JP3644842B2 - Method for producing organic acid from waste organic matter - Google Patents

Method for producing organic acid from waste organic matter Download PDF

Info

Publication number
JP3644842B2
JP3644842B2 JP9032899A JP9032899A JP3644842B2 JP 3644842 B2 JP3644842 B2 JP 3644842B2 JP 9032899 A JP9032899 A JP 9032899A JP 9032899 A JP9032899 A JP 9032899A JP 3644842 B2 JP3644842 B2 JP 3644842B2
Authority
JP
Japan
Prior art keywords
acid
organic
waste
temperature
fish
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP9032899A
Other languages
Japanese (ja)
Other versions
JPH11342379A (en
Inventor
弘之 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP9032899A priority Critical patent/JP3644842B2/en
Publication of JPH11342379A publication Critical patent/JPH11342379A/en
Application granted granted Critical
Publication of JP3644842B2 publication Critical patent/JP3644842B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/74Recovery of fats, fatty oils, fatty acids or other fatty substances, e.g. lanolin or waxes

Description

【0001】
【発明の属する技術分野】
この出願の発明は、廃棄有機物からの有機酸の製造方法に関するものである。さらに詳しくは、この出願の発明は、魚市場や飲食店、食品加工業等から廃棄される魚のあら(魚肉や、はらわた、骨、うろこ)等からの廃棄有機物の分解によって、生理活性物質としてのエイコサペンタエン酸(EPA)、ドコサヘキサエン酸(DHA)、あるいは生分解性ポリマー、たとえばポリ乳酸等の有用物質、さらに各種の化学品等への利用が期待される有機酸を取得することのできる新しい方法に関するものである。
【0002】
【従来の技術とその課題】
1996年1月より、ロンドン条約の改正によって食品加工産業等から廃棄される多くの天然有機物の海洋投棄ができなくなった。このため、魚市場や加工場から出る魚のあら(魚肉、はらわた、骨、うろこ)、砂糖工場の廃糖蜜、焼酎工場の絞りかすや廃液をはじめとする各種大量の廃有機物が海洋へ投棄できない状況になっている。たとえば、大阪府だけでも、魚市場から排出される魚のあらは、魚の入荷量の約45%、1日320トンにものぼると算出されている。このような大量の廃棄有機物の処理が焦眉の課題になっている。
【0003】
このような状況において、これら廃棄物をコンポスト化しようとする検討が各方面において進められているが、コンポストの集積にもおのずと限界がある。また一方で、これら廃棄物の有効資源化プロセスの開発も進められており、乾燥粉砕品を養殖魚の餌として利用すること等も試みられている。しかしこの場合にも、乾燥粉砕品そのものは、付加価値が低く、逆に生産販売価格が高くなるため、経済性において実際的でないという問題がある。
【0004】
このため、より付加価値が高く、産業上の利用価値の大きな有効資源化を図ることが重要な課題になっている。
そこで、この出願の発明は、以上のとおりの従来技術の問題点を解消し、廃棄有機物の有効資源化して、付加価値と産業上の利用性の高い物質として取得することのできる、新しい技術手段を提供することを課題としている。
【0005】
【課題を解決するための手段】
この出願は、上記の課題を解決するために、第1には、有機廃棄物を温度200〜280℃、圧力1.5〜5.9MPaで亜臨界水によ処理乳酸、クエン酸、酪酸およびコハク酸を生成させることを特徴とす有機酸の製造方法を、第2には、有機廃棄が水産廃棄物または水産加工品であることを特徴とする製造方法を提供し、また、第3には、設定温度240℃にて乳酸を回収することを特徴とする製造方法を提供するものである。
また、この出願の発明は、第4には、水産廃棄物または水産加工品を温度200〜300℃、圧力1.5〜15MPaで亜臨界水による処理をすることを特徴とするエイコサペンタエン酸、ドコサヘキサエン酸および乳酸の少なくともいずれかを回収することを特徴とするカルボン酸の製造方法を提供し、第5には、温度230〜280℃、圧力を1.9〜5.9MPaで亜臨界水による処理をすることを特徴とする製造方法を、また、第6には、油相からエイコサペンタエン酸またはドコサヘキサエン酸を回収することを特徴とする上記の製造方法を、第7には、水相から乳酸を回収することを特徴とする上記の製造方法を、さらに、第8には、280℃以下の亜臨界状態で加水分解することを特徴とする上記の製造方法を提供するものである。
【0006】
【発明の実施の形態】
この出願の発明は、上記のとおりの特徴を持つものであるが、以下にその実施の形態について説明する。
まず、この発明が対象とする廃棄有機物は、魚のあらをはじめとする各種の廃棄物や糖分、炭水化物、タンパク質等を成分とする天然あるいは加工品としての有機廃棄物である。
【0007】
これらの廃棄有機物を、この発明においては、臨界水よりも低温低圧な条件としての亜臨界水によって処理して、有機酸を製造する。この方法で肝要な点は、酸化反応等によってCO2という地球温暖化ガスにまで変換することなしに、有効資源としての有機酸を製造し、回収することである。この発明の方法において亜臨界水による加水分解等の処理により生成させる有機酸はカルボン酸、そしてこれに水酸基が置換されたヒドロキシカルボン酸等である。
【0008】
たとえばカルボン酸としては、酪酸やこはく酸等の一価もしくは多価の脂肪酸、エイコサペンタエン酸(EPA)、ドコサヘキサエン酸(DHA)等の長鎖不飽和脂肪酸、ヒドロキシカルボン酸としては、乳酸やクエン酸等が例示される。これら有機酸はいずれも有用なものである。たとえばその一つとしての乳酸が重要なものとして考慮される。乳酸は、その希釈溶液に殺菌作用があり、医薬品への応用をはじめ、なめし皮の脱灰や、清涼飲料、合成清酒等にも用いられている物質であって、産業上の利用価値が高いものであり、また、近年では、乳酸を原料としたポリマー(ポリ乳酸)は、生分解性ポリマーとして環境面での価値の高い素材としても注目されているものである。
【0009】
また、前記のエイコサペンタエン酸(EPA)は動脈硬化症、血栓病等の治療に、ドコサヘキサエン酸(DHA)は、高脂血症、痴呆症、循環器系疾患等の治療にも有用な物質でもある。
また、この発明においては、精製分離されない状態での油分(脂肪酸)は、洗浄剤、界面活性剤等の合成原料として、また、燃料や食用油として有用なものである。
【0010】
廃棄有機物は、この発明の方法においては、魚肉類のペーストや微粉末の状態とし、あるいは頭部や背骨のついたままの魚肉や内臓を、水と混合し、加熱加圧して超臨界あるいは亜臨界状態において処理する。
この処理は、主として、加水分解として性格づけられるものであるから、これに類似、もしくは同伴する反応が含まれてもよい。
【0011】
たとえば、図1は、魚あらの場合について、この発明の方法を加水分解処理として示したのもである。その特徴をより具体的に例示すると以下のとおりである。
▲1▼ 魚あらを亜臨界水加水分解することにより、5〜10分程度で有機質の部分が液化する。
【0012】
▲2▼ 骨は液体から簡単に分離(固液分離)できる。骨の主成分はリン酸カルシウムであるため、魚の骨から、リン酸を大量生産することが可能である。
リン鉱石は極めて近い将来枯渇するため、魚あらの骨からリン酸を製造するプロセスを構築することは、地域産業振興のみならず、国家的、地球的観点からもきわめて重要である。
【0013】
▲3▼ 固液分離された液体は油相と水相に分かれる。
▲4▼ 水相には高濃度の乳酸、アミノ酸、水溶性蛋白質、リン酸などが生成する。
▲5▼ 油相にはDHAやEPAなどの高価値物質が、高濃度で含まれている。これらを分離した後の油は、燃料、食用油、石鹸などの原料として利用できる。
【0014】
▲6▼ 魚あら有機質物(含水率;約70%)100トンから、たとえば生分解性プラスチック(ポリ乳酸)の原料となる乳酸が、200℃、5分程度の分解で約1トン、その後、270℃、7分の分解で油が約48m3 、アミノ酸5.2トン生成することができる。
以上のように、魚あらを処理することにより、全て付加価値の高い資源に転換することができる。
【0015】
一般的には、超臨界水による処理は、
温度: 375℃以上
圧力: 22.1MPa以上
反応時間: 1〜10分
の範囲において行う。対象とする廃棄有機物の種類やその状態、処理量等によっても異なるが、より適当には、たとえば温度:375〜400℃、圧力:22.1〜24.0MPaとすることが考慮される。そして、廃棄有機物の処理量と水との割合については、たとえば全有機炭素質換算として、重量比が廃棄有機物/水=0.05〜0.2の割合とすることが考慮される。
【0016】
亜臨界水による処理では、
温度:200〜300℃
圧力:1.5〜15MPa
程度とすることが考慮される。より適当には、たとえば温度230〜280℃、圧力1.9〜5.9MPaとする。また廃棄有機物の処理量と水との割合については、全有機炭素換算として、重量比が、廃棄有機物/水=0.05〜0.2の割合とすることが考慮される。
【0017】
処理後は、たとえば前記図1のように、濾過により残存する骨等の固形分を分離し、液化した有機物は、油分、脂肪酸、そして乳酸等として分離する。
有機物の分離に際しては、イオン交換法等により各成分に分離してもよいし、塩基物質の添加によって塩としてもよいし、エステル化してもよいし、さらには直ちに他の有機反応に原料物質として用いてもよい。
【0018】
もちろん、この発明は、上記の例示に限られることはなく、様々な有価資源化技術として構成することが可能となる。
以下、実施例を示し、さらに詳しくこの発明について説明する。
【0019】
【実施例】
(実施例1)
図2は、水の相変化について示した温度と圧力との相関図である。これに従って、圧力3〜4MPa、温度200℃以上の条件において魚肉の処理を行った。
反応は、次の表1の手順に従った。
【0020】
【表1】

Figure 0003644842
【0021】
図3は、3MPa(30気圧)の条件下で、5分間反応処理した場合の、乳酸(A)と、酢酸、ギ酸等の脂肪酸(B)の生成量と反応温度との関係を示したものである。250℃ないしその近傍の温度において、乳酸は、乾燥魚肉1g当り0.35g生成していることが確認される。
また、図4は、250℃、3MPaの条件下での処理において、反応時間と乳酸生成量との関係を示している。短い反応時間において効率的に乳酸が生成することがわかる。
(実施例2)
ステンレス製反応管(内容積、約7cm3)に廃魚肉と水を混合した試料を入れ溶融塩浴(温度200〜400℃)中で所定時間処理した。亜臨界および超臨界状態での処理である。生成物である有機酸は、高速液体クロマトグラフィー(カラム:Shim-pack SCR-102H、移動相:10mM過塩素酸、検出条件:Shimazu SPD-6AV 210nm )を用いて分析した。同時に、生成物の炭素濃度をTOC分析器(Shimazu TOC-500 )により分析した。
【0022】
図5は、亜臨界状態での処理における有機酸収率と反応温度との関係を示したものである。収率は、魚肉乾燥重量に対する生成された有機酸の重量として定義している。圧力は水の飽和蒸気圧に相当する。収率のピークは成分によって異なり、乳酸、クエン酸、こはく酸は240℃付近、酪酸は260℃付近に存在する。温度を240℃に設定することにより、乳酸を高収率で得ることができることが判明した。
【0023】
図6は、240℃における有機酸の収率の経時変化を示したものである。各種有機酸とも、反応速度は大きく、乳酸、クエン酸、こはく酸は7分で収率がピークになることが判明した。
(実施例3)
以下の手順によって魚肉の亜臨界状態下での加水分解を行なった。
1)処理プロセス
魚肉(あじ)はワーリングブレンダー(Model 31 BL 92、Dynamic Corporation of America)を用いて最高回転速度で5分間ホモジナイズした後に冷凍庫(253K)で保存した。スウェジロック・キャップを装着したステンレス管(SUS316,内径7mm、長さ150mm、内容積7.0cm3)を反応管として用いた。約1.0gの魚肉(含水率69−73%)とミリQ水(3.36cm3)を反応管充填した。超臨界状態にするためには3.06cm3(653K)もしくは1.76cm3(673K)のミリQ水を加えた。試料中の溶存酸素をアルゴンガスで置換した後に反応管を閉じ、一定温度に予熱した硝酸カリウムと硝酸ナトリウムを含む溶融塩浴(Thomas Kagaku Co.Ltd)に入れた。反応は473−673Kの範囲で行い、反応管中の圧力を、亜臨界状態については水蒸気表から求め、超臨界状態についてはRedlich−Kwong式から推算した。所定時間後(1から30分)、反応管を水浴に入れ直ちに室温まで冷却した。
2)有機酸HPLCによる分析
イオン排除カラム(Shim−pack SCR−100H、内径8.0mm×長さ300mm)を用いたHPLC(Shimadzu LC−6A)を各有機酸濃度を求めるために使用した。移動相として10 mol/m3の過塩素酸を333Kに維持されたカラムに0.8cm3/minの流量で流した。反応生成物はミリQ水で500cm3に希釈した後、ミリポア膜(孔径0.22μm)で濾過して油滴や不溶性固体を除去した。希釈したサンプル(0.020cm3)を注入して、乳酸,クエン酸、リンゴ酸、酢酸、蟻酸の濃度は分光光度計(Shimadzu SPD−6AV)により測定した(波長210nm)。各有機酸の保持時間は既知量の標準有機酸を内部標準として試料に添加することによって確かめた。
3)水溶性生成物のTOC測定
反応性生成物の全有機炭素(TOC)をTOC分析装置(Shimadzu TOC−500)によって測定した。標準的方法に従って、0.01cm3の水溶性生成物をTOC分析装置に注入した。TOCは全炭素(TC)から無機炭素(IC)を差し引いて求めた。測定した全ての試料においてICの値はTCの10%以下であった。
4)原料および固体生成物の炭素、窒素および水素含有量
原料魚肉と固体性生物の炭素、窒素および水素含有量をCHN coder(Yanaco,MT−3)によって測定した。分析の前に試料をオーブン(348K)で2日間乾燥した。試料数mgをCHN coderに負荷して測定した。
5)結果
▲1▼魚肉の亜臨界状態下での液化
473K、573Kおよび623Kでの反応生成物(反応時間5分)については、473K(1.52MPa)では反応生成物として水相と固相が得られた。573K(8.40MPa)では固相の量が減少し、油相が形成された。反応温度を623K(16.17MPa)にあげると固相が消失し、油相の量も減少した。二酸化炭素、窒素などのガス状生成物は測定した反応条件下では顕著に見られなかった。表2に示すように乾燥した原料魚肉の炭素、窒素および水素含有量はそれぞれ58.74%、11.11%、8.66%であった。その他(21.48%)にはイオウや酸素原子が含まれている。固体生成物の成分比は原料魚肉のものに近かった。図7は固体の量が反応温度の上昇とともに減少していることを示している。これらの結果は固体生成物が未反応魚肉あることを示唆している。図7では油相の容積が反応温度とともに増加し、580K以上で減少することも示している。油相は反応温度の上昇とともに固体の一部から生成した。高い反応温度では油相は他の有機性化合物に分解された。GC/MSを用いた分析では、油相はアラキドン酸、エイコサペンタエン酸(EPA)、ドコサヘキサエン酸(DHA)などの有用な脂肪酸を含んでいることが確認された。これらの結果は魚肉は亜臨界加水分解によって短時間に液化され、油相と水相に変換されることを示している。
【0024】
【表2】
Figure 0003644842
【0025】
▲2▼水相の全有機炭素(TOC)
水相のTOCの乾燥した原料魚肉のTOCに対する比を反応温度に対して図8にプロットした。水相のTOCは473Kでの0.3(kgC/kgC)から徐々に増加し573K以上では一定値(0.65kgC/kgC)に達したが、これは65%の原料魚肉の有機炭素が水相に回収されることを示している。TOCは超臨界条件下では減少した(673K、30.0MPa)。TOCの反応温度の上昇にともなう増加は図7で示された反応温度の上昇に伴う固体の減少によってよく説明できる。513Kでの水相のTOCの経時変化は図9に示されている。TOCは時間とともに急激に増加し10分までに一定値に達したが、これは亜臨界状態下での加水分解反応が非常に速いこと、この条件下では二酸化炭素が生成されないことを示唆している。
【0026】
<3>水相での有機酸生産
図10に水相に生産される有機酸収率(反応時間5分)を反応温度にプロットした。収率は乾燥魚肉1kgから生産される有機酸重量(kg)として定義した。乳酸は原料魚肉に0.027kg/kg−dry meat含まれてはいたが、513K(3.35MPa)で5分間の反応で0.03kg/kg−dry meatの乳酸がみられた。超臨界状態下では(653Kと673K、30.0MPa)、ほとんどの乳酸は5分以内に分解されていた。一方、乳酸は530K以上で生産され、最大収率は653K(30.0MPa)の条件下で0.01kg/kg−dry meatであった。図11は513Kでの有機酸収率に及ぼす反応時間の影響を示している。乳酸はこの条件下で徐々に分解した。これらの結果は魚肉中に含まれる乳酸は513Kまではかなり安定であることを示している。亜臨界状態下での遠い魚肉の液化は魚肉からの乳酸回収に有利である。この結果に基づくと、大阪府で毎日排出される廃魚(320トン)から2.9トンの乳酸が生産できることになる。この乳酸は生分解性ポリマーの有用な原料となる。
【0029】
【発明の効果】
以上詳しく説明したとおり、この出願の発明によって、魚のあら等の廃棄有機物より、効率的に、乳酸、脂肪酸、EPA、DHA等の有機酸からなる有価資源の製造が可能とされる。
【図面の簡単な説明】
【図1】魚あらの処理プロセスを例示した図である。
【図2】水の相変化を示した温度−圧力相関図である。
【図3】実施例としての反応温度と乳酸等の生成量との関係を示した図である。
【図4】実施例としての反応時間と乳酸の生成量との関係を示した図である。
【図5】実施例としての反応温度と有機酸収率との関係を示した図である。
【図6】実施例としての反応時間と有機酸収率との関係を示した図である。
【図7】固体と油相の量の反応温度との関係を例示した図である。
【図8】水相TOCの反応温度との関係を例示した図である。
【図9】水相TOCの反応時間との関係を例示した図である。
【図10】有機酸収量の反応温度との関係を例示した図である。
【図11】有機酸収量の反応時間との関係を例示した図である。[0001]
BACKGROUND OF THE INVENTION
The invention of this application relates to a method for producing an organic acid from waste organic matter. More specifically, the invention of this application, fish market and restaurants, roughness of the fish to be discarded from the food processing industry, etc. (or fish, intestine, bone, scales) by the decomposition of waste organic matter from such, as bioactive substance eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), or a biodegradable polymer, e.g., useful substances such as polylactic acid, a new method capable of further application to various chemicals, etc. to obtain an organic acid to be expected It is about.
[0002]
[Prior art and its problems]
Since January 1996, the amendment to the London Convention has made it impossible to dispose of many natural organic materials discarded from the food processing industry. For this reason, a large amount of waste organic matter cannot be dumped into the ocean, including fish larvae (fish meat, harakata, bones, scales), sugar cane molasses, shochu liquor and waste liquid from shochu factory. It has become. For example, in Osaka alone, the amount of fish discharged from the fish market is calculated to be about 45% of the amount of fish received and 320 tons per day. Treatment of such a large amount of waste organic matter has become a serious issue.
[0003]
Under such circumstances, studies to compost these wastes are being made in various directions, but there is a limit to the accumulation of compost. On the other hand, development of an effective resource recycling process for these wastes has been promoted, and attempts have been made to use dried and ground products as food for cultured fish. However, even in this case, the dry pulverized product itself has a problem that it is not practical in terms of economy because it has low added value and conversely high production and sales price.
[0004]
For this reason, it has become an important issue to achieve effective resources with higher added value and greater industrial utility value.
Therefore, the invention of this application solves the problems of the prior art as described above, makes it an effective resource of waste organic matter, and can be acquired as a material with high added value and high industrial applicability. It is an issue to provide.
[0005]
[Means for Solving the Problems]
This application is to solve the above problems, the first, organic wastes temperature 200 to 280 ° C., lactic treated Ri by the sub-critical water at a pressure 1.5~5.9MPa, citric acid, the manufacturing method of an organic acid you, characterized in that to produce butyric acid and succinic acid, the second, organic waste to provide a manufacturing method which is a marine waste or processed marine products, also , the third, there is provided a method of manufacturing and recovering the lactic acid at a set temperature 240 ° C..
In addition, the invention of this application, fourthly, eicosapentaenoic acid, characterized in that marine waste or processed fishery product is treated with subcritical water at a temperature of 200 to 300 ° C. and a pressure of 1.5 to 15 MPa, A method for producing a carboxylic acid characterized by recovering at least one of docosahexaenoic acid and lactic acid is provided. Fifth, the temperature is 230 to 280 ° C. and the pressure is 1.9 to 5.9 MPa. A manufacturing method characterized by treating, and sixth, the above-mentioned manufacturing method characterized by recovering eicosapentaenoic acid or docosahexaenoic acid from the oil phase, and seventh, from the aqueous phase The above production method is characterized by recovering lactic acid, and eighthly, the above production method is characterized by hydrolyzing in a subcritical state at 280 ° C. or lower. That.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
The invention of this application has the features as described above, and an embodiment thereof will be described below.
First, the waste organic matter targeted by the present invention is a variety of wastes including fish, and organic wastes as natural or processed products containing sugars, carbohydrates, proteins and the like as components.
[0007]
These waste organic matter, in the present invention, than supercritical water was treated by subcritical water as a low temperature and low pressure conditions, the production of organic acids. The important point in this method is to produce and recover an organic acid as an effective resource without converting it to a global warming gas called CO 2 by an oxidation reaction or the like. Organic acid to produce by treatment such as hydrolysis method Te odor by subcritical water of the present invention is a carboxylic acid, and hydroxycarboxylic acids such as this hydroxyl group is substituted.
[0008]
Examples of carboxylic acids include mono- or polyvalent fatty acids such as butyric acid and succinic acid, long-chain unsaturated fatty acids such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), and hydroxycarboxylic acids such as lactic acid and citric acid. etc. is Ru is illustrated. Any of these organic acids is useful. For example, lactic acid as one of them is considered important. Lactic acid has a bactericidal action in its diluted solution, and is a substance used in pharmaceuticals, demineralization of tanned leather, soft drinks, synthetic sake, etc., and has high industrial utility value In recent years, a polymer using lactic acid as a raw material (polylactic acid) has attracted attention as a biodegradable polymer and a material with high environmental value.
[0009]
In addition, eicosapentaenoic acid (EPA) is a substance useful for the treatment of arteriosclerosis, thrombosis, etc., and docosahexaenoic acid (DHA) is also a substance useful for the treatment of hyperlipidemia, dementia, circulatory disease, etc. is there.
In the present invention, the oil (fatty acid) in a state where it is not purified and separated is useful as a synthetic raw material such as a cleaning agent and a surfactant, and as a fuel and edible oil.
[0010]
In the method of the present invention, the waste organic matter is in the form of a paste or fine powder of fish meat, or the fish meat or internal organs with the head or spine attached thereto is mixed with water, heated and pressurized to be supercritical or sublimated. Process in critical state.
Since this treatment is primarily characterized as hydrolysis, it may include similar or accompanying reactions.
[0011]
For example, FIG. 1 shows the method of the present invention as a hydrolysis treatment in the case of fish. The characteristics are specifically illustrated as follows.
(1) By subcritical water hydrolysis of fish, the organic part is liquefied in about 5 to 10 minutes.
[0012]
(2) Bone can be easily separated from liquid (solid-liquid separation). Since the main component of bone is calcium phosphate, it is possible to mass-produce phosphate from fish bone.
Since phosphorus ore will be depleted in the very near future, it is very important not only for the promotion of local industries but also for national and global perspectives to establish a process for producing phosphoric acid from fish bones.
[0013]
(3) The solid-liquid separated liquid is divided into an oil phase and an aqueous phase.
(4) High concentrations of lactic acid, amino acids, water-soluble proteins, phosphoric acid, etc. are produced in the aqueous phase.
(5) The oil phase contains high-value substances such as DHA and EPA at a high concentration. The oil after separating them can be used as a raw material for fuel, edible oil, soap and the like.
[0014]
(6) From 100 tons of organic matter (water content; about 70%) from fish, for example, lactic acid, which is a raw material of biodegradable plastic (polylactic acid), is about 1 ton after being decomposed at 200 ° C. for about 5 minutes, Decomposition at 270 ° C. for 7 minutes can produce about 48 m 3 of oil and 5.2 tons of amino acids.
As described above, all fish can be converted into resources with high added value by processing fish meal.
[0015]
In general, the treatment with supercritical water is
Temperature: 375 ° C. or higher Pressure: 22.1 MPa or higher Reaction time: 1 to 10 minutes. Although it varies depending on the type of waste organic matter to be treated, its state, the amount of treatment, etc., it is considered that the temperature is preferably 375 to 400 ° C. and the pressure is 22.1 to 24.0 MPa, for example. And about the ratio of the processing amount of waste organic matter, and water, it is considered that a weight ratio shall be a ratio of waste organic matter / water = 0.05-0.2, for example as total organic carbonaceous conversion.
[0016]
In the treatment with subcritical water,
Temperature: 200-300 ° C
Pressure: 1.5-15MPa
It is considered to be a degree. More suitably, for example, the temperature is 230 to 280 ° C. and the pressure is 1.9 to 5.9 MPa. In addition, regarding the ratio between the amount of waste organic matter treated and water, it is considered that the weight ratio is the proportion of waste organic matter / water = 0.05 to 0.2 in terms of total organic carbon.
[0017]
After the treatment, for example, as shown in FIG. 1, solids such as bone remaining by filtration are separated, and the liquefied organic matter is separated as oil, fatty acid, lactic acid, and the like.
When separating the organic substance, it may be separated into each component by ion exchange method, etc., may be converted into a salt by adding a basic substance, may be esterified, and immediately used as a raw material for other organic reactions. It may be used.
[0018]
Of course, the present invention is not limited to the above-described examples, and can be configured as various valuable resource-recycling technologies.
Hereinafter, the present invention will be described in more detail with reference to examples.
[0019]
【Example】
(Example 1)
FIG. 2 is a correlation diagram between temperature and pressure shown for the phase change of water. In accordance with this, the fish meat was processed under conditions of a pressure of 3 to 4 MPa and a temperature of 200 ° C.
The reaction followed the procedure in Table 1 below.
[0020]
[Table 1]
Figure 0003644842
[0021]
FIG. 3 shows the relationship between the reaction temperature and the production amount of lactic acid (A) and fatty acid (B) such as acetic acid and formic acid when reacted for 5 minutes under the condition of 3 MPa (30 atm). It is. It is confirmed that 0.35 g of lactic acid is produced per 1 g of dried fish meat at a temperature of 250 ° C. or in the vicinity thereof.
FIG. 4 shows the relationship between the reaction time and the amount of lactic acid produced in the treatment at 250 ° C. and 3 MPa. It can be seen that lactic acid is efficiently produced in a short reaction time.
(Example 2)
A sample obtained by mixing waste fish meat and water was placed in a stainless steel reaction tube (internal volume, about 7 cm 3 ) and treated in a molten salt bath (temperature 200 to 400 ° C.) for a predetermined time. Processing in subcritical and supercritical states. The organic acid as a product was analyzed using high performance liquid chromatography (column: Shim-pack SCR-102H, mobile phase: 10 mM perchloric acid, detection condition: Shimazu SPD-6AV 210 nm). At the same time, the carbon concentration of the product was analyzed with a TOC analyzer (Shimazu TOC-500).
[0022]
FIG. 5 shows the relationship between the organic acid yield and the reaction temperature in the treatment in the subcritical state. Yield is defined as the weight of organic acid produced relative to the dry weight of fish. The pressure corresponds to the saturated vapor pressure of water. The peak of yield varies depending on the components, and lactic acid, citric acid, and succinic acid are present at around 240 ° C. and butyric acid is present at around 260 ° C. It was found that lactic acid can be obtained in high yield by setting the temperature to 240 ° C.
[0023]
FIG. 6 shows the change over time in the yield of organic acid at 240 ° C. It was found that the reaction rate was high with various organic acids, and the yields of lactic acid, citric acid, and succinic acid peaked in 7 minutes.
(Example 3)
The fish meat was hydrolyzed under subcritical conditions by the following procedure.
1) Processed Fish Fish (Aji) was homogenized at a maximum rotation speed for 5 minutes using a Waring blender (Model 31 BL 92, Dynamic Corporation of America) and then stored in a freezer (253K). A stainless steel tube (SUS316, inner diameter 7 mm, length 150 mm, inner volume 7.0 cm 3 ) equipped with a Swagelok cap was used as the reaction tube. Fish about 1.0g was charged (water content 69-73%) and milli-Q water (3.36cm 3) in the reaction tube. Was added 3.06cm 3 (653K) or 1.76 cm 3 milli-Q water (673 K) in order to the supercritical state. After replacing dissolved oxygen in the sample with argon gas, the reaction tube was closed and placed in a molten salt bath (Thomas Kagaku Co. Ltd) containing potassium nitrate and sodium nitrate preheated to a constant temperature. The reaction was carried out in the range of 473 to 673 K, and the pressure in the reaction tube was determined from the water vapor table for the subcritical state, and estimated from the Redrich-Kwon equation for the supercritical state. After a predetermined time (1 to 30 minutes), the reaction tube was placed in a water bath and immediately cooled to room temperature.
2) Analysis of organic acid by HPLC HPLC (Shimadzu LC-6A) using an ion exclusion column (Shim-pack SCR-100H, inner diameter 8.0 mm × length 300 mm) was used to determine the concentration of each organic acid. As a mobile phase, 10 mol / m 3 of perchloric acid was passed through a column maintained at 333 K at a flow rate of 0.8 cm 3 / min. The reaction product was diluted to 500 cm 3 with Milli-Q water and then filtered through a Millipore membrane (pore size 0.22 μm) to remove oil droplets and insoluble solids. A diluted sample (0.020 cm 3 ) was injected, and the concentrations of lactic acid, citric acid, malic acid, acetic acid, and formic acid were measured with a spectrophotometer (Shimadzu SPD-6AV) (wavelength 210 nm). The retention time of each organic acid was confirmed by adding a known amount of standard organic acid to the sample as an internal standard .
3) TOC measurement of water-soluble product The total organic carbon (TOC) of the reactive product was measured with a TOC analyzer (Shimadzu TOC-500). According to standard methods, 0.01 cm 3 of water-soluble product was injected into the TOC analyzer. TOC was determined by subtracting inorganic carbon (IC) from total carbon (TC). In all the samples measured, the IC value was 10% or less of TC.
4) Carbon, nitrogen and hydrogen contents of raw materials and solid products The carbon, nitrogen and hydrogen contents of raw fish and solid organisms were measured by CHN coder (Yanaco, MT-3). Samples were dried in an oven (348K) for 2 days prior to analysis. A sample of several mg was loaded on a CHN coder and measured.
5) Results (1) Regarding the liquefied 473K, 573K and 623K reaction products (reaction time 5 minutes) under the subcritical condition of fish meat, the aqueous phase and the solid phase as reaction products at 473K (1.52 MPa) was gotten. At 573 K (8.40 MPa), the amount of solid phase decreased and an oil phase was formed. When the reaction temperature was increased to 623 K (16.17 MPa), the solid phase disappeared and the amount of oil phase also decreased. Gaseous products such as carbon dioxide and nitrogen were not noticeable under the measured reaction conditions. As shown in Table 2, the content of carbon, nitrogen and hydrogen in the dried raw fish meat was 58.74%, 11.11% and 8.66%, respectively. The other (21.48%) contains sulfur and oxygen atoms. The component ratio of the solid product was close to that of the raw fish meat. FIG. 7 shows that the amount of solids decreases with increasing reaction temperature. These results suggest that the solid product is unreacted fish meat. FIG. 7 also shows that the volume of the oil phase increases with the reaction temperature and decreases at 580K or higher. The oil phase was formed from part of the solid with increasing reaction temperature. At high reaction temperatures, the oil phase decomposed into other organic compounds. Analysis using GC / MS confirmed that the oil phase contained useful fatty acids such as arachidonic acid, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA). These results indicate that fish meat is liquefied in a short time by subcritical hydrolysis and converted into an oil phase and an aqueous phase.
[0024]
[Table 2]
Figure 0003644842
[0025]
(2) Total organic carbon (TOC) in the water phase
The ratio of the TOC of the aqueous phase to the TOC of the dried raw fish meat is plotted against the reaction temperature in FIG. The TOC of the water phase gradually increased from 0.3 (kgC / kgC) at 473K and reached a constant value (0.65 kgC / kgC) at 573K or higher. This is because 65% of the raw fish organic carbon is water. It is shown to be recovered in the phase. TOC decreased under supercritical conditions (673K, 30.0 MPa). The increase with the increase in the reaction temperature of TOC can be well explained by the decrease in solids accompanying the increase in the reaction temperature shown in FIG. The time course of the TOC of the aqueous phase at 513K is shown in FIG. TOC increased rapidly with time and reached a constant value by 10 minutes, suggesting that the hydrolysis reaction under subcritical conditions is very fast and that no carbon dioxide is produced under these conditions. The
[0026]
<3> Organic Acid Production in Aqueous Phase In FIG. 10, the yield of organic acid produced in the aqueous phase (reaction time 5 minutes) is plotted against the reaction temperature. Yield was defined as the weight (kg) of organic acid produced from 1 kg of dried fish meat. Although lactic acid was contained in the raw fish meat in an amount of 0.027 kg / kg-dry meat, 0.03 kg / kg-dry meat of lactic acid was observed in a reaction at 513 K (3.35 MPa) for 5 minutes. Under supercritical conditions (653K and 673K, 30.0 MPa), most of the lactic acid was degraded within 5 minutes. On the other hand, lactic acid was produced at 530 K or higher, and the maximum yield was 0.01 kg / kg-dry meat under the condition of 653 K (30.0 MPa). FIG. 11 shows the effect of reaction time on the organic acid yield at 513K. Lactic acid gradually degraded under these conditions. These results indicate that lactic acid contained in fish meat is quite stable up to 513K. The liquefaction of distant fish meat under subcritical conditions is advantageous for lactic acid recovery from fish meat. Based on this result, 2.9 tons of lactic acid can be produced from waste fish (320 tons) discharged daily in Osaka Prefecture. This lactic acid is a useful raw material for biodegradable polymers.
[0029]
【The invention's effect】
As described above in detail, the invention of this application, from waste organic matter roughness such fish, effectively, is lactic acid, fatty acid, E PA, and can be manufactured of valuable resources consisting of organic acids such as DHA.
[Brief description of the drawings]
FIG. 1 is a diagram exemplifying a treatment process for fish pieces.
FIG. 2 is a temperature-pressure correlation diagram showing a phase change of water.
FIG. 3 is a graph showing the relationship between the reaction temperature and the amount of lactic acid produced as an example.
FIG. 4 is a graph showing the relationship between the reaction time and the amount of lactic acid produced as an example.
FIG. 5 is a graph showing the relationship between reaction temperature and organic acid yield as an example.
FIG. 6 is a graph showing the relationship between reaction time and organic acid yield as an example.
FIG. 7 is a diagram illustrating the relationship between the solid and the amount of oil phase and the reaction temperature.
FIG. 8 is a diagram illustrating the relationship with the reaction temperature of an aqueous phase TOC.
FIG. 9 is a diagram illustrating the relationship with the reaction time of the aqueous phase TOC.
FIG. 10 is a diagram illustrating the relationship between the yield of organic acid and the reaction temperature.
FIG. 11 is a diagram illustrating the relationship between the yield of organic acid and the reaction time.

Claims (8)

有機廃棄物を温度200〜280℃、圧力1.5〜5.9MPaで亜臨界水によ処理し乳酸、クエン酸、酪酸およびコハク酸を生成させることを特徴とす有機酸の製造方法。 Organic waste temperature 200 to 280 ° C., treated lactic Ri by the sub-critical water at a pressure 1.5~5.9MPa, method for producing citric acid, an organic acid you, characterized in that to produce butyric acid and succinic acid . 有機廃棄が水産廃棄物または水産加工品であることを特徴とする請求項1の製造方法。The process of claim 1 in which the organic waste is characterized in that it is a marine waste or processed marine products. 設定温度240℃にて乳酸を回収することを特徴とする請求項1または2の製造方法。Lactic acid is collect | recovered at preset temperature 240 degreeC, The manufacturing method of Claim 1 or 2 characterized by the above-mentioned. 水産廃棄物または水産加工品を温度200〜300℃、圧力1.5〜15MPaで亜臨界水による処理をすることを特徴とするエイコサペンタエン酸、ドコサヘキサエン酸および乳酸の少なくともいずれかを回収することを特徴とするカルボン酸の製造方法。Recovering at least one of eicosapentaenoic acid, docosahexaenoic acid, and lactic acid, characterized by treating fishery waste or processed fishery products with subcritical water at a temperature of 200 to 300 ° C. and a pressure of 1.5 to 15 MPa. A method for producing a characteristic carboxylic acid. 温度230〜280℃、圧力を1.9〜5.9MPaで亜臨界水による処理をすることを特徴とする請求項4の製造方法。The process according to claim 4, wherein the treatment is performed with subcritical water at a temperature of 230 to 280 ° C and a pressure of 1.9 to 5.9 MPa. 油相からエイコサペンタエン酸またはドコサヘキサエン酸を回収することを特徴とする請求項4または5の製造方法。6. The process according to claim 4, wherein eicosapentaenoic acid or docosahexaenoic acid is recovered from the oil phase. 水相から乳酸を回収することを特徴とする請求項4または5の製造方法。The method according to claim 4 or 5, wherein lactic acid is recovered from the aqueous phase. 280℃以下の亜臨界状態で加水分解することを特徴とする請求項4の製造方法。The method according to claim 4, wherein the hydrolysis is carried out in a subcritical state of 280 ° C or lower.
JP9032899A 1998-03-30 1999-03-30 Method for producing organic acid from waste organic matter Expired - Fee Related JP3644842B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9032899A JP3644842B2 (en) 1998-03-30 1999-03-30 Method for producing organic acid from waste organic matter

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8315498 1998-03-30
JP10-83154 1998-03-30
JP9032899A JP3644842B2 (en) 1998-03-30 1999-03-30 Method for producing organic acid from waste organic matter

Publications (2)

Publication Number Publication Date
JPH11342379A JPH11342379A (en) 1999-12-14
JP3644842B2 true JP3644842B2 (en) 2005-05-11

Family

ID=26424212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9032899A Expired - Fee Related JP3644842B2 (en) 1998-03-30 1999-03-30 Method for producing organic acid from waste organic matter

Country Status (1)

Country Link
JP (1) JP3644842B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007135488A (en) * 2005-11-18 2007-06-07 Nippon Meat Packers Inc Low molecular weight protein, and feed material or food material containing the same
US20100081835A1 (en) * 2008-09-23 2010-04-01 LiveFuels, Inc. Systems and methods for producing biofuels from algae
US20120284165A1 (en) * 2011-05-06 2012-11-08 LiveFuels, Inc. Method for removing carbon dioxide from ocean water and quantifying the carbon dioxide so removed
US8753851B2 (en) 2009-04-17 2014-06-17 LiveFuels, Inc. Systems and methods for culturing algae with bivalves
US9487716B2 (en) 2011-05-06 2016-11-08 LiveFuels, Inc. Sourcing phosphorus and other nutrients from the ocean via ocean thermal energy conversion systems
CN108300565A (en) * 2017-12-20 2018-07-20 湖北工业大学 A method of it is mixed fatty acid extracted from the wet algal gel of microalgae using subcritical water

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3805963B2 (en) * 2000-09-12 2006-08-09 定瞭 村上 Biological organic waste treatment method and apparatus
JP2002102897A (en) * 2000-09-28 2002-04-09 Ishikawajima Harima Heavy Ind Co Ltd Method and apparatus for treating organic food waste such as waste yeast or wheat stained less
JP2003034680A (en) 2001-07-19 2003-02-07 Ajinomoto Co Inc Production method for pyrrolidone carboxylic acid or its salt
US7736510B2 (en) 2002-10-22 2010-06-15 Osaka Industrial Promotion Organization Method for producing methane gas
JP2004262899A (en) * 2003-03-04 2004-09-24 Ishikawajima Harima Heavy Ind Co Ltd Method and apparatus for recovering amino acid
NZ534282A (en) * 2004-07-23 2006-12-22 David Kenneth Pinches Improved process and apparatus for treating waste material
JP4613326B2 (en) * 2005-02-03 2011-01-19 財団法人大阪産業振興機構 Protein insolubilization method, protein-derived resin production method, protein-derived resin and biodegradable plastic
JP2006212617A (en) * 2005-02-04 2006-08-17 Hiroyuki Yoshida Separation and recovery method of phosphoric acid, organic acid, and amino acid, and treatment method of organic materials
BRPI0612750B1 (en) 2005-06-29 2015-10-13 Heiji Enomoto process for producing lactic acid, and apparatus for producing lactic acid
JP4911750B2 (en) * 2005-09-30 2012-04-04 株式会社 オノモリ Active ingredient extraction method and waste reduction method from food waste, active ingredient extraction device and waste reduction device
JP2008222570A (en) * 2007-03-08 2008-09-25 Osaka Prefecture Univ Method for producing amino acid or organic acid
JP5304299B2 (en) * 2009-02-12 2013-10-02 株式会社日立プラントテクノロジー Reaction process using critical water
CN103627759A (en) * 2013-09-12 2014-03-12 郑州市中食农产品加工研究院 Method for extracting and preparing active ingredients of fish roes
JP2015231345A (en) * 2014-06-09 2015-12-24 国立大学法人京都大学 Method for making seafood suitable food material and production method of food material made from seafood
CN104971935A (en) * 2015-07-14 2015-10-14 厦门康浩科技有限公司 Technological method for innocent treatment of animals dying from diseases through subcritical water
JP7276842B2 (en) * 2019-07-24 2023-05-18 G-8 International Trading 株式会社 Method for producing meat dismantling residue soup

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007135488A (en) * 2005-11-18 2007-06-07 Nippon Meat Packers Inc Low molecular weight protein, and feed material or food material containing the same
US20100081835A1 (en) * 2008-09-23 2010-04-01 LiveFuels, Inc. Systems and methods for producing biofuels from algae
US8753851B2 (en) 2009-04-17 2014-06-17 LiveFuels, Inc. Systems and methods for culturing algae with bivalves
US20120284165A1 (en) * 2011-05-06 2012-11-08 LiveFuels, Inc. Method for removing carbon dioxide from ocean water and quantifying the carbon dioxide so removed
US9487716B2 (en) 2011-05-06 2016-11-08 LiveFuels, Inc. Sourcing phosphorus and other nutrients from the ocean via ocean thermal energy conversion systems
CN108300565A (en) * 2017-12-20 2018-07-20 湖北工业大学 A method of it is mixed fatty acid extracted from the wet algal gel of microalgae using subcritical water

Also Published As

Publication number Publication date
JPH11342379A (en) 1999-12-14

Similar Documents

Publication Publication Date Title
JP3644842B2 (en) Method for producing organic acid from waste organic matter
US5780678A (en) Lactic acid production, separation and/or recovery process
FR2520641A1 (en) PROCESS FOR THE EXTRACTION OF CHROMIUM PROTEINS AND CHROMIUM FROM CHROMED TANNED SKIN WASTE AND PRODUCTS, PROTEIN AND CHROMIUM SULFATE OBTAINED THEREBY
Tavakoli et al. Conversion of scallop viscera wastes to valuable compounds using sub-critical water
US5445824A (en) Physiological activating material extracted from coral sand
JPWO2006057398A1 (en) Treatment of organic matter containing chitin
FR2483187A1 (en) TROPHIC AGENT BASED ON OLIGOPEPTIDES
JPH07147929A (en) Production of lycopene oil
EP2674397B1 (en) Method for preparing an intercalated and/or exfoliated organophillic clay from clay and macroalgae, corresponding fertiliser product, food supplement for animals and fish feed
JPS611355A (en) Hydrolysis of protein material occurring from animal and vegetable
EP1021958A1 (en) Chemical hydrolysis of proteinaceous broth, animal waste material and waste material from animal organs
SU1836326A3 (en) Method for separating lactic acid from aqueous medium containing this acid
KR100672813B1 (en) Purification methods for succinic acid
CA2544316A1 (en) Method of separating and recovering acid/sugar solution and lignophenol derivative from lignocellulosic material
TW201020264A (en) A new process for the preparation of collagen peptide from fish scale
JP2002332272A (en) Method for synthesizing taurine from protein-containing material by using high-temperature high-pressure water
CN104046510A (en) Method for preparing collagen peptide from scaly fish skin
EP4179878A1 (en) Method for processing a protein-rich residue and uses thereof
JPH0234513A (en) Production of slaked lime granule
CA2184928C (en) Lactic acid production, separation and/or recovery process
RU2680968C1 (en) Method of obtaining completely hydrolyzed collagen
JPS61227543A (en) Separation of higher alcohol
CN111302319A (en) Method for extracting hydroxyapatite and collagen from fish scales by using eutectic solvent
Andriamanalina et al. Calcium Salts from the Demineralization of Crab (Scylla serrata) Wastes
RU2163767C1 (en) Method of preparing pectin extract

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031224

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20031210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050201

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees