JPS62260919A - Small pile for reinforcing foundation ground to earthquake - Google Patents

Small pile for reinforcing foundation ground to earthquake

Info

Publication number
JPS62260919A
JPS62260919A JP10315886A JP10315886A JPS62260919A JP S62260919 A JPS62260919 A JP S62260919A JP 10315886 A JP10315886 A JP 10315886A JP 10315886 A JP10315886 A JP 10315886A JP S62260919 A JPS62260919 A JP S62260919A
Authority
JP
Japan
Prior art keywords
reinforcing
foundation ground
ground
small
piles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10315886A
Other languages
Japanese (ja)
Other versions
JPH0552366B2 (en
Inventor
Kenzo Ochi
越智 健三
Masahiro Okamoto
正広 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyu Construction Co Ltd
Original Assignee
Tokyu Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyu Construction Co Ltd filed Critical Tokyu Construction Co Ltd
Priority to JP10315886A priority Critical patent/JPS62260919A/en
Publication of JPS62260919A publication Critical patent/JPS62260919A/en
Publication of JPH0552366B2 publication Critical patent/JPH0552366B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Piles And Underground Anchors (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Foundations (AREA)
  • Placing Or Removing Of Piles Or Sheet Piles, Or Accessories Thereof (AREA)

Abstract

PURPOSE:To raise the reinforcing effect on foundation ground as well as to reduce the cost of construction work by a method in which a small pile whose high-rigid core periphery is bonded with a friction material having a great frictional force with sand is driven in groups into the foundation ground below or the side of a civil or building structure for reinforcement. CONSTITUTION:A friction material 3b composed of granular material, e.g., coarse sand, etc., is bonded to the periphery of a high-rigid core material 3a with the aid of an adhesive to form a small reinforcing pile 3. The small piles 3 are slightly penetrated into the bearing layer 4 of a sandy ground 1 where water level is comparatively high for foot protection or simply set on the surface of the bearing layer 4. The small piles 3 are also set with a more or less spacing from the surface of the bearing layer 4. In this case, the heads of the small piles 3 are separately positioned without being fixed on the donwnside of the roadbed 2a of a canalized road 2. Since the small pile 3 has high tensile rigidity and high compressive stiffness, the ground can be effectively reinforced and the construction cost can be reduced.

Description

【発明の詳細な説明】 LlL些孔肚列川 本用明は、ボックス・掘δ;1道路等の半地下t+17
造物や浄化槽・下水管等の中空埋設物などの土木捕遺物
あるいは地上の1!!築構造物を地下水位の比較的高い
砂質地盤に安全に構築するための基礎地盤の耐震補強方
法に関するものである。
[Detailed description of the invention] LlL small hole 肚行川本用明 is a box/drill δ; 1 semi-underground t+17 of a road, etc.
Civil engineering artifacts such as structures and hollow buried objects such as septic tanks and sewer pipes, or 1 on the ground! ! This paper relates to a seismic reinforcement method for foundation ground for safely constructing structures on sandy ground with a relatively high groundwater level.

A製Δ皮凱 一般に、砂・砂れき・埋立地・しゅんせつ地盤等で・地
下水位が比較的高い砂質地盤では、地震時に液状化現象
が生じ易くて地盤が破壊する恐れがあり、震災時の交通
輸送路を確保する必要から、この上うな砂質地盤に主要
幹線掘割道路を構築する場合には、第12図に示すよう
1こ、例えば道路幅力弓5〜4f)m″C−深さが5〜
10m程度の鉄筋コンクリート製の道路2では、そのコ
ンクリート路床2aの厚みを1 、5 tn程度にする
と共に、側壁から外方に相当突出せしめるように耐震設
計することが義務づけられている。
In general, in sand, gravel, reclaimed land, dredged ground, etc., sandy ground with a relatively high groundwater level is prone to liquefaction during an earthquake, which may cause the ground to collapse. Because it is necessary to secure a traffic transportation route, when constructing a main trunk road on sandy ground, the width of the road should be 1 mm, for example, 5 to 4 f) m''C- as shown in Figure 12. Depth is 5~
For roads 2 made of reinforced concrete with a length of about 10 m, the concrete subgrade 2a is required to have a thickness of about 1.5 tn and to be seismically resistant so that it protrudes considerably outward from the side walls.

しかし、このような構造では路床厚や突出幅が大きくて
大量の鉄筋やコンクリート資材を必要とするだけでなく
、工期が良くて施工費が高くなる等の問題、τ気があり
、その改善が要請されていた。
However, such a structure not only requires a large amount of reinforcing bars and concrete materials due to the large thickness of the subgrade and protrusion width, but also has problems such as short construction times and high construction costs. was requested.

この要請に応えるため、第13図に示すように道床下方
の砂質土中に液剤やセメント10を混入して固化したり
、第14図に示すように道路2の両性側に連続壁11を
設ける等の固化方法による改善案があった。
In order to meet this demand, as shown in Fig. 13, a liquid agent or cement 10 is mixed into the sandy soil below the road bed and solidified, and as shown in Fig. 14, a continuous wall 10 is installed on both sides of the road 2. There were suggestions for improvement through solidification methods, such as installing a

また、第15図に示すように道路2の下側及び両側部の
地盤1を締固める方法や、さらにPt516図に示すよ
うに砂やれき等から成る排水杭12を打設する工法があ
った。
In addition, there is a method of compacting the ground 1 under and on both sides of the road 2, as shown in Figure 15, and a method of driving drainage piles 12 made of sand, gravel, etc., as shown in Figure Pt516. .

免ル嵩′ しようとするも 、綿 しかしながら、上記固化方法では、例乏ばソイルモルタ
ル不軌等には引張強度がなくて地震により容易にせん断
されてしまったり、連続壁11では路床2aの中央部に
沈下が生じ易い等の問題点があり、また上記締固め方法
では、施工範囲が広くて工事が大型になり、工期が良く
なったり施工費が高くつく等の問題点があり、さらに排
水抗力法では水平水頭差がない部分での排水:上行われ
ず、しかも道路2の浮上りは防止できても排水による沈
下が生じてしまう等の問題点があった。
However, with the above solidification method, for example, soil mortar failures do not have tensile strength and are easily sheared by earthquakes, and in the case of continuous walls 11, the center of the subgrade 2a In addition, the compaction method described above has problems such as the construction area is wide and the construction work is large, the construction period is short, and the construction cost is high. In the drag method, drainage is not carried out in areas where there is no horizontal water head difference, and even if it is possible to prevent the road 2 from rising, there are problems such as subsidence due to drainage.

1囚1す■σ 本発明は、上記従来の問題点を解決するためになされた
もので、その目的とするところは、安価で短期間に施工
することが出来るだけでなく、補強効果の高い基礎地盤
の耐震補強方法を提供することにある。
The present invention was made in order to solve the above-mentioned conventional problems, and its purpose is to not only be able to construct it at low cost and in a short period of time, but also to have a highly reinforcing effect. The object of the present invention is to provide a method for seismically reinforcing foundation ground.

1亀6 aγ決士るrこめの−・p1 本発明の基礎地盤の耐震補強方法は、剛性が高い芯材の
周囲に砂との摩擦力が大きい摩擦材を付着せしめた補強
不軌を土木構造物あるいは建築構造物の下方または側方
の基礎地盤中に群打設することを特徴とするものであり
、該基礎地盤が地下水1ケの比較的高い砂質地盤であり
、また上記補強不軌をjγを換率灼7%で均等に群打設
することを待量とし、さら(こ該補強不軌の杭頭な構造
物から離間せしめることを特徴とするものである。
1 Kame 6 aγKetsuru Komeno-・p1 The seismic reinforcement method for foundation ground of the present invention is a civil engineering structure that uses a reinforcement failure in which a friction material with a large frictional force with sand is attached around a core material with high rigidity. It is characterized by being poured in groups in the foundation ground below or on the side of objects or building structures, and the foundation ground is sandy ground with relatively high groundwater level, and the reinforcement failure described above is The method is characterized in that the concrete is evenly cast in groups at a conversion rate of 7%, and furthermore, it is separated from the reinforced pile-cap structure.

また、本:傾の第2の発明の耐震補強方法は、剛性が高
い芯Hの周囲に砂とのr−担力が大きく地盤中の過剰間
隙)i(!−fiを消散させる徘ボ摩擦材を定心せしめ
た排水補強小杭を土木構造物あるいは建築構造物の下方
または側方の基礎地盤中に群打設することを1、!F徴
とするものである。
In addition, the seismic reinforcement method of the second invention of the book: Til is based on the structure that the core H with high rigidity has a large r-bearing force with the sand, and the excessive gap in the ground)i (!-fi) is dissipated by the floating friction. 1.!F refers to the driving of small drainage reinforcing piles with centered timber into the foundation ground below or to the sides of civil engineering structures or architectural structures.

禾1■性 以下、本発明の実施例について図面を参照しながら説U
月する。
Below, embodiments of the present invention will be explained with reference to the drawings.
Moon.

第1図において、1は地下水位WLの比較的高い砂質地
盤であって、その中に鉄筋コンクリート製の掘割道路2
が構築されている。
In Figure 1, 1 is sandy ground with a relatively high groundwater level WL, in which a reinforced concrete excavated road 2 is constructed.
is being constructed.

該掘削道路2の下側および外側近傍の砂質地盤1中には
多数の補強不軌3がほぼ均等間隔で群打設されている。
In the sandy ground 1 near the bottom and outside of the excavated road 2, a large number of reinforcement failure tracks 3 are driven in groups at approximately equal intervals.

各補強不軌3の太さ・打設本数・間隔等は、後述するよ
うに本発明者の実験によると、n EA/As (Kg
 f /c m 2) [ただし、+1は補強不軌の本
数、Eはヤング率、Aは1本の補強不軌の断面積、As
は施工地盤の底面積で・ある。1というパラメーターで
決定されることが解ると共に、その置換率(A Xn 
/ A!3) X 100は796程度が効果的で・あ
り、それ以下では沈下して構造物が破壊−rるおそれが
あり、それ以北でも効果は変わらず無意味であることか
解った。
The thickness, number and spacing of each reinforcing track 3 are n EA/As (Kg
f / cm 2) [However, +1 is the number of reinforcement failures, E is Young's modulus, A is the cross-sectional area of one reinforcement failure, As
is the base area of the construction ground. It can be seen that it is determined by the parameter 1, and the substitution rate (A
/ A! 3) X 100 is effective at around 796, and if it is less than that, there is a risk of subsidence and destruction of the structure, and even north of that, the effect remains the same and is meaningless.

該補強手拭3は、1@2図に示すように芯材3aとその
外表面に付着された摩擦材3らから構成されている。
The reinforced hand towel 3 is composed of a core material 3a and friction materials 3 attached to its outer surface, as shown in Figures 1@2.

該芯材3aは、例えばPC棒・鉄筋棒・アルミ今金棒・
鉄筋かご等の金属材料あるいは合成OI脂等の非金属材
料で引張り・圧縮・曲げ・座屈等に強い剛性を有する材
質であって、ヤング率E≧10”kgf/am2のもの
あれば、いずれでもよく、その直径は5〜1(lo+o
−程度のものが好ましい。
The core material 3a is, for example, a PC rod, a reinforcing bar, an aluminum iron rod,
Metal materials such as reinforcing steel cages or non-metallic materials such as synthetic OI fats, which have high rigidity against tension, compression, bending, buckling, etc., and have Young's modulus E≧10”kgf/am2. However, its diameter may be 5 to 1 (lo+o
− is preferable.

また、上記摩擦材3bは、直径5〜20mm程度の荒目
砂等の粒状体であって、例えばエポキン系接着剤等の合
成![l接着剤により上記芯材3aの外表面に強固に接
着され、周囲の砂との間で摩擦係合できるようになって
いる。この砂との摩擦力は砂の内部摩擦力よりも大きく
なっている。尚、芯材3aの外表面に凹凸加工または多
数の棒状、扱状等の小突出物を形成または固着して、上
記摩擦材3bとしてもよい。
Further, the friction material 3b is a granular material such as coarse sand with a diameter of about 5 to 20 mm, and is made of, for example, a synthetic adhesive such as Epoquin adhesive. [1] It is firmly adhered to the outer surface of the core material 3a with an adhesive, so that it can frictionally engage with the surrounding sand. This frictional force with the sand is greater than the internal frictional force of the sand. Incidentally, the friction material 3b may be formed by forming or fixing an uneven surface on the outer surface of the core material 3a or by forming or fixing a large number of small protrusions such as rods or handles.

再び第1図において、上記補強不軌3は砂質地盤1の下
方の支持層4にわずかに(例えば10cm程度)差込ん
だり根固めしてもよく、あるいは支持層4の表面上に単
に置いた状態にしてもよく、さらに支持Jr44の表面
から多少離して浮かせた状態に設置してもよい。
Referring again to FIG. 1, the reinforcing track 3 may be inserted slightly (for example, about 10 cm) into the support layer 4 below the sandy ground 1, or may be hardened, or simply placed on the surface of the support layer 4. Furthermore, it may be placed in a floating state somewhat apart from the surface of the support Jr 44.

一方、補強手拭3の杭頭部は掘割道路2の路床2aの下
面に固定することなく、これから離間しておく。尚、路
床2aの下面にグラベルマ・/トを敷設し、この中に上
記抗頭を自由に挿入してもより1゜ 本実施例は以上のように構成されているので、例えばf
53図(A)に示すように上記地盤1に地震によるせん
断応力τが発生して、第3図(B)に示すようにせん断
変形を生じてもこれと同一の挙動をする補強手拭3は相
当高い引張剛性を有するので、上記変形に伴って該補強
不軌3内には打力Tが生じ、その反力として補強手拭3
の周囲の砂質土には、第3図(C)に示すような、拘束
力′F′が生じて地盤1を締固めることが理解される。
On the other hand, the pile heads of the reinforcing hand towels 3 are not fixed to the lower surface of the roadbed 2a of the dug road 2, but are spaced apart therefrom. It should be noted that even if a gravel mat is laid on the lower surface of the roadbed 2a and the above-mentioned cross head is freely inserted into it, the difference will be less than 1°.
As shown in Fig. 53 (A), even if shear stress τ occurs in the ground 1 due to an earthquake, and shear deformation occurs as shown in Fig. 3 (B), the reinforced hand towel 3 behaves in the same manner as shown in Fig. 3 (B). Since it has considerably high tensile rigidity, a striking force T is generated in the reinforcing groove 3 due to the above deformation, and as a reaction force, the reinforcing towel 3
It is understood that a restraining force 'F' is generated in the surrounding sandy soil to compact the ground 1 as shown in FIG. 3(C).

また、第4図<A)に示すように、地盤1に掘割道路2
等の荷重による圧縮力Pが働くと、補強手拭3にも圧縮
応力Rが生ずるが、該補強手拭3は相当高い圧m剛性を
示すので、その反力として補強手拭3の周囲の砂質土に
第4図(B)に示すような拘束力R′が生じ、上記圧縮
力Pに抵抗して地盤1の沈下が抑811することが理解
される。
In addition, as shown in Figure 4<A), there is a road 2 cut into the ground 1.
When the compressive force P due to the load of It is understood that a restraining force R' as shown in FIG. 4(B) is generated, which resists the compressive force P and suppresses the subsidence of the ground 1.

第5図は本願12の発明の実施例を示すもので、掘割道
路2の下側および外側の地盤1中には20〜30cm程
度の直径を有する多数の排水補強手拭5がほぼ均等に群
打設されている。
FIG. 5 shows an embodiment of the invention of the present application 12, in which a large number of drainage reinforcing hand towels 5 having a diameter of about 20 to 30 cm are almost evenly distributed in the ground 1 below and outside the cut road 2. It is set up.

上記排水補強手拭5は、第6図に示すように芯材5aと
その外周部に定着された排水摩擦材5bから構成されて
いる。該芯材5aは上記実施例の芯材3uとほぼ同じ剛
性と外径寸法を有すると共に、その外周部には排水摩擦
材5bの定着効果を高めるための表面加工・処理が施さ
れている。
As shown in FIG. 6, the drainage reinforcing hand towel 5 is composed of a core material 5a and a drainage friction material 5b fixed to the outer periphery of the core material 5a. The core material 5a has substantially the same rigidity and outer diameter as the core material 3u of the above-mentioned embodiment, and its outer periphery is subjected to surface processing and treatment to enhance the fixing effect of the drainage friction material 5b.

また、上記排水摩擦材5bは、例えば、れきや砂利等を
セメントで固めたものであるが、多数の連通した空隙を
有すると共に、周囲の砂と摩擦係合することが出来、上
記芯材5aに確実に定着できるものであればいずれの材
料でもよい。
Further, the drainage friction material 5b is, for example, made of rubble, gravel, etc. hardened with cement, and has a large number of communicating voids and can frictionally engage with the surrounding sand. Any material may be used as long as it can be reliably fixed to the surface.

再び第5図において、上記排水補強小杭5の下端部は支
持層4に根固めしてもしなくてもよく、またその枕頭は
地表面および掘削道路2の外周部に敷設されたグラベル
マツトロ内に自由1こ差込まれている。該グラベルマノ
トロは、例えば砂利またはポーラスコンクリート等によ
り50〜100cm程度の厚さに構成されている。
Referring again to FIG. 5, the lower end of the drainage reinforcing small pile 5 may or may not be hardened to the support layer 4, and the head of the pile may be attached to the gravel pine tree laid on the ground surface and on the outer periphery of the excavated road 2. A free piece is inserted inside. The gravel manotro is made of, for example, gravel or porous concrete, and has a thickness of about 50 to 100 cm.

従って、本実施例では地震が生じた場合、上記第3図お
よび第4図で説明した補強手拭3と同様の挙動を示して
地盤1を強化すると共に、排水摩擦材5bを通じて杭周
辺の地盤1内に生°二た過剰間隙水を吸水して上昇せし
め、−上記グラベルマント6を通じて排水することも出
来る。しかし、本発明の排水補強手拭5は、単に杭周辺
て゛の過剰間隙水圧を消散させる程度のものであって、
地盤沈下の原因になる排水効果は積極的;こpH待して
いな次に、上記排水補強手拭5の打設方法について説明
する。
Therefore, in this embodiment, when an earthquake occurs, the ground 1 is strengthened by showing the same behavior as the reinforcing hand towel 3 explained in FIGS. 3 and 4 above, and the ground 1 around the pile is strengthened through the drainage friction material 5b. It is also possible to absorb and raise the excess pore water generated within the gravel mantle and drain it through the gravel mantle 6. However, the drainage reinforcing hand towel 5 of the present invention merely dissipates excess pore water pressure around the pile;
The drainage effect, which causes ground subsidence, is positive; the pH is not high.Next, the method for installing the drainage reinforcing hand towel 5 will be explained.

まず、17A図に示tようにケーシング7内でアースオ
ー〃−8を回転させて土砂を掘削しながら排出し、ケー
シング7を地盤1中に打込む。
First, as shown in Fig. 17A, the earthing machine 8 is rotated within the casing 7 to excavate and discharge earth and sand, and the casing 7 is driven into the ground 1.

例えば、nEA/As =5000とすると、掘削径3
0c111、杭中心の打設間隔1.5−2.0I++ど
なる。
For example, if nEA/As = 5000, excavation diameter 3
0c111, driving interval between pile centers 1.5-2.0I++ roar.

次に、アースオー7y−8を引抜いて、?l57B図に
示すように排水摩擦材5bをケーンング7内に投入する
。この排水摩擦材5bは、図示のように細粒分を取り除
いて粒径を均一にした砂利または砕石とセメントとを混
合して、がらねすしたらのである。
Next, pull out Earth-O 7y-8 and ? As shown in Figure 157B, the drainage friction material 5b is put into the caning 7. As shown in the figure, this drainage friction material 5b is made by mixing gravel or crushed stone, which has a uniform particle size by removing fine particles, with cement, and then rinsing the mixture.

続いて、第7C図に示すように芯材5aをバイブロ又は
打込みで挿入し、その後、第7D図に示すように上記ケ
ーシング7を引抜き、最後に、第7FJlに示すように
排水補強手枕5の上部に水平に砂利9を敷き均す。この
とき、上記排水補強手枕5の杭頭を20cm程度砂利9
中に挿入する。このように、芯材5aの周囲にポーラス
な排水摩擦材5bが形成され、しかも砂利がセメントに
より芯材5aに定着されている。
Next, as shown in Fig. 7C, the core material 5a is inserted by vibratory or hammering, then the casing 7 is pulled out as shown in Fig. 7D, and finally, the drainage reinforcing hand pillow 5 is inserted as shown in Fig. 7FJl. Spread gravel 9 horizontally on the top. At this time, the pile head of the drainage reinforcing hand pillow 5 is about 20 cm thick with gravel 9.
insert it inside. In this way, the porous drainage friction material 5b is formed around the core material 5a, and the gravel is fixed to the core material 5a by cement.

第8図は、曲述のパラメーターnEA/As値と地盤の
地震せん断強度の増加率との関係を示すグラフであり、
これによりnEA/As値が地震せん断強度のパラメー
タとなることが理解て゛きる。
FIG. 8 is a graph showing the relationship between the descriptive parameter nEA/As value and the rate of increase in the seismic shear strength of the ground,
From this, it can be understood that the nEA/As value is a parameter of earthquake shear strength.

第9図は、地震時のせん断応力比と鉛直方向の変形量を
示すグラフであり、パラメーターnEA/Asが増加す
るにしたがって変形しにくいことが解る。
FIG. 9 is a graph showing the shear stress ratio and the amount of vertical deformation during an earthquake, and it can be seen that deformation becomes more difficult as the parameter nEA/As increases.

!510図およV第11図は、地震力と過剰間隙水圧比
とを示すグラフであり、地震力が大きくなっても過剰間
隙水圧がそれほど大きくならないことが解る。
! Figure 510 and Figure V11 are graphs showing the seismic force and excess pore water pressure ratio, and it can be seen that even if the seismic force increases, the excess pore water pressure does not increase so much.

4哩へ飢及 (1)地震時のせん断ひずみに伴って、不軌が地盤と同
一の単純せん断変形して、その摩擦材により周囲の砂質
土が締固められるので、地盤が補強され、制置および砂
腹状化抵抗等の効果がある。
4. Starvation (1) Due to the shear strain caused by the earthquake, the failure track undergoes simple shear deformation in the same way as the ground, and the surrounding sandy soil is compacted by the friction material, reinforcing the ground and causing control. It has the effect of resisting sand deposits and sand flattening.

(2)施工が簡単で材料費や施工費が安く、工期が短縮
できる等の効果がある。
(2) It is easy to construct, has low material and construction costs, and has the advantage of shortening the construction period.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本願第1発明方法の一実施例を示す説明図、第
2図(A)は補強小杭の一部拡大斜視図、(B)はその
平断面図、第3図(A)〜(C)および第4図(A)(
B)はそれぞれ補強小杭の作用の説明図、第5図は本願
12発明の一実施例を示す説明図、第6図の(A>は排
水補強手枕の一部拡大斜視図、CB)はその平断面図、
第7A図〜第7E図は排水補強手枕の施工作業を順次示
す説明図、f:tS8図はパラメーターnEA/As値
と地盤の地震せん断強度の増加率との関係を示すグラフ
、第9図は地震時のせん斯応力比と鉛直方向の変形量を
示すグラフ、第10図および第11図は地震力と過剰間
隔水圧比とを示すグラフ、第12図〜第16図は従来の
耐震施工例を示す図である。 1・・砂質地盤、2・・・掘側道路、3・・・補強小杭
、3d・・・芯材、3b−摩擦材、4・・・支持層、5
・・・排水補強手枕、5a・・・芯材、5t+・・・排
水摩擦材、6・・・グラベルマットっ 第1図 第2回 (A) (B) 第5図 員8図 nEA、/As(Kgf/cm2) \ハs ’  Q’!a<$1:するべjCH(Cm’
)第9図 第11図 シ球−ン郵(1ぐ3る七=ム、邊γrγN−力。 第12図 第13図 第14図
FIG. 1 is an explanatory diagram showing an embodiment of the method of the first invention of the present application, FIG. 2 (A) is a partially enlarged perspective view of a reinforced small pile, (B) is a plan sectional view thereof, and FIG. 3 (A) ~ (C) and Figure 4 (A) (
B) is an explanatory diagram of the action of the reinforcing small pile, FIG. 5 is an explanatory diagram showing one embodiment of the 12 invention of the present application, FIG. 6 (A> is a partially enlarged perspective view of the drainage reinforcement hand pillow, and CB) is Its plan sectional view,
Figures 7A to 7E are explanatory diagrams showing the construction work of the drainage reinforcement hand pillow in sequence, Figure f:tS8 is a graph showing the relationship between the parameter nEA/As value and the rate of increase in the seismic shear strength of the ground, and Figure 9 is A graph showing the shear stress ratio and the amount of vertical deformation during an earthquake. Figures 10 and 11 are graphs showing the seismic force and excess spacing water pressure ratio. Figures 12 to 16 are examples of conventional seismic construction. FIG. 1...Sandy ground, 2...Dig side road, 3...Reinforcement small pile, 3d...Core material, 3b-Friction material, 4...Support layer, 5
...Drainage reinforcement hand pillow, 5a...Core material, 5t+...Drainage friction material, 6...Gravel mat Figure 1 Part 2 (A) (B) Figure 5 Figure 8 nEA, / As(Kgf/cm2) \Has 'Q'! a<$1: SurubejCH(Cm'
) Fig. 9 Fig. 11 S-ball-N-Yu (1g3ru7=mu, 邊γrγN-force. Fig. 12 Fig. 13 Fig. 14)

Claims (8)

【特許請求の範囲】[Claims] (1)剛性が高い芯材の周囲に砂との摩擦力が大きい摩
擦材を付着せしめた補強小杭を土木構造物あるいは建築
構造物の下方または側方の基礎地盤中に群打設すること
を特徴とする基礎地盤の耐震補強方法。
(1) Driving small reinforcing piles in groups into the foundation ground below or to the side of a civil engineering structure or architectural structure, with a friction material that has a high frictional force with sand attached around a core material with high rigidity. A method for seismic reinforcement of foundation ground characterized by:
(2)上記基礎地盤が地下水位の比較的高い砂質地盤で
あることを特徴とする前記特許請求の範囲第1項に記載
の基礎地盤の耐震補強方法。
(2) The seismic reinforcement method for foundation ground according to claim 1, wherein the foundation ground is sandy ground with a relatively high groundwater level.
(3)上記補強小杭を置換率約7%で均等に群打設する
ことを特徴とする前記特許請求の範囲第1項または第2
項に記載の基礎地盤の耐震補強方法。
(3) Claim 1 or 2, characterized in that the reinforcing small piles are driven in groups evenly at a replacement rate of about 7%.
Seismic reinforcement method for foundation ground as described in section.
(4)上記補強小杭の杭頭を構造物から離間せしめるこ
とを特徴とする前記特許請求の範囲第1項ないし第3項
のいずれかの項に記載の基礎地盤の耐震補強方法。
(4) The method for seismically reinforcing a foundation ground according to any one of claims 1 to 3, characterized in that the pile heads of the reinforcing small piles are separated from the structure.
(5)剛性が高い芯材の周囲に砂との摩擦力が大きく地
盤中の過剰間隙水圧を消散させる排水摩擦材を定着せし
めた排水補強小杭を土木構造物あるいは建築構造物の下
方または側方の基礎地盤中に群打設することを特徴とす
る基礎地盤の耐震補強方法。
(5) Drainage reinforcing small piles with a drainage friction material fixed around a highly rigid core material that has a large frictional force with sand and dissipates excess pore water pressure in the ground should be installed below or on the side of a civil engineering structure or building structure. A method for seismically reinforcing foundation ground, which is characterized by pouring concrete in clusters into the foundation ground.
(6)上記基礎地盤が地下水位の比較的高い砂質地盤で
あることを特徴とする前記特許請求の範囲第5項に記載
の基礎地盤の耐震補強方法。
(6) The seismic reinforcement method for foundation ground according to claim 5, wherein the foundation ground is sandy ground with a relatively high groundwater level.
(7)上記排水補強小杭を置換率約7%で均等に群打設
することを特徴とする前記特許請求の範囲第5項または
第6項に記載の基礎地盤の耐震補強方法。
(7) The method for seismically reinforcing a foundation ground according to claim 5 or 6, characterized in that the drainage reinforcing small piles are equally driven in groups at a replacement rate of about 7%.
(8)上記補強小杭の杭頭を構造物から離間せしめるこ
とを特徴とする前記特許請求の範囲第5項ないし第7項
のいずれかの項に記載の基礎地盤の耐震補強方法。
(8) The method for seismically reinforcing a foundation ground according to any one of claims 5 to 7, characterized in that the pile heads of the small reinforcing piles are separated from the structure.
JP10315886A 1986-05-07 1986-05-07 Small pile for reinforcing foundation ground to earthquake Granted JPS62260919A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10315886A JPS62260919A (en) 1986-05-07 1986-05-07 Small pile for reinforcing foundation ground to earthquake

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10315886A JPS62260919A (en) 1986-05-07 1986-05-07 Small pile for reinforcing foundation ground to earthquake

Publications (2)

Publication Number Publication Date
JPS62260919A true JPS62260919A (en) 1987-11-13
JPH0552366B2 JPH0552366B2 (en) 1993-08-05

Family

ID=14346694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10315886A Granted JPS62260919A (en) 1986-05-07 1986-05-07 Small pile for reinforcing foundation ground to earthquake

Country Status (1)

Country Link
JP (1) JPS62260919A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH035528A (en) * 1989-05-31 1991-01-11 Shimizu Corp Base structure of structure
KR100257630B1 (en) * 1995-12-04 2000-06-01 고사카 요시노부 An improvement-method of a soft-ground
CN103590391A (en) * 2013-11-27 2014-02-19 温州宏源水电建设有限公司 Cement-fly-ash-gravel pile foundation reinforcing construction method
JP2014234622A (en) * 2013-05-31 2014-12-15 大成建設株式会社 Sand boil countermeasure structure
CN104480958A (en) * 2014-12-12 2015-04-01 中交公路规划设计院有限公司 Bridge prefabricated bearing platform and bridge construction method
CN106049410A (en) * 2016-06-16 2016-10-26 苏州杰姆斯特机械有限公司 Underground soil layer reinforcing method of building construction
CN106884427A (en) * 2017-03-30 2017-06-23 中交第四航务工程勘察设计院有限公司 Immersed tube tunnel and immersed tube tunnel changeover portion soft soil foundation reinforcing method under water
JP2017155586A (en) * 2017-05-16 2017-09-07 大成建設株式会社 Sand boil countermeasure structure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103321217A (en) * 2013-06-19 2013-09-25 潘建杰 Composite foundation pile for lava regions

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH035528A (en) * 1989-05-31 1991-01-11 Shimizu Corp Base structure of structure
KR100257630B1 (en) * 1995-12-04 2000-06-01 고사카 요시노부 An improvement-method of a soft-ground
JP2014234622A (en) * 2013-05-31 2014-12-15 大成建設株式会社 Sand boil countermeasure structure
CN103590391A (en) * 2013-11-27 2014-02-19 温州宏源水电建设有限公司 Cement-fly-ash-gravel pile foundation reinforcing construction method
CN104480958A (en) * 2014-12-12 2015-04-01 中交公路规划设计院有限公司 Bridge prefabricated bearing platform and bridge construction method
CN106049410A (en) * 2016-06-16 2016-10-26 苏州杰姆斯特机械有限公司 Underground soil layer reinforcing method of building construction
CN106884427A (en) * 2017-03-30 2017-06-23 中交第四航务工程勘察设计院有限公司 Immersed tube tunnel and immersed tube tunnel changeover portion soft soil foundation reinforcing method under water
JP2017155586A (en) * 2017-05-16 2017-09-07 大成建設株式会社 Sand boil countermeasure structure

Also Published As

Publication number Publication date
JPH0552366B2 (en) 1993-08-05

Similar Documents

Publication Publication Date Title
CN102966119B (en) Geogrid reinforced wall and construction method thereof
CN103958780B (en) The method for forming cementing retaining wall
CN104452829B (en) A kind of pile-raft foundation float Structure and construction method
US5746544A (en) Process and structure for reducing roadway construction period
JPS62260919A (en) Small pile for reinforcing foundation ground to earthquake
JPH06116942A (en) Construction method of critical sheathing wall
KR20190006668A (en) Pile foundation structure for double decreasing soft ground subsidence using cement-processed gravel slab for being reinforced by tensile reinforcement, and construction method for the same
JPH02232416A (en) Foundation pile structure
JP5975726B2 (en) Ground structure and ground improvement method
JP2814898B2 (en) Underground storage facility
JPH0617414A (en) Drainage reinforcement pile
JP4189078B2 (en) Construction method of underground structure in liquefied ground
JPS62260915A (en) Reinforcing work for foundation ground for earthquake
JP3728659B2 (en) Basement extension method
JPS58127822A (en) Liquefaction preventive structure of foundation ground
JP3155456B2 (en) Pile structure to be joined to floor slab connected to foam resin material, and construction method of pile structure
US11261576B1 (en) Rapid consolidation and compaction method for soil improvement of various layers of soils and intermediate geomaterials in a soil deposit
JP7314432B1 (en) Foundation structure of building and construction method of foundation structure
JP2668922B2 (en) Seismic structure of excavated road
CN212742411U (en) Pile anchor support for bank protection slope
JPS631884A (en) Method of foundation construction of buried sewer
US20220235531A1 (en) Rapid consolidation and compaction method for soil improvement of various layers of soils and intermediate geomaterials in a soil deposit
JPH0849245A (en) Liquefaction-suppressing foundation structure
JP3360061B2 (en) Preceding plate-shaped beam of mountain retaining frame
JPH023857B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term