JP3646620B2 - Non-destructive transmission optical measurement device calibrator, calibration method using the calibrator, and non-destructive transmission optical measurement device incorporating the calibrator - Google Patents

Non-destructive transmission optical measurement device calibrator, calibration method using the calibrator, and non-destructive transmission optical measurement device incorporating the calibrator Download PDF

Info

Publication number
JP3646620B2
JP3646620B2 JP2000122458A JP2000122458A JP3646620B2 JP 3646620 B2 JP3646620 B2 JP 3646620B2 JP 2000122458 A JP2000122458 A JP 2000122458A JP 2000122458 A JP2000122458 A JP 2000122458A JP 3646620 B2 JP3646620 B2 JP 3646620B2
Authority
JP
Japan
Prior art keywords
calibrator
light
measured
optical path
path length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000122458A
Other languages
Japanese (ja)
Other versions
JP2001305055A (en
Inventor
潤二 飯田
一夫 前田
進太郎 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2000122458A priority Critical patent/JP3646620B2/en
Publication of JP2001305055A publication Critical patent/JP2001305055A/en
Application granted granted Critical
Publication of JP3646620B2 publication Critical patent/JP3646620B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • G01N21/274Calibration, base line adjustment, drift correction
    • G01N21/278Constitution of standards

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、桃、柑橘類、葡萄類、トマト、メロン、スイカ等の被測定物中に含まれる糖分等特定成分を上記被測定物を破壊することなく定量的に測定可能な非破壊光測定装置に適用される較正器に係り、特に、透過式の非破壊光測定装置に適用される非破壊透過式光測定装置用較正器とこの較正器を用いた較正方法およびこの較正器が組込まれた非破壊透過式光測定装置に関するものである。
【0002】
【従来の技術】
この種の非破壊光測定装置としては、近赤外光を用いた非破壊光測定装置が各種提案されている。そして、これら装置を用いて長期に亘り安定して高精度な測定を行うには較正器が欠かせない。これは、非破壊光測定装置を長期に亘り使用していると、測定系のずれ(例えば、適用している測定波長のずれ、装置の光入出射部分にゴミなどが付着したことに伴う入射・検出光量の見掛け上の変動等)に起因した測定精度の低下を招き易いからであった。
【0003】
そこで、これまでに非破壊光測定装置の測定原理、構成毎に各種の較正器、較正方法が研究、提案されている。
【0004】
ところで、近赤外光を用いた非破壊光測定装置の殆どは、白色光源と分光器を組み合わせた構成を基本としている。そして、この光測定装置は、白色光源からの光を被測定物に照射し表面近傍で反射したスペクトルを光測定装置内蔵の分光器を用いて分光分析することで被測定物中の内部情報を得ている。
【0005】
このようなタイプの非破壊光測定装置の較正には、一般に経時変化の無い無機物の標準サンプル(レファレンス)、例えば、ガラスの拡散板、フッ素系樹脂片等が用いられていた。しかし、このような標準サンプルの光学特性および温度特性は、ほとんどの場合で被測定物とは異なるために高精度な較正を行うことは困難であった。
【0006】
他方、被測定物と同種のサンプルを破壊測定しその結果と非破壊測定の結果を照合するような較正方法も知られている。しかし、青果物など生鮮食品が測定対象の場合、実際の選果前に非破壊光測定装置の較正をしようにも市場にサンプルが無いといったサンプル入手時期の制約や、破壊測定は手作業で行うために時間が掛かる上にサンプル間のばらつきを均すために相当数のサンプルを破壊測定する必要がある等の問題点が多い。
【0007】
このような技術的背景の下、被測定物と同等の光学特性を有しかつ経時変化の影響をほとんど受けない較正器を用い、分光スペクトルを解析する方法として特開平9−15142号公報に記載の手段が提案されている。すなわち、この特開平9−15142号公報で提案されている較正器(疑似果実体)は、二重管構造の較正器本体から成り、この較正器本体における二重管の間隙に被測定物中の目的成分が含まれる水溶液を充填しかつ二重管の内筒に所定の光反射率を備えさせるか、あるいは充填する水溶液中に適当な分散質を添加して構成させたもので、非破壊光測定装置の較正時には、被測定物を測定するのと同様に、較正器表面から光を照射し、較正器表面、充填物および内管表面からの反射光を分光分析して較正に利用している。
【0008】
ところで、上記較正器(疑似果実体)は反射方式の測定原理に則した構造を有しており、反射方式の非破壊光測定装置に適用した場合には有効であるが、透過式の非破壊光測定装置に対しては後述するような問題が存在する。
【0009】
すなわち、非破壊光測定装置には、上述したように被測定物の表面および表面近傍で反射した戻り光を分光分析することで内部情報を得る反射方式の非破壊光測定装置と、被測定物に対し光入射部から光を入射させかつ被測定物内を透過してきた光を上記光入射部とは別の部位に設定された光出射部において検出し(すなわち反射戻り光を検出せずに透過光のみを検出し)その光吸収測定(例えば吸光度、吸収係数等の測定)により測定物中の内部情報を得る透過式の非破壊光測定装置が知られている。
【0010】
そして、反射方式と透過式の非破壊光測定装置間には上記方式の違いに基づき以下のような差異が存在する。すなわち、反射方式の非破壊光測定装置においては、被測定物の深部で反射した光は表面近傍で反射した光に較べてその光量が少ないため、相対的に光量の少ない被測定物深部の情報がうまく評価できないといった問題を有していた。具体的には、被測定物がメロン、スイカなど厚い表皮を有する青果物の場合、反射方式では表皮の情報が主体的で果肉の情報は希薄であった。また、薄皮果実でも、内部の腐敗、熟度など被測定物の深部の情報を充分に得ようとする場合には十分に対応することが困難であった。
【0011】
これに対し、透過式の非破壊光測定装置では、上述したように被測定物の内部を透過してきた光(透過光)を光入射部とは異なる部位(光出射部)で検出しその光吸収測定により測定物中の内部情報を得る方式のため、被測定物がメロン、スイカなど厚い表皮を有する青果物の場合でも、あるいは測定対象が薄皮果実の内部の腐敗や熟度等の場合でも上述した問題がない利点を有している。
【0012】
但し、透過式の非破壊光測定装置においては、以下に述べる理由から被測定物内部において透過光が経てきた物理的距離(以下、実効的光路長と称する。尚、一般的定義における光路長とは光が媒質内を通過した物理的距離に上記媒質の屈折率を掛けた値を意味するが、本明細書における光路長とは被測定物内を光が走った物理的距離を意味する。また、本明細書において物理学的光路長とは一般的定義における光路長を意味する。)を知ることが解析上重要になるため、透過式の非破壊光測定装置に適用する較正器の光路長も被測定物の実効的光路長に合わせる必要があった。
【0013】
すなわち、透過式の非破壊光測定装置においては、図27に示すようにメロン等被測定物Mに対し波長λの光を照射しかつ被測定物M内を透過してきた光を検出器Sで検出し、例えば以下の式(1)で求められる吸収係数β(λ)から被測定物Mにおける糖分等特定成分を定量的に測定している。
【0014】
Pout (λ)=Pin(λ)exp [−β(λ)L] (1)
尚、式(1)中Pin(λ)は被測定物Mに入射された入射光量、Pout(λ)は検出器Sで検出された検出光量を示す。
【0015】
しかし、メロン等青果物の果肉は光散乱性を有しているため、被測定物Mに入射された波長λの光は、図27に示すように被測定物Mの光入射部と光出射部を結ぶ最短距離すなわちLで示される幾何学的光路長を通ってまっすぐ検出器Sの方向へ向かうのではなく、被測定物M内の様々なところで散乱されながら検出器Sにたどりつくこととなる。つまり、被測定物M内に入射された光は、最短である幾何学距離Lよりは長い光路(実効的光路長L’)を走ることになる。このため、波長λの光は長い距離を走った分だけ被測定物M内の糖分等特定成分に余計に吸収されてしまうこととなる。すなわち、式(1)の幾何学的光路長(幾何学距離L)を使って求まる吸収係数β(λ)は真の吸収係数ではなく見掛けの吸収係数で、その値は真の吸収係数の値より大きくなってしまうため、被測定物M内における特定成分の濃度とは掛け離れた測定値になり易い。この理由から透過式の非破壊光測定装置においては被測定物内部において透過光が経てきた実効的光路長を知ることが解析上重要となる。
【0016】
この様に透過式の非破壊光測定装置では、被測定物内部において透過光が経てきた物理的距離(実効的光路長L’)を知ることが解析上重要になるため、透過式の非破壊光測定装置に適用する較正器の光路長も被測定物の実効的光路長に合わせる必要があった。
【0017】
すなわち、上述した測定系のずれは、吸光度、吸収係数のずれとして検出されるが、同一の測定系において生じる較正器と被測定物の上記吸光度、吸収係数のずれ量を同等とするにはその光路長を同じにする必要があるからである。
【0018】
つまり、較正器と被測定物の実効的光路長を合わせないと測定系のずれに起因して被測定物内における特定成分の測定結果にずれが生じてもそのずれ分を較正器で補正することができないからである。
【0019】
そして、特開平9−15142号公報で提案されている上記反射方式の較正器ではその構造から実効的光路長を適正値に設定することができないため、透過式用の較正器としてそのままでは適用困難な問題を有していた。
【0020】
そこで、本出願人は、特定成分と同一若しくは類似の光吸収特性を有する物質が充填された較正器本体の光入射口から出射口までの光路長を被測定物の実効的光路長と同一若しくは略同一に設定して上述した問題を解消した非破壊透過式光測定装置用較正器を提案している(特願平11−108475号明細書参照)。
【0021】
【発明が解決しようとする課題】
ところで、この様な較正器を用いて非破壊透過式光測定装置の較正作業を行なう場合、較正器内に充填されたショ糖液等の内容物(被測定物中に含まれる特定成分と同一若しくは類似の光吸収特性を有する物質)の温度を各較正作業毎測定する必要があった。すなわち、近赤外分光の特徴として、光吸収測定の結果はショ糖液等内容物の温度で変化するため(光吸収測定時における温度条件が異なると、吸光度、吸収係数等が変化するため)、較正器内に充填されたショ糖液等内容物の温度を事前に測定し、その温度に基づいた較正作業を行なわないと正確な較正ができないからであった。
【0022】
そして、較正器を非破壊透過式光測定装置のラインに連続的に流して上記内容物の温度測定作業と較正作業を機械的に行なうことが従来の較正器では困難なため、非破壊透過式光測定装置の較正作業は、通常、一定時間毎に較正器を非破壊透過式光測定装置のラインに流すという方法によりなされている。すなわち、上記較正作業を行なうに際しては、較正器内に充填されたショ糖液等内容物の温度をまず測定しそのデータを非破壊透過式光測定装置の計測部に入力した後、温度測定がなされた上記較正器を非破壊透過式光測定装置のラインに流すという方法が採られている。具体的には、朝一番や昼休み等、非破壊透過式光測定作業が停止されている適宜時間帯を見計らって較正作業を行なう方法が採られている。
【0023】
しかし、この様な方法では、非破壊透過式光測定装置において現実に測定系のずれ(装置の光入出射部分にゴミなどが付着したことに伴う入射・検出光量の見掛け上の変動等)が生じていても次の較正時間帯までこのずれを検出できないことがあり、被測定物中に含まれる特定成分の測定に際し測定精度の低下を引起こしたり、極端な場合に上記測定作業をやり直さなければならなくなる問題を有していた。
【0024】
本発明はこの様な問題点に着目してなされたもので、その課題とするところは、非破壊透過式光測定装置のラインに連続的に流して上記内容物の温度測定作業と較正作業を機械的に行なえる非破壊透過式光測定装置用較正器を提供し、併せてこの較正器を用いた較正方法およびこの較正器が組込まれた非破壊透過式光測定装置を提供することにある。
【0025】
【課題を解決するための手段】
すなわち、請求項1に係る発明は、
被測定物が載置された複数のトレイを順次搬送し、搬送路中に設けられた測定部において上記被測定物に対しその光入射部から光を入射させかつ被測定物内を透過してきた光を上記光入射部とは別の部位に設定された光出射部において検出しその光吸収測定により被測定物中に含まれる特定成分を定量的に測定する非破壊透過式光測定装置に適用される較正器を前提とし、
光の入射口と出射口を備えその内部には上記特定成分と同一若しくは類似の光吸収特性を有する物質が充填されていると共に入射口から出射口までの光路長が上記被測定物内を透過する光の実効的光路長と同一若しくは略同一に設定された密封体によりその主要部が構成された較正器本体と、較正器本体の密封体内部に充填された上記物質の温度を計測しそのデータ信号を搬送路近傍に配置されたデータ入力部に出力する温度計測出力手段を具備することを特徴とする。
【0026】
そして、この請求項1記載の発明に係る非破壊透過式光測定装置用較正器によれば、
被測定物中に含まれる特定成分と同一若しくは類似の光吸収特性を有する物質が充填された密封体に光の入射口と出射口を備え、かつ、入射口から出射口までの光路長が上記被測定物内を透過する光の実効的光路長と同一若しくは略同一に設定されているため、非破壊透過式光測定装置の較正について被測定物を破壊することなく高精度、再現性良く、簡便・短時間で行うことが可能となる。
【0027】
また、較正器本体の密封体内部に充填された上記物質の温度を計測しそのデータ信号を搬送路近傍に配置されたデータ入力部に出力する温度計測出力手段を具備しているため、非破壊透過式光測定装置のラインに連続的に流して上記密封体内部に充填された物質の温度測定作業と較正作業を機械的に行なうことが可能となる。
【0028】
次に、請求項2に係る発明は、
請求項1記載の発明に係る非破壊透過式光測定装置用較正器を前提とし、
上記温度計測出力手段が、電源と上記密封体内部に配置されたサーミスタとこのサーミスタに直列に接続された基準抵抗素子と上記電源とサーミスタ間、サーミスタと基準抵抗素子間および基準抵抗素子と電源間にそれぞれ設けられた3つの電極を備え、かつ、上記3電極の各端部が較正器本体から外方へ突出して上記データ入力部の対応する各電極と接触するようになっていることを特徴とするものである。
【0029】
また、請求項3に係る発明は、
請求項1または2記載の発明に係る非破壊透過式光測定装置用較正器を用いた較正方法を前提とし、
上記トレイ搬送手段を周回式若しくは無端回転式搬送手段で構成し、かつ、この搬送手段により上記較正器を連続的に搬送して1周若しくは1回転毎繰返し較正操作を行なうことを特徴とし、
請求項4に係る発明は、
請求項1または2記載の発明に係る非破壊透過式光測定装置用較正器が組込まれた非破壊透過式光測定装置を前提とし、
上記トレイ搬送手段が周回式若しくは無端回転式搬送手段で構成され、かつ、この搬送手段に各トレイおよび上記較正器が固定されていることを特徴とするものである。
【0030】
【発明の実施の形態】
以下、被測定物として果実(メロン、スイカ等)Mを想定し、この果実Mに含まれる糖分濃度(以下、糖度)を計測する非破壊透過式光測定装置用の較正器を例に挙げて本発明の実施の形態について具体的に説明する。
【0031】
[第一実施の形態]
この実施の形態に係る較正器10が適用される非破壊透過式光測定装置においては、図8(C)に示すように果実(スイカ)Mに対する光入射部100と光出射部200の位置が果実Mの底部側付近に設定されている。
【0032】
すなわち、この実施の形態に係る非破壊透過式光測定装置用較正器10は、図1(A)〜(B)に示すように較正器本体20とこの較正器本体20に設けられた温度計測出力手段50とでその主要部が構成され、かつ、図1(C)に示すように較正器用トレイ60に収容されて非破壊透過式光測定装置のラインに流されるようになっている。
【0033】
まず、上記較正器本体20は、図1(A)〜(B)に示すように円形状の較正器基盤21(図9参照)およびこの基盤21に装着されて密封体300を形成するパッキング付き蓋材22(図10A、B参照)と、上記較正器基盤21上に取付けられて上記密封体300内を複数の空間に区画するステンレス製の仕切材23(図9参照)と、上記較正器基盤21の略中央部にそれぞれ設けられた第一開口24および第二開口25と、上記較正器基盤21の裏面側でかつ第一開口24および第二開口25にそれぞれ連通して取付けられると共に外周面にオネジが刻まれた第一内側円筒体26および第二内側円筒体27(図10D参照)と、一方の開放端側にそれぞれ光透過部材28、29が取付けられかつその内周面にメネジが刻まれていると共に他方の開放端側から上記第一内側円筒体26および第二内側円筒体27に螺合されて入射口31および出射口32を形成する第一外側円筒体33および第二外側円筒体34(図10E参照)と、上記蓋材22側に嵌合された第一断熱部材35および較正器基盤21側に嵌合された第二断熱部材36とでその主要部が構成され、かつ、上記密封体300内には図8(C)に示す果実(スイカ)Mに含まれる特定成分(糖分)と同等の糖度を有するショ糖液30が充填されていると共に、上記密封体300内の複数空間が入射口31と出射口32を結ぶ連通路40を形成している(図8A参照)。
【0034】
尚、上記較正器本体20の入射口31から出射口32までの光路長(すなわちショ糖液30が満たされた密封体300内における光路長)は、図8(C)に示す果実(スイカ)M内を透過する光の実効的光路長L’と略同一となるように設定されている。
【0035】
ここで、上記較正器本体20の入射口31から出射口32までの光路長(すなわちショ糖液30が満たされた密封体300内における光路長)を実効的光路長L’に合わせている理由は、上述したように測定系にずれが生じたことによる糖度変動を正確に補正するためである。測定系のずれとは、例えば、測定波長のずれ、非破壊透過式光測定装置の入出射部分にゴミなどが付着したことによる透過光量の見掛け上の変化などである。測定系のずれは、吸光度、吸収係数のずれとして検出されるが、同一の測定系において生じる較正器と被測定物の吸光度、吸収係数のずれ量を同等とするには光路長を同じにする必要がある。つまり、実効的光路長を合わせないと上記測定系のずれによって被測定物の糖度が変化しても較正器でその糖度変化を正確に補正できないからである。
【0036】
そして、上記較正器本体20の入射口31から出射口32までの光路長を図8(C)に示す果実(スイカ)M内を透過する光の実効的光路長L’と略同一に設定するには、図22に示す以下の方法により較正器本体20の実測物理学的光路長(すなわちショ糖液30が満たされた密封体300内における物理学的光路長に、上記光透過部材28、29の各厚さとこれ等光透過部材28、29に装着される後述の拡散型減衰板の厚さで生ずる物理学的光路長分が加えられた物理学的光路長)をまず求め、かつ、図23に示す以下の方法により実効的光路長L’×n’(n’は果実Mにおける果肉の屈折率)に上記光透過部材28、29の各厚さとこれ等光透過部材28、29に装着される後述の拡散型減衰板の厚さで生ずる物理学的光路長分を加えた参考物理学的光路長を求めると共に、上記実測物理学的光路長が参考物理学的光路長より小さな値になった場合には仕切材23の数を増やして連通路の長さを必要分延長させ、反対に実測物理学的光路長が参考物理学的光路長より大きな値になった場合には仕切材23の数を減らしたり仕切材23の配置を代えて連通路の長さを必要分縮小させて実測物理学的光路長を参考物理学的光路長と略同一に調整することにより較正器本体20の入射口31から出射口32までの光路長を実効的光路長L’と略同一に設定することができる。
【0037】
すなわち、較正器本体20の上記実測物理学的光路長を求めるには、図22に示すように1つのパルスレーザ光源fと2つの第一および第二の検出器S1、S2を用いて求めることができる。まず、上記パルスレーザ光源fから第一検出器S1までの距離とパルスレーザ光源fから較正器本体20における入射口31までの距離を同一に設定し、かつ、パルスレーザ光源fから出射させたパルスレーザを途中の光路上において分岐させると共に、一方の第一検出器S1にはパルスレーザを直接入射させ、較正器本体20の出射口32に密着して配置された第二検出器S2へは較正器本体20の密封体300内を透過させたパルスレーザを入射させる。そして、第一検出器S1と第二検出器S2に到達するパルスの時間差Δtに光速Cをかける(C×Δt)ことにより較正器本体20の上記実測物理学的光路長を求めることができる。
【0038】
また、実効的光路長L’×n’(n’は果実Mにおける果肉の屈折率)に光透過部材28、29の各厚さとこれ等光透過部材28、29に装着される後述の拡散型減衰板の厚さで生ずる物理学的光路長分を加えた参考物理学的光路長を求めるには、図23に示すように1つのパルスレーザ光源fと2つの第一および第二の検出器S1、S2、並びに、上記光透過部材28、29とこれに装着された図示外の拡散型減衰板を用いて求めることができる。まず、果実Mの光入射部に拡散型減衰板が装着された上記光透過部材28を密着して配置し、かつ、上記果実Mの光出射部に拡散型減衰板が装着された光透過部材29を密着して配置すると共に、この光透過部材29に対し上記第二検出器S2を同じく密着して配置する。また、上記パルスレーザ光源fから第一検出器S1までの距離とパルスレーザ光源fから上記光透過部材28までの距離を同一に設定し、かつ、パルスレーザ光源fから出射させたパルスレーザを途中の光路上において分岐させると共に、一方の第一検出器S1にはパルスレーザを直接入射させ、他方の第二検出器S2には果実M内を透過させたパルスレーザを入射させる。そして、第一検出器S1と第二検出器S2に到達するパルスの時間差Δtに光速Cをかける(C×Δt)ことにより、上記実効的光路長L’×n’(n’は果実Mにおける果肉の屈折率)に光透過部材28、29の各厚さとこれ等光透過部材28、29に装着される後述の拡散型減衰板の厚さで生ずる物理学的光路長分を加えた参考物理学的光路長を求めることができる。
【0039】
尚、較正器本体20内に入射された測定用光が反射する密封体300内壁面(すなわち較正器基盤21表面と蓋材22の内壁面)と各仕切材23表面には、測定波長範囲において反射率の波長依存性がほとんど無くかつ耐腐食性にすぐれた金メッキの光反射膜(図示せず)が施されている。また、上記光反射膜が鏡面を構成している場合、較正器本体20の入射口31から密封体300内に入射された光が上記光反射膜により鏡面反射されてその一部が入射口31から外部へ漏れ出てしまい、入射された光が上記連通路40内をスムーズに走らなくなることがある。このような場合、上記密封体300内面を粗面処理しその光反射膜が拡散性反射膜として機能するように調整するとよい。但し、入射口31側に後述の拡散板(拡散型減衰板)が配設されている場合には拡散された光が上記密封体300内に入射されるようになるため、上記粗面処理を施すことなく入射光の上記漏れを防止することが可能である。
【0040】
ところで、この較正器10が適用される非破壊透過式光測定装置には、測定の際に検出器からの信号を電圧に変換するための増幅器が通常組込まれている。
【0041】
そして、測定結果の変動要因としてこの増幅器のゲイン変動も考えられる。具体的には、被測定物の信号の大きさと較正器を測定した際の信号の大きさが異なる場合、増幅器の各信号に対するゲインが異なり、実際の変動を正確に測定できない可能性がある。このため、較正器の透過光量を被測定物と同程度に合わせるために減衰器を入れることが好ましい。また、上記減衰器は、測定波長範囲で各測定波長(波長の異なる各測定光)に対する減衰器による減衰率が均一であることが望ましい。各測定波長の範囲で減衰率が大きく変動する場合、測定波長がずれた際に較正器と被測定物とで透過光量の振る舞いが異なり、正確に較正できなくなるからである。
【0042】
上記減衰器としては、アパーチャー型減衰器、表面散乱型減衰器、拡散型減衰器等が例示されこれ等単独あるいは複数組合せて適用することができる。
【0043】
そして、この較正器本体20においても、上述したように入射口31と出射口32の光透過部材28、29に各測定波長に対する減衰率が均一である既製品の拡散型減衰板とアパーチャー型減衰器を組合せてそれぞれ装着している。すなわち、上記拡散型減衰板で透過光量を粗調整し、かつ、アパーチャーの窓径で微調整して較正器10の透過光量を被測定物と同等にしている。
【0044】
他方、上記較正器本体20に設けられる温度計測出力手段50は、図1(A)〜(C)と図4に示すように電池等から成る電源51と、上記較正器本体20の密封体300内部に配置されたサーミスタ52と、このサーミスタに直列に接続されかつ金属皮膜抵抗体等から成る基準抵抗素子53と、上記電源51とサーミスタ52間、サーミスタ52と基準抵抗素子53間および基準抵抗素子53と電源51間にそれぞれ設けられた3つの電極54、55、56とでその主要部が構成され、かつ、上記3電極54、55、56の各端部が較正器本体20から外方へ突出して、図5〜図7に示すように非破壊透過式光測定装置における搬送路70の近傍に設けられたデータ入力部71のパンタグラフ式電極72、73、74とそれぞれ接触するようになっている。
【0045】
尚、電極54と電極55間にかかる電圧をV1、電極55と電極56間にかかる電圧をV2、サーミスタ52の抵抗値をr、金属皮膜抵抗体等から成る温度係数の小さな基準抵抗素子53の抵抗値をRとすると、
これ等間には、r=R×(V1/V2) の関係式が成立する。
【0046】
また、サーミスタ52の基準温度をT0、このときの抵抗値をr0とすると、
サーミスタ52の温度Tは、T=1/[1/T0+1/B・In(r/r0)]により求めることができる(但し、BはB定数)。
【0047】
そして、較正器本体20における密封体300内に充填されたショ糖液30の温度Tは、上記電極54と電極55間にかかる電圧V1と、電極55と電極56間にかかる電圧V2を測定することにより求めることができる。
【0048】
すなわち、これ等電圧V1と電圧V2は、較正器10の上記3電極54、55、56からパンタグラフ式の電極72、73、74を介しデータ入力部71に入力され、かつ、これ等データはデータ入力部71のADC76で測定され、演算部77によって温度に計算される。
【0049】
そして、このような構成を有する第一実施の形態に係る非破壊透過式光測定装置用較正器10は、図3に示すような較正器用トレイ60に搭載されかつ非破壊透過式光測定装置の周回式搬送路70に搬入されて非破壊透過式光測定装置の較正作業に供されるようになっている。
【0050】
すなわち、上記較正器用トレイ60は、図3に示すように一対の連通孔61、62を有しその底面側に上記非破壊透過式光測定装置の測定部に設けられた凸條に遊嵌する凹條63が設けられたトレイ本体64と、このトレイ本体64の上面側に設けられ較正器本体20が嵌入かつ固定される円筒部65とでその主要部が構成され、較正器本体20における入射口31および出射口32を形成する第一外側円筒体33および第二外側円筒体34(図10E参照)の先端部が較正器用トレイ60の連通孔61、62に嵌め込まれて図2に示すように較正器10と較正器用トレイ60が一体化され、上記非破壊透過式光測定装置の周回式搬送路70に搬入されるようになっている。
【0051】
そして、非破壊透過式光測定装置の周回式搬送路70に搬入された非破壊透過式光測定装置用較正器10は、図5に示すように非破壊透過式光測定装置の測定部7近傍に配置されたデータ入力部71に対し較正器本体20内におけるショ糖液30の温度データTを出力し、かつ、上記測定部7内においてショ糖液30の糖度が計測される。
【0052】
すなわち、図8(A)〜(B)に示すように光の入射口31から較正器本体20の密封体300内に入った光は、上記仕切材23で区画された複数の空間内において反射を繰り返し折曲がりながら充填したショ糖液30中を通り抜け出射口32から非破壊透過式光測定装置の検出器(図示せず)に入る。
【0053】
そして、上記データ入力部71に入力されたショ糖液30の温度データTと検出器で測定された光量を基に果実糖度と同様に較正器内に充填されたショ糖液30の糖度を求めることができる。
【0054】
このようにして較正時に得られた糖度と、ある条件下において予め測定した較正器内ショ糖液30の標準糖度との糖度差は、非破壊透過式光測定装置のソフト上で補正することによって調整され較正作業は終了する。そして、較正後に測定される果実の糖度は、非破壊透過式光測定装置における測定系のずれに起因する糖度変動を取り除いた正確な糖度となる。
【0055】
そして、この実施の形態に係る非破壊透過式光測定装置用較正器10を用いた構成方法においては、上記較正器10が非破壊透過式光測定装置の周回式搬送路70内を連続的に流され、かつ、周回式搬送路70を1周する毎に繰返し較正作業が継続してなされるため、一定時間毎に較正器を非破壊透過式光測定装置のラインに流すという従来方法に較べて較正精度を飛躍的に改善でき、この結果、非破壊透過式光測定装置の測定精度を向上させることが可能となる。
【0056】
尚、この実施の形態に係る非破壊透過式光測定装置用較正器10は以下のようにして組み立てられている。
【0057】
まず、図9は、第一開口24と第二開口25を有する上記較正器基盤21とこの基盤21上に取付けられる仕切材23を示している。
【0058】
すなわち、上記較正器基盤21表面には格子状ボルト42が立設され、この格子状ボルト42に仕切材23基端側に設けられた取付け孔を嵌め込み、かつ、ナット43で固定するようになっている。また、上記仕切材23には、較正器基盤21表面に垂直に取付けられるL字形仕切材231、一部に曲面を有するL字形仕切材232、および、較正器基盤21表面に対し勾配を有し第一開口24と第二開口25の近傍に取付けられて較正器内外との効率的な光のやりとりを可能にさせる直角仕切材233等その形状の異なる種類が用意されている。そして、較正器における所定の光路長を想定して図10(C)に示すように上記較正器基盤21表面にこれ等仕切材23を適宜取付ける。尚、上記較正器基盤21表面の適宜部位には上述した仕切材23と共に図示外のサーミスタが取付けられ、かつ、上記温度計測出力手段50の他の構成部品(電極、配線、基準抵抗素子等)の一部も適宜組込まれている。
【0059】
そして、仕切材23が取付けられた較正器基盤21の表面側から図10(A)〜(B)に示すような帽子形状を有しかつパッキング(図示せず)付きのステンレス製蓋材22を装着すると共に、蓋材22のフランジ部43と較正器基盤21の外周縁を図11(B)に示すようなボルトとナット等で構成される適宜固定手段44を用いて固定する。
【0060】
次に、較正器基盤21と蓋材22とが一体化された較正器本体の裏面側すなわち較正器基盤21の裏面側に取付けられた第一内側円筒体26および第二内側円筒体27の少なくとも一方からショ糖液を密封体300内に充填し、かつ、図10(D)〜(E)に示すように上記第一内側円筒体26および第二内側円筒体27に対し第一外側円筒体33および第二外側円筒体34をそれぞれ螺合させて入射口31および出射口32を形成させる。
【0061】
そして、図11(A)〜(C)に示すように較正器基盤21と蓋材22とが一体化された較正器本体に対しその表面側から発泡スチロール等で構成された第一断熱部材35を嵌合させ、かつ、較正器本体の裏面側から同じく発泡スチロール等で構成された第二断熱部材36を嵌合させると共に、各電極の端部(上記データ入力部71のパンタグラフ式電極72、73、74に接触する電極端部)を構成する導電性部品(図示せず)を組込んで第一実施の形態に係る非破壊透過式光測定装置用較正器10は組立てられている。
【0062】
尚、この非破壊透過式光測定装置用較正器10においては、上記第一断熱部材35と第二断熱部材36の外表面をステンレス製の補強カバーで被覆する構造にしてもよい。
【0063】
次に、図12〜図15は第一実施の形態に係る非破壊透過式光測定装置用較正器10が組込まれる非破壊透過式光測定装置の一例を示している。
【0064】
すなわち、この非破壊透過式光測定装置は、果実Mが載置されたトレイ6mを搬送するローラーコンベア、ベルトコンベア等の搬送手段78が長さ方向に亘り配設された周回式搬送路70と、この搬送路70内に所定の間隔を介し連続的に配置された第一測定部7a、第二測定部7bおよび第三測定部7cと、これ等測定部7の搬入側でかつ搬送路70近傍に配置された図示外のデータ入力部と、上記第一測定部7a内へ光ファイバwを介して波長λ1のレーザ光を出力する第一光源81と、第二測定部7b内へ光ファイバwを介して波長λ2のレーザ光を出力する第二光源82と、上記第三測定部7c内へ光ファイバwを介して波長λ3のレーザ光を出力する第三光源83と、上記第一光源81に接続された光ファイバwの先端側に設けられ波長λ1 のレーザ光の一部を分配して出力モニター用検出器8aへ導く第一分配器8bと、上記第二光源82に接続された光ファイバwの先端側に設けられ波長λ2 のレーザ光の一部を分配して図示外の出力モニター用検出器へ導く第二分配器(図示せず)と、第三光源83に接続された光ファイバwの先端側に設けられ波長λ3 のレーザ光の一部を分配して図示外の出力モニター用検出器へ導く第三分配器(図示せず)と、上記第一測定部7a、第二測定部7bおよび第三測定部7c内におけるレーザ光の出射側にそれぞれ設けられ果実検出手段(図示せず)からの検知信号に基づき動作する図示外のシャッター手段(第一測定部7a内のシャッター手段91を図13に示す)と、同じく第一測定部7a、第二測定部7bおよび第三測定部7c内にそれぞれ配置され果実Mから出射される波長λ1 、λ2 およびλ3 の各レーザ光の光量を測定する図示外の検出器(第一測定部7a内の検出器92を図13に示す)と、上記第一測定部7a内における出力モニター用検出器8aと検出器92に接続されかつこれ等検出器から出力される波長λ1 の各レーザ光の検出光量に対応する出力信号を増幅させる第一モニター用アンプ(増幅器)84並びに第一アンプ(増幅器)85と、上記第二測定部7b内における図示外の出力モニター用検出器と検出器に接続されかつこれ等検出器から出力される波長λ2 の各レーザ光の検出光量に対応する出力信号を増幅させる第二モニター用アンプ86並びに第二アンプ87と、上記第三測定部7c内における図示外の出力モニター用検出器と検出器に接続されかつこれ等検出器から出力される波長λ3 の各レーザ光の検出光量に対応する出力信号を増幅させる第三モニター用アンプ88並びに第三アンプ89と、これ等各アンプと上記データ入力部の各電極に接続されそのアナログの出力信号をデジタルに変換するADC(アナログ/デジタル変換器)76と、このADC76からのデジタル信号を演算処理して上記果実Mの糖度を算出するCPU(演算部)77とでその主要部が構成されている。尚、図13中、100aと100bは測定部7内に設けられたエアークリーニング手段を示しており、以下に述べる測定部側光通路部71a、71bの開放端に設けられた光透過性閉止部材(通常、ガラスで構成されている)101a、101b上にゴミ等がたまらないよう、常時、光透過性閉止部材101a、101b表面へエアーを吹き付けてクリーニングするように構成されている。
【0065】
まず、上記第一測定部7a、第二測定部7bおよび第三測定部7cは、図14に示すように搬送路70の長さ方向に沿って所定の間隔を介し連続して配置され、各測定部7a、7b、7cにはその上面側中央部位に凸條95が連続的に設けられていると共に、各測定部7a、7b、7cには上記凸條95を中央にしてその両側にそれぞれ一対の測定部側光通路部71a、71b、72a、72b、73a、73bが開設され、かつ、各測定部には搬送されてくる果実の有無を検知してその信号を上記シャッター手段に出力する果実検出手段(第一測定部7aに設けられた果実検出手段7sを図14に示す)がそれぞれ付設されている。
【0066】
また、上記第一測定部7a、第二測定部7bおよび第三測定部7cが配置された搬送路70の両側には、図13〜図14に示すようにトレイの搬送位置を規制する搬送位置規制手段としての第一サイドバー90aと第二サイドバー90bが設けられており、かつ、第二サイドバー90bは搬送されるトレイを第一サイドバー90a側へ押圧する押圧手段90cを備えている。
【0067】
そして、これ等第一サイドバー90aと第二サイドバー90b間を搬送されるトレイ6mや較正器用トレイ60を上記第二サイドバー90bの押圧手段90cが押圧してこれ等トレイを第一サイドバー90aの案内面に係合させるため、果実Mが載置されたトレイ6m等を横揺れ等を引き起こすことなく各測定部7a、7b、7cの適正位置へ正確に搬送させることが可能となる。
【0068】
次に、各測定部に設けられた上記分配器と出力モニター用検出器について第一測定部7aを例に挙げて説明する。
【0069】
まず、第一測定部7aにおける測定部側光通路部71a内の光ファイバw先端側に配置される第一分配器8bは、図13および図15に示すようにその光出射側がAR(Anti Reflection:無反射)処理されたハーフミラーで構成されており、このミラー面で反射された波長λ1 のレーザ光の一部がオパールガラスと艶消しガラスの組合わせから成る光拡散板8cを介し出力モニター用検出器8aに導かれ、そこで検出された検出光量に対応する出力信号が第一モニター用アンプ84により増幅されると共に上記ADC76を介しCPU77に入力されて糖度の測定データとして供されるようになっている。ここで、オパールガラスとは、ガラス中に屈折率の違った異種結晶(例えばフッ化カルシウム)の微粒子を懸濁させて乳白色を呈するようにしたガラスの総称で乳白ガラスとも称されるものである。また、第一分配器8bは光出射側がAR(無反射)処理されたハーフミラーで構成されているため、光出射側でのレーザ反射が防止されて安定したビーム形状のレーザ光を出力モニター用検出器8aに導入させることが可能となる。
【0070】
一方、この非破壊透過式光測定装置に搬入されるトレイ6mは、図13に示すように黒色のABS(アクリロニトリル・ブタジエン・スチレン)樹脂から成りその底面側に上記凸條95に遊嵌する凹條96が形成されたトレイ本体97と、このトレイ本体97の受部側に設けられ果実Mの外周面に当接してこれを保持するネオプレンゴム製の保持体98とでその主要部が構成されている。
【0071】
そして、この非破壊透過式光測定装置においては、果実Mを載置したトレイ6mが、例えば、第一測定部7aに搬入された場合、図13に示すようにシャッター手段91が作動して果実Mに対し測定部側光通路部71aとトレイ側光通路部6aを介し波長λ1 のレーザ光が入射されると共に、果実Mからの出射光がトレイ側光通路部6bと測定部側光通路部71bを介し検出器92に入射され、以下、同様にして第二測定部7b、第三測定部7cにおいても果実Mからの出射光が検出されて糖度が測定される。また、上記較正器10が第一測定部7aに搬入された場合、シャッター手段91が作動して較正器10に対し測定部側光通路部71aと較正器本体20の入射口31を介しショ糖液30で満たされた密封体300内に波長λ1 のレーザ光が入射されると共に、較正器10からの出射光が較正器本体20の出射口32と測定部側光通路部71bを介し検出器92に入射され、以下、同様にして第二測定部7b、第三測定部7cにおいても較正器10からの出射光が検出されてショ糖液30の糖度が測定されかつ較正がなされる。
【0072】
尚、測定部7内に上記較正器10が搬入される前に較正器本体20に充填されたショ糖液30の温度データTがデータ入力部71に入力され、かつ、この温度データTと各測定部で測定された検出光量を基にショ糖液30の糖度が測定されかつ較正がなされる。また、これ等測定は、図12に示すように暗室内において行われるようになっている。
【0073】
そして、上記較正器10が非破壊透過式光測定装置の周回式搬送路70内を連続的に流され、かつ、周回式搬送路70を1周する毎に繰返し較正作業が継続してなされるため、一定時間毎に較正器を非破壊透過式光測定装置のラインに流すという従来方法に較べて較正精度を飛躍的に改善できる。
【0074】
更に、上記較正器10の透過光量をモニターすることで、透過光量がある値を下回った際に上述した測定部側光通路部の開放端に設けられた光透過性閉止部材の拭き取り清掃時期を知らせることができる。
【0075】
すなわち、上記光透過性閉止部材は上述したように測定部7内に設けられたエアークリーニング手段により常時クリーニングされているが、このクリーニングにて除去されるのはほこりやゴミ等で、光透過性閉止部材に接着された果実Mの粘着成分等を除去することはできない。このため、従来においては較正作業時に合わせて上記光透過性閉止部材の拭き取り作業が行われていたが、この実施の形態に係る較正器10を適用することにより、光透過性閉止部材の拭き取り清掃時期を正確に知ることが可能となる。
【0076】
尚、上記較正器10が組込まれるこの非破壊透過式光測定装置においては、果実Mを載せるトレイ6mと較正器用トレイ60が周回式搬送手段に固定されない構造になっているが、図26に示すように無端回転式搬送手段であるキャタピラー式コンベア700にて搬送手段を構成し、このキャタピラー式コンベア700にトレイ6mと較正器用トレイ60を固定する構造を採ってもよい。
【0077】
[第二実施の形態]
図16は、本発明の第二実施の形態を示している。
【0078】
また、この実施の形態に係る較正器は、図16(A)に示すように果実Mに対する光入射部100と光出射部200が果実の赤道付近に設定された非破壊透過式光測定装置に適用されるものである。
【0079】
すなわち、この実施の形態に係る非破壊透過式光測定装置用較正器110は、図16(B)に示すように較正器本体120とこの較正器本体120に設けられた温度計測出力手段150とでその主要部が構成され、かつ、図16(B)に示すように較正器用トレイ160に収容されて非破壊透過式光測定装置のラインに流されるようになっている。
【0080】
まず、上記較正器本体120は、図16(B)に示すように果実Mに含まれる特定成分(糖分)と同等の糖度を有するショ糖液111が充填された直線状筒体121と、直線状筒体121の外周面を覆うと共に黒色のABS(アクリロニトリル・ブタジエン・スチレン)樹脂から成る外枠体122とで構成され、かつ、上記直線状筒体121の両開放端側はそれぞれ光透過部材123、124により閉止されていると共に、光透過部材123で閉止された開放端側が光の入射口31を構成し、また、光透過部材124で閉止された開放端側が光の出射口32を構成している。
【0081】
また、上記入射口31から出射口32までの光路長(すなわちショ糖液111が満たされた直線状筒体121内の光路長)は、図16(A)に示す果実M内を透過する光の実効的光路長L’と略同一となるように設定されている。
【0082】
ここで、非破壊透過式光測定装置用較正器110の入射口31から出射口32までの光路長(すなわちショ糖液111が満たされた直線状筒体121内の光路長)を実効的光路長L’に合わせている理由は、図1に示した第一実施の形態に係る較正器10と同一の理由による。
【0083】
尚、果実Mの上記実効的光路長L’については、例えば、図24に示すように1つのパルスレーザ光源fと2つの第一および第二の検出器S1、S2を用いて求めることができる。すなわち、上記パルスレーザ光源fから第一検出器S1までの距離とパルスレーザ光源fから果実Mにおける光入射部までの距離を同一に設定し、かつ、パルスレーザ光源fから出射させたパルスレーザを途中の光路上において分岐させると共に、一方の第一検出器S1にはパルスレーザを直接入射させ、果実Mの光出射部に密着して配置された第二検出器S2へは果実M内を透過させたパルスレーザを入射させる。
【0084】
そして、第一検出器S1と第二検出器S2に到達するパルスの時間差Δtに光速Cをかける(C×Δt)ことにより被測定物(果実)M内の実効的光路長L’に果実Mにおける果肉の屈折率n’を掛けた値(L’×n’)を求めることができる。
【0085】
また、図25に示すように1つのパルスレーザ光源fと2つの第一および第二の検出器S1、S2を用いて、較正器110における入射口31から出射口32までの光路長(すなわちショ糖液111が満たされた直線状筒体121内の光路長)を上記被測定物(果実)M内の実効的光路長L’と略同一に設定するための直線状筒体121の幾何学的長さdを求めることができる。
【0086】
すなわち、光透過部材で閉止された開放端側に後述の拡散型減衰板が装着されその幾何学的長さがd1とd2でかつショ糖液111がそれぞれ満たされた一対の直線状筒体121’、121”を準備し、かつパルスレーザ光源fから直線状筒体121’の入射口31’までの距離とパルスレーザ光源fから直線状筒体121”の入射口31”までの距離を同一に設定すると共に、直線状筒体121’の出射口32’に第一検出器S1をまた直線状筒体121”の出射口32”に第二検出器S2を密着して配置する。そして、上記パルスレーザ光源fから出射させたパルスレーザを途中の光路上において分岐させ、その一方のパルスレーザを直線状筒体121’を透過させて第一検出器S1に入射させると共に、他方のパルスレーザを直線状筒体121”を透過させて第二検出器S2に入射させる。
【0087】
尚、第一検出器S1にパルスが到達した時間をt1、第二検出器S2にパルスが到達した時間をt2とすると、直線状筒体121’の実測物理学的光路長(すなわちショ糖液111が満たされた直線状筒体121’内の物理学的光路長に2枚の光透過部材の厚さとこれ等に装着された後述の拡散型減衰板の厚さで生ずる物理学的光路長分を加えた物理学的光路長)α1は光速C×t1で求まる値に、また直線状筒体121”の実測物理学的光路長(ショ糖液111が満たされた直線状筒体121”内の物理学的光路長に2枚の光透過部材の厚さとこれ等に装着された後述の拡散型減衰板の厚さで生ずる物理学的光路長分を加えた物理学的光路長)α2は光速C×t2で求まる値となる。
【0088】
従って、屈折率n”のショ糖液111が満たされた直線状筒体内の幾何学的単位長さ当たりの光路長ΔL”は、
n”×ΔL”=(α1−α2)/(d1−d2
で求めることができる。
【0089】
すなわち、直線状筒体121’の実測物理学的光路長α1と、直線状筒体121”の実測物理学的光路長α2には2枚の光透過部材の厚さとこれ等に装着された拡散型減衰板の厚さで生ずる物理学的光路長分が加えられているが、実測物理学的光路長α1から直線状筒体121”の実測物理学的光路長α2を差し引くことにより上記加えられた物理学的光路長はキャンセルされるため、ショ糖液111が満たされた直線状筒体内の幾何学的単位長さ当たりの光路長ΔL”にショ糖液の屈折率n”を掛けた値を求めることができる。
【0090】
よって、ショ糖液111が満たされた上記直線状筒体121内の光路長が上記被測定物(果実)M内の実効的光路長L’と略同一に設定されるための直線状筒体121の幾何学的長さdは、
d=(L’×n’)/(ΔL”×n”)=L’/ΔL”
(但し、果実Mにおける果肉の屈折率n’とショ糖液における屈折率n”が略同一であることを前提とする)
で求めることができる。
【0091】
尚、上記較正器110内に入射された測定用光が反射する直線状筒体121の内壁面には、測定波長範囲において反射率の波長依存性がほとんど無くかつ耐腐食性にすぐれた金メッキの光反射膜(図示せず)が施されている。
【0092】
また、この較正器110においても上記入射口31と出射口32の光透過部材123、124に、各測定波長に対する減衰率が均一である既製品の拡散型減衰板とアパーチャー型減衰器を組合わせてそれぞれ装着している。そして、上記拡散型減衰板で透過光量を粗調整し、かつ、アパーチャー型減衰器の窓径で微調整した。これ等2種類の減衰器によって較正器の透過光量を果実Mと同等にした。
【0093】
他方、上記較正器本体120に設けられる温度計測出力手段150は、第一実施の形態に係る較正器と同様に、電池等から成る電源(図示せず)と、上記較正器本体120の直線状筒体121内部に配置されたサーミスタ(図示せず)と、このサーミスタに直列に接続されかつ金属皮膜抵抗体等から成る基準抵抗素子(図示せず)と、上記電源とサーミスタ間、サーミスタと基準抵抗素子間および基準抵抗素子と電源間にそれぞれ設けられた3つの電極154、155、156とでその主要部が構成され、かつ、上記3電極154、155、156の各端部が較正器本体120から外方へ突出して、非破壊透過式光測定装置における周回式搬送路の近傍に設けられたデータ入力部(図示せず)のパンタグラフ式電極(図示せず)とそれぞれ接触するようになっている。
【0094】
また、この実施の形態に係る非破壊透過式光測定装置用較正器110も図16(B)に示すような較正器用トレイ160に搭載されかつ非破壊透過式光測定装置の周回式搬送路に搬入されて非破壊透過式光測定装置の較正作業に供されるようになっている。
【0095】
そして、非破壊透過式光測定装置の周回式搬送路に搬入された非破壊透過式光測定装置用較正器110は、非破壊透過式光測定装置の測定部近傍に配置されたデータ入力部(図示せず)に対し較正器本体120内におけるショ糖液111の温度データTを出力し、かつ、上記測定部内においてショ糖液111の糖度が計測される。
【0096】
すなわち、光の入射口31から較正器本体120の直線状筒体121内に入った光は上記直線状筒体121内で反射を繰り返しながら充填されたショ糖液111中を通り抜け、かつ、出射口32から非破壊透過式光測定装置の検出器(図示せず)に入る。
【0097】
そして、上記データ入力部に入力されたショ糖液111の温度データTと検出器で測定された光量を基に果実糖度と同様に較正器内に充填されたショ糖液111の糖度を求めることができる。
【0098】
このようにして較正時に得られた糖度と、ある条件下において予め測定した較正器内ショ糖液111の標準糖度との糖度差は、非破壊透過式光測定装置のソフト上で補正することによって調整され較正作業は終了する。そして、較正後に測定される果実の糖度は、非破壊透過式光測定装置における測定系のずれに起因する糖度変動を取り除いた正確な糖度となる。
【0099】
そして、この実施の形態に係る非破壊透過式光測定装置用較正器110を用いた構成方法においても、上記較正器110が非破壊透過式光測定装置の周回式搬送路内を連続的に流され、かつ、周回式搬送路を1周する毎に繰返し較正作業が継続してなされるため、一定時間毎に較正器を非破壊透過式光測定装置のラインに流すという従来方法に較べて較正精度を飛躍的に改善でき、この結果、非破壊透過式光測定装置の測定精度を向上させることが可能となる。
【0100】
尚、この実施の形態において上記温度計測出力手段150については第一実施の形態に係る較正器と同一構造のものが適用されているが、較正器本体120内におけるショ糖液111の温度を計測できかつこの温度データTをデータ入力部に出力(例えば、無線により温度データTをデータ入力部へ出力する)できるものなら他の方式に変更してもよく任意である。また、この実施の形態と第一実施の形態において上記温度計測出力手段における3電極の各端部は図2および図16(B)に示すように各較正器本体の一方側壁面のみに設けられているが、較正器用トレイの搬送路縁部側に面するもう一方側の較正器本体壁面にも上記3電極の各端部を設けてもよい。この様な構造にすることにより較正器の前後方向を気にすることなく周回式搬送路内に搬入させることが可能となる。
【0101】
また、この実施の形態に係る非破壊透過式光測定装置用較正器110においてはその直線状筒体(密封体)121の内部に果実Mに含まれる特定成分(糖分)と同等の糖度を有するショ糖液111が充填されているが、このショ糖液111に加えてセルロース繊維等の光散乱性物質を充填することにより、直線状筒体121内に入射される光の散乱を増大させることが可能となる。そして、上記光散乱性物質が充填されていない場合に較べて直線状筒体121内に入射された光はその光散乱の増大によりショ糖液111が充填されている直線状筒体121内を余分に走ることになるため、その分、直線状筒体(密封体)121の幾何学的長さ寸法を短く設定でき較正器の小型化が図れる利点を有する。
【0102】
[第三実施の形態]
次に、図17は本発明の第三実施の形態を示すものである。
【0103】
尚、この実施の形態における較正器は、図17(A)に示すように果実(メロン)Mに対する光入射部100と光出射部200の位置が果実の底部側付近に設定された非破壊透過式光測定装置に適用されるものである。
【0104】
すなわち、この実施の形態に係る非破壊透過式光測定装置用較正器310は、図17(B)に示すように較正器本体320とこの較正器本体320に設けられた温度計測出力手段350とでその主要部が構成され、かつ、第一実施の形態に係る較正器と同様に非破壊透過式光測定装置における測定部の凸條に遊嵌する凹條361が設けられた構成器用トレイ360に収容されて非破壊透過式光測定装置のラインに流されるようになっている。
【0105】
まず、上記較正器本体320は、図17(B)に示すように果実Mに含まれる特定成分(糖分)と同等の糖度を有するショ糖液222が充填されかつ互いに平行に配置されると共に幾何学的長さdが同一に設定された一対の直線状筒体321、322と、これ等一対の直線状筒体321、322の外周面を覆うと共に発泡スチロール等断熱材料から成る外枠体323と、この外枠体323外周面を覆うステンレス製の補強用カバー324と、上記直線状筒体321、322の一端側を覆うように配設されかつ一方の直線状筒体321端部から出射された光を他方の直線状筒体322端部へ入射させるステンレス製のカバー体325とで構成され、かつ、これ等直線状筒体321、322の両開放端側はそれぞれ光透過部材326、327、328、329により閉止されていると共に、光透過部材326で閉止された開放端側が光の入射口31を構成し、また、光透過部材329で閉止された開放端側が光の出射口32を構成している。
【0106】
また、ショ糖液222が満たされた一対の直線状筒体321、322内における光路長(光がショ糖液222内を走るときの光路長)は、図17(A)に示す果実M内を透過する光の実効的光路長L’と略同一となるように設定されている。
【0107】
ここで、ショ糖液222が満たされた一対の直線状筒体321、322内における光路長を実効的光路長L’に合わせている理由は、図1に示した第一実施の形態に係る較正器10と同一の理由による。
【0108】
尚、果実Mの上記実効的光路長L’については、例えば、図28に示すように1つのパルスレーザ光源fと2つの第一および第二の検出器S1、S2を用いて求めることができる。すなわち、上記パルスレーザ光源fから第一検出器S1までの距離とパルスレーザ光源fから被測定物(果実)Mにおける光入射部までの距離を同一に設定し、かつ、パルスレーザ光源fから出射させたパルスレーザを途中の光路上において分岐させると共に、一方の第一検出器S1にはパルスレーザを直接入射させ、被測定物(果実)Mの光出射部に密着して配置された第二検出器S2へは被測定物(果実)M内を透過させたパルスレーザを入射させる。
【0109】
そして、第一検出器S1と第二の検出器S2に到達するパルスの時間差Δtに光速Cをかける(C×Δt)ことにより被測定物(果実)M内の実効的光路長L’に果実Mにおける果肉の屈折率n’を掛けた値(L’×n’)を求めることができる。
【0110】
また、屈折率n”のショ糖液222が満たされた一対の直線状筒体321、322内における光路長(光がショ糖液222内を走るときの光路長)を上記果実M内の実効的光路長L’と略同一と設定するための各直線状筒体321、322の幾何学的長さdについては、第二実施の形態で述べた方法により求めることができる。
【0111】
すなわち、図25に示した1つのパルスレーザ光源fと2つの第一および第二の検出器S1、S2を用い、かつ、光透過部材で閉止された開放端側に拡散型減衰板が装着されその幾何学的長さがd1とd2でかつショ糖液111がそれぞれ満たされた一対の直線状筒体121’、121”を組込んで直線状筒体の幾何学的単位長さ当たりの光路長ΔL”を、n”×ΔL”=(α1−α2)/(d1−d2)より求め、かつ、このΔL”に基づき被測定物(果実)M内の実効的光路長L’と略同一となるよう一対の直線状筒体321、322に配分すればよい。
【0112】
すなわち、各直線状筒体321、322の幾何学的長さdは、
2d=(L’×n’)/(ΔL”×n”)=L’/ΔL”
(但し、果実Mにおける果肉の屈折率n’とショ糖液における屈折率n”が略同一であることを前提とする)
で求めることができる。
【0113】
尚、較正器310内に入射された測定用光が反射する一対の直線状筒体321、322内壁面と上記カバー体325の内壁面には、測定波長範囲において反射率の波長依存性がほとんど無くかつ耐腐食性にすぐれた金メッキの光反射膜(図示せず)が施されている。
【0114】
また、この較正器310においても、入射口31を構成する直線状筒体321の光透過部材326と出射口32を構成する直線状筒体322の光透過部材329に、各測定波長に対する減衰率が均一である既製品の拡散型減衰板とアパーチャー型減衰器を組合せてそれぞれ装着されている。そして、上記拡散型減衰板で透過光量を粗調整し、かつ、アパーチャーの窓径で微調整した。これら2種類の減衰器によって較正器の透過光量を被測定物と同等にした。
【0115】
他方、上記較正器本体320に設けられる温度計測出力手段350は、第一実施の形態に係る較正器と同様に、電池等から成る電源(図示せず)と、上記較正器本体320の直線状筒体321または322内部に配置されたサーミスタ(図示せず)と、このサーミスタに直列に接続されかつ金属皮膜抵抗体等から成る基準抵抗素子(図示せず)と、上記電源とサーミスタ間、サーミスタと基準抵抗素子間および基準抵抗素子と電源間にそれぞれ設けられた3つの電極354、355、356とでその主要部が構成され、かつ、上記3電極354、355、356の各端部が較正器本体320から外方へ突出して、非破壊透過式光測定装置における周回式搬送路の近傍に設けられたデータ入力部(図示せず)のパンタグラフ式電極(図示せず)とそれぞれ接触するようになっている。
【0116】
また、この実施の形態に係る非破壊透過式光測定装置用較正器310も図17(B)に示すような較正器用トレイ360に搭載されかつ非破壊透過式光測定装置の周回式搬送路に搬入されて非破壊透過式光測定装置の較正作業に供されるようになっている。すなわち、較正器用トレイ360に設けられた連通孔362、363に直線状筒体321、322の下方側端部が嵌め込まれて較正器310と較正器用トレイ360が一体化され、上記非破壊透過式光測定装置の周回式搬送路に搬入されるようになっている。
【0117】
そして、非破壊透過式光測定装置の周回式搬送路に搬入された非破壊透過式光測定装置用較正器310は、非破壊透過式光測定装置の測定部近傍に配置されたデータ入力部(図示せず)に対し較正器本体320内におけるショ糖液222の温度データTを出力し、かつ、上記測定部内においてショ糖液222の糖度が計測される。
【0118】
すなわち、上記入射口31から直線状筒体321内に入った光は、直線状筒体321内で反射を繰返しながら充填したショ糖液222中を通り抜けカバー体325内へ出る。カバー体325の中で散乱、反射した光の一部はもう一方の直線状筒体322内に入り、かつ、直線状筒体321と同様に充填したショ糖液222中を通過し終えた光は、出射口32から非破壊透過式光測定装置の検出器(図示せず)に入る。そして、上記データ入力部に入力されたショ糖液222の温度データTと検出器で測定された光量を基に果実糖度と同様に較正器310内に充填されたショ糖液222の糖度を求めることができる。
【0119】
このようにして較正時に得られた糖度と、ある条件下において予め測定した較正器310内ショ糖液222の標準糖度との糖度差は、非破壊透過式光測定装置のソフト上で補正することによって調整され較正作業は終了する。そして、較正後に測定される果実の糖度は、非破壊透過式光測定装置における測定系のずれに起因する糖度変動を取り除いた正確な糖度となる。
【0120】
そして、この実施の形態に係る非破壊透過式光測定装置用較正器310を用いた構成方法においても、上記較正器310が非破壊透過式光測定装置の周回式搬送路内を連続的に流され、かつ、周回式搬送路を1周する毎に繰返し較正作業が継続してなされるため、一定時間毎に較正器を非破壊透過式光測定装置のラインに流すという従来方法に較べて較正精度を飛躍的に改善でき、この結果、非破壊透過式光測定装置の測定精度を向上させることが可能となる。
【0121】
[第四実施の形態]
図18は、本発明の第四実施の形態を示している。
【0122】
また、この実施の形態における較正器は、図18(C)に示すように被測定物である果実(スイカ)Mに対する光入射部100と光出射部200の位置が果実Mの赤道付近に設定された非破壊透過式光測定装置に適用されるものである。
【0123】
すなわち、この実施の形態に係る非破壊透過式光測定装置用較正器410は、図18(A)〜(B)に示すように較正器本体420とこの較正器本体420に設けられた図示外の温度計測出力手段とでその主要部が構成され、かつ、第一実施の形態に係る較正器と同様に構成器用トレイ460に収容されて非破壊透過式光測定装置のラインに流されるようになっている。
【0124】
まず、上記較正器本体420は、図18(A)〜(B)に示すように直方体形状を有しかつその上方側に入射口31と出射口32が設けられた密封体421と、上記入射口31と出射口32にそれぞれ取付けられた光透過部材422、423と、上記密封体421内に取付けられ密封体421を複数の空間に区画する仕切材424とでその主要部が構成され、かつ、上記密封体421内には図18(C)に示す果実(スイカ)Mに含まれる特定成分(糖分)と同等の糖度を有するショ糖液333が充填されていると共に、上記密封体421内の複数空間が入射口31と出射口32を結ぶ連通路425を形成している。
【0125】
また、上記較正器410の入射口31から出射口32までの光路長(すなわちショ糖液333が満たされた密封体421内における光路長)は、図18(C)に示す果実(スイカ)M内を透過する光の実効的光路長L’と略同一となるように設定されている。ここで、上記較正器410の入射口31から出射口32までの光路長を実効的光路長L’に合わせている理由は、図1に示した第一実施の形態に係る較正器10と同一の理由による。
【0126】
また、上記較正器410の入射口31から出射口32までの光路長を、図18(C)に示す果実(スイカ)M内を透過する光の実効的光路長L’と略同一に設定するには、図22に示した上述の方法により較正器410の実測物理学的光路長(すなわちショ糖液333が満たされた密封体421内における物理学的光路長に、上記光透過部材422、423の各厚さとこれ等光透過部材422、423に装着される後述の拡散型減衰板の厚さで生ずる物理学的光路長分が加えられた物理学的光路長)をまず求め、かつ、図23に示した上述の方法により実効的光路長L’×n’(n’は果実Mにおける果肉の屈折率)に上記光透過部材422、423の各厚さとこれ等光透過部材422、423に装着される後述の拡散型減衰板の厚さで生ずる物理学的光路長分を加えた参考物理学的光路長を求めると共に、上記実測物理学的光路長が参考物理学的光路長より小さな値になった場合には仕切材424の数を増やして連通路の長さを必要分延長させ、反対に実測物理学的光路長が参考物理学的光路長より大きな値になった場合には仕切材424の数を減らしたり仕切材424の配置を代えて連通路の長さを必要分縮小させて実測物理学的光路長を参考物理学的光路長と略同一に調整することにより較正器410の入射口31から出射口32までの光路長を上記実効的光路長L’と略同一に設定することができる。
【0127】
尚、較正器410内に入射された測定用光が反射する密封体421内壁面と各仕切材424表面には、測定波長範囲において反射率の波長依存性がほとんど無くかつ耐腐食性にすぐれた金メッキの光反射膜(図示せず)が施されている。また、この較正器410においても、上記入射口31と出射口32の光透過部材422、423に各測定波長の減衰率が均一である既製品の拡散型減衰板とアパーチャー型減衰器を組合せてそれぞれ装着している。そして、上記拡散型減衰板で透過光量を粗調整し、かつ、アパーチャーの窓径で微調整して較正器の透過光量を被測定物と同等にした。また、図示外の温度計測出力手段は、第一実施の形態に係る較正器の温度計測出力手段と同一のもので構成されている。また、この実施の形態に係る非破壊透過式光測定装置用較正器410も図18(A)〜(B)に示すような較正器用トレイ460に搭載されかつ非破壊透過式光測定装置の周回式搬送路に搬入されて非破壊透過式光測定装置の較正作業に供されるようになっている。
【0128】
そして、非破壊透過式光測定装置の周回式搬送路に搬入された非破壊透過式光測定装置用較正器410は、非破壊透過式光測定装置の測定部近傍に配置されたデータ入力部(図示せず)に対し較正器本体420内におけるショ糖液333の温度データTを出力し、かつ、上記測定部内においてショ糖液333の糖度が計測される。すなわち、図18(A)〜(B)に示すように光の入射口31から密封体421内に入った光は、上記仕切材424で区画された複数の空間内において反射を繰り返し折曲がりながら充填したショ糖液333中を通り抜け出射口32から非破壊透過式光測定装置の検出器(図示せず)に入る。そして、上記データ入力部に入力されたショ糖液333の温度データTと検出器で測定された光量を基に果実糖度と同様に較正器410内に充填されたショ糖液333の糖度を求めることができる。
【0129】
このようにして較正時に得られた糖度と、ある条件下において予め測定した較正器410内ショ糖液333の標準糖度との糖度差は、非破壊透過式光測定装置のソフト上で補正することによって調整され較正作業は終了する。そして、較正後に測定される果実の糖度は、非破壊透過式光測定装置における測定系のずれに起因する糖度変動を取り除いた正確な糖度となる。
【0130】
そして、この実施の形態に係る非破壊透過式光測定装置用較正器410を用いた構成方法においても、上記較正器410が非破壊透過式光測定装置の周回式搬送路内を連続的に流され、かつ、周回式搬送路を1周する毎に繰返し較正作業が継続してなされるため、一定時間毎に較正器を非破壊透過式光測定装置のラインに流すという従来方法に較べて較正精度を飛躍的に改善でき、この結果、非破壊透過式光測定装置の測定精度を向上させることが可能となる。
【0131】
[第五実施の形態]
図19は、本発明の第五実施の形態を示している。
【0132】
また、この実施の形態における較正器は、図19(C)に示すように被測定物である果実(スイカ)Mに対する光入射部100の位置が赤道付近に設定されると共に光出射部200の位置が果実Mの底部側付近に設定された非破壊透過式光測定装置に適用されるものである。
【0133】
すなわち、この実施の形態に係る非破壊透過式光測定装置用較正器510は、図19(A)〜(B)に示すように較正器本体520とこの較正器本体520に設けられた図示外の温度計測出力手段とでその主要部が構成され、かつ、第一実施の形態に係る較正器と同様に構成器用トレイ560に収容されて非破壊透過式光測定装置のラインに流されるようになっている。
【0134】
まず、上記較正器本体520は、図19(A)〜(B)に示すように略円柱状を有しその上方側に入射口31が設けられると共にその下方側に出射口32が設けられた密封体521と、上記入射口31と出射口32にそれぞれ取付けられた光透過部材522、523と、上記密封体521内に取付けられ密封体521を複数の空間に区画する仕切材524とでその主要部が構成され、かつ、上記密封体521内には図19(C)に示す果実(スイカ)Mに含まれる特定成分(糖分)と同等の糖度を有するショ糖液444が充填されていると共に、上記密封体521内の複数空間が入射口31と出射口32を結ぶ連通路525を形成している。
【0135】
また、上記較正器510の入射口31から出射口32までの光路長(すなわちショ糖液444が満たされた密封体521内における光路長)は、図19(C)に示す果実(スイカ)M内を透過する光の実効的光路長L’と略同一となるように設定されている。ここで、上記較正器510の入射口31から出射口32までの光路長を実効的光路長L’に合わせている理由は、図1に示した第一実施の形態に係る較正器10と同一の理由による。
【0136】
また、上記較正器510の入射口31から出射口32までの光路長を、図19(C)に示す果実(スイカ)M内を透過する光の実効的光路長L’と略同一に設定するには、図22に示した上述の方法により較正器510の実測物理学的光路長(すなわちショ糖液444が満たされた密封体521内における物理学的光路長に、上記光透過部材522、523の各厚さとこれ等光透過部材522、523に装着される後述の拡散型減衰板の厚さで生ずる物理学的光路長分が加えられた物理学的光路長)をまず求め、かつ、図23に示した上述の方法により実効的光路長L’×n’(n’は果実Mにおける果肉の屈折率)に上記光透過部材522、523の各厚さとこれ等光透過部材522、523に装着される後述の拡散型減衰板の厚さで生ずる物理学的光路長分を加えた参考物理学的光路長を求めると共に、上記実測物理学的光路長が参考物理学的光路長より小さな値になった場合には仕切材524の数を増やして連通路の長さを必要分延長させ、反対に実測物理学的光路長が参考物理学的光路長より大きな値になった場合には仕切材524の数を減らしたり仕切材524の配置を代えて連通路の長さを必要分縮小させて実測物理学的光路長を参考物理学的光路長と略同一に調整することにより較正器510の入射口31から出射口32までの光路長を上記実効的光路長L’と略同一に設定することができる。
【0137】
尚、較正器510内に入射された測定用光が反射する密封体521内壁面と各仕切材524表面には、測定波長範囲において反射率の波長依存性がほとんど無くかつ耐腐食性にすぐれた金メッキの光反射膜(図示せず)が施されている。また、この較正器510においても、上記入射口31と出射口32の光透過部材522、523に各測定波長の減衰率が均一である既製品の拡散型減衰板とアパーチャー型減衰器を組合せてそれぞれ装着している。そして、上記拡散型減衰板で透過光量を粗調整し、かつ、アパーチャーの窓径で微調整して較正器の透過光量を被測定物と同等にした。また、図示外の温度計測出力手段は、第一実施の形態に係る較正器の温度計測出力手段と同一のもので構成されている。また、この実施の形態に係る非破壊透過式光測定装置用較正器510も図19(A)〜(B)に示すような較正器用トレイ560に搭載されかつ非破壊透過式光測定装置の周回式搬送路に搬入されて非破壊透過式光測定装置の較正作業に供されるようになっている。
【0138】
そして、非破壊透過式光測定装置の周回式搬送路に搬入された非破壊透過式光測定装置用較正器510は、非破壊透過式光測定装置の測定部近傍に配置されたデータ入力部(図示せず)に対し較正器本体520内におけるショ糖液444の温度データTを出力し、かつ、上記測定部内においてショ糖液444の糖度が計測される。すなわち、図19(A)〜(B)に示すように光の入射口31から密封体521内に入った光は、上記仕切材524で区画された複数の空間内において反射を繰り返し折曲がりながら充填したショ糖液444中を通り抜け出射口32から非破壊透過式光測定装置の検出器(図示せず)に入る。そして、上記データ入力部に入力されたショ糖液444の温度データTと検出器で測定された光量を基に果実糖度と同様に較正器510内に充填されたショ糖液444の糖度を求めることができる。
【0139】
このようにして較正時に得られた糖度と、ある条件下において予め測定した較正器510内ショ糖液444の標準糖度との糖度差は、非破壊透過式光測定装置のソフト上で補正することによって調整され較正作業は終了する。そして、較正後に測定される果実の糖度は、非破壊透過式光測定装置における測定系のずれに起因する糖度変動を取り除いた正確な糖度となる。
【0140】
そして、この実施の形態に係る非破壊透過式光測定装置用較正器510を用いた構成方法においても、上記較正器510が非破壊透過式光測定装置の周回式搬送路内を連続的に流され、かつ、周回式搬送路を1周する毎に繰返し較正作業が継続してなされるため、一定時間毎に較正器を非破壊透過式光測定装置のラインに流すという従来方法に較べて較正精度を飛躍的に改善でき、この結果、非破壊透過式光測定装置の測定精度を向上させることが可能となる。
【0141】
次に、図20〜図21は第五実施の形態に係る非破壊透過式光測定装置用較正器510が組込まれかつ第一実施の形態に係る非破壊透過式光測定装置と較べて若干皮が薄いメロンや柑橘類等の計測に適した非破壊透過式光測定装置の一例を示している。
【0142】
すなわち、この非破壊透過式光測定装置は、果実Mが載置されたトレイ6mを搬送するローラーコンベア、ベルトコンベア等の搬送手段78が長さ方向に亘り配設された周回式搬送路70と、この搬送路70内に所定の間隔を介し連続的に配置された第一測定部7a、第二測定部7bおよび第三測定部7cと、これ等測定部の搬入側でかつ搬送路70近傍に配置された図示外のデータ入力部と、上記第一測定部7aに搬入された果実Mに対しその側面側から光ファイバwを介し波長λ1のレーザ光を出力する図示外の第一光源と、上記第二測定部7bに搬入された果実に対しその側面側から光ファイバを介し波長λ2のレーザ光を出力する図示外の第二光源と、上記第三測定部7cに搬入された果実に対しその側面側から光ファイバを介し波長λ3のレーザ光を出力する図示外の第三光源と、上記第一光源に接続された光ファイバwの先端側に設けられ波長λ1 のレーザ光の一部を分配して出力モニター用検出器8aへ導く第一分配器8bと、上記第二光源に接続された光ファイバの先端側に設けられ波長λ2 のレーザ光の一部を分配して図示外の出力モニター用検出器へ導く第二分配器(図示せず)と、上記第三光源に接続された光ファイバの先端側に設けられ波長λ3 のレーザ光の一部を分配して図示外の出力モニター用検出器へ導く第三分配器(図示せず)と、上記第一測定部7a、第二測定部7bおよび第三測定部7cにおけるレーザ光の出射側にそれぞれ設けられ果実検出手段(図示せず)からの検知信号に基づき動作する図示外のシャッター手段(第一測定部7aにおけるシャッター手段91を図20に示す)と、同じく第一測定部7a、第二測定部7bおよび第三測定部7c内にそれぞれ配置され果実Mから出射される波長λ1 、λ2 およびλ3 の各レーザ光の光量を測定する図示外の検出器(第一測定部7a内の検出器92を図20に示す)と、上記第一測定部7aにおける出力モニター用検出器8aと検出器92に接続されかつこれ等検出器から出力される波長λ1 の各レーザ光の検出光量に対応する出力信号を増幅させる図示外の第一モニター用アンプ(増幅器)並びに第一アンプ(増幅器)と、上記第二測定部7bにおける出力モニター用検出器と検出器に接続されかつこれ等検出器から出力される波長λ2 の各レーザ光の検出光量に対応する出力信号を増幅させる第二モニター用アンプ並びに第二アンプ(図示せず)と、上記第三測定部7cにおける出力モニター用検出器と検出器に接続されかつこれ等検出器から出力される波長λ3 の各レーザ光の検出光量に対応する出力信号を増幅させる第三モニター用アンプ並びに第三アンプ(図示せず)と、これ等各アンプとデータ入力部の各電極(第一実施の形態と同一)に接続されそのアナログの出力信号をデジタルに変換するADC(アナログ/デジタル変換器)と、このADCからのデジタル信号を演算処理して上記青果物Mの糖度を算出するCPU(演算部)とでその主要部が構成されている。尚、図20中、100aと100bは測定部7内に設けられたエアークリーニング手段を示しており、以下に述べる測定部側光通路部71cの開放端に設けられた光透過性閉止部材(通常、ガラスで構成されている)101c上にゴミ等がたまらないよう、常時、光透過性閉止部材101c表面へエアーを吹き付けてクリーニングするように構成されている。
【0143】
まず、上記第一測定部7a、第二測定部7bおよび第三測定部7cは、図21に示すように搬送路70の長さ方向に沿って所定の間隔を介し連続して配置され、各測定部7a、7b、7cにはその中央部に測定部側光通路部71c、72c、73cが各々開設され、かつ、各測定部には搬送されてくる果実の有無を検知してその信号を上記シャッター手段に出力する果実検出手段(第一測定部7aに設けられた果実検出手段7sを図21に示す)がそれぞれ付設されていると共に、上記第一測定部7a、第二測定部7bおよび第三測定部7cが配置された搬送路70の両側には、第一実施の形態に係る装置と同一構造の搬送位置規制手段としての第一サイドバー90aと第二サイドバー90bが設けられている。
【0144】
また、各測定部に設けられる上記分配器、出力モニター用検出器およびシャッター手段について第一測定部7aを例に挙げて説明すると、まず、第一測定部7aに設けられる第一分配器8bは、図20に示すようにその光出射側がAR(無反射)処理されたハーフミラーで構成されており、このミラー面で反射された波長λ1 のレーザ光の一部が第一実施の形態で適用されたオパールガラスと艶消しガラスの組合わせから成る拡散板8cを介し出力モニター用検出器8aに導かれ、そこで検出された検出光量に対応する出力信号が第一モニター用アンプにより増幅されると共に上記ADCを介しCPUに入力されて糖度の測定データとして供されるようになっている。また、第一測定部7aに設けられるシャッター手段91は、図20に示すように基端側が回動可能に設けられその先端側が揺動してレーザ光の光路を開放若しくは閉止する遮蔽板500と、この遮蔽板500の基端側に取付けられ遮蔽板500の基端側を回動させて遮蔽板500の先端側を上記光路が開放若しくは閉止される位置まで揺動させるステッピングモータ501と、上記遮蔽板500の揺動変位部近傍に設けられ上記光路の開放若しくは閉止時における遮蔽板500の各静止位置をそれぞれ検出する一対の位置センサ(図示せず)とでその主要部が構成されている。
【0145】
一方、この非破壊透過式光測定装置に搬入されるトレイ6mは、図20に示すように黒色のABS樹脂から成り底面側にトレイ側光通路部6cを構成する円形状の開口が設けられているトレイ本体97と、このトレイ本体97の受部側に設けられ果実Mの外周面に当接してこれを保持するネオプレンゴム製の保持体98とでその主要部が構成されている。
【0146】
そして、この非破壊透過式光測定装置においては、果実Mを載置したトレイ6mが、例えば、第一測定部7aに搬入された場合、図20に示すようにシャッター手段91が作動して果実Mに対し波長λ1 のレーザ光を入射させると共に、果実Mからの出射光がトレイ側光通路部6c介し第一測定部7a内の検出器92に入射され、以下、同様にして第二測定部7b、第三測定部7cにおいても果実Mからの出射光が検出されて糖度が測定される。
【0147】
また、上記較正器510が第一測定部7aに搬入された場合、シャッター手段91が作動して較正器510に対し較正器本体520の入射口31を介しショ糖液444で満たされた密封体521内に波長λ1 のレーザ光が入射されると共に、較正器510からの出射光が較正器本体520の出射口32と測定部側光通路部71cを介し検出器92に入射され、以下、同様にして第二測定部7b、第三測定部7cにおいても較正器510からの出射光が検出されてショ糖液444の糖度が測定されかつ較正がなされる。
【0148】
尚、測定部7内に上記較正器510が搬入される前に較正器本体520に充填されたショ糖液444の温度データTがデータ入力部(図示せず)に入力され、かつ、この温度データTと各測定部で測定された検出光量を基にショ糖液444の糖度が測定されかつ較正がなされる。また、これ等の測定は第一実施の形態と同様、暗室内において行われるようになっている。
【0149】
そして、上記較正器510が非破壊透過式光測定装置の周回式搬送路70内を連続的に流され、かつ、周回式搬送路70を1周する毎に繰返し較正作業が継続してなされるため、一定時間毎に較正器を非破壊透過式光測定装置のラインに流すという従来方法に較べて較正精度を飛躍的に改善できる。
【0150】
更に、上記較正器510の透過光量をモニターすることで、透過光量がある値を下回った際に上述した測定部側光通路部の開放端に設けられた光透過性閉止部材の拭き取り清掃時期を知らせることができる。
【0151】
すなわち、上記光透過性閉止部材は上述したように測定部7内に設けられたエアークリーニング手段により常時クリーニングされているが、このクリーニングにて除去されるのはほこりやゴミ等で、光透過性閉止部材に接着された果実Mの粘着成分等を除去することはできない。このため、従来においては較正作業時に合わせて上記光透過性閉止部材の拭き取り作業が行われていたが、この実施の形態に係る較正器510を適用することにより、光透過性閉止部材の拭き取り清掃時期を正確に知ることが可能となる。
【0152】
【発明の効果】
請求項1〜2に係る非破壊透過式光測定装置用較正器によれば、
被測定物中に含まれる特定成分と同一若しくは類似の光吸収特性を有する物質が充填された密封体に光の入射口と出射口を備え、かつ、入射口から出射口までの光路長が上記被測定物内を透過する光の実効的光路長と同一若しくは略同一に設定されているため、非破壊透過式光測定装置の較正について被測定物を破壊することなく高精度、再現性良く、簡便・短時間で行うことが可能となる効果を有する。
【0153】
また、較正器本体の密封体内部に充填された上記物質の温度を計測しそのデータ信号を搬送路近傍に配置されたデータ入力部に出力する温度計測出力手段を具備しているため、非破壊透過式光測定装置のラインに連続的に流して上記密封体内部に充填された物質の温度測定作業と較正作業を機械的に行なうことが可能となる効果を有する。
【0154】
次に、請求項3に係る較正方法によれば、
トレイ搬送手段を周回式若しくは無端回転式搬送手段で構成し、かつ、この搬送手段により上記較正器を連続的に搬送して1周若しくは1回転毎繰返し較正操作を行なっており、
また、請求項4に係る非破壊透過式光測定装置によれば、
トレイ搬送手段が周回式若しくは無端回転式搬送手段で構成され、かつ、この搬送手段に各トレイおよび上記較正器が固定されているため、
一定時間毎に較正器を非破壊透過式光測定装置のラインに流すという従来の較正方法や非破壊透過式光測定装置に較べて較正精度を飛躍的に改善できる効果を有している。
【図面の簡単な説明】
【図1】図1(A)は第一実施の形態に係る非破壊透過式光測定装置用較正器の概略斜視図、図1(B)は図1(A)のB−B面断面図、図1(C)は第一実施の形態に係る非破壊透過式光測定装置用較正器の使用方法を示す説明図。
【図2】較正器用トレイに固定された第一実施の形態に係る非破壊透過式光測定装置用較正器の概略斜視図。
【図3】較正器用トレイの概略斜視図。
【図4】温度計測出力手段の回路構成を示す説明図。
【図5】周回式搬送路を備える非破壊透過式光測定装置の概略平面図。
【図6】第一実施の形態に係る非破壊透過式光測定装置用較正器の温度計測出力手段とデータ入力部との作用を示す概略上面図。
【図7】第一実施の形態に係る非破壊透過式光測定装置用較正器の温度計測出力手段とデータ入力部との作用を示す概略側面図。
【図8】図8(A)と図8(B)は第一実施の形態に係る非破壊透過式光測定装置用較正器の作用説明図、図8(C)は果実Mに対する光入射部100と光出射部200が果実の底部側付近に設定されている非破壊透過式光測定装置の概略説明図。
【図9】第一実施の形態に係る非破壊透過式光測定装置用較正器の一部を構成する較正器基盤と仕切材の概略斜視図。
【図10】図10(A)と図10(B)は第一実施の形態に係る非破壊透過式光測定装置用較正器の一部を構成する蓋材の上面斜視図と底面斜視図、図10(C)は第一実施の形態に係る非破壊透過式光測定装置用較正器の一部を構成する組立て途中の較正器基盤の上面斜視図、図10(D)はその底面斜視図、図10(E)は第一実施の形態に係る非破壊透過式光測定装置用較正器の一部を構成する第一外側円筒体および第二外側円筒体の概略斜視図。
【図11】図11(A)は第一実施の形態に係る非破壊透過式光測定装置用較正器の一部を構成する第一断熱部材の底面斜視図、図11(B)は第一実施の形態に係る非破壊透過式光測定装置用較正器の一部を構成する組立て途中の較正器基盤と蓋材の上面斜視図、図11(C)は第一実施の形態に係る非破壊透過式光測定装置用較正器の一部を構成する第二断熱部材の上面斜視図。
【図12】第一実施の形態に係る非破壊透過式光測定装置用較正器が組込まれる非破壊透過式光測定装置の全体の構成を示す説明図。
【図13】第一実施の形態に係る非破壊透過式光測定装置において第一測定部とこの第一測定部上に搬入されたトレイとの関係を示す断面図。
【図14】第一実施の形態に係る非破壊透過式光測定装置の主要部を示す概略斜視図。
【図15】第一実施の形態に係る非破壊透過式光測定装置における分配器、出力モニター用検出器およびシャッター手段の概略斜視図。
【図16】図16(A)は果実Mに対する光入射部100と光出射部200が果実の赤道付近に設定された非破壊透過式光測定装置の概略説明図、図16(B)は第二実施の形態に係る非破壊透過式光測定装置用較正器の概略説明図。
【図17】図17(A)は果実Mに対する光入射部100と光出射部200が果実の底部側付近に設定されている非破壊透過式光測定装置の概略説明図、図17(B)は第三実施の形態に係る非破壊透過式光測定装置用較正器の概略説明図。
【図18】図18(A)は第四実施の形態に係る非破壊透過式光測定装置用較正器の正面断面図、図18(B)はその側面断面図、および、図18(C)は果実Mに対する光入射部100と光出射部200が果実の赤道付近に設定された非破壊透過式光測定装置の概略説明図。
【図19】図19(A)は第五実施の形態に係る非破壊透過式光測定装置用較正器の正面断面図、図19(B)はその側面断面図、および、図19(C)は果実Mに対する光入射部100が果実の赤道付近に設定されかつ光出射部200が果実の底部側付近に設定された非破壊透過式光測定装置の概略説明図。
【図20】第五実施の形態に係る非破壊透過式光測定装置において第一測定部とこの第一測定部上に搬入されたトレイとの関係を示す断面図。
【図21】第五実施の形態に係る非破壊透過式光測定装置の主要部を示す概略斜視図。
【図22】較正器の実測物理学的光路長を求めるための計測方法の一例を示す説明図。
【図23】被測定物の参考物理学的光路長を求めるための計測方法の一例を示す説明図。
【図24】実効的光路長L’を求めるための計測方法の一例を示す説明図。
【図25】ショ糖液が満たされた直線状筒体内の幾何学的単位長さ当たりの光路長ΔL”を求めるための計測方法の一例を示す説明図。
【図26】無端回転式搬送手段であるキャタピラー式コンベアにて搬送手段が構成され、このキャタピラー式コンベアにトレイと較正器用トレイが固定された非破壊透過式光測定装置の概略構成説明図。
【図27】非破壊透過式光測定装置の作用説明図。
【図28】実効的光路長L’を求めるための計測方法の一例を示す説明図。
【符号の説明】
10 非破壊透過式光測定装置用較正器
20 較正器本体
30 ショ糖液(充填された物質)
31 入射口
32 出射口
50 温度計測出力手段
60 較正器用トレイ
[0001]
BACKGROUND OF THE INVENTION
The present invention is a nondestructive light measuring device capable of quantitatively measuring a specific component such as sugar contained in a measurement object such as peach, citrus fruit, potato, tomato, melon, watermelon without destroying the measurement object. In particular, a calibrator for a nondestructive transmission optical measurement device applied to a transmission type nondestructive light measurement device, a calibration method using the calibrator, and the calibrator is incorporated. The present invention relates to a nondestructive transmission type optical measuring device.
[0002]
[Prior art]
As this type of nondestructive light measuring apparatus, various nondestructive light measuring apparatuses using near infrared light have been proposed. A calibrator is indispensable for performing stable and highly accurate measurement over a long period of time using these devices. This is because when a non-destructive light measurement device is used for a long time, the measurement system shifts (for example, the shift of the applied measurement wavelength, the incident due to dust adhering to the light incident / exit part of the device) This is because the measurement accuracy is likely to be reduced due to apparent fluctuations in the detected light amount.
[0003]
Thus, various calibrators and calibration methods have been researched and proposed for each measurement principle and configuration of the nondestructive light measurement apparatus.
[0004]
By the way, most of the nondestructive light measuring devices using near-infrared light have a basic structure in which a white light source and a spectroscope are combined. This light measuring device irradiates the object to be measured with light from a white light source and spectroscopically analyzes the spectrum reflected near the surface using a spectroscope built in the light measuring device to obtain internal information in the object to be measured. It has gained.
[0005]
For calibration of this type of non-destructive light measuring apparatus, generally, an inorganic standard sample (reference) having no change with time, for example, a glass diffusion plate, a fluorine resin piece, or the like has been used. However, since the optical characteristics and temperature characteristics of such a standard sample are different from the object to be measured in most cases, it is difficult to perform high-precision calibration.
[0006]
On the other hand, a calibration method is also known in which a sample of the same type as the object to be measured is destructively measured and the result is compared with the result of nondestructive measurement. However, when fresh foods such as fruits and vegetables are to be measured, there are restrictions on the timing of sample acquisition, such as the absence of samples on the market in order to calibrate the nondestructive light measurement device before actual selection, and destructive measurement is performed manually. In addition, there are many problems such as the fact that it takes time, and a considerable number of samples need to be destructively measured in order to equalize the variation between samples.
[0007]
In such a technical background, Japanese Patent Laid-Open No. 9-15142 discloses a method for analyzing a spectral spectrum using a calibrator having optical characteristics equivalent to those of the object to be measured and being hardly affected by changes with time. Proposed means are proposed. That is, the calibrator (pseudo-fruit body) proposed in Japanese Patent Laid-Open No. 9-15142 is composed of a calibrator body having a double tube structure, and the object to be measured is placed in the gap between the double tubes in the calibrator body. Non-destructive, filled with an aqueous solution containing the desired components and having a predetermined light reflectance in the inner tube of the double tube, or by adding an appropriate dispersoid to the aqueous solution to be filled When calibrating a light measurement device, light is radiated from the calibrator surface in the same way as measuring an object to be measured, and the reflected light from the calibrator surface, filler and inner tube surface is spectroscopically analyzed and used for calibration. ing.
[0008]
By the way, the calibrator (pseudo-fruit body) has a structure in accordance with the reflection-type measurement principle, and is effective when applied to a reflection-type nondestructive light measuring apparatus, but is a transmission-type nondestructive. There are the following problems with respect to the optical measurement device.
[0009]
That is, the nondestructive light measuring device includes a reflection type nondestructive light measuring device that obtains internal information by spectroscopically analyzing the return light reflected on the surface of the object to be measured and in the vicinity of the surface as described above, and the object to be measured. On the other hand, the light incident from the light incident part and transmitted through the object to be measured is detected at the light emitting part set in a part different from the light incident part (that is, the reflected return light is not detected). A transmission-type nondestructive light measuring apparatus that detects only transmitted light and obtains internal information in a measured object by measuring its light absorption (for example, measuring absorbance, absorption coefficient, etc.) is known.
[0010]
The following differences exist between the reflection type and transmission type nondestructive light measurement devices based on the difference in the above methods. That is, in the reflection type non-destructive light measuring device, the light reflected from the deep part of the object to be measured is less light than the light reflected near the surface, so the information on the deep part of the object to be measured having a relatively small light quantity. Had a problem that could not be evaluated well. Specifically, when the object to be measured is a fruit or fruit having a thick epidermis such as melon or watermelon, the information on the epidermis is dominant and the information on the flesh is scarce in the reflection method. In addition, even with thin-skinned fruit, it has been difficult to sufficiently cope with the case where information on the deep part of the measured object such as internal rot and ripeness is to be obtained sufficiently.
[0011]
On the other hand, in the transmission type nondestructive light measuring apparatus, the light (transmitted light) transmitted through the object to be measured is detected at a part (light emitting part) different from the light incident part as described above. Since the internal information in the measurement object is obtained by absorption measurement, the above-mentioned measurement object is used for fruits and vegetables with thick skin such as melon, watermelon, etc. It has the advantage that there is no problem.
[0012]
However, in the transmission-type nondestructive light measuring apparatus, the physical distance (hereinafter referred to as an effective optical path length) through which the transmitted light has traveled inside the object to be measured for the following reasons is referred to as an optical path length in a general definition. Means a value obtained by multiplying the physical distance of light passing through the medium by the refractive index of the medium. In this specification, the optical path length means the physical distance that the light travels in the object to be measured. Further, in this specification, the physical optical path length means the optical path length in the general definition.) Since it is important for analysis to know, the optical path of the calibrator applied to the transmission type non-destructive light measuring device. It was necessary to adjust the length to the effective optical path length of the object to be measured.
[0013]
That is, in the transmission-type nondestructive light measuring device, the detector S emits light having a wavelength λ irradiated to the object M such as melon and transmitted through the object M as shown in FIG. For example, a specific component such as a sugar content in the measurement object M is quantitatively measured from the absorption coefficient β (λ) obtained by the following formula (1).
[0014]
Pout (λ) = Pin (λ) exp [−β (λ) L] (1)
In Expression (1), Pin (λ) indicates the amount of incident light incident on the object M, and Pout (λ) indicates the amount of detected light detected by the detector S.
[0015]
However, since the fruit pulp of fruits and vegetables such as melon has light scattering properties, the light having the wavelength λ incident on the object M is incident on the light incident part and the light emitting part of the object M as shown in FIG. Instead of going straight through the geometric optical path length indicated by L, that is, L, to the direction of the detector S, it reaches the detector S while being scattered at various points in the object M to be measured. That is, the light that has entered the object to be measured M travels an optical path (effective optical path length L ′) that is longer than the shortest geometric distance L. For this reason, the light having the wavelength λ is excessively absorbed by the specific component such as the sugar in the DUT M as much as it travels a long distance. That is, the absorption coefficient β (λ) obtained by using the geometric optical path length (geometric distance L) in Equation (1) is not a real absorption coefficient but an apparent absorption coefficient, and the value is a value of the true absorption coefficient. Since it becomes larger, the measured value tends to be far from the concentration of the specific component in the measurement object M. For this reason, in a transmission type nondestructive light measuring apparatus, it is important in analysis to know the effective optical path length through which transmitted light has passed through the object to be measured.
[0016]
In this way, in the transmission-type nondestructive light measuring apparatus, it is important for analysis to know the physical distance (effective optical path length L ′) that the transmitted light has passed through the object to be measured. The optical path length of the calibrator applied to the optical measurement device must also be matched to the effective optical path length of the object to be measured.
[0017]
In other words, the above-described measurement system deviation is detected as a deviation in absorbance and absorption coefficient, but in order to make the above-described absorbance and absorption coefficient deviation between the calibrator and the measured object in the same measurement system equal. This is because the optical path lengths must be the same.
[0018]
In other words, if the effective optical path lengths of the calibrator and the object to be measured are not matched, even if there is a deviation in the measurement result of the specific component in the object to be measured due to the deviation of the measurement system, the deviation is corrected by the calibrator. Because you can't.
[0019]
In the reflection type calibrator proposed in Japanese Patent Application Laid-Open No. 9-15142, the effective optical path length cannot be set to an appropriate value because of its structure, so that it is difficult to apply as it is as a transmission type calibrator. Had a serious problem.
[0020]
Therefore, the applicant of the present invention has the same optical path length from the light entrance to the exit of the calibrator body filled with a material having the same or similar light absorption characteristics as the specific component, or the effective optical path length of the object to be measured. A non-destructive transmission type optical measuring device calibrator has been proposed (see Japanese Patent Application No. 11-108475) which is set to be substantially the same and solves the above-described problems.
[0021]
[Problems to be solved by the invention]
By the way, when calibrating a nondestructive transmission optical measurement device using such a calibrator, the contents such as sucrose solution filled in the calibrator (the same as the specific component contained in the measurement object) Alternatively, the temperature of the substance having a similar light absorption characteristic must be measured for each calibration operation. That is, as a feature of near-infrared spectroscopy, the result of light absorption measurement changes with the temperature of the contents such as sucrose solution (because the absorbance, absorption coefficient, etc. change if the temperature conditions during light absorption measurement are different) This is because accurate calibration cannot be performed unless the temperature of the content such as sucrose solution charged in the calibrator is measured in advance and a calibration operation based on the temperature is performed.
[0022]
Then, since it is difficult for the conventional calibrator to perform the temperature measurement work and the calibration work of the above contents mechanically by continuously flowing the calibrator through the line of the non-destructive transmission optical measurement device, the non-destructive transmission type The calibration operation of the optical measurement apparatus is usually performed by a method in which a calibrator is caused to flow through the line of the non-destructive transmission optical measurement apparatus at regular intervals. That is, when performing the above calibration work, first measure the temperature of the contents such as sucrose solution filled in the calibrator and input the data to the measurement unit of the nondestructive transmission optical measurement device, A method is adopted in which the calibrator made is passed through a line of a nondestructive transmission optical measurement device. Specifically, a method of performing a calibration operation in an appropriate time zone in which the nondestructive transmission light measurement operation is stopped, such as first morning or lunch break, is employed.
[0023]
However, in such a method, in the nondestructive transmission optical measurement device, there is actually a shift in the measurement system (apparent fluctuation of incident / detected light amount due to dust adhering to the light incident / exit portion of the device). Even if this occurs, it may not be possible to detect this deviation until the next calibration time, causing a decrease in measurement accuracy when measuring specific components contained in the object being measured, and in extreme cases the above measurement operation must be repeated. Had a problem that would have to be done.
[0024]
The present invention has been made paying attention to such problems, and the problem is that the temperature measurement work and calibration work of the above contents are carried out continuously by flowing through the line of the non-destructive transmission optical measurement device. To provide a calibrator for a nondestructive transmission optical measurement device that can be mechanically performed, and to provide a calibration method using the calibrator and a nondestructive transmission optical measurement device incorporating the calibrator. .
[0025]
[Means for Solving the Problems]
That is, the invention according to claim 1
The plurality of trays on which the object to be measured is placed are sequentially conveyed, and light is incident on the object to be measured from the light incident part and transmitted through the object to be measured in the measurement unit provided in the conveyance path. Applicable to non-destructive transmission optical measurement equipment that detects light at a light emitting part set in a part different from the above light incident part and quantitatively measures a specific component contained in the object to be measured by measuring its light absorption Assuming a calibrator
It has a light entrance and exit and is filled with a material that has the same or similar light absorption characteristics as the specific component, and the optical path length from the entrance to the exit passes through the object to be measured. Measuring the temperature of the calibrator body, the main part of which is configured by a sealing body set to be the same or substantially the same as the effective optical path length of the light, and the substance filled in the sealing body of the calibrator body. It is characterized by comprising temperature measurement output means for outputting a data signal to a data input section arranged in the vicinity of the conveyance path.
[0026]
And according to the calibrator for the nondestructive transmission type optical measurement device according to the invention of claim 1,
A sealed body filled with a substance having the same or similar light absorption characteristics as the specific component contained in the object to be measured is provided with a light entrance and exit, and the optical path length from the entrance to the exit is as described above. Since it is set to be the same or substantially the same as the effective optical path length of the light passing through the object to be measured, high accuracy and good reproducibility without destroying the object to be measured for calibration of the non-destructive transmission type optical measuring device, It is possible to carry out simply and in a short time.
[0027]
In addition, it is equipped with temperature measurement output means for measuring the temperature of the substance filled in the sealed body of the calibrator main body and outputting the data signal to the data input section arranged in the vicinity of the conveyance path, so that it is nondestructive. It becomes possible to mechanically perform the temperature measurement work and the calibration work of the substance filled in the sealed body by continuously flowing through the line of the transmission light measurement device.
[0028]
Next, the invention according to claim 2
On the premise of a calibrator for a nondestructive transmission optical measurement device according to the invention of claim 1,
The temperature measurement output means includes a power supply, a thermistor disposed inside the sealed body, a reference resistance element connected in series to the thermistor, the power supply and the thermistor, a thermistor and the reference resistance element, and a reference resistance element and the power supply. Each of which is provided with three electrodes, and each end portion of the three electrodes protrudes outward from the calibrator main body so as to come into contact with the corresponding electrode of the data input unit. It is what.
[0029]
The invention according to claim 3
On the premise of a calibration method using a calibrator for a non-destructive transmission optical measurement device according to the invention of claim 1 or 2,
The tray conveying means is constituted by a revolving type or an endless rotating conveying means, and the calibrator is continuously conveyed by the conveying means to perform a calibration operation repeatedly for one rotation or one rotation,
The invention according to claim 4
On the premise of a nondestructive transmission type optical measurement device incorporating a nondestructive transmission type optical measurement device calibrator according to the invention of claim 1 or 2,
The tray conveying means is constituted by a revolving or endless rotating conveying means, and each tray and the calibrator are fixed to the conveying means.
[0030]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, assuming a fruit (melon, watermelon, etc.) M as an object to be measured, a calibrator for a nondestructive transmission optical measurement device that measures the sugar concentration (hereinafter referred to as sugar content) contained in the fruit M is taken as an example. The embodiment of the present invention will be specifically described.
[0031]
[First embodiment]
In the nondestructive transmission optical measurement apparatus to which the calibrator 10 according to this embodiment is applied, the positions of the light incident part 100 and the light emitting part 200 with respect to the fruit (watermelon) M are as shown in FIG. It is set near the bottom side of the fruit M.
[0032]
That is, the non-destructive transmission optical measurement device calibrator 10 according to this embodiment includes a calibrator body 20 and a temperature measurement provided in the calibrator body 20 as shown in FIGS. The main part is constituted by the output means 50, and as shown in FIG. 1 (C), it is accommodated in the calibrator tray 60 and flows into the line of the non-destructive transmission type optical measuring device.
[0033]
First, the calibrator body 20 has a circular calibrator base 21 (see FIG. 9) and a packing that is attached to the base 21 to form a sealing body 300 as shown in FIGS. A lid member 22 (see FIGS. 10A and 10B), a stainless steel partition member 23 (see FIG. 9) that is mounted on the calibrator base 21 and partitions the sealed body 300 into a plurality of spaces, and the calibrator The first opening 24 and the second opening 25 provided in the substantially central part of the base 21 are respectively attached to the back side of the calibrator base 21 and communicated with the first opening 24 and the second opening 25, respectively, and the outer periphery. A first inner cylindrical body 26 and a second inner cylindrical body 27 (see FIG. 10D) whose male threads are engraved on the surface, and light transmitting members 28 and 29 are respectively attached to one open end side, and a female thread is mounted on the inner peripheral surface thereof. If both are engraved A first outer cylindrical body 33 and a second outer cylindrical body 34 (see FIG. 5) that are screwed into the first inner cylindrical body 26 and the second inner cylindrical body 27 from the other open end side to form the entrance 31 and the exit 32. 10E) and the first heat insulating member 35 fitted on the lid member 22 side and the second heat insulating member 36 fitted on the calibrator base 21 side constitute the main part, and the sealing body 300 is filled with a sucrose solution 30 having a sugar content equivalent to the specific component (sugar content) contained in the fruit (watermelon) M shown in FIG. 8C, and a plurality of spaces in the sealed body 300 are formed. A communication path 40 connecting the entrance 31 and the exit 32 is formed (see FIG. 8A).
[0034]
The optical path length from the entrance 31 to the exit 32 of the calibrator body 20 (that is, the optical path length in the sealed body 300 filled with the sucrose solution 30) is the fruit (watermelon) shown in FIG. It is set to be substantially the same as the effective optical path length L ′ of the light transmitted through M.
[0035]
Here, the reason why the optical path length from the entrance 31 to the exit 32 of the calibrator body 20 (that is, the optical path length in the sealed body 300 filled with the sucrose solution 30) is adjusted to the effective optical path length L ′. This is because the sugar content variation due to the occurrence of a shift in the measurement system as described above is accurately corrected. The measurement system shift is, for example, a measurement wavelength shift, an apparent change in transmitted light amount due to dust or the like adhering to an incident / exit portion of the nondestructive transmission optical measurement apparatus. Deviations in the measurement system are detected as deviations in absorbance and absorption coefficient, but the optical path length must be the same in order to make the deviations in the absorbance and absorption coefficient of the calibrator and object to be measured equivalent in the same measurement system. There is a need. That is, if the effective optical path length is not matched, even if the sugar content of the object to be measured changes due to the deviation of the measurement system, the change in sugar content cannot be accurately corrected by the calibrator.
[0036]
Then, the optical path length from the entrance 31 to the exit 32 of the calibrator body 20 is set to be substantially the same as the effective optical path length L ′ of the light transmitted through the fruit (watermelon) M shown in FIG. 22, the light transmission member 28, the measured physical optical path length of the calibrator body 20 (that is, the physical optical path length in the sealed body 300 filled with the sucrose solution 30) by the following method shown in FIG. First, a physical optical path length obtained by adding a physical optical path length generated by each thickness of 29 and a thickness of a later-described diffusion-type attenuation plate attached to the light transmitting members 28 and 29, and The effective light path length L ′ × n ′ (where n ′ is the refractive index of the pulp in the fruit M) and the thicknesses of the light transmitting members 28 and 29 and the light transmitting members 28 and 29 by the following method shown in FIG. Added the physical optical path length generated by the thickness of the diffused attenuation plate to be described later. In addition to obtaining the physical path length, if the measured physical path length is smaller than the reference physical path length, the number of partition members 23 is increased to extend the length of the communication path by a necessary amount. On the other hand, when the measured physical optical path length is larger than the reference physical optical path length, the length of the communication path is reduced by reducing the number of the partition members 23 or changing the arrangement of the partition members 23. The optical path length from the entrance 31 to the exit 32 of the calibrator body 20 is made substantially the same as the effective optical path length L ′ by reducing and adjusting the measured physical optical path length to be substantially the same as the reference physical optical path length. Can be set to
[0037]
That is, in order to obtain the measured physical optical path length of the calibrator body 20, it is obtained by using one pulse laser light source f and two first and second detectors S1 and S2 as shown in FIG. Can do. First, the distance from the pulse laser light source f to the first detector S1 and the distance from the pulse laser light source f to the entrance 31 in the calibrator body 20 are set to be the same, and the pulse emitted from the pulse laser light source f is set. The laser is branched on the optical path in the middle, and the pulse laser is directly incident on one first detector S1, and the second detector S2 disposed in close contact with the exit 32 of the calibrator body 20 is calibrated. A pulse laser beam that has passed through the sealed body 300 of the main body 20 is incident. The measured physical optical path length of the calibrator body 20 can be obtained by multiplying the time difference Δt between the pulses reaching the first detector S1 and the second detector S2 by the speed of light C (C × Δt).
[0038]
In addition, the effective optical path length L ′ × n ′ (n ′ is the refractive index of the pulp in the fruit M) and the thickness of each of the light transmitting members 28 and 29 and the diffusion type described later attached to the light transmitting members 28 and 29. In order to obtain the reference physical optical path length added with the physical optical path length generated by the thickness of the attenuation plate, one pulsed laser light source f and two first and second detectors as shown in FIG. It can be determined using S1, S2, and the light transmission members 28 and 29 and a diffusion type attenuation plate (not shown) attached thereto. First, the light transmitting member 28 in which the diffusion type attenuation plate is attached to the light incident part of the fruit M is disposed in close contact, and the light transmission member in which the diffusion type attenuation plate is attached to the light emitting part of the fruit M. 29 is disposed in close contact, and the second detector S2 is also disposed in close contact with the light transmitting member 29. Further, the distance from the pulse laser light source f to the first detector S1 and the distance from the pulse laser light source f to the light transmitting member 28 are set to be the same, and the pulse laser emitted from the pulse laser light source f is halfway. In the optical path, a pulse laser is directly incident on one first detector S1, and a pulse laser transmitted through the fruit M is incident on the other second detector S2. Then, the effective optical path length L ′ × n ′ (n ′ is determined in the fruit M) by multiplying the time difference Δt between the pulses reaching the first detector S1 and the second detector S2 by the speed of light C (C × Δt). Reference physics obtained by adding the thickness of each of the light transmitting members 28 and 29 and the thickness of a later-described diffusion-type attenuation plate attached to these light transmitting members 28 and 29 to the refractive index of the pulp) The optical path length can be determined.
[0039]
Note that the inner wall surface of the sealing body 300 (that is, the surface of the calibrator base 21 and the inner wall surface of the lid member 22) on which the measurement light incident on the calibrator body 20 is reflected and the surface of each partition member 23 are in the measurement wavelength range. A gold-plated light reflecting film (not shown) having a wavelength dependency of reflectance and excellent corrosion resistance is provided. Further, when the light reflecting film forms a mirror surface, the light that has entered the sealing body 300 from the entrance 31 of the calibrator body 20 is specularly reflected by the light reflecting film, and a part of the light is reflected by the entrance 31. In some cases, the incident light leaks to the outside and the incident light does not run smoothly in the communication path 40. In such a case, the inner surface of the sealing body 300 may be roughened so that the light reflecting film functions as a diffusive reflecting film. However, when a later-described diffusion plate (diffusion type attenuation plate) is disposed on the incident port 31 side, the diffused light enters the sealing body 300, so that the rough surface treatment is performed. It is possible to prevent the leakage of incident light without applying.
[0040]
By the way, the nondestructive transmission type optical measuring device to which the calibrator 10 is applied usually includes an amplifier for converting a signal from the detector into a voltage at the time of measurement.
[0041]
Then, the gain fluctuation of the amplifier can be considered as a fluctuation factor of the measurement result. Specifically, if the magnitude of the signal of the object to be measured is different from the magnitude of the signal when the calibrator is measured, the gain for each signal of the amplifier may be different, and actual fluctuations may not be measured accurately. For this reason, it is preferable to insert an attenuator in order to adjust the transmitted light amount of the calibrator to the same level as the object to be measured. The attenuator desirably has a uniform attenuation rate by the attenuator for each measurement wavelength (each measurement light having a different wavelength) in the measurement wavelength range. This is because when the attenuation factor fluctuates greatly in each measurement wavelength range, the behavior of the transmitted light amount differs between the calibrator and the DUT when the measurement wavelength is shifted, and accurate calibration cannot be performed.
[0042]
Examples of the attenuator include an aperture type attenuator, a surface scattering type attenuator, a diffusion type attenuator and the like, and these can be used alone or in combination.
[0043]
Also in the calibrator body 20, as described above, a ready-made diffusion-type attenuation plate and aperture-type attenuation whose light transmission members 28 and 29 at the entrance 31 and the exit 32 have a uniform attenuation rate with respect to each measurement wavelength. Each unit is equipped with a combination. That is, the amount of transmitted light is roughly adjusted by the diffusion type attenuation plate and finely adjusted by the aperture window diameter to make the transmitted light amount of the calibrator 10 equal to that of the object to be measured.
[0044]
On the other hand, the temperature measurement output means 50 provided in the calibrator body 20 includes a power source 51 composed of a battery or the like and a sealing body 300 of the calibrator body 20 as shown in FIGS. A thermistor 52 disposed inside, a reference resistance element 53 connected in series to the thermistor and made of a metal film resistor or the like, between the power source 51 and the thermistor 52, between the thermistor 52 and the reference resistance element 53, and a reference resistance element 53 and three electrodes 54, 55, 56 provided between the power supply 51 constitute the main part, and each end of the three electrodes 54, 55, 56 is outward from the calibrator body 20. 5 to 7 so as to come into contact with the pantograph electrodes 72, 73, 74 of the data input unit 71 provided in the vicinity of the conveyance path 70 in the nondestructive transmission type optical measurement device. ing.
[0045]
Note that the voltage applied between the electrode 54 and the electrode 55 is V1, the voltage applied between the electrode 55 and the electrode 56 is V2, the resistance value of the thermistor 52 is r, the reference resistance element 53 having a small temperature coefficient, such as a metal film resistor. If the resistance value is R,
Between these, the relational expression r = R × (V1 / V2) is established.
[0046]
If the reference temperature of the thermistor 52 is T0 and the resistance value at this time is r0,
The temperature T of the thermistor 52 can be obtained by T = 1 / [1 / T0 + 1 / B · In (r / r0)] (where B is a B constant).
[0047]
The temperature T of the sucrose solution 30 filled in the sealed body 300 in the calibrator body 20 measures the voltage V1 applied between the electrode 54 and the electrode 55 and the voltage V2 applied between the electrode 55 and the electrode 56. Can be obtained.
[0048]
That is, these voltages V1 and V2 are input to the data input unit 71 from the three electrodes 54, 55, 56 of the calibrator 10 via the pantograph electrodes 72, 73, 74, and these data are data It is measured by the ADC 76 of the input unit 71 and calculated by the calculation unit 77 to the temperature.
[0049]
The nondestructive transmission optical measurement device calibrator 10 according to the first embodiment having such a configuration is mounted on a calibrator tray 60 as shown in FIG. 3 and is a nondestructive transmission optical measurement device. It is carried into the circular conveyance path 70 and used for the calibration work of the nondestructive transmission type optical measuring device.
[0050]
That is, the calibrator tray 60 has a pair of communication holes 61 and 62 as shown in FIG. 3, and is loosely fitted on the bottom surface of the calibrator tray 60 provided in the measuring section of the nondestructive transmission light measuring device. A main part of the tray main body 64 provided with the recess 63 and a cylindrical part 65 provided on the upper surface side of the tray main body 64 and into which the calibrator main body 20 is fitted and fixed constitute an incident on the calibrator main body 20. As shown in FIG. 2, the tips of the first outer cylindrical body 33 and the second outer cylindrical body 34 (see FIG. 10E) forming the opening 31 and the emission opening 32 are fitted into the communication holes 61 and 62 of the calibrator tray 60. The calibrator 10 and the calibrator tray 60 are integrated with each other, and are carried into the circular conveyance path 70 of the non-destructive transmission type optical measuring device.
[0051]
Then, the non-destructive transmission type optical measurement device calibrator 10 carried into the circular conveyance path 70 of the non-destructive transmission type optical measurement device is in the vicinity of the measurement unit 7 of the non-destructive transmission type optical measurement device as shown in FIG. The temperature data T of the sucrose solution 30 in the calibrator main body 20 is output to the data input unit 71 arranged in the above, and the sugar content of the sucrose solution 30 is measured in the measurement unit 7.
[0052]
That is, as shown in FIGS. 8A to 8B, the light that has entered the sealing body 300 of the calibrator body 20 from the light incident port 31 is reflected in a plurality of spaces partitioned by the partition material 23. Through the sucrose solution 30 while being bent repeatedly, and enters the detector (not shown) of the nondestructive transmission optical measurement device from the exit port 32.
[0053]
Based on the temperature data T of the sucrose solution 30 input to the data input unit 71 and the amount of light measured by the detector, the sugar content of the sucrose solution 30 filled in the calibrator is obtained in the same manner as the fruit sugar content. be able to.
[0054]
Thus, the sugar content difference between the sugar content obtained at the time of calibration and the standard sugar content of the sucrose solution 30 in the calibrator measured in advance under a certain condition is corrected on the software of the nondestructive transmission optical measurement device. Adjustment is completed and the calibration operation ends. And the sugar content of the fruit measured after calibration becomes an accurate sugar content from which the sugar content variation caused by the shift of the measurement system in the nondestructive transmission optical measurement device is removed.
[0055]
In the configuration method using the non-destructive transmission optical measurement device calibrator 10 according to this embodiment, the calibrator 10 continuously moves in the circular conveyance path 70 of the non-destructive transmission optical measurement device. Since the calibration work is repeated every time it is flowed and makes one round of the circular conveyance path 70, it is compared with the conventional method in which the calibrator is made to flow through the line of the non-destructive transmission optical measurement device at regular intervals. As a result, the calibration accuracy of the non-destructive transmission optical measurement device can be improved.
[0056]
The non-destructive transmission optical measurement device calibrator 10 according to this embodiment is assembled as follows.
[0057]
First, FIG. 9 shows the calibrator base 21 having the first opening 24 and the second opening 25 and the partition member 23 attached on the base 21.
[0058]
That is, a grid-like bolt 42 is erected on the surface of the calibrator base 21, and a mounting hole provided on the base end side of the partition member 23 is fitted into the grid-like bolt 42 and is fixed by the nut 43. ing. Further, the partition member 23 has an L-shaped partition member 231 attached perpendicularly to the surface of the calibrator base 21, an L-shaped partition member 232 having a curved surface in part, and a gradient with respect to the surface of the calibrator base 21. Different types of shapes such as a right-angle partition member 233 are provided which are attached in the vicinity of the first opening 24 and the second opening 25 to enable efficient light exchange between the inside and outside of the calibrator. Then, assuming a predetermined optical path length in the calibrator, as shown in FIG. 10C, these partition members 23 are appropriately attached to the surface of the calibrator base 21. A thermistor (not shown) is attached to an appropriate portion of the surface of the calibrator base 21 together with the partition member 23 described above, and other components (electrodes, wiring, reference resistance elements, etc.) of the temperature measurement output means 50 are attached. Is also incorporated as appropriate.
[0059]
And the stainless steel cover material 22 which has a cap shape as shown to FIG. 10 (A)-(B) and with packing (not shown) from the surface side of the calibrator base | substrate 21 with which the partition material 23 was attached. At the same time, the flange portion 43 of the lid member 22 and the outer peripheral edge of the calibrator base 21 are fixed using appropriate fixing means 44 including bolts and nuts as shown in FIG.
[0060]
Next, at least one of the first inner cylindrical body 26 and the second inner cylindrical body 27 attached to the back side of the calibrator body in which the calibrator base 21 and the lid member 22 are integrated, that is, the back side of the calibrator base 21. The sucrose solution is filled into the sealing body 300 from one side, and the first outer cylindrical body with respect to the first inner cylindrical body 26 and the second inner cylindrical body 27 as shown in FIGS. The entrance port 31 and the exit port 32 are formed by screwing 33 and the second outer cylindrical body 34 respectively.
[0061]
Then, as shown in FIGS. 11 (A) to 11 (C), the first heat insulating member 35 made of foamed polystyrene or the like from the surface side of the calibrator body in which the calibrator base 21 and the lid member 22 are integrated is provided. And the second heat insulating member 36, which is also made of foamed polystyrene or the like, is fitted from the back side of the calibrator body, and ends of the electrodes (pantograph electrodes 72, 73 of the data input unit 71, The non-destructive transmission type optical measurement device calibrator 10 according to the first embodiment is assembled by incorporating conductive parts (not shown) constituting the electrode end portion in contact with 74.
[0062]
In the non-destructive transmission light measuring device calibrator 10, the outer surfaces of the first heat insulating member 35 and the second heat insulating member 36 may be covered with a stainless steel reinforcing cover.
[0063]
Next, FIG. 12 to FIG. 15 show an example of a nondestructive transmission type optical measurement device in which the non-destructive transmission type optical measurement device calibrator 10 according to the first embodiment is incorporated.
[0064]
That is, this non-destructive transmission type optical measuring device includes a circular conveying path 70 in which conveying means 78 such as a roller conveyor and a belt conveyor for conveying the tray 6m on which the fruit M is placed are arranged in the length direction. The first measurement unit 7a, the second measurement unit 7b, and the third measurement unit 7c, which are continuously arranged in the conveyance path 70 with a predetermined interval, and the conveyance path 70 on the carry-in side of these measurement units 7 A data input unit (not shown) arranged in the vicinity, a first light source 81 for outputting laser light of wavelength λ1 through the optical fiber w into the first measurement unit 7a, and an optical fiber into the second measurement unit 7b a second light source 82 that outputs a laser beam having a wavelength λ 2 via w, a third light source 83 that outputs a laser beam having a wavelength λ 3 via an optical fiber w into the third measuring section 7 c, and the first light source Wavelength provided on the tip side of the optical fiber w connected to 81 A first distributor 8b that distributes a part of the laser beam 1 to the output monitor detector 8a, and a tip of the optical fiber w connected to the second light source 82; A second distributor (not shown) that distributes a part of the laser light to a detector for output monitoring that is not shown, and a tip of the optical fiber w that is connected to the third light source 83; A third distributor (not shown) that distributes a part of the light to a detector for output monitoring (not shown), and the laser light in the first measurement unit 7a, the second measurement unit 7b, and the third measurement unit 7c. A shutter means (not shown) that is provided on the emission side and operates based on a detection signal from a fruit detection means (not shown) (the shutter means 91 in the first measurement unit 7a is shown in FIG. 13), and the first measurement. In the part 7a, the second measuring part 7b and the third measuring part 7c Detectors (not shown) for measuring the light amounts of the respective laser beams of the wavelengths λ1, λ2 and λ3 respectively arranged and emitted from the fruit M (a detector 92 in the first measuring section 7a is shown in FIG. 13); A first monitor which is connected to the output monitor detector 8a and the detector 92 in the first measuring section 7a and amplifies an output signal corresponding to the detected light quantity of each laser beam of wavelength λ1 outputted from these detectors. And a first amplifier (amplifier) 85, an output monitor detector (not shown) in the second measuring section 7b, and a detector connected to the detector and a wavelength λ2 output from these detectors. A second monitor amplifier 86 and a second amplifier 87 for amplifying an output signal corresponding to the detected light quantity of each laser beam; and an output monitor detector and a detector (not shown) in the third measuring section 7c; These A third monitor amplifier 88 and a third amplifier 89 for amplifying an output signal corresponding to the detected light quantity of each laser beam having the wavelength λ3 output from the detector, and these amplifiers are connected to the respective electrodes of the data input section. An ADC (analog / digital converter) 76 that converts the analog output signal to digital, and a CPU (arithmetic unit) 77 that calculates the sugar content of the fruit M by calculating the digital signal from the ADC 76. The main part is composed. In FIG. 13, reference numerals 100a and 100b denote air cleaning means provided in the measuring section 7, and a light-transmitting closing member provided at the open ends of the measuring section side light path sections 71a and 71b described below. In order to prevent dust and the like from accumulating on 101a and 101b (usually made of glass), air is constantly blown onto the surfaces of the light-transmitting closing members 101a and 101b for cleaning.
[0065]
First, the first measurement unit 7a, the second measurement unit 7b, and the third measurement unit 7c are continuously arranged along the length direction of the conveyance path 70 with a predetermined interval as shown in FIG. The measuring parts 7a, 7b, 7c are continuously provided with convex ridges 95 at the central part on the upper surface side, and the measuring parts 7a, 7b, 7c are respectively provided on both sides with the convex ridge 95 as the center. A pair of measuring section side light path sections 71a, 71b, 72a, 72b, 73a, 73b are established, and each measuring section detects the presence or absence of a fruit being conveyed and outputs the signal to the shutter means. Fruit detection means (the fruit detection means 7s provided in the first measurement unit 7a is shown in FIG. 14) are provided.
[0066]
Further, on both sides of the conveyance path 70 where the first measurement unit 7a, the second measurement unit 7b, and the third measurement unit 7c are arranged, a conveyance position that regulates the conveyance position of the tray as shown in FIGS. A first side bar 90a and a second side bar 90b are provided as regulating means, and the second side bar 90b includes a pressing means 90c that presses the tray to be conveyed toward the first side bar 90a. .
[0067]
Then, the pressing means 90c of the second side bar 90b presses the tray 6m and the calibrator tray 60 conveyed between the first side bar 90a and the second side bar 90b, and these trays are moved to the first side bar. Since it is engaged with the guide surface 90a, the tray 6m on which the fruit M is placed can be accurately conveyed to the appropriate positions of the measuring units 7a, 7b, 7c without causing rolling or the like.
[0068]
Next, the distributor and the output monitor detector provided in each measurement unit will be described by taking the first measurement unit 7a as an example.
[0069]
First, as shown in FIGS. 13 and 15, the first distributor 8b disposed on the distal end side of the optical fiber w in the measurement-unit-side optical path portion 71a of the first measurement unit 7a has an AR (Anti Reflection) as shown in FIGS. : Non-reflective) It is composed of a processed half mirror, and a part of the laser beam of wavelength λ1 reflected by this mirror surface is output through a light diffusion plate 8c made of a combination of opal glass and frosted glass. An output signal corresponding to the detected light amount detected there is amplified by the first monitor amplifier 84 and input to the CPU 77 through the ADC 76 to be used as sugar content measurement data. It has become. Here, the opal glass is a general term for glasses in which fine particles of different crystals (for example, calcium fluoride) having different refractive indexes are suspended in the glass so as to exhibit milky white, and is also referred to as milky white glass. . Further, since the first distributor 8b is formed of a half mirror whose light emitting side is subjected to AR (non-reflective) processing, laser reflection on the light emitting side is prevented, and a stable beam-shaped laser beam is used for output monitoring. It can be introduced into the detector 8a.
[0070]
On the other hand, the tray 6m carried into the nondestructive transmission optical measuring device is made of black ABS (acrylonitrile butadiene styrene) resin as shown in FIG. The main part is composed of a tray main body 97 on which a basket 96 is formed, and a holder 98 made of neoprene rubber, which is provided on the receiving side of the tray main body 97 and abuts on and holds the outer peripheral surface of the fruit M. ing.
[0071]
And in this nondestructive transmission type optical measuring device, when the tray 6m on which the fruit M is placed, for example, is carried into the first measuring part 7a, the shutter means 91 is actuated as shown in FIG. A laser beam having a wavelength λ1 is incident on M via the measuring unit side optical path unit 71a and the tray side optical path unit 6a, and the emitted light from the fruit M is transmitted to the tray side optical path unit 6b and the measuring unit side optical path unit Then, the light is incident on the detector 92 via 71b. Similarly, the second measurement unit 7b and the third measurement unit 7c detect the emitted light from the fruit M and measure the sugar content. When the calibrator 10 is carried into the first measuring unit 7 a, the shutter unit 91 is activated and the sucrose is supplied to the calibrator 10 via the measuring unit side light path unit 71 a and the incident port 31 of the calibrator body 20. A laser beam having a wavelength λ1 is incident on the sealed body 300 filled with the liquid 30, and the emitted light from the calibrator 10 is detected through the emission port 32 of the calibrator main body 20 and the measurement-unit-side optical path portion 71b. In the same manner, the light emitted from the calibrator 10 is detected in the second measurement unit 7b and the third measurement unit 7c in the same manner, and the sugar content of the sucrose solution 30 is measured and calibrated.
[0072]
The temperature data T of the sucrose solution 30 filled in the calibrator main body 20 is input to the data input unit 71 before the calibrator 10 is carried into the measuring unit 7, and the temperature data T and each The sugar content of the sucrose solution 30 is measured and calibrated based on the detected light amount measured by the measurement unit. These measurements are performed in a darkroom as shown in FIG.
[0073]
The calibration unit 10 is continuously flown through the circular conveyance path 70 of the nondestructive transmission optical measurement device, and the calibration operation is repeated every time the circular conveyance path 70 is rotated once. Therefore, the calibration accuracy can be drastically improved as compared with the conventional method in which the calibrator is allowed to flow through the line of the nondestructive transmission optical measurement device at regular intervals.
[0074]
Further, by monitoring the transmitted light amount of the calibrator 10, when the transmitted light amount falls below a certain value, the wiping cleaning timing of the light transmissive closing member provided at the open end of the measurement unit side light path unit described above is set. I can inform you.
[0075]
That is, the light-transmitting closing member is always cleaned by the air cleaning means provided in the measuring unit 7 as described above. However, this cleaning removes dust, dust, and the like. The sticking component of the fruit M adhered to the closing member cannot be removed. For this reason, in the past, the wiping operation of the light-transmitting closing member has been performed in accordance with the calibration operation, but by applying the calibrator 10 according to this embodiment, the light-transmitting closing member is wiped and cleaned. It becomes possible to know the exact time.
[0076]
In this nondestructive transmission type optical measuring device in which the calibrator 10 is incorporated, the tray 6m on which the fruit M is placed and the calibrator tray 60 are not fixed to the circular conveying means, but are shown in FIG. In this way, a caterpillar type conveyor 700 that is an endless rotation type conveying means may be used as a conveying unit, and a structure in which the tray 6m and the calibrator tray 60 are fixed to the caterpillar type conveyor 700 may be adopted.
[0077]
[Second Embodiment]
FIG. 16 shows a second embodiment of the present invention.
[0078]
Moreover, the calibrator according to this embodiment is a nondestructive transmission type optical measurement device in which the light incident part 100 and the light emitting part 200 for the fruit M are set near the equator of the fruit as shown in FIG. Applicable.
[0079]
That is, the non-destructive transmission optical measurement device calibrator 110 according to this embodiment includes a calibrator body 120 and temperature measurement output means 150 provided in the calibrator body 120, as shown in FIG. As shown in FIG. 16 (B), the main part is constructed and accommodated in the calibrator tray 160 and is sent to the line of the non-destructive transmission type optical measuring device.
[0080]
First, the calibrator body 120 includes a linear cylinder 121 filled with a sucrose solution 111 having a sugar content equivalent to a specific component (sugar content) contained in the fruit M, as shown in FIG. An outer frame 122 made of black ABS (acrylonitrile butadiene styrene) resin, covering the outer peripheral surface of the cylindrical tube 121, and both open ends of the linear tube 121 are light transmitting members. The open end side closed by the light transmission member 123 constitutes the light incident port 31, and the open end side closed by the light transmission member 124 constitutes the light emission port 32. doing.
[0081]
In addition, the optical path length from the entrance 31 to the exit 32 (that is, the optical path length in the linear cylinder 121 filled with the sucrose solution 111) is the light transmitted through the fruit M shown in FIG. Is set to be substantially the same as the effective optical path length L ′.
[0082]
Here, the optical path length from the entrance 31 to the exit 32 of the calibrator 110 for the nondestructive transmission type optical measurement device (that is, the optical path length in the linear cylinder 121 filled with the sucrose solution 111) is determined as the effective optical path. The reason for matching the length L ′ is the same as that of the calibrator 10 according to the first embodiment shown in FIG.
[0083]
The effective optical path length L ′ of the fruit M can be obtained by using, for example, one pulse laser light source f and two first and second detectors S1 and S2 as shown in FIG. . That is, the distance from the pulse laser light source f to the first detector S1 is set equal to the distance from the pulse laser light source f to the light incident portion in the fruit M, and the pulse laser emitted from the pulse laser light source f is While branching on the optical path in the middle, a pulse laser is directly incident on one first detector S1, and the inside of the fruit M is transmitted to the second detector S2 disposed in close contact with the light emitting portion of the fruit M. The pulsed laser is made incident.
[0084]
Then, by multiplying the time difference Δt between the pulses reaching the first detector S1 and the second detector S2 by the speed of light C (C × Δt), the effective optical path length L ′ in the measured object (fruit) M is set to the fruit M. A value (L ′ × n ′) obtained by multiplying the refractive index n ′ of the pulp in can be obtained.
[0085]
In addition, as shown in FIG. 25, using one pulse laser light source f and two first and second detectors S1 and S2, the optical path length from the entrance 31 to the exit 32 in the calibrator 110 (that is, the short-circuit is shown). The geometry of the linear cylinder 121 for setting the optical path length in the linear cylinder 121 filled with the sugar solution 111 to be substantially the same as the effective optical path length L ′ in the measured object (fruit) M. The target length d can be obtained.
[0086]
That is, a diffusion type attenuation plate, which will be described later, is mounted on the open end side closed by the light transmitting member, and the geometric length thereof is d. 1 And d 2 And a pair of linear cylinders 121 ′ and 121 ″ filled with the sucrose solution 111, and the distance from the pulse laser light source f to the entrance 31 ′ of the linear cylinder 121 ′ and the pulse laser light source The distance from f to the entrance 31 ″ of the linear cylinder 121 ″ is set to be the same, and the first detector S1 is also output from the exit 32 ′ of the linear cylinder 121 ′ to the exit of the linear cylinder 121 ″. The second detector S2 is disposed in close contact with the mouth 32 ″. Then, the pulse laser emitted from the pulse laser light source f is branched on an intermediate optical path, and one of the pulse lasers is linear cylinder 121 ′. , And is incident on the first detector S1, and the other pulse laser is transmitted through the linear cylindrical body 121 ″ and incident on the second detector S2.
[0087]
The time when the pulse arrived at the first detector S1 is t 1 , The time when the pulse arrived at the second detector S2 is t 2 Then, the measured physical optical path length of the straight cylindrical body 121 ′ (that is, the physical optical path length in the linear cylindrical body 121 ′ filled with the sucrose solution 111 and the thicknesses of the two light transmitting members and this) The physical optical path length added by the physical optical path length generated by the thickness of the diffused attenuation plate (described later) mounted on the 1 Is the speed of light C × t 1 And the measured physical optical path length of the linear cylinder 121 ″ (the physical optical path length in the linear cylinder 121 ″ filled with the sucrose solution 111 is the thickness of the two light transmitting members. And the physical optical path length added by the physical optical path length generated by the thickness of the later-described diffusive attenuating plate attached to them) α 2 Is the speed of light C × t 2 The value obtained by.
[0088]
Therefore, the optical path length ΔL ″ per geometric unit length in the linear cylinder filled with the sucrose solution 111 having the refractive index n ″ is
n ″ × ΔL ″ = (α 12 ) / (D 1 -D 2 )
Can be obtained.
[0089]
That is, the measured physical optical path length α of the linear cylinder 121 ′ 1 And the measured physical optical path length α of the linear cylinder 121 ″ 2 Is added with the physical optical path length generated by the thickness of the two light transmitting members and the thickness of the diffusive attenuating plate mounted thereon, but the measured physical optical path length α 1 Measured physical optical path length α of the straight cylinder 121 ″ from 2 Since the added physical optical path length is canceled by subtracting the sucrose liquid, the sucrose liquid is refracted into the optical path length ΔL ″ per geometric unit length in the linear cylinder filled with the sucrose liquid 111. A value multiplied by the rate n ″ can be obtained.
[0090]
Therefore, the linear cylinder for setting the optical path length in the linear cylinder 121 filled with the sucrose solution 111 to be substantially the same as the effective optical path length L ′ in the measured object (fruit) M. The geometric length d of 121 is
d = (L ′ × n ′) / (ΔL ″ × n ″) = L ′ / ΔL ″
(However, it is assumed that the refractive index n ′ of the pulp in the fruit M and the refractive index n ″ of the sucrose solution are substantially the same)
Can be obtained.
[0091]
It should be noted that the inner wall surface of the linear cylinder 121 that reflects the measurement light incident on the calibrator 110 is almost free of wavelength dependency of reflectance in the measurement wavelength range and is gold-plated with excellent corrosion resistance. A light reflecting film (not shown) is provided.
[0092]
Also in this calibrator 110, the light transmission members 123 and 124 at the entrance 31 and the exit 32 are combined with an off-the-shelf diffused attenuation plate and an aperture type attenuator having a uniform attenuation rate for each measurement wavelength. Are attached respectively. Then, the amount of transmitted light was roughly adjusted with the diffusion type attenuating plate, and finely adjusted with the window diameter of the aperture type attenuator. These two types of attenuators made the transmitted light of the calibrator equal to that of the fruit M.
[0093]
On the other hand, the temperature measurement output means 150 provided in the calibrator body 120 is similar to the calibrator according to the first embodiment. A thermistor (not shown) disposed in the cylinder 121, a reference resistance element (not shown) connected in series to the thermistor and made of a metal film resistor or the like, between the power source and the thermistor, the thermistor and the reference The main part is composed of three electrodes 154, 155, and 156 provided between the resistance elements and between the reference resistance element and the power source, and each end of the three electrodes 154, 155, and 156 is a calibrator body. Protruding outward from 120, it comes into contact with a pantograph electrode (not shown) of a data input unit (not shown) provided in the vicinity of the circular transport path in the nondestructive transmission optical measurement device. ing.
[0094]
Further, the non-destructive transmission light measurement device calibrator 110 according to this embodiment is also mounted on the calibrator tray 160 as shown in FIG. It is carried in and used for the calibration work of the nondestructive transmission type optical measuring device.
[0095]
The non-destructive transmission optical measurement device calibrator 110 carried in the circular conveyance path of the non-destructive transmission optical measurement device is a data input unit (near the measurement unit of the non-destructive transmission optical measurement device) ( The temperature data T of the sucrose solution 111 in the calibrator main body 120 is output to the calibrator main body 120, and the sugar content of the sucrose solution 111 is measured in the measurement unit.
[0096]
That is, the light that has entered the linear cylinder 121 of the calibrator body 120 from the light entrance 31 passes through the sucrose solution 111 that is filled while repeating reflection in the linear cylinder 121, and is emitted. A detector (not shown) of the nondestructive transmission light measuring device is entered from the mouth 32.
[0097]
Then, the sugar content of the sucrose solution 111 filled in the calibrator is obtained in the same manner as the fruit sugar content based on the temperature data T of the sucrose solution 111 input to the data input unit and the light amount measured by the detector. Can do.
[0098]
The sugar content difference between the sugar content obtained at the time of calibration and the standard sugar content of the sucrose solution 111 in the calibrator measured in advance under a certain condition is corrected on the software of the nondestructive transmission optical measurement device. Adjustment is completed and the calibration operation ends. And the sugar content of the fruit measured after calibration becomes an accurate sugar content from which the sugar content variation caused by the shift of the measurement system in the nondestructive transmission optical measurement device is removed.
[0099]
Even in the configuration method using the non-destructive transmission optical measurement device calibrator 110 according to this embodiment, the calibrator 110 continuously flows in the circular conveyance path of the non-destructive transmission optical measurement device. In addition, since the calibration work is continuously repeated every time it makes a round conveyance path, it is calibrated compared to the conventional method in which a calibrator is sent to the line of the non-destructive transmission light measuring device at regular intervals. The accuracy can be dramatically improved, and as a result, the measurement accuracy of the nondestructive transmission optical measurement device can be improved.
[0100]
In this embodiment, the temperature measurement output means 150 has the same structure as that of the calibrator according to the first embodiment, but the temperature of the sucrose solution 111 in the calibrator body 120 is measured. The temperature data T can be changed to another method as long as the temperature data T can be output to the data input unit (for example, the temperature data T can be output to the data input unit wirelessly). Further, in this embodiment and the first embodiment, the end portions of the three electrodes in the temperature measurement output means are provided only on one side wall surface of each calibrator body as shown in FIGS. 2 and 16B. However, the end portions of the three electrodes may be provided also on the calibrator body wall surface on the other side facing the conveyance path edge side of the calibrator tray. By adopting such a structure, it is possible to carry in the revolving transport path without worrying about the longitudinal direction of the calibrator.
[0101]
Further, in the non-destructive transmission optical measurement device calibrator 110 according to this embodiment, the linear cylinder (sealed body) 121 has a sugar content equivalent to the specific component (sugar content) contained in the fruit M. Although the sucrose solution 111 is filled, by adding a light scattering material such as cellulose fiber in addition to the sucrose solution 111, scattering of light incident into the linear cylinder 121 is increased. Is possible. Then, compared to the case where the light scattering material is not filled, the light incident into the linear cylinder 121 passes through the linear cylinder 121 filled with the sucrose liquid 111 due to the increase in light scattering. Since it runs excessively, the geometrical length of the straight cylindrical body (sealed body) 121 can be set to be shortened accordingly, and the calibrator can be downsized.
[0102]
[Third embodiment]
Next, FIG. 17 shows a third embodiment of the present invention.
[0103]
The calibrator in this embodiment is a non-destructive transmission in which the positions of the light incident part 100 and the light emitting part 200 with respect to the fruit (melon) M are set near the bottom side of the fruit as shown in FIG. The present invention is applied to a type light measuring device.
[0104]
That is, the non-destructive transmission optical measurement device calibrator 310 according to this embodiment includes a calibrator body 320 and temperature measurement output means 350 provided in the calibrator body 320 as shown in FIG. The component tray 360 is provided with a concave portion 361 that includes a main portion thereof and that is loosely fitted to the convex portion of the measuring portion in the nondestructive transmission type optical measurement device in the same manner as the calibrator according to the first embodiment. And is sent to the line of the nondestructive transmission type optical measuring device.
[0105]
First, the calibrator body 320 is filled with a sucrose solution 222 having a sugar content equivalent to a specific component (sugar content) contained in the fruit M as shown in FIG. A pair of linear cylinders 321 and 322 having the same geometric length d, and an outer frame body 323 that covers the outer peripheral surfaces of the pair of linear cylinders 321 and 322 and is made of a heat insulating material such as polystyrene foam. The reinforcing cover 324 made of stainless steel covering the outer peripheral surface of the outer frame body 323 and the one end side of the linear cylinders 321 and 322 are disposed and emitted from the end of one linear cylinder 321. And a cover body 325 made of stainless steel that makes the incident light enter the end of the other linear cylindrical body 322, and both open end sides of these linear cylindrical bodies 321 and 322 are light transmitting members 326 and 327, respectively. , 32 The open end side closed by the light transmitting member 326 forms the light incident port 31, and the open end side closed by the light transmitting member 329 forms the light emitting port 32. ing.
[0106]
Further, the optical path length (the optical path length when the light travels in the sucrose liquid 222) in the pair of linear cylinders 321 and 322 filled with the sucrose liquid 222 is within the fruit M shown in FIG. Is set to be substantially the same as the effective optical path length L ′ of the light that passes through.
[0107]
Here, the reason why the optical path length in the pair of linear cylinders 321 and 322 filled with the sucrose solution 222 is adjusted to the effective optical path length L ′ is related to the first embodiment shown in FIG. For the same reason as the calibrator 10.
[0108]
The effective optical path length L ′ of the fruit M can be obtained by using, for example, one pulse laser light source f and two first and second detectors S1 and S2 as shown in FIG. . That is, the distance from the pulse laser light source f to the first detector S1 is set equal to the distance from the pulse laser light source f to the light incident portion of the object to be measured (fruit) M, and the light is emitted from the pulse laser light source f. The second pulse laser beam is made to branch on the optical path in the middle, and the pulse laser beam is directly incident on one first detector S1, and is placed in close contact with the light emitting portion of the object (fruit) M to be measured. A pulsed laser beam that has passed through the object to be measured (fruit) M is incident on the detector S2.
[0109]
Then, by multiplying the time difference Δt between the pulses reaching the first detector S1 and the second detector S2 by the speed of light C (C × Δt), the effective optical path length L ′ in the measured object (fruit) M is obtained as a fruit. A value (L ′ × n ′) obtained by multiplying the refractive index n ′ of the pulp in M can be obtained.
[0110]
Further, the optical path length in the pair of linear cylinders 321 and 322 filled with the sucrose liquid 222 having the refractive index n ″ (the optical path length when light travels in the sucrose liquid 222) is determined as the effective in the fruit M. The geometric length d of each of the linear cylindrical bodies 321 and 322 for setting the optical path length L ′ to be substantially the same can be obtained by the method described in the second embodiment.
[0111]
That is, one pulse laser light source f and two first and second detectors S1 and S2 shown in FIG. 25 are used, and a diffusion type attenuation plate is mounted on the open end side closed by the light transmitting member. Its geometric length is d 1 And d 2 In addition, a pair of linear cylinders 121 ′ and 121 ″ each filled with sucrose solution 111 are incorporated to obtain an optical path length ΔL ″ per geometric unit length of the linear cylinder, n ″ × ΔL ″. = (Α 12 ) / (D 1 -D 2 ) And distributed to the pair of linear cylinders 321 and 322 so as to be substantially the same as the effective optical path length L ′ in the measured object (fruit) M based on this ΔL ″.
[0112]
That is, the geometric length d of each linear cylinder 321 and 322 is:
2d = (L ′ × n ′) / (ΔL ″ × n ″) = L ′ / ΔL ″
(However, it is assumed that the refractive index n ′ of the pulp in the fruit M and the refractive index n ″ of the sucrose solution are substantially the same)
Can be obtained.
[0113]
It should be noted that the inner wall surface of the pair of linear cylinders 321 and 322 and the inner wall surface of the cover body 325 on which the measurement light incident on the calibrator 310 reflects has almost no wavelength dependency of reflectance in the measurement wavelength range. A gold-plated light reflecting film (not shown) having no corrosion resistance and excellent corrosion resistance is applied.
[0114]
Also in this calibrator 310, the light transmission member 326 of the linear cylinder 321 constituting the entrance 31 and the light transmission member 329 of the linear cylinder 322 constituting the exit 32 are attenuated with respect to each measurement wavelength. Are installed in combination with an off-the-shelf diffusion type attenuator plate and an aperture type attenuator. Then, the amount of transmitted light was roughly adjusted with the diffusion type attenuation plate, and finely adjusted with the aperture window diameter. With these two types of attenuators, the transmitted light quantity of the calibrator was made equal to that of the object to be measured.
[0115]
On the other hand, the temperature measurement output means 350 provided in the calibrator body 320 is similar to the calibrator according to the first embodiment. A thermistor (not shown) disposed inside the cylindrical body 321 or 322, a reference resistance element (not shown) connected in series to the thermistor and made of a metal film resistor or the like, and between the power source and the thermistor, the thermistor The three electrodes 354, 355, and 356 provided between the reference resistor element and between the reference resistor element and the power source constitute the main part, and the end portions of the three electrodes 354, 355, and 356 are calibrated. Projecting outward from the main body 320 of the device, and in contact with the pantograph electrodes (not shown) of the data input section (not shown) provided in the vicinity of the circular transport path in the nondestructive transmission type optical measuring device, respectively It is supposed to be.
[0116]
Further, the calibrator 310 for the nondestructive transmission type optical measurement device according to this embodiment is also mounted on the calibrator tray 360 as shown in FIG. It is carried in and used for the calibration work of the nondestructive transmission type optical measuring device. That is, the lower end portions of the linear cylindrical bodies 321 and 322 are fitted into the communication holes 362 and 363 provided in the calibrator tray 360 so that the calibrator 310 and the calibrator tray 360 are integrated. It is carried in to the revolving transport path of the light measuring device.
[0117]
Then, the non-destructive transmission optical measurement device calibrator 310 carried into the non-destructive transmission optical measurement device is provided with a data input unit (near the measurement unit of the non-destructive transmission optical measurement device). The temperature data T of the sucrose solution 222 in the calibrator main body 320 is output to the calibrator body 320, and the sugar content of the sucrose solution 222 is measured in the measurement unit.
[0118]
That is, the light that has entered the linear cylinder 321 from the incident port 31 passes through the sucrose solution 222 filled in the linear cylinder 321 while being repeatedly reflected and exits into the cover body 325. A part of the light scattered and reflected in the cover body 325 enters the other linear cylinder 322 and has passed through the sucrose solution 222 filled in the same manner as the linear cylinder 321. Enters the detector (not shown) of the nondestructive transmission light measuring device from the exit port 32. Then, the sugar content of the sucrose solution 222 filled in the calibrator 310 is obtained in the same manner as the fruit sugar content based on the temperature data T of the sucrose solution 222 input to the data input unit and the light amount measured by the detector. be able to.
[0119]
The sugar content difference between the sugar content obtained at the time of calibration and the standard sugar content of the sucrose solution 222 in the calibrator 310 measured in advance under a certain condition should be corrected on the software of the nondestructive transmission optical measurement device. The calibration operation is completed. And the sugar content of the fruit measured after calibration becomes an accurate sugar content from which the sugar content variation caused by the shift of the measurement system in the nondestructive transmission optical measurement device is removed.
[0120]
In the configuration method using the non-destructive transmission optical measurement device calibrator 310 according to this embodiment, the calibrator 310 continuously flows in the circular conveyance path of the non-destructive transmission optical measurement device. In addition, since the calibration work is continuously repeated every time it makes a round conveyance path, it is calibrated compared to the conventional method in which a calibrator is sent to the line of the non-destructive transmission light measuring device at regular intervals. The accuracy can be drastically improved, and as a result, the measurement accuracy of the nondestructive transmission optical measurement device can be improved.
[0121]
[Fourth embodiment]
FIG. 18 shows a fourth embodiment of the present invention.
[0122]
Further, in the calibrator in this embodiment, the positions of the light incident part 100 and the light emitting part 200 with respect to the fruit (watermelon) M as the object to be measured are set near the equator of the fruit M as shown in FIG. The present invention is applied to a non-destructive transmission optical measuring device.
[0123]
That is, the calibrator 410 for a nondestructive transmission type optical measurement device according to this embodiment includes a calibrator main body 420 and an unillustrated calibrator main body 420 provided in the calibrator main body 420 as shown in FIGS. The temperature measurement output means of the first embodiment constitutes a main part thereof, and is accommodated in the component tray 460 in the same manner as the calibrator according to the first embodiment so as to be sent to the line of the nondestructive transmission type optical measurement device. It has become.
[0124]
First, the calibrator body 420 has a rectangular parallelepiped shape as shown in FIGS. 18A to 18B, and a sealing body 421 provided with an entrance 31 and an exit 32 on the upper side thereof, and the entrance. The light transmitting members 422 and 423 attached to the opening 31 and the exit 32, respectively, and a partition member 424 attached in the sealing body 421 and partitioning the sealing body 421 into a plurality of spaces, and the main parts thereof are configured, and The sealed body 421 is filled with a sucrose solution 333 having a sugar content equivalent to the specific component (sugar content) contained in the fruit (watermelon) M shown in FIG. The plurality of spaces form a communication path 425 that connects the entrance 31 and the exit 32.
[0125]
The optical path length from the entrance 31 to the exit 32 of the calibrator 410 (that is, the optical path length in the sealed body 421 filled with the sucrose solution 333) is the fruit (watermelon) M shown in FIG. It is set so as to be substantially the same as the effective optical path length L ′ of the light passing through the inside. Here, the reason why the optical path length from the entrance 31 to the exit 32 of the calibrator 410 is matched to the effective optical path length L ′ is the same as that of the calibrator 10 according to the first embodiment shown in FIG. Because of the reason.
[0126]
Further, the optical path length from the entrance 31 to the exit 32 of the calibrator 410 is set to be substantially the same as the effective optical path length L ′ of the light transmitted through the fruit (watermelon) M shown in FIG. The measured light path length of the calibrator 410 by the above-described method shown in FIG. 22 (that is, the physical light path length in the sealed body 421 filled with the sucrose solution 333 is set to the light transmitting member 422, Physics optical path length obtained by adding the physical optical path length generated by each thickness of 423 and the thickness of a later-described diffusion-type attenuation plate attached to the light transmission members 422 and 423, and The effective light path length L ′ × n ′ (n ′ is the refractive index of the pulp in the fruit M) and the thicknesses of the light transmitting members 422 and 423 and the light transmitting members 422 and 423 are obtained by the above-described method shown in FIG. Physics generated by the thickness of a diffused damping plate (described later) The reference physical optical path length added with the optical path length is obtained, and when the actually measured physical optical path length is smaller than the reference physical optical path length, the number of partition members 424 is increased to increase the number of communication paths. If the measured physical optical path length is larger than the reference physical optical path length, the length of the length is increased, and conversely, the number of the partition members 424 is reduced or the arrangement of the partition members 424 is changed. Is reduced by a necessary amount, and the measured physical optical path length is adjusted to be substantially the same as the reference physical optical path length, whereby the optical path length from the entrance 31 to the exit 32 of the calibrator 410 is adjusted to the effective optical path. It can be set substantially the same as the length L ′.
[0127]
In addition, the inner wall surface of the sealing body 421 that reflects the measurement light incident on the calibrator 410 and the surface of each partition member 424 have almost no wavelength dependency of the reflectance in the measurement wavelength range and have excellent corrosion resistance. A gold-plated light reflecting film (not shown) is provided. Also in this calibrator 410, the light transmission members 422 and 423 of the entrance port 31 and the exit port 32 are combined with an off-the-shelf diffusion type attenuator plate and an aperture type attenuator in which the attenuation rate of each measurement wavelength is uniform. Each is attached. Then, the amount of transmitted light was roughly adjusted with the diffusion type attenuation plate and finely adjusted with the aperture window diameter to make the transmitted light amount of the calibrator equal to that of the object to be measured. Further, the temperature measurement output means (not shown) is the same as the temperature measurement output means of the calibrator according to the first embodiment. Further, the non-destructive transmission type optical measurement device calibrator 410 according to this embodiment is also mounted on the calibrator tray 460 as shown in FIGS. It is carried in the type | formula conveyance path, and is used for the calibration operation | work of a nondestructive transmission type optical measuring device.
[0128]
Then, the calibrator 410 for the non-destructive transmission type optical measurement device carried into the circular conveyance path of the non-destructive transmission type optical measurement device is a data input unit ( Temperature data T of the sucrose solution 333 in the calibrator main body 420 is output to the calibrator main body 420, and the sugar content of the sucrose solution 333 is measured in the measurement unit. That is, as shown in FIGS. 18A to 18B, the light that enters the sealing body 421 from the light entrance 31 is repeatedly reflected and bent in a plurality of spaces partitioned by the partition material 424. It passes through the filled sucrose solution 333 and enters the detector (not shown) of the non-destructive transmission light measurement device from the exit port 32. Then, the sugar content of the sucrose solution 333 filled in the calibrator 410 is obtained in the same manner as the fruit sugar content, based on the temperature data T of the sucrose solution 333 input to the data input unit and the light amount measured by the detector. be able to.
[0129]
The sugar content difference between the sugar content obtained at the time of calibration and the standard sugar content of the sucrose solution 333 in the calibrator 410 measured in advance under a certain condition should be corrected on the software of the nondestructive transmission optical measurement device. The calibration operation is completed. And the sugar content of the fruit measured after calibration becomes an accurate sugar content from which the sugar content variation caused by the shift of the measurement system in the nondestructive transmission optical measurement device is removed.
[0130]
In the configuration method using the non-destructive transmission optical measurement device calibrator 410 according to this embodiment, the calibrator 410 continuously flows in the circular conveyance path of the non-destructive transmission optical measurement device. In addition, since the calibration work is continuously repeated every time it makes a round conveyance path, it is calibrated compared to the conventional method in which a calibrator is sent to the line of the non-destructive transmission light measuring device at regular intervals. The accuracy can be drastically improved, and as a result, the measurement accuracy of the nondestructive transmission optical measurement device can be improved.
[0131]
[Fifth embodiment]
FIG. 19 shows a fifth embodiment of the present invention.
[0132]
Further, in the calibrator in this embodiment, as shown in FIG. 19C, the position of the light incident part 100 with respect to the fruit (watermelon) M as the object to be measured is set near the equator and the light emitting part 200 The present invention is applied to a nondestructive transmission optical measurement device whose position is set near the bottom side of the fruit M.
[0133]
That is, the non-destructive transmission optical measurement device calibrator 510 according to this embodiment includes a calibrator main body 520 and an unillustrated calibrator main body 520 provided in the calibrator main body 520 as shown in FIGS. The temperature measurement output means of the first embodiment constitutes a main part thereof, and is housed in the component tray 560 and flows into the line of the nondestructive transmission type optical measurement device in the same manner as the calibrator according to the first embodiment. It has become.
[0134]
First, the calibrator main body 520 has a substantially cylindrical shape as shown in FIGS. 19A to 19B, and is provided with an entrance 31 on the upper side and an exit 32 on the lower side. A sealing body 521, light transmitting members 522 and 523 attached to the entrance 31 and the exit 32, respectively, and a partition member 524 attached in the sealing body 521 and partitioning the sealing body 521 into a plurality of spaces. The main part is configured, and the sealed body 521 is filled with a sucrose solution 444 having a sugar content equivalent to a specific component (sugar content) contained in the fruit (watermelon) M shown in FIG. At the same time, a plurality of spaces in the sealing body 521 form a communication path 525 connecting the entrance 31 and the exit 32.
[0135]
The optical path length from the entrance 31 to the exit 32 of the calibrator 510 (that is, the optical path length in the sealed body 521 filled with the sucrose solution 444) is the fruit (watermelon) M shown in FIG. It is set so as to be substantially the same as the effective optical path length L ′ of the light passing through the inside. Here, the reason why the optical path length from the entrance 31 to the exit 32 of the calibrator 510 is matched to the effective optical path length L ′ is the same as that of the calibrator 10 according to the first embodiment shown in FIG. Because of the reason.
[0136]
Further, the optical path length from the entrance 31 to the exit 32 of the calibrator 510 is set to be substantially the same as the effective optical path length L ′ of the light transmitted through the fruit (watermelon) M shown in FIG. 22 includes the above-described light transmitting member 522, the actual physical optical path length of the calibrator 510 (that is, the physical optical path length in the sealed body 521 filled with the sucrose solution 444) by the above-described method shown in FIG. First, a physical optical path length obtained by adding a physical optical path length generated by each thickness of 523 and a thickness of a later-described diffusion-type attenuation plate attached to the light transmitting members 522 and 523, and The effective light path length L ′ × n ′ (n ′ is the refractive index of the pulp in the fruit M) and the thicknesses of the light transmitting members 522 and 523 and the light transmitting members 522 and 523 are obtained by the above-described method shown in FIG. Physics generated by the thickness of the diffused damping plate (described later) The reference physical optical path length to which the optical path length is added is obtained, and when the measured physical optical path length is smaller than the reference physical optical path length, the number of the partition members 524 is increased to increase the communication path. If the measured physical optical path length is larger than the reference physical optical path length, the number of partition members 524 is reduced or the arrangement of the partition members 524 is changed. The optical path length from the entrance 31 to the exit 32 of the calibrator 510 is adjusted to be effective by reducing the length of the passage by a necessary amount and adjusting the measured physical optical path length to be substantially the same as the reference physical optical path length. It can be set substantially the same as the optical path length L ′.
[0137]
Note that the inner wall surface of the sealing body 521 and the surfaces of the partition members 524 that reflect the measurement light incident on the calibrator 510 have almost no wavelength dependency of the reflectance in the measurement wavelength range and have excellent corrosion resistance. A gold-plated light reflecting film (not shown) is provided. Also in this calibrator 510, the light transmission members 522 and 523 of the entrance port 31 and the exit port 32 are combined with an off-the-shelf diffused attenuation plate and an aperture type attenuator with a uniform attenuation rate at each measurement wavelength. Each is attached. Then, the amount of transmitted light was roughly adjusted with the diffusion type attenuation plate and finely adjusted with the aperture window diameter to make the transmitted light amount of the calibrator equal to that of the object to be measured. Further, the temperature measurement output means (not shown) is the same as the temperature measurement output means of the calibrator according to the first embodiment. Further, the calibrator 510 for the nondestructive transmission type optical measurement device according to this embodiment is also mounted on the calibrator tray 560 as shown in FIGS. It is carried in the type | formula conveyance path, and is used for the calibration operation | work of a nondestructive transmission type optical measuring device.
[0138]
Then, the calibrator 510 for the nondestructive transmission type optical measurement device carried in the circular conveyance path of the nondestructive transmission type optical measurement device is a data input unit ( The temperature data T of the sucrose solution 444 in the calibrator main body 520 is output to the calibrator body 520, and the sugar content of the sucrose solution 444 is measured in the measurement unit. That is, as shown in FIGS. 19A to 19B, light entering the sealing body 521 from the light incident port 31 is repeatedly reflected and bent in a plurality of spaces partitioned by the partition material 524. It passes through the filled sucrose solution 444 and enters the detector (not shown) of the nondestructive transmission light measurement device from the exit port 32. Based on the temperature data T of the sucrose solution 444 input to the data input unit and the amount of light measured by the detector, the sugar content of the sucrose solution 444 filled in the calibrator 510 is obtained in the same manner as the fruit sugar content. be able to.
[0139]
The sugar content difference between the sugar content obtained at the time of calibration and the standard sugar content of the sucrose solution 444 in the calibrator 510 measured in advance under a certain condition should be corrected on the software of the nondestructive transmission optical measurement device. The calibration operation is completed. And the sugar content of the fruit measured after calibration becomes an accurate sugar content from which the sugar content variation caused by the shift of the measurement system in the nondestructive transmission optical measurement device is removed.
[0140]
Even in the configuration method using the non-destructive transmission optical measurement device calibrator 510 according to this embodiment, the calibrator 510 continuously flows in the circular conveyance path of the non-destructive transmission optical measurement device. In addition, since the calibration work is continuously repeated every time it makes a round conveyance path, it is calibrated compared to the conventional method in which a calibrator is sent to the line of the non-destructive transmission light measuring device at regular intervals. The accuracy can be drastically improved, and as a result, the measurement accuracy of the nondestructive transmission optical measurement device can be improved.
[0141]
Next, FIGS. 20 to 21 show a non-destructive transmission type optical measurement device calibrator 510 according to the fifth embodiment, which is slightly cut compared with the nondestructive transmission type optical measurement device according to the first embodiment. Shows an example of a non-destructive transmission optical measurement device suitable for measuring thin melons and citrus fruits.
[0142]
That is, this non-destructive transmission type optical measuring device includes a circular conveying path 70 in which conveying means 78 such as a roller conveyor and a belt conveyor for conveying the tray 6m on which the fruit M is placed are arranged in the length direction. The first measurement unit 7a, the second measurement unit 7b, and the third measurement unit 7c, which are continuously arranged in the conveyance path 70 with a predetermined interval, on the carry-in side of these measurement units and in the vicinity of the conveyance path 70 A non-illustrated data input unit disposed on the first measuring unit 7a, and a first light source (not illustrated) that outputs a laser beam having a wavelength λ1 from the side surface of the fruit M carried into the first measuring unit 7a via the optical fiber w. A second light source (not shown) that outputs a laser beam having a wavelength λ2 from the side of the fruit carried into the second measuring unit 7b via an optical fiber, and a fruit carried into the third measuring unit 7c. On the other hand, the wavelength λ3 through the optical fiber from the side A third light source (not shown) that outputs laser light and a part of the laser light of wavelength λ1 provided on the tip side of the optical fiber w connected to the first light source are distributed and guided to the output monitor detector 8a. A first distributor 8b and a second distributor (provided on the tip end side of the optical fiber connected to the second light source) for distributing a part of the laser light having the wavelength λ2 to the output monitor detector (not shown). And a third distributor (not shown) that is provided on the tip side of the optical fiber connected to the third light source and distributes a part of the laser light of wavelength λ3 to the output monitor detector (not shown). (Not shown), and the first measuring unit 7a, the second measuring unit 7b, and the third measuring unit 7c are respectively provided on the laser beam emission side and operate based on a detection signal from a fruit detecting means (not shown). Outside shutter means (shutter in the first measuring section 7a) -Means 91 is shown in FIG. 20), each of the laser beams of wavelengths λ1, λ2 and λ3 emitted from the fruit M which are respectively arranged in the first measuring unit 7a, the second measuring unit 7b and the third measuring unit 7c. Connected to the detector (not shown) for measuring the amount of light (the detector 92 in the first measuring unit 7a is shown in FIG. 20), the output monitor detector 8a and the detector 92 in the first measuring unit 7a, and A first monitor amplifier (amplifier) and a first amplifier (amplifier) (not shown) for amplifying an output signal corresponding to the detected light quantity of each laser beam of wavelength λ1 output from these detectors, and the second measuring section The second monitor amplifier and the second amplifier which are connected to the output monitor detector and the detector in 7b and amplify an output signal corresponding to the detected light quantity of each laser beam of wavelength λ2 output from these detectors (FIG. Not shown) A third monitor amplifier connected to the output monitor detector and the detector in the third measuring section 7c and amplifying an output signal corresponding to the detected light quantity of each laser beam of wavelength λ3 outputted from these detectors; ADC (analog / digital converter) which is connected to a third amplifier (not shown) and each of these amplifiers and each electrode (same as in the first embodiment) of the data input section and converts the analog output signal to digital ) And a CPU (arithmetic unit) that computes the sugar content of the fruits and vegetables M by arithmetically processing the digital signal from the ADC. In FIG. 20, reference numerals 100a and 100b denote air cleaning means provided in the measuring section 7, and a light-transmitting closing member (usually provided at the open end of the measuring section side light passage section 71c described below) In order to prevent dust and the like from accumulating on 101c (which is made of glass), the surface is always cleaned by blowing air onto the surface of the light-transmissive closing member 101c.
[0143]
First, the first measuring unit 7a, the second measuring unit 7b, and the third measuring unit 7c are continuously arranged along the length direction of the conveyance path 70 with a predetermined interval as shown in FIG. The measuring units 7a, 7b, 7c are each provided with measuring unit side optical path units 71c, 72c, 73c at the center thereof, and each measuring unit detects the presence or absence of a fruit being conveyed and outputs the signal. Fruit detection means for outputting to the shutter means (fruit detection means 7s provided in the first measurement portion 7a is shown in FIG. 21) are respectively attached, and the first measurement portion 7a, the second measurement portion 7b, and On both sides of the conveyance path 70 where the third measuring unit 7c is arranged, a first side bar 90a and a second side bar 90b are provided as conveyance position regulating means having the same structure as the apparatus according to the first embodiment. Yes.
[0144]
The first distributor 8b provided in the first measurement unit 7a will be described with reference to the first measurement unit 7a as an example of the distributor, output monitor detector, and shutter means provided in each measurement unit. As shown in FIG. 20, the light emitting side is composed of an AR (non-reflective) processed half mirror, and a part of the laser light of wavelength λ 1 reflected by this mirror surface is applied in the first embodiment. The output signal corresponding to the detected light quantity is amplified by the first monitor amplifier through the diffuser plate 8c made of a combination of the opal glass and the frosted glass, which is guided to the output monitor detector 8a. It is input to the CPU via the ADC and provided as sugar content measurement data. Further, as shown in FIG. 20, the shutter means 91 provided in the first measuring unit 7a is provided with a shielding plate 500 that is provided so that the base end side is pivotable and the tip end side thereof swings to open or close the optical path of the laser beam. A stepping motor 501 attached to the base end side of the shield plate 500 and pivoting the base end side of the shield plate 500 to swing the tip end side of the shield plate 500 to a position where the optical path is opened or closed; The main part is composed of a pair of position sensors (not shown) provided in the vicinity of the swinging displacement portion of the shielding plate 500 and detecting each stationary position of the shielding plate 500 when the optical path is opened or closed. .
[0145]
On the other hand, the tray 6m carried into the nondestructive transmission type optical measuring device is made of black ABS resin as shown in FIG. 20, and has a circular opening constituting the tray side light passage portion 6c on the bottom side. The main part is composed of a tray main body 97 and a holding body 98 made of neoprene rubber which is provided on the receiving side of the tray main body 97 and abuts against the outer peripheral surface of the fruit M and holds it.
[0146]
And in this nondestructive transmission type optical measuring device, when the tray 6m on which the fruit M is placed, for example, is carried into the first measuring section 7a, the shutter means 91 is actuated as shown in FIG. A laser beam having a wavelength λ1 is incident on M, and light emitted from the fruit M is incident on the detector 92 in the first measurement unit 7a via the tray-side optical path unit 6c. 7b and the third measuring unit 7c also detect the emitted light from the fruit M and measure the sugar content.
[0147]
Further, when the calibrator 510 is carried into the first measuring unit 7a, the shutter unit 91 is activated and the sealed body filled with the sucrose solution 444 through the entrance 31 of the calibrator body 520 with respect to the calibrator 510. Laser light having a wavelength λ1 is incident on the laser beam 521, and light emitted from the calibrator 510 is incident on the detector 92 via the emission port 32 of the calibrator body 520 and the measurement-unit-side optical path portion 71c. In the second measuring unit 7b and the third measuring unit 7c, the emitted light from the calibrator 510 is detected, the sugar content of the sucrose solution 444 is measured, and calibration is performed.
[0148]
The temperature data T of the sucrose solution 444 filled in the calibrator main body 520 before the calibrator 510 is carried into the measurement unit 7 is input to a data input unit (not shown), and this temperature The sugar content of the sucrose solution 444 is measured and calibrated based on the data T and the amount of light detected by each measurement unit. These measurements are performed in a dark room as in the first embodiment.
[0149]
The calibration unit 510 is continuously flown through the circular conveyance path 70 of the nondestructive transmission optical measurement device, and the calibration operation is repeated every time the circular conveyance path 70 is rotated once. Therefore, the calibration accuracy can be drastically improved as compared with the conventional method in which the calibrator is allowed to flow through the line of the nondestructive transmission optical measurement device at regular intervals.
[0150]
Further, by monitoring the transmitted light amount of the calibrator 510, when the transmitted light amount falls below a certain value, the wiping cleaning timing of the light transmissive closing member provided at the open end of the measurement unit side light path unit described above is set. I can inform you.
[0151]
That is, the light-transmitting closing member is always cleaned by the air cleaning means provided in the measuring unit 7 as described above. However, this cleaning removes dust, dust, and the like. The sticking component of the fruit M adhered to the closing member cannot be removed. For this reason, in the past, the wiping operation of the light-transmitting closing member has been performed in accordance with the calibration operation. By applying the calibrator 510 according to this embodiment, the light-transmitting closing member is wiped and cleaned. It becomes possible to know the exact time.
[0152]
【The invention's effect】
According to the calibrator for nondestructive transmission type optical measurement device according to claim 1 or 2,
A sealed body filled with a substance having the same or similar light absorption characteristics as the specific component contained in the object to be measured is provided with a light entrance and exit, and the optical path length from the entrance to the exit is as described above. Since it is set to be the same or substantially the same as the effective optical path length of the light passing through the object to be measured, high accuracy and good reproducibility without destroying the object to be measured for calibration of the non-destructive transmission type optical measuring device, It has the effect that it can be carried out simply and in a short time.
[0153]
In addition, it is equipped with temperature measurement output means for measuring the temperature of the substance filled in the sealed body of the calibrator main body and outputting the data signal to the data input section arranged in the vicinity of the conveyance path, so that it is nondestructive. It has the effect that the temperature measurement work and the calibration work of the substance filled in the sealed body by flowing continuously through the line of the transmission light measurement device can be mechanically performed.
[0154]
Next, according to the calibration method according to claim 3,
The tray conveying means is constituted by a revolving type or an endless rotating conveying means, and the calibrator is continuously conveyed by the conveying means to perform a calibration operation repeatedly for one rotation or one rotation.
Moreover, according to the nondestructive transmission type optical measurement device according to claim 4,
Since the tray conveying means is composed of a revolving or endless rotating conveying means, and each tray and the calibrator are fixed to the conveying means,
Compared with the conventional calibration method and the nondestructive transmission type optical measurement device in which the calibrator is passed through the line of the nondestructive transmission type optical measurement device every predetermined time, the calibration accuracy can be improved drastically.
[Brief description of the drawings]
FIG. 1 (A) is a schematic perspective view of a calibrator for a nondestructive transmission optical measurement device according to a first embodiment, and FIG. 1 (B) is a cross-sectional view taken along the line BB in FIG. 1 (A). FIG. 1C is an explanatory view showing a method of using the calibrator for the nondestructive transmission type optical measurement device according to the first embodiment.
FIG. 2 is a schematic perspective view of a calibrator for a nondestructive transmission light measurement apparatus according to a first embodiment fixed to a calibrator tray.
FIG. 3 is a schematic perspective view of a calibrator tray.
FIG. 4 is an explanatory diagram showing a circuit configuration of temperature measurement output means.
FIG. 5 is a schematic plan view of a non-destructive transmission light measuring device including a circular conveyance path.
FIG. 6 is a schematic top view showing the operation of the temperature measurement output unit and the data input unit of the calibrator for the nondestructive transmission optical measurement device according to the first embodiment.
FIG. 7 is a schematic side view showing the operation of the temperature measurement output unit and the data input unit of the calibrator for the nondestructive transmission optical measurement apparatus according to the first embodiment.
FIGS. 8A and 8B are diagrams for explaining the operation of the calibrator for the nondestructive transmission type optical measurement device according to the first embodiment, and FIG. Schematic explanatory drawing of the nondestructive transmission light measuring device in which 100 and the light emitting part 200 are set near the bottom side of the fruit.
FIG. 9 is a schematic perspective view of a calibrator base and a partition material constituting a part of the calibrator for a nondestructive transmission type optical measurement device according to the first embodiment.
FIGS. 10A and 10B are a top perspective view and a bottom perspective view of a lid member constituting a part of the calibrator for a nondestructive transmission optical measurement device according to the first embodiment, FIG. 10C is a top perspective view of the calibrator base in the middle of the assembly constituting a part of the calibrator for the nondestructive transmission optical measurement apparatus according to the first embodiment, and FIG. 10D is a bottom perspective view thereof. FIG. 10E is a schematic perspective view of a first outer cylindrical body and a second outer cylindrical body that constitute a part of the calibrator for the nondestructive transmission optical measurement device according to the first embodiment.
FIG. 11A is a bottom perspective view of a first heat insulating member that constitutes a part of the calibrator for a nondestructive transmission optical measurement device according to the first embodiment, and FIG. FIG. 11C is a top perspective view of a calibrator base plate and a cover member in the middle of assembly that constitute a part of the calibrator for a nondestructive transmission type optical measurement device according to the embodiment, and FIG. The upper surface perspective view of the 2nd heat insulation member which comprises some calibrators for a transmission light measuring device.
FIG. 12 is an explanatory diagram showing the overall configuration of the nondestructive transmission type optical measurement device in which the nondestructive transmission type optical measurement device calibrator according to the first embodiment is incorporated.
FIG. 13 is a cross-sectional view showing the relationship between the first measurement unit and the tray loaded on the first measurement unit in the nondestructive transmission optical measurement apparatus according to the first embodiment.
FIG. 14 is a schematic perspective view showing the main part of the nondestructive transmission light measurement apparatus according to the first embodiment.
FIG. 15 is a schematic perspective view of a distributor, an output monitor detector, and shutter means in the nondestructive transmission light measurement apparatus according to the first embodiment.
FIG. 16 (A) is a schematic explanatory view of a nondestructive transmission light measuring device in which the light incident part 100 and the light emitting part 200 for the fruit M are set near the equator of the fruit, and FIG. The schematic explanatory drawing of the calibrator for nondestructive transmission type optical measurement apparatuses concerning two embodiments.
FIG. 17 (A) is a schematic explanatory view of a nondestructive transmission light measuring device in which the light incident part 100 and the light emitting part 200 for the fruit M are set near the bottom of the fruit, FIG. 17 (B) These are schematic explanatory drawings of the calibrator for nondestructive transmission type optical measurement devices according to the third embodiment.
18A is a front sectional view of a calibrator for a nondestructive transmission light measurement apparatus according to a fourth embodiment, FIG. 18B is a side sectional view thereof, and FIG. FIG. 2 is a schematic explanatory view of a nondestructive transmission type optical measurement device in which a light incident part 100 and a light emitting part 200 for a fruit M are set near the equator of a fruit.
FIG. 19A is a front sectional view of a calibrator for a nondestructive transmission optical measurement device according to a fifth embodiment, FIG. 19B is a side sectional view thereof, and FIG. FIG. 2 is a schematic explanatory diagram of a nondestructive transmission light measurement apparatus in which a light incident part 100 for a fruit M is set near the equator of a fruit and a light emitting part 200 is set near the bottom side of the fruit.
FIG. 20 is a cross-sectional view showing a relationship between a first measurement unit and a tray carried on the first measurement unit in the nondestructive transmission optical measurement apparatus according to the fifth embodiment.
FIG. 21 is a schematic perspective view showing a main part of a nondestructive transmission light measurement apparatus according to a fifth embodiment.
FIG. 22 is an explanatory diagram showing an example of a measurement method for obtaining a measured physical optical path length of a calibrator.
FIG. 23 is an explanatory diagram showing an example of a measurement method for obtaining a reference physical optical path length of an object to be measured.
FIG. 24 is an explanatory diagram showing an example of a measurement method for obtaining an effective optical path length L ′.
FIG. 25 is an explanatory diagram showing an example of a measurement method for obtaining an optical path length ΔL ″ per geometric unit length in a linear cylinder filled with a sucrose solution.
FIG. 26 is a schematic configuration explanatory view of a nondestructive transmission type optical measuring device in which a conveying unit is configured by a caterpillar type conveyor which is an endless rotation type conveying unit, and a tray and a calibrator tray are fixed to the caterpillar type conveyor.
FIG. 27 is a diagram for explaining the operation of the nondestructive transmission light measurement apparatus.
FIG. 28 is an explanatory diagram showing an example of a measurement method for obtaining an effective optical path length L ′.
[Explanation of symbols]
10 Calibrator for non-destructive transmission light measurement device
20 Calibrator body
30 Sucrose solution (filled substance)
31 Entrance
32 Outlet
50 Temperature measurement output means
60 Calibrator tray

Claims (4)

被測定物が載置された複数のトレイを順次搬送し、搬送路中に設けられた測定部において上記被測定物に対しその光入射部から光を入射させかつ被測定物内を透過してきた光を上記光入射部とは別の部位に設定された光出射部において検出しその光吸収測定により被測定物中に含まれる特定成分を定量的に測定する非破壊透過式光測定装置に適用される較正器において、
光の入射口と出射口を備えその内部には上記特定成分と同一若しくは類似の光吸収特性を有する物質が充填されていると共に入射口から出射口までの光路長が上記被測定物内を透過する光の実効的光路長と同一若しくは略同一に設定された密封体によりその主要部が構成された較正器本体と、較正器本体の密封体内部に充填された上記物質の温度を計測しそのデータ信号を搬送路近傍に配置されたデータ入力部に出力する温度計測出力手段を具備することを特徴とする非破壊透過式光測定装置用較正器。
The plurality of trays on which the object to be measured is placed are sequentially conveyed, and light is incident on the object to be measured from the light incident part and transmitted through the object to be measured in the measurement unit provided in the conveyance path. Applicable to non-destructive transmission optical measurement equipment that detects light at a light emitting part set in a part different from the above light incident part and quantitatively measures a specific component contained in the measured object by measuring its light absorption In the calibrator
It has a light entrance and exit and is filled with a material that has the same or similar light absorption characteristics as the specific component, and the optical path length from the entrance to the exit passes through the object to be measured. Measuring the temperature of the calibrator body, the main part of which is constituted by a sealing body set to be the same or substantially the same as the effective optical path length of the light, and the substance filled in the sealing body of the calibrator body. A calibrator for a non-destructive transmission type optical measurement device, comprising temperature measurement output means for outputting a data signal to a data input unit disposed in the vicinity of the conveyance path.
上記温度計測出力手段が、電源と上記密封体内部に配置されたサーミスタとこのサーミスタに直列に接続された基準抵抗素子と上記電源とサーミスタ間、サーミスタと基準抵抗素子間および基準抵抗素子と電源間にそれぞれ設けられた3つの電極を備え、かつ、上記3電極の各端部が較正器本体から外方へ突出して上記データ入力部の対応する各電極と接触するようになっていることを特徴とする請求項1記載の非破壊透過式光測定装置用較正器。The temperature measurement output means includes a power supply, a thermistor disposed inside the sealed body, a reference resistance element connected in series to the thermistor, the power supply and the thermistor, a thermistor and the reference resistance element, and a reference resistance element and the power supply. Each of which is provided with three electrodes, and each end of the three electrodes protrudes outward from the calibrator body so as to come into contact with the corresponding electrode of the data input unit. The calibrator for a nondestructive transmission optical measurement device according to claim 1. 請求項1または2記載の非破壊透過式光測定装置用較正器を用いた較正方法において、
上記トレイ搬送手段を周回式若しくは無端回転式搬送手段で構成し、かつ、この搬送手段により上記較正器を連続的に搬送して1周若しくは1回転毎繰返し較正操作を行なうことを特徴とする較正方法。
In the calibration method using the calibrator for nondestructive transmission type optical measurement devices according to claim 1 or 2,
A calibration characterized in that the tray conveying means is constituted by a revolving or endless rotating conveying means, and the calibrator is continuously conveyed by the conveying means so that the calibration operation is repeated once or every rotation. Method.
請求項1または2記載の非破壊透過式光測定装置用較正器が組込まれた非破壊透過式光測定装置において、
上記トレイ搬送手段が周回式若しくは無端回転式搬送手段で構成され、かつ、この搬送手段に各トレイおよび上記較正器が固定されていることを特徴とする非破壊透過式光測定装置。
In the nondestructive transmission type optical measurement device incorporating the nondestructive transmission type optical measurement device calibrator according to claim 1 or 2,
The non-destructive transmission type optical measuring device, wherein the tray conveying means is constituted by a circular or endless rotating conveying means, and each tray and the calibrator are fixed to the conveying means.
JP2000122458A 2000-04-24 2000-04-24 Non-destructive transmission optical measurement device calibrator, calibration method using the calibrator, and non-destructive transmission optical measurement device incorporating the calibrator Expired - Fee Related JP3646620B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000122458A JP3646620B2 (en) 2000-04-24 2000-04-24 Non-destructive transmission optical measurement device calibrator, calibration method using the calibrator, and non-destructive transmission optical measurement device incorporating the calibrator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000122458A JP3646620B2 (en) 2000-04-24 2000-04-24 Non-destructive transmission optical measurement device calibrator, calibration method using the calibrator, and non-destructive transmission optical measurement device incorporating the calibrator

Publications (2)

Publication Number Publication Date
JP2001305055A JP2001305055A (en) 2001-10-31
JP3646620B2 true JP3646620B2 (en) 2005-05-11

Family

ID=18632930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000122458A Expired - Fee Related JP3646620B2 (en) 2000-04-24 2000-04-24 Non-destructive transmission optical measurement device calibrator, calibration method using the calibrator, and non-destructive transmission optical measurement device incorporating the calibrator

Country Status (1)

Country Link
JP (1) JP3646620B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6798800B2 (en) * 2002-12-30 2004-09-28 Intel Corporation Method and apparatus to sense temperature of thermal tuning elements in tunable optical devices
SE0303338D0 (en) 2003-12-11 2003-12-11 Foss Analytical Ab Optical reference standard
JP4589808B2 (en) * 2005-06-03 2010-12-01 ヤンマー株式会社 Non-destructive pesticide residue analyzer
JP4616747B2 (en) * 2005-10-06 2011-01-19 ヤンマー株式会社 Reference body for calibration of light emitting / receiving means
JP2007327906A (en) * 2006-06-09 2007-12-20 Yanmar Co Ltd Component analyzing system
JP6280494B2 (en) * 2014-11-21 2018-02-14 ヤンマー株式会社 Saucer
CN106644998B (en) * 2016-10-09 2019-06-25 江苏大学 A kind of fruit thinning method based near infrared spectrum
CN109253976B (en) * 2018-10-22 2021-01-15 北京麦飞科技有限公司 High-spectrum real-time radiometric calibration method based on light sensing module

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3577317B2 (en) * 1994-09-02 2004-10-13 ビー・ディー・バイオサイエンシーズ・システムズ・アンド・リエイジェンツ・インコーポレイテッド Calibration method and apparatus for optical scanner
JPH1019772A (en) * 1996-07-01 1998-01-23 Ishikawajima Shibaura Mach Co Ltd Saccharinity measuring instrument for fruit
JPH1030984A (en) * 1996-07-12 1998-02-03 Satake Eng Co Ltd Spectro chemical analysis device
JP3707292B2 (en) * 1998-05-18 2005-10-19 住友金属鉱山株式会社 Calibrator for non-destructive transmission optical measurement equipment

Also Published As

Publication number Publication date
JP2001305055A (en) 2001-10-31

Similar Documents

Publication Publication Date Title
EP3421972B1 (en) Non-dispersive infrared carbon dioxide gas sensor with a hydrophobic thin film deposited on the mirrors
US5751418A (en) Spectrometry and optical method and apparatus for obtaining a stable spectrum with use of an informationless spectrum contained therein
JP2517858B2 (en) Nondestructive measurement method of fruit sugar content by near infrared transmission spectrum
US7755763B2 (en) Attenuated total reflection sensor
EP2977743B1 (en) Multichannel aerosol scattering-absorbing measuring instrument
KR102363178B1 (en) Non-invasive substance analysis
US8240189B2 (en) Thermal selectivity multivariate optical computing
KR101277140B1 (en) Apparatus and method for spectrophotometric analysis
US5258825A (en) Optical compositional analyzer apparatus and method for detection of ash in wheat and milled wheat products
US7948626B2 (en) Method for the automated measurement of gas pressure and concentration inside sealed containers
US6983176B2 (en) Optically similar reference samples and related methods for multivariate calibration models used in optical spectroscopy
Eustaquio et al. Determination of paracetamol in intact tablets by use of near infrared transmittance spectroscopy
JP3707292B2 (en) Calibrator for non-destructive transmission optical measurement equipment
AU2005311440B2 (en) Spectrophotometer
JP3646620B2 (en) Non-destructive transmission optical measurement device calibrator, calibration method using the calibrator, and non-destructive transmission optical measurement device incorporating the calibrator
EP0670486A1 (en) Spectroscopic measuring sensor for the analysis of mediums
JP4714822B2 (en) Non-destructive measuring device for light scatterers
KR20100082476A (en) Development of portable type based noninvasive saccharometer
KR19990029895A (en) Concentration measuring device and measuring method of specific ingredient
JP2018526644A (en) Method and apparatus for determining substance concentration or substance in a liquid medium
KR20010098390A (en) Non-destructive sugar content measuring apparatus
JP3352848B2 (en) Pseudo-object for calibration of internal property measuring device and calibration method of internal property measuring device
JP2004219322A (en) Non-destructive spectrophotometric instrument
Blake et al. Absorption spectroscopy in hollow-glass waveguides using infrared diode lasers
JP3036530B1 (en) Non-destructive taste measurement device for fruits and vegetables

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050131

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090218

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees