JP3645195B2 - How to remove dioxins - Google Patents

How to remove dioxins Download PDF

Info

Publication number
JP3645195B2
JP3645195B2 JP2001132439A JP2001132439A JP3645195B2 JP 3645195 B2 JP3645195 B2 JP 3645195B2 JP 2001132439 A JP2001132439 A JP 2001132439A JP 2001132439 A JP2001132439 A JP 2001132439A JP 3645195 B2 JP3645195 B2 JP 3645195B2
Authority
JP
Japan
Prior art keywords
concentration
flocculant
dioxins
formula
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001132439A
Other languages
Japanese (ja)
Other versions
JP2002320974A (en
Inventor
裕一 府中
由起夫 剱持
かおり 堤
彰浩 有川
俊一 塩野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2001132439A priority Critical patent/JP3645195B2/en
Publication of JP2002320974A publication Critical patent/JP2002320974A/en
Application granted granted Critical
Publication of JP3645195B2 publication Critical patent/JP3645195B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ダイオキシン類を含んだ排水を浄化するための水処理技術に関する。
【0002】
【従来の技術】
平成11年7月に制定されたダイオキシン類対策特別措置法によってダイオキシン類の環境基準が定まり、平成12年1月からは排出基準を遵守しなければならない。しかしながら、ダイオキシン類除去のための排水処理法に関しては、未だ十分な検討がなされていないのが現状である。即ち、現在ダイオキシン類除去のために用いられている方法は、従来の水処理技術の援用に過ぎず、ダイオキシン類の性状を考慮して、合理的な除去方法を提案している例は殆どない。
【0003】
例えば、促進酸化(AOP)法と呼ばれるオゾン・UV・過酸化水素を用いた複合酸化法が注目を浴びているが、この方法では経験則に基づいて処理条件が定められているだけで、処理原理に基づいた条件設定は未だ考えられていない。同様に、活性炭吸着法や凝集剤添加法についても、処理性能は種々確認されているものの、処理条件は経験則に基づいて定めるしかなかったのが現状である。
【0004】
【発明が解決しようとする課題】
本発明は、このような従来技術の問題点を鑑み、排水に凝集剤を添加して排水中のダイオキシン類を分離除去する処理法において、経験則に因らず、ダイオキシン類の特性から最適の処理条件を決定する方法を提供するものである。
【0005】
【課題を解決するための手段】
本発明者らは、上記の観点で鋭意研究を重ねた結果、凝集剤による排水中のダイオキシン類の分離除去法において、目標とするダイオキシン類残存比及び目標とする処理水のSSを定めれば、これらと原水のSS及び用いる凝集剤のSS転換比の値から、かかる目標値を達成するための最適の凝集剤添加率が算出できることを見出し、本発明を完成するに至った。
【0006】
即ち、本発明は、ダイオキシン類を含む排水に凝集剤を加えることにより、排水中に含まれるダイオキシン類を分離して除去する方法において、目標とするダイオキシン類残存比及び処理水のSS濃度を定め、原水のSS濃度に基づいて凝集剤添加率を決定する方法に関する。
【0007】
より具体的には、本発明は、目標とするダイオキシン類残存比及び処理水のSS濃度を定め、下式A:
【0008】
【式3】

Figure 0003645195
【0009】
(上式中、Cは凝集剤添加率(mg/L);ηは目標とするダイオキシン類残存比;SSinfは原水のSS濃度(mg/L);SSeffは目標とする処理水のSS濃度(mg/L);αは凝集剤のSS転換比;である)
にしたがって凝集剤添加率を決定する方法に関する。
【0010】
また、本発明者らは、更に、上記のようにして求められた添加率で凝集剤を用いた際に、生成汚泥中のダイオキシン類の濃度の推定値を算出できることをも見出した。即ち、本発明の他の態様は、上記に記載の方法に従って排水から分離された生成汚泥中のダイオキシン濃度を、下式B:
【0011】
【式4】
Figure 0003645195
【0012】
(上式中、βは生成汚泥中のダイオキシン類濃度(ng/g);Dinf/は原水の全ダイオキシン類濃度(pg/L);SSinfは原水のSS濃度(mg/L);αは凝集剤のSS転換比;Cは凝集剤添加率(mg/L);である)
に従って推定する方法に関する。
【0013】
なお、上式において、凝集剤のSS転換比αとは、排水中に加えた凝集剤が凝集処理後に排水から汚泥中に移行する割合を示し、個々の凝集剤がそれぞれの固有の値を有している。また、ダイオキシン類残存比ηとは、凝集処理によって目標とする処理水中のダイオキシン類濃度Deffと排水原水中のダイオキシン類濃度Dinfとの比Deff/Dinfを示す。
【0014】
【発明の実施の形態】
以下、本発明に係る理論を説明する。
排水中に含まれるダイオキシン類は、一般にSS性と非SS性に区分される。ここで、SSとは懸濁物質(suspended solids)の意味である。SS性物質とは1μm以上の大きさの懸濁粒子中に存在するもので、非SS性物質とは孔径1μmの濾紙による濾液中に存在する物質を示している。排水に凝集剤を添加して適切な凝集処理を行うと、ナノメートルレベル以上のコロイド粒子が凝集フロックに取り込まれるので、SS性物質は勿論のこと、非SS性物質の一部も分離除去されることが知られている。
【0015】
本発明は、ダイオキシン類の性状を考慮して、上記に述べたコロイド粒子除去機構を利用したものである。具体的には、本発明者らの研究によって、ダイオキシン類は水に殆ど溶解せず、ダイオキシン類の非SS性成分の大部分は、凝集処理を行った後はコロイド粒子中に存在することが分かった。本発明者らの焼却炉スクラバー排水を用いた実験により、排水原水中には30%程度の非SS性ダイオキシン類が含まれていたが、凝集剤を添加して適切な凝集処理を行った後の処理水中には、非SS性ダイオキシン類は殆ど存在せず、処理水中に含まれているダイオキシン類は殆どがSS性ダイオキシン類であることが見出された。なお、凝集条件に不備があって良好な凝集フロックを形成できない場合にはこの限りではない。
【0016】
以上のことは、凝集理論から次のように解釈することができる。つまり、ダイオキシン類を含む排水に凝集剤を添加して凝集処理を行うと、1nm以上のコロイド粒子が凝集フロックに容易に吸着されて固液分離可能なフロックを形成することによって、非SS性のダイオキシン類は固形物(SS)の方に移行する。なお、ダイオキシン類は、それ自身の分子量の大きさと、疎水性であることから、1nm以下の状態で存在することは、事実上困難である。
【0017】
本発明者らは、以上の原理に基づいて排水中の物質収支式を導くと上記A式が得られることを見出した。更に、処理水中に非SS性ダイオキシン類が殆ど存在しないことを前提とすると、マスバランスから、凝集処理によって生じる汚泥中のダイオキシン類の濃度も上記B式によって容易に推定することができることも見出した。これは廃棄物処理を考える上でも非常に有用である。
【0018】
排水原水、凝集処理後の処理水、及び凝集処理によって得られた汚泥のそれぞれについて、水量(容量)を、Qinf[L]、Qeff[L]、Qs[L];SSを、SSinf[mg/L]、SSeff[mg/L]、SSs[mg/L];全ダイオキシン類濃度を、Dinf[pg/L]、Deff[pg/L]、Ds[pg/L];また、排水原水、凝集処理後の処理水のそれぞれについて、SS性ダイオキシン類濃度を、Dinf(SS)[pg/L]、Deff(SS)[pg/L];非SS性ダイオキシン類濃度を、Dinf(n-S)[pg/L]、Deff(n-S)[pg/L];とする。なお、ここで、SS性ダイオキシン類とは1μmフィルタを通過不可のダイオキシン類を示し、非SS性ダイオキシン類とは1μmフィルタ濾過液中のダイオキシン類を示す。
【0019】
また、この凝集処理に必要な凝集剤の添加量をC[mg/L]、凝集剤の汚泥(SS)転換比をαとする。これらの関係を図1に示す。
系のSSの物質収支は、次式(1)で表される。
【0020】
【式5】
Figure 0003645195
【0021】
また、ダイオキシン類(DXN)の物質収支は、次式(2)で表される。
【0022】
【式6】
Figure 0003645195
【0023】
また、
【0024】
【式7】
Figure 0003645195
【0025】
式(3)に式(2)を代入すると、
【0026】
【式8】
Figure 0003645195
【0027】
ここで、凝集剤添加後のSS(汚泥)中のDXN含有率をβ[ng/g]とすると、
【0028】
【式9】
Figure 0003645195
【0029】
式(5)、(6)を式(4)に代入すると、
【0030】
【式10】
Figure 0003645195
【0031】
式(7)に式(1)を代入すると、
【0032】
【式11】
Figure 0003645195
【0033】
ここで、
【0034】
【式12】
Figure 0003645195
【0035】
であるので、
【0036】
【式13】
Figure 0003645195
【0037】
ダイオキシン類(DXN)の残存比をηとすると、
【0038】
【式14】
Figure 0003645195
【0039】
したがって、凝集処理によって目標とするダイオキシン類残存比(η)及び処理水のSS濃度(SSeff)(mg/L)を定めれば、これらの数値と、排水原水のSS濃度(SSinf)(mg/L)及び用いる凝集剤のSS転換比(α)とを上式Aに代入すれば、凝集剤の最適添加率C(mg/L)を算出することができる。
【0040】
また、式(9)より、
【0041】
【式15】
Figure 0003645195
【0042】
よって、ダイオキシン類濃度(Dinf)(pg/L)の排水原水に、上記で求めた添加率Cで凝集剤を添加して凝集処理を行った場合に、得られる汚泥中に含まれるダイオキシン類の濃度(推定値)は、各数値を上式Bに代入することによって算出することができる。
【0043】
以上のことから、本発明によれば、凝集処理によって排水中のダイオキシン類を分離除去する方法において、予め目標とするダイオキシン類残存比及び目標とする処理水SSを設定すれば、これらの数値を、原水SS(測定によって求めることができる)及び凝集剤のSS転換比(個々の凝集剤に固有であり、用いる凝集剤を決定すれば定まる)と共に上式Aに代入すれば、設定された目標値を達成するために最適の凝集剤の添加率を求めることができ、有効な凝集処理が図れる。特に、かかる本発明方法によれば、排水原水中のダイオキシン濃度を測定することなく、凝集剤添加率を算出することができるので、処理の際に時間のかかるダイオキシン濃度測定を行う必要がなく、迅速且つ簡便に処理条件を決定することが可能になる。更に、上式Bによって、生成される汚泥のダイオキシン類濃度を推定することができ、その後の廃棄物処理プロセスを考慮する上で極めて有用である。
【0044】
本発明において用いることのできる凝集剤としては、無機凝集剤、高分子凝集剤及びこれらの組み合わせからなる群より選択される凝集剤を用いることができる。具体的には、FeCl3、PAC(ポリ塩化アルミニウム)、硫酸バンド(硫酸アルミニウム)、ポリ鉄(ポリ硫酸第2鉄)、硫酸第1鉄などの無機凝集剤、ポリジアルキルアミノエチルメタクリレート等のカチオン系高分子凝集剤を好ましく挙げることができる。
【0045】
凝集剤のSS転換比は、個々の凝集剤について化学量論的に算出することもできるし、或いは実験で求めることもできる。例えば、凝集剤としてPACを用いる場合、PAC中のアルミニウムが水酸化アルミニウムになると考えると、PACのSS転換比は、以下の式により0.153と算出される。
【0046】
【式16】
Figure 0003645195
【0047】
また、凝集剤としてFeCl3を用いる場合、SS転換比は、下式によって0.66と算出される。
【0048】
【式17】
Figure 0003645195
【0049】
また、実験で凝集剤のSS転換比を求める場合には、例えば、凝集剤を添加した後の総SSから原水のSSを減じることによって求めることができる。
なお、フロックの沈降分離を更に容易にするために、ポリビニルスルホン酸塩、ポリアクリルアミド加水分解物等のアニオン系高分子凝集剤、ポリアクリルアミド、ポリビニルアルコール等のノニオン系高分子凝集剤、アルギン酸ソーダなどの凝集助剤を併用することもできる。
【0050】
本発明に係る方法によって凝集した固形物を排水から固液分離によって除去する手段としては、沈殿、浮上、濾過、膜処理などの当該技術において周知の単位操作を挙げることができ、これらの単位操作を適宜組合せて用いることもできる。分離されたダイオキシン類を含む汚泥は、焼却溶融処理などの当該技術において周知の廃棄処分を施すことができる。
【0051】
なお、本発明は、上記の技術思想に基づいてダイオキシン類を含む排水を処理する装置をも提供する。即ち、本発明の他の態様は、ダイオキシン類を含む排水を凝集処理する装置であって、
排水原水のSS濃度を測定する手段;
測定された原水のSS濃度に基づいて算出された、目標とするダイオキシン類残存比及び処理水のSS濃度を達成するのに必要な量の凝集剤を排水原水中に加える手段;
を具備することを特徴とする装置に関する。
【0052】
【実施例】
実施例1
廃棄物最終処分場の浸出水に対して、本発明方法による凝集沈殿法によってダイオキシン類の分離除去処理を行った。処理原水の水質は、SSが160mg/L、全ダイオキシン類(DXN)濃度が210pg/Lであった。目標とする処理水SSを7mg/L、目標とする処理水中の全DXN濃度を5pg/L(DXN残存比は0.0238)と設定した。凝集剤としてはPACを用いた。PACのSS転換比は、上記に説明したようにPAC中のアルミニウムが水酸化アルミニウムになるとして化学量論的に求めると0.153であった。これらの数値を式Aに代入したところ、凝集剤添加率は876mg/Lと算出された。また、上記各数値を式Bに代入したところ、生成される汚泥中のDXN含有率は0.71ng/gと予測された。
【0053】
上記の計算に基づいて、900mg/LのPAC凝集剤と2mg/Lのポリマー(有機高分子凝集剤:エバグロースA−151(アニオン系)、エバグロースN−800(ノニオン系))を排水中に投入し、凝沈水面積負荷量28m/dで凝集処理を行った。
【0054】
処理水の水質を測定したところ、SSは5.7mg/L、全DXNは3.7pg/Lで、ほぼ目標値と同等の値が達成された。DXNの除去率は98.2%であった。また、生成した汚泥のDXN濃度を測定したところ、0.83ng/gで予測値とほぼ同等であった。条件及び結果を表1に要約する。
【0055】
実施例2
実施例1と同一の排水原水に対して、凝集処理の後に濾過処理を行って浄化レベルを上げた処理を行った。濾過処理としては、有効径0.8mmの砂を濾材として用いた。目標とする処理水SSを2mg/L、目標とする処理水DXN濃度を2pg/L(DXN残存比は0.00952)と設定した。凝集剤としては、実施例1と同じくPACを用いた。各数値を式Aに代入したところ、凝集剤添加率は327mg/Lと算出された。
【0056】
上記の計算に基づいて、350mg/LのPAC凝集剤と1mg/Lのポリマー(有機高分子凝集剤)を排水中に投入し、凝沈水面積負荷量28m/dで凝集処理を行った。濾過は濾過速度110m/dで行った。
【0057】
処理水の水質を測定したところ、SSは1.3mg/L、全DXNは1.5pg/Lで、ほぼ目標値と同等の値が達成された。DXNの除去率は99.3%であった。条件及び結果を表1に要約する。
【0058】
実施例3
焼却場のスクラバー排水に対して本発明方法による凝集沈殿法によってダイオキシン類の分離除去処理を行った。処理原水の水質は、SSが110mg/L、全ダイオキシン類(DXN)濃度が1300pg/Lであった。目標とする処理水SSを7mg/L、目標とする処理水中のDXN濃度を5pg/L(DXN残存比は0.00385)と設定した。凝集剤としてはFeCl3を用いた。FeCl3のSS転換比は、上記に説明したように0.66であった。これらの数値を式Aに代入したところ、凝集剤添加率は2588mg/Lと算出された。
【0059】
上記の計算に基づいて、2600mg/LのFeCl2凝集剤と2mg/Lのポリマー(有機高分子凝集剤)を排水中に投入し、凝沈水面積負荷量25m/dで凝集処理を行った。
【0060】
処理水の水質を測定したところ、SSは7mg/L、全DXNは4.2pg/Lで、ほぼ目標値と同等の値が達成された。DXNの除去率は99.7%であった。条件及び結果を表1に要約する。
【0061】
【表1】
Figure 0003645195
【0062】
【発明の効果】
本発明によれば、凝集処理によって排水中のダイオキシン類を分離除去する方法において、目標とするダイオキシン類残存比及び目標とする処理水SSを設定することにより、最適の凝集剤の添加率を計算で求めることができ、従来の経験則に基づいた処理法に比べてより有効な凝集処理を図ることが可能になる。特に、本発明方法によれば、時間のかかるダイオキシン濃度測定を行う必要なしに、迅速且つ簡便に処理条件(凝集剤添加率)を決定することが可能になる。更に、生成される汚泥のダイオキシン類濃度も推定することができ、その後の廃棄物処理プロセスを考慮する上で極めて有用である。
【図面の簡単な説明】
【図1】本発明に係る物質収支式における各記号の意味を説明する図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a water treatment technique for purifying waste water containing dioxins.
[0002]
[Prior art]
The environmental standards for dioxins were established by the Law for Special Measures against Dioxins established in July 1999, and from January 2000, the emission standards must be observed. However, the current situation is that the wastewater treatment method for removing dioxins has not been sufficiently studied. That is, the method currently used for removing dioxins is only the assistance of conventional water treatment technology, and there are few examples that propose rational removal methods in consideration of the properties of dioxins. .
[0003]
For example, a complex oxidation method using ozone, UV, and hydrogen peroxide called the accelerated oxidation (AOP) method is attracting attention. In this method, treatment conditions are determined based on empirical rules. Condition setting based on the principle has not yet been considered. Similarly, regarding the activated carbon adsorption method and the flocculant addition method, although various processing performances have been confirmed, the current condition is that the processing conditions have to be determined based on empirical rules.
[0004]
[Problems to be solved by the invention]
In view of such problems of the prior art, the present invention is a treatment method for separating and removing dioxins in wastewater by adding a flocculant to the wastewater, regardless of empirical rules, and optimal from the characteristics of dioxins. A method for determining processing conditions is provided.
[0005]
[Means for Solving the Problems]
As a result of intensive studies from the above viewpoint, the present inventors have determined the target dioxin residual ratio and the target treated water SS in the method for separating and removing dioxins in wastewater using a flocculant. From these, the SS of raw water and the SS conversion ratio of the coagulant used, it was found that an optimum coagulant addition rate for achieving the target value can be calculated, and the present invention has been completed.
[0006]
That is, the present invention determines the target dioxin residual ratio and the SS concentration of treated water in a method for separating and removing dioxins contained in wastewater by adding a flocculant to the wastewater containing dioxins. The present invention relates to a method for determining a flocculant addition rate based on the SS concentration of raw water.
[0007]
More specifically, the present invention defines a target dioxin residual ratio and SS concentration of treated water, and uses the following formula A:
[0008]
[Formula 3]
Figure 0003645195
[0009]
(In the above formula, C is the flocculant addition rate (mg / L); η is the target dioxin residual ratio; SS inf is the SS concentration of raw water (mg / L); SS eff is the target SS of treated water Concentration (mg / L); α is SS conversion ratio of flocculant;
In accordance with the method for determining the flocculant addition rate.
[0010]
Further, the present inventors have also found that an estimated value of the concentration of dioxins in the generated sludge can be calculated when the flocculant is used at the addition rate determined as described above. That is, in another embodiment of the present invention, the dioxin concentration in the produced sludge separated from the wastewater according to the method described above is expressed by the following formula B:
[0011]
[Formula 4]
Figure 0003645195
[0012]
(In the above formula, β is the concentration of dioxins in the produced sludge (ng / g); D inf / is the total dioxins concentration of raw water (pg / L); SS inf is the SS concentration of raw water (mg / L); α Is the SS conversion ratio of the flocculant; C is the flocculant addition rate (mg / L);
According to the estimation method.
[0013]
In the above formula, the SS conversion ratio α of the flocculant indicates the rate at which the flocculant added in the wastewater migrates from the wastewater into the sludge after the flocculant treatment, and each flocculant has its own unique value. doing. The dioxin residual ratio η indicates a ratio D eff / D inf between the dioxin concentration D eff in the treated water targeted by the coagulation treatment and the dioxin concentration D inf in the wastewater raw water.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the theory according to the present invention will be described.
Dioxins contained in waste water are generally classified into SS and non-SS properties. Here, SS means suspended solids. The SS substance is present in suspended particles having a size of 1 μm or more, and the non-SS substance is a substance present in the filtrate using a filter paper having a pore diameter of 1 μm. When an aggregating agent is added to the wastewater and appropriate agglomeration treatment is performed, colloidal particles of nanometer level or more are taken into the agglomeration floc, so that not only SS substances but also non-SS substances are partly removed. It is known that
[0015]
The present invention utilizes the colloidal particle removal mechanism described above in consideration of the properties of dioxins. Specifically, dioxins are hardly dissolved in water by the inventors' research, and most non-SS components of dioxins are present in the colloidal particles after the aggregation treatment. I understood. According to an experiment using the incinerator scrubber wastewater of the present inventors, about 30% of non-SS dioxins were contained in the raw wastewater, but after adding a flocculant and performing appropriate coagulation treatment It was found that almost no non-SS dioxins were present in the treated water, and most of the dioxins contained in the treated water were SS dioxins. Note that this is not the case when the aggregation conditions are inadequate and a good aggregation floc cannot be formed.
[0016]
The above can be interpreted from the aggregation theory as follows. That is, when an aggregating agent is added to wastewater containing dioxins and agglomeration treatment is performed, colloidal particles of 1 nm or more are easily adsorbed by the agglomerated flocs to form solid-liquid separable flocs, thereby providing non-SS properties. Dioxins migrate to solids (SS). Dioxins are practically difficult to exist in a state of 1 nm or less because of their own molecular weight and hydrophobicity.
[0017]
The present inventors have found that the above formula A can be obtained by deriving a mass balance formula in waste water based on the above principle. Furthermore, on the premise that almost no non-SS dioxins are present in the treated water, it has also been found that the concentration of dioxins in the sludge produced by the coagulation treatment can be easily estimated from the above formula B from the mass balance. . This is very useful in considering waste disposal.
[0018]
For each of raw waste water, treated water after flocculation treatment, and sludge obtained by flocculation treatment, the amount of water (volume) is expressed as Q inf [L], Q eff [L], Q s [L]; SS, SS inf [mg / L], SS eff [mg / L], SS s [mg / L]; the total dioxin concentration is determined by D inf [pg / L], D eff [pg / L], D s [pg / L]; In addition, the concentration of SS dioxins for each of the raw waste water and the treated water after flocculation treatment is D inf (SS) [pg / L], D eff (SS) [pg / L]; The concentration of dioxins is D inf (nS) [pg / L], D eff (nS) [pg / L]; Here, SS dioxins indicate dioxins that cannot pass through a 1 μm filter, and non-SS dioxins indicate dioxins in a 1 μm filter filtrate.
[0019]
Further, the addition amount of the flocculant necessary for the flocculation treatment is C [mg / L], and the sludge (SS) conversion ratio of the flocculant is α. These relationships are shown in FIG.
The mass balance of SS in the system is expressed by the following equation (1).
[0020]
[Formula 5]
Figure 0003645195
[0021]
The material balance of dioxins (DXN) is expressed by the following formula (2).
[0022]
[Formula 6]
Figure 0003645195
[0023]
Also,
[0024]
[Formula 7]
Figure 0003645195
[0025]
Substituting equation (2) into equation (3),
[0026]
[Formula 8]
Figure 0003645195
[0027]
Here, when the DXN content in SS (sludge) after adding the flocculant is β [ng / g],
[0028]
[Formula 9]
Figure 0003645195
[0029]
Substituting Equations (5) and (6) into Equation (4),
[0030]
[Formula 10]
Figure 0003645195
[0031]
Substituting equation (1) into equation (7),
[0032]
[Formula 11]
Figure 0003645195
[0033]
here,
[0034]
[Formula 12]
Figure 0003645195
[0035]
So
[0036]
[Formula 13]
Figure 0003645195
[0037]
When the residual ratio of dioxins (DXN) is η,
[0038]
[Formula 14]
Figure 0003645195
[0039]
Therefore, if the target dioxin residual ratio (η) and the SS concentration (SS eff ) (mg / L) of the treated water are determined by the coagulation treatment, these values and the SS concentration (SS inf ) (SS inf ) ( By substituting mg / L) and the SS conversion ratio (α) of the flocculant to be used in the above formula A, the optimum addition rate C (mg / L) of the flocculant can be calculated.
[0040]
From equation (9),
[0041]
[Formula 15]
Figure 0003645195
[0042]
Therefore, dioxins contained in the resulting sludge when the flocculant is added to the raw wastewater with the dioxin concentration (D inf ) (pg / L) at the addition rate C determined above. The concentration (estimated value) can be calculated by substituting each numerical value into the above equation B.
[0043]
From the above, according to the present invention, in the method for separating and removing dioxins in the wastewater by the coagulation treatment, if the target dioxin residual ratio and the target treated water SS are set in advance, these numerical values are set. , Raw water SS (which can be determined by measurement) and the SS conversion ratio of the flocculant (which is specific to each flocculant and is determined by determining the flocculant to be used) and substituting into the above equation A, the set target In order to achieve the value, the optimum addition rate of the flocculant can be obtained, and an effective flocculation treatment can be achieved. In particular, according to the method of the present invention, since it is possible to calculate the flocculant addition rate without measuring the dioxin concentration in the wastewater raw water, it is not necessary to perform time-consuming dioxin concentration measurement during processing, Processing conditions can be determined quickly and easily. Furthermore, the dioxins concentration of the produced sludge can be estimated by the above equation B, which is extremely useful in considering the subsequent waste treatment process.
[0044]
As the flocculant that can be used in the present invention, a flocculant selected from the group consisting of inorganic flocculants, polymer flocculants, and combinations thereof can be used. Specifically, inorganic flocculants such as FeCl 3 , PAC (polyaluminum chloride), sulfate band (aluminum sulfate), polyiron (polyferric sulfate) and ferrous sulfate, and cations such as polydialkylaminoethyl methacrylate Preferable examples include a polymer flocculant.
[0045]
The SS conversion ratio of the flocculant can be calculated stoichiometrically for each flocculant or can be determined experimentally. For example, when PAC is used as the aggregating agent, assuming that the aluminum in the PAC is aluminum hydroxide, the SS conversion ratio of the PAC is calculated as 0.153 by the following equation.
[0046]
[Formula 16]
Figure 0003645195
[0047]
When FeCl 3 is used as the flocculant, the SS conversion ratio is calculated as 0.66 by the following equation.
[0048]
[Formula 17]
Figure 0003645195
[0049]
Moreover, when calculating | requiring SS conversion ratio of a flocculant by experiment, it can obtain | require by subtracting SS of raw | natural water from the total SS after adding a flocculant, for example.
In order to further facilitate the sedimentation and separation of flocs, anionic polymer flocculants such as polyvinyl sulfonate and polyacrylamide hydrolysate, nonionic polymer flocculants such as polyacrylamide and polyvinyl alcohol, sodium alginate, etc. These coagulation aids can also be used in combination.
[0050]
Means for removing solids aggregated by the method according to the present invention from the waste water by solid-liquid separation can include unit operations well known in the art such as precipitation, flotation, filtration, membrane treatment, etc., and these unit operations Can be used in appropriate combination. The sludge containing the separated dioxins can be subjected to disposal known in the art such as incineration and melting.
[0051]
In addition, this invention also provides the apparatus which processes the waste_water | drain containing dioxins based on said technical thought. That is, another aspect of the present invention is an apparatus for aggregating wastewater containing dioxins,
Means for measuring the SS concentration of raw wastewater;
Means for adding an amount of coagulant necessary to achieve the target residual ratio of dioxins and the SS concentration of treated water, calculated based on the measured SS concentration of raw water;
It is related with the apparatus characterized by comprising.
[0052]
【Example】
Example 1
Dioxins were separated and removed from the leachate at the final disposal site by the coagulation sedimentation method according to the method of the present invention. The quality of the treated raw water was 160 mg / L for SS and 210 pg / L for total dioxins (DXN). The target treated water SS was set to 7 mg / L, and the total DXN concentration in the target treated water was set to 5 pg / L (DXN residual ratio is 0.0238). PAC was used as the flocculant. As described above, the PAC SS conversion ratio was 0.153 when stoichiometrically determined that the aluminum in the PAC was aluminum hydroxide. When these numerical values were substituted into Formula A, the flocculant addition rate was calculated to be 876 mg / L. Moreover, when each said numerical value was substituted to Formula B, DXN content rate in the produced | generated sludge was estimated with 0.71 ng / g.
[0053]
Based on the above calculation, 900 mg / L PAC flocculant and 2 mg / L polymer (organic polymer flocculant: Ebagulose A-151 (anionic), Ebagulose N-800 (nonionic)) are put into waste water. Then, the agglomeration treatment was performed at a sedimentation area load of 28 m / d.
[0054]
When the quality of the treated water was measured, SS was 5.7 mg / L, and total DXN was 3.7 pg / L, which was almost equal to the target value. The removal rate of DXN was 98.2%. Moreover, when the DXN density | concentration of the produced | generated sludge was measured, it was substantially equivalent to the predicted value at 0.83 ng / g. Conditions and results are summarized in Table 1.
[0055]
Example 2
The same raw waste water as in Example 1 was subjected to a treatment for increasing the purification level by performing a filtration treatment after the coagulation treatment. As the filtration treatment, sand having an effective diameter of 0.8 mm was used as a filter medium. The target treated water SS was set to 2 mg / L, and the target treated water DXN concentration was set to 2 pg / L (DXN residual ratio is 0.00952). As the flocculant, PAC was used as in Example 1. When each numerical value was substituted into Formula A, the flocculant addition rate was calculated to be 327 mg / L.
[0056]
Based on the above calculation, 350 mg / L PAC flocculant and 1 mg / L polymer (organic polymer flocculant) were charged into the waste water, and agglomeration treatment was performed at a sedimentation water area load of 28 m / d. Filtration was performed at a filtration rate of 110 m / d.
[0057]
When the quality of the treated water was measured, SS was 1.3 mg / L, and total DXN was 1.5 pg / L, which was almost equal to the target value. The removal rate of DXN was 99.3%. Conditions and results are summarized in Table 1.
[0058]
Example 3
Dioxins were separated and removed from the incinerator scrubber wastewater by the coagulation sedimentation method of the present invention. The quality of the treated raw water was 110 mg / L for SS and 1300 pg / L for the total dioxins (DXN) concentration. The target treated water SS was set to 7 mg / L, and the DXN concentration in the target treated water was set to 5 pg / L (DXN residual ratio is 0.00385). FeCl 3 was used as the flocculant. The SS conversion ratio of FeCl 3 was 0.66 as explained above. When these numerical values were substituted into Formula A, the flocculant addition rate was calculated to be 2588 mg / L.
[0059]
Based on the above calculation, 2600 mg / L of FeCl 2 flocculant and 2 mg / L of polymer (organic polymer flocculant) were charged into the waste water, and agglomeration treatment was performed at a sedimentation water area load of 25 m / d.
[0060]
When the quality of the treated water was measured, SS was 7 mg / L, and total DXN was 4.2 pg / L, which was almost equal to the target value. The removal rate of DXN was 99.7%. Conditions and results are summarized in Table 1.
[0061]
[Table 1]
Figure 0003645195
[0062]
【The invention's effect】
According to the present invention, in the method for separating and removing dioxins in wastewater by coagulation treatment, the optimum addition rate of the coagulant is calculated by setting the target dioxin residual ratio and the target treated water SS. Therefore, it is possible to achieve a more effective agglomeration process than the conventional treatment method based on empirical rules. In particular, according to the method of the present invention, it is possible to quickly and easily determine the processing conditions (flocculating agent addition rate) without the need for time-consuming dioxin concentration measurement. Furthermore, the concentration of dioxins in the produced sludge can be estimated, which is extremely useful in considering the subsequent waste treatment process.
[Brief description of the drawings]
FIG. 1 is a diagram for explaining the meaning of each symbol in a mass balance equation according to the present invention.

Claims (4)

ダイオキシン類を含む排水に凝集剤を加えることにより、排水中に含まれるダイオキシン類を分離して除去する方法において、目標とするダイオキシン類残存比及び処理水のSS濃度を定め、原水のSS濃度に基づいて凝集剤添加率を決定する方法。In the method of separating and removing dioxins contained in the wastewater by adding a flocculant to the wastewater containing dioxins, the target dioxin residual ratio and SS concentration of treated water are determined, and the SS concentration of raw water is set. A method for determining a flocculant addition rate based on the above. 凝集剤添加率Cを下式Aにしたがって決定する請求項1に記載の方法。
【式1】
Figure 0003645195
(上式中、Cは凝集剤添加率(mg/L);ηは目標とするダイオキシン類残存比;SSinfは原水のSS濃度(mg/L);SSeffは目標とする処理水のSS濃度(mg/L);αは凝集剤のSS転換比;である)
The method according to claim 1, wherein the addition rate C of the flocculant is determined according to the following formula A.
[Formula 1]
Figure 0003645195
(In the above formula, C is the flocculant addition rate (mg / L); η is the target dioxin residual ratio; SS inf is the SS concentration of raw water (mg / L); SS eff is the target SS of treated water Concentration (mg / L); α is SS conversion ratio of flocculant;
請求項2に記載の方法に従って排水から分離された生成汚泥中のダイオキシン濃度を、下式Bに従って推定する方法。
【式2】
Figure 0003645195
(上式中、βは生成汚泥中のダイオキシン類濃度(ng/g);Dinf/は原水の全ダイオキシン類濃度(pg/L);SSinfは原水のSS濃度(mg/L);αは凝集剤のSS転換比;Cは凝集剤添加率(mg/L);である)
The method to estimate the dioxin density | concentration in the production | generation sludge isolate | separated from the waste_water | drain according to the method of Claim 2 according to the following formula B.
[Formula 2]
Figure 0003645195
(In the above formula, β is the concentration of dioxins in the produced sludge (ng / g); D inf / is the total dioxins concentration of raw water (pg / L); SS inf is the SS concentration of raw water (mg / L); α Is the SS conversion ratio of the flocculant; C is the flocculant addition rate (mg / L);
ダイオキシン類を含む排水を凝集処理する装置であって、
排水原水のSS濃度を測定する手段;
測定された原水のSS濃度に基づいて算出された、目標とするダイオキシン類残存比及び処理水のSS濃度を達成するのに必要な量の凝集剤を排水原水中に加える手段;
を具備することを特徴とする装置。
An apparatus for aggregating wastewater containing dioxins,
Means for measuring the SS concentration of raw wastewater;
Means for adding an amount of coagulant necessary to achieve the target residual ratio of dioxins and the SS concentration of treated water, calculated based on the measured SS concentration of raw water;
The apparatus characterized by comprising.
JP2001132439A 2001-04-27 2001-04-27 How to remove dioxins Expired - Fee Related JP3645195B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001132439A JP3645195B2 (en) 2001-04-27 2001-04-27 How to remove dioxins

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001132439A JP3645195B2 (en) 2001-04-27 2001-04-27 How to remove dioxins

Publications (2)

Publication Number Publication Date
JP2002320974A JP2002320974A (en) 2002-11-05
JP3645195B2 true JP3645195B2 (en) 2005-05-11

Family

ID=18980450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001132439A Expired - Fee Related JP3645195B2 (en) 2001-04-27 2001-04-27 How to remove dioxins

Country Status (1)

Country Link
JP (1) JP3645195B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100430325C (en) * 2003-01-31 2008-11-05 出光兴产株式会社 Method for treating waste water containing hardly decomposable harmful substances
US7335310B2 (en) 2003-01-31 2008-02-26 Idemitsu Kosan Co., Ltd. Method of treating wastewater containing hardly decomposable harmful substances

Also Published As

Publication number Publication date
JP2002320974A (en) 2002-11-05

Similar Documents

Publication Publication Date Title
CN102001734B (en) Heavy metal settling agent for treating mercury-containing wastewater
JP4791936B2 (en) Dyeing wastewater treatment method
JP2005013892A (en) Water cleaning method
JP6611480B2 (en) Sewage treatment method, phosphorus resource production method
JP4806426B2 (en) Method and apparatus for detoxifying heavy metal ions simultaneously with inorganic suspended particles
JP4761447B2 (en) Method and apparatus for treating manganese-containing water
JP3645195B2 (en) How to remove dioxins
JP2004275884A (en) Waste water treating method, waste water treating apparatus and treating system
JP2005125153A (en) Method and apparatus for treating fluorine-containing waste water
JP2008126168A (en) Coagulating sedimentation method of waste water
JP2005199248A (en) Raw water treatment process
JP3262015B2 (en) Water treatment method
JP3642516B2 (en) Method and apparatus for removing COD components in water
JP2004290777A (en) Method for treating arsenic-containing water
JP2003053350A (en) Method and device for highly removing cod component in water
JP3305012B2 (en) Method for regenerating ferric chloride solution from wastewater sludge
JPH07232161A (en) Method for removing phosphorus in water
JP2004290967A (en) Method for treating waste water
JP2006289316A (en) Method for treating waste water from livestock facility
JP2002113472A (en) High-speed coagulating sedimentation method for suspended water and its device
JP2005334856A (en) Method for treating waste water
JP2005013857A (en) Flocculant for treating waste water, method for manufacturing the same, and method for treating waste water
JP2003112004A (en) Flocculation method
JP2004188340A (en) Method for treating liquid containing dioxins
JP4187201B2 (en) Aggregation method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050202

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees