) Stirring pile-permeable concrete pile compound foundation and treatment method thereof
CN209975286U (en) Embankment structure based on foam concrete
JPS62260919A (en) Small pile for reinforcing foundation ground to earthquake
CN113529523A (en) Soft foundation reinforcement treatment method based on highway engineering
JP2839986B2 (en) Retaining wall construction method
CN202787295U (en) Dispersive pile-permeable concrete pile novel dual compound foundation
CN113463457B (en) Roadbed structure for penetrating through slurry section and construction method thereof
JP2013221347A (en) Ground structure and ground improvement method
CN203145032U (en) Limestone soil-pervious concrete pile composite foundation
CN220643675U (en) Soft soil roadbed layered reinforcing structure
CN218175450U (en) Anti formula highway structure that subsides
CN210238175U (en) Road bed for municipal road engineering design
CN215051733U (en) Construction access road structure in deep soft soil area

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050224

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110304

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110304

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110304

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110304

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370