JP3633077B2 - pH sensor and ion water generator - Google Patents

pH sensor and ion water generator Download PDF

Info

Publication number
JP3633077B2
JP3633077B2 JP03028796A JP3028796A JP3633077B2 JP 3633077 B2 JP3633077 B2 JP 3633077B2 JP 03028796 A JP03028796 A JP 03028796A JP 3028796 A JP3028796 A JP 3028796A JP 3633077 B2 JP3633077 B2 JP 3633077B2
Authority
JP
Japan
Prior art keywords
measured
liquid
sensor
water
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03028796A
Other languages
Japanese (ja)
Other versions
JPH09222417A (en
Inventor
琢磨 佐藤
毅 西田
利彦 松田
哲治 添田
良二 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP03028796A priority Critical patent/JP3633077B2/en
Publication of JPH09222417A publication Critical patent/JPH09222417A/en
Application granted granted Critical
Publication of JP3633077B2 publication Critical patent/JP3633077B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、イオン水等のpH値を測定する際に使用され、内部液を充填したガラス電極で構成され、微少流量の被測定液のpHを精度良く測定する微少流量pHセンサ及びイオン水生成器に関するものである。
【0002】
【従来の技術】
従来pHセンサには半導体電極、イオン導電性隔膜電極及びガラス電極等で構成するものがあるが、操作性が良く価格が安い等の理由でガラス電極で構成したガラス電極型のpHセンサを使用することが多い。
【0003】
そこで従来のガラス電極型のpHセンサについて説明する。ガラス電極型のpHセンサはガラス電極と比較電極で構成され、ガラス電極は露出されたpH感知ガラス部と電圧を出力する内部電極と、内部電極を浸漬した標準液(pH=7.0)とからなる。比較電極は内部電極を浸漬した中性塩溶液からなり、液絡部を介して被測定液と連通している。ガラス電極を直接多量の被測定液中に浸漬すると、被測定液のpHの大きさによってpH感知ガラス部表面に接する水素イオンの濃度が増減し、それに対応して電位が変化して内部電極に起電力を発生し、比較電極の電位と比較されセンサ電圧として出力される。しかしながらこのセンサ電圧は、pH感知ガラス部表面に接する水素イオンの濃度に依存することから、被測定液の量が充分に多い場合には水素イオンは安定してpH感知ガラス部表面に供給されるため、精度良く安定してpH測定できるものの、この従来のpHセンサはpH感知ガラス表面を開放・露出しており、多量の被測定液とそれを流すためのpH感知ガラス部を浸漬する大きな流路空間を前提とするから、pH感知ガラス表面を通過する被測定液の流速がpHセンサと無関係に設計されており、被測定液が微量の場合には表面を流れる被測定液の流れが悪くなり、また液中の気泡等の影響を受け水素イオンの供給が不安定となってセンサ電圧はバラツクし、精度も充分なものでないという問題があった。このため連続的に通水しながらpH測定する場合には大量の被測定液を必要とし、300(cc/分)程度以下の微少流量と称される領域では事実上測定が困難であった。
【0004】
pH測定を微少の被測定液で行うのはこのように難しいが、通水をしないタイプのpHセンサとしては従来次のような技術(実開平1−67559号公報)が提案されている。図4は従来のガラス電極の概略構造図である。図4に示すようにガラス電極4を内部に備えた円筒状外筒1の下端部にサンプル注入用の孔2を設けたサンプルキャップ3を取り付け、サンプル注入用の孔2にサンプルを注入することにより、微量のサンプルのpHを測定することができるようにしたものである。
【0005】
また最近イオン水生成器が普及しているが、地方地方で原水のpH値、ミネラル分、導電率が異なっているため生成されるイオン水のpH値を制御する必要からpHセンサを設けたイオン水生成器も提案されている。
【0006】
【発明が解決しようとする課題】
しかしながら、実開平1−67559号公報に記載されたpH測定用のガラス電極は、被測定液室の容積を小さくし、被測定液の一部を別の手段でサンプリングして被測定液室に注入することによって、微量の被測定液でもpHが測定できるものの、連続して変化する被測定液のpHを測定することはできないし、せいぜい頻繁にサンプリングを繰り返すことしかできないが、これでは自動化できないという問題があった。また、被測定液が静止状態であるためガラス電極のpH感知ガラス部に炭化水素、炭酸塩スケール等が付着し易く、応答時間が長くなると同時に測定精度が充分でない等の問題があった。
【0007】
また、イオン水生成器では特に電気分解に際して発生するガスの気泡がpHセンサの表面に付着してpH測定を困難にするという問題点があった。
【0008】
そこで本発明は前記従来の問題点を解決するもので、簡単な構造からなり、連続して通水される微少流量(300(cc/分)以下の流量)の被測定液のpHが精度良く安定して自動測定でき、応答時間の短いpHセンサを提供することを目的とする。
【0009】
また、本発明は安定して確実にイオン水のpH値を自動的に検出でき、吐出されるイオン水のpHを制御することのできるイオン水生成器を提供することを目的とする。
【0010】
【課題を解決するための手段】
上記目的を達成するために本発明のpHセンサは、被測定液が満たされるとともにpH感知ガラス部が挿入された被測定液室を備え、被測定液室には被測定液が流入する流入路と被測定液が吐出される排水路を設け、被測定液室の容積をV(cc)とし、流入路から流入する被測定液の流量をQ(cc/分)としたとき、75(cc/分)≦Q<300(cc/分)である場合VがQとの間に0.005(分)≦V/Q≦0.01(分)の関係を有していることを特徴とする。
【0011】
これにより、簡単な構造からなり、微少流量(300(cc/分)より少なく75(c
c/分)以上の流量)の被測定液のpHを精度良く安定して自動測定することがきる。
【0012】
【発明の実施の形態】
本発明の請求項1に記載の発明は、pH感知ガラス部を備えて被測定液の水素イオン濃度を感知するガラス電極と、被測定液が満たされるとともにpH感知ガラス部が挿入された被測定液室を備え、被測定液室には被測定液が流入する流入路と被測定液が吐出される排水路を設け、被測定液室の容積をV(cc)とし、流入路から流入する被測定液の流量をQ(cc/分)としたとき、Q<300(cc/分)である場合、VがQとの間に0.005(分)≦V/Q≦0.01(分)の関係を有したものであり、被測定液のpH変動に対応する応答時間を短縮し、微少流量の被測定液のpH測定の精度を高めるという作用を有する。
【0013】
また、請求項2に記載の発明は、電解槽と、電解槽に設けた一対の電極と、電解槽に接続された吐出路と、吐出路から分岐された分岐路とを備え、分岐路に前記記載のpHセンサを設けたものであり、微少流量の排水に挿入して被測定液のpHを測定でき、高精度にpH制御されたイオン水を生成することができるという作用を有する。
【0014】
以下、本発明の実施の形態について、図1及び図2を用いて説明する。
(実施の形態1)
図1は本発明の実施の形態1におけるpHセンサの構造断面図で、11はpHセンサ、13はAg/AgClからなる第1内部電極でpH=7.0の塩類溶液である内部液18に浸漬してある。16は被測定液室で被測定液27が流入する流入路14と被測定液27が吐出する排水路15を設けてある。20は不活性ガラスからなるチューブ状のガラス電極で、その下端にはpH感知ガラス部12が設けられている。pH感知ガラス部12は微量の酸化リチュウム等を含んだ球状の珪酸ガラスからなり、その内部に内部液18が充填されている。この珪酸ガラスはリチュウムイオンが固体電解質として働いてイオン伝導性を示すことから、被測定液27の水素イオン濃度に比例した電位がpH感知ガラス部12の外表面部に帯電されることになる。23は比較電極室で内部に中性塩の溶液からなる比較電極液19を充填し、比較電極液19にAg/AgClからなる第2内部電極22を浸漬している。17は液絡部で多孔質セラミック等からなり被測定液27と比較電極液19とを連通している。21は比較電極液19を補充する補充口で、24は第1内部電極13に接続された第1出力端子で、25は第2内部電極22に接続された第2出力端子で制御部26に接続されている。28はpHを表示するpH表示部である。
【0015】
被測定液27は矢印aの方向から流入路14に流入し被測定液室16を充満して排水路15から矢印bの方向に吐出される。このときpH感知ガラス部12が被測定液室16内に挿入されており、被測定液27の水素イオンがpH感知ガラス部12の表面に接触し内部液18との間に起電力を発生する。一方被測定液27は液絡部17によって比較電極液19と連通しており、比較電極液19に浸した第2内部電極22は被測定液27に対して0電位となるので、第1出力端子24と第2出力端子25の間にpH感知ガラス部12の表面に接触し被測定液27の水素イオン濃度に比例したセンサ電圧が出力される。このセンサ出力は次式で表される。
【0016】
E=α・0.059(pH −pH)+Cv
ただし、E:センサ電圧(V)
α:電極係数で0<α≦1
pH :内部液のpH値で、ここではpH=7.0
pH:被測定液のpH値
Cv:電極固有の不斉電位差(V)
このpHセンサ11は標準pHセンサで、内部液18のpHを7.0としているので、被測定液27のpHが中性(pH=7.0)であれば、不斉電位差Cvを別々にすればセンサ電圧が0Vということになる。一方、被測定液27のpHが酸性(pH<7.0)であれば、不斉電位差Cvを別々にすればセンサ電圧Eが正電圧となり、被測定液27のpHがアルカリ性(pH>7.0)であれば、不斉電位差Cvを別にしてセンサ電圧Eが負電圧になる。この出力されたセンサ電圧Eは制御部26に伝達し必要に応じて増幅され、制御部26はpH表示部28にpH値表示したり、センサ電圧Eをイオン水生成器等の制御機構に伝達し連続して生成するイオン水のpH値を制御したりする。
【0017】
ところで、pHが一定しない被測定液27が連続して供給されてくる場合にはpH測定の応答時間の長短すなわち応答性が問題になってくる。この応答時間は新しく流入してくる水素イオンが、いかに早くpH感知ガラス部12の表面に接触するかに依存するものである。したがってそれは、流入路14から流入する被測定液27の流量と被測定液室16の内容積とによって影響されることになる。そこで微少流量(300(cc/分)以下)の被測定液27が連続して供給されてくる場合について、被測定液室16の容積(V)とpH測定の応答時間(T)について測定した。流量(Q)を100(cc/分)としたときの結果を一例として(表1)に示す。
【0018】
【表1】

Figure 0003633077
【0019】
ここで微少流量を300(cc/分)以下の流量としたのは、従来の技術では300(cc/分)が通水しながら精度よく測定できる限界と考えられていたからである。ここで応答時間(T)の測定は以下の順序で行った。図1に示したように、最大直径が約6mm、容積が0.32ccで表面積が2.45cmの球状のpH感知ガラス部12をいろいろな大きさの被測定液室16に収容して(表1)に示す各容積のものを形成し、被測定液27をその中に流入させる。各容積のものに対していずれも、まず最初にpH=4の被測定液27を被測定液室16に流入させpHを測定し、pH表示部がpH=4を安定して表示するのを確認する。つぎにpH=10の被測定液27を流量(Q)で流入路14から流入させる。この状態でしばらくするとpH=4の被測定液27にpH=10の被測定液27が混入することから、pH表示部28の表示は不安定になって変動し始める。この変動を開始する時間をtとする。つぎに所定の時間経過して被測定液室16内がpH=10の被測定液27で殆ど置換され、しばらくするとpH表示部28はpH=10の近傍を示すようになり、さらにしばらくするとpH表示部28は安定してpH=10を表示するようになる。この安定状態に入った時間をtとし、このt−t=T(秒)を10回測定しその平均をとって応答時間(T)とした。ここでは応答時間(T)の最大と最小及びその平均を示している。また(表1)において(V/Q)は被測定液室の(容積/流量)であり、被測定液27が被測定液室16の容積を通過するのにどれだけの時間を要するかの代表的数値を表すものと考えられ、ここでは平均通過時間と呼称し時間(分)単位で表すことにする。
【0020】
そこで平均通過時間(V/Q)と応答時間(T)の変動幅の大きさについて図2(a)に基づいて説明する。図2(a)は本発明の実施の形態1におけるpHセンサの応答時間と平均通過時間(V/Q)の流量100(cc/分)のときの関係図である。また(表1)と流量(Q)以外は同じ条件で実験を行ったものの結果を図2(b)、(c)にそれぞれ示す。図2(b)は本発明の実施の形態1におけるpHセンサの応答時間と平均通過時間(V/Q)の流量250(cc/分)のときの関係図で、図2(c)は本発明の実施の形態1におけるpHセンサの応答時間と平均通過時間(V/Q)の流量75(cc/分)のときの関係図である。図2(a)、(b)、(c)において縦軸は応答時間(T秒)で、横軸は平均通過時間(V/Q)を対数目盛で表してある。なお図2(a)中に記載した数字は(表1)に付した番号に対応している。先ず被測定液27の流量(Q)を100(cc/分)とした図2(a)では、番号4〜6のものは応答時間(T)が15.2秒以下と速く、しかも10回測定の間の変動幅も少なく最も安定して測定できていることがわかる。一方、番号が1〜3のものは応答時間(T)が16秒以上と遅くなるのと同時に、その変動幅が大きくなって不安定さを増している。これは平均通過時間(V/Q)が0.005以下のものは、被測定液室の容積(V)が0.41cc以下と小さくなったために、100cc/分の流量で流入する被測定液27が被測定液室16内を通過するときに流速が大きくなって被測定液室16内に大きな死水領域が形成されるからと考えられる。すなわち、被測定液27がpH感知ガラス部12の周囲を通過する際に、pH感知ガラス部12の側面で剥離し始め、pH感知ガラス部12の背面側には不安定な循環流が形成され、これが死水領域を形成するからである。そして死水領域内に存在するpH検知ガラス部12の表面では流入した被測定液27が接触することはできない。このように被測定液室の容積(V)が小さすぎると、応答時間(T)の変動幅が大きく不安定であり、急激に応答時間が増加してしまい、短時間での正確なpHの測定が難しくなる。
【0021】
一方、平均通過時間(V/Q)が0.01以上のものは被測定液室16の容積(V)が流量100(cc/分)に対しては1.00cc以上と大きくなり、被測定液27は被測定液室16内を比較的円滑に流れるが、pH感知ガラス部12の表面に既に付着し係留される気泡をその流れによって取り除くことができなくなる。これは電気分解によって生成されるイオン水等の場合水素、酸素ガスを含んでおり顕著である。このように気泡が水素イオンのpH感知ガラス部12の表面への接触を部分的に妨害し、応答時間(T)が遅くなってくる。特にこれが著しく変化するのが、平均通過時間(V/Q)が0.01〜0.013にかけてである。したがって応答時間(T)を速く、その変動を小さくするには0.005(分)≦V/Q≦0.01(分)の範囲にあれば適当であることがわかる。
【0022】
つぎに流量(Q)を250(cc/分)とした図2(b)では各(V/Q)での応答時間(T)の変動幅は、流量(Q)を100(cc/分)とした図2(a)に比べて小さくなり、平均通過時間(V/Q)が0.015以上の場合の応答時間(T)は数秒程度短くなっているが、この場合にも(V/Q)が0.005以上で0.01以下の領域が応答時間(T)が最も短く、変動幅も小さいことが分かる。一方、流量(Q)を75cc/分と少なくした図2(c)では、(V/Q)が0.005以下及び0.01以上で応答時間(T)が急激に長くなると同時に、いづれの(V/Q)でも変動幅は大きくなっている。この場合にも(V/Q)が0.005以上で0.01以下の領域が応答時間(T)が最も短く、変動幅も小さいことが分かる。このように、微少流量(300(cc/分)より少なく75(cc/分)以上の流量)の被測定液27を測定する場合に、被測定液室16に流入路14を設けて連続して流入させ、0.005(分)≦V/Q≦0.01(分)の範囲になるようにpHセンサ11を構成することによって短時間で精度良く測定することができる。
【0023】
(実施の形態2)
つぎに本発明のpHセンサ11を設けたイオン水生成器について説明する。図3は本発明の実施の形態2におけるイオン水生成器の全体概略図である。図3において、41はイオン水生成器、42は原水管、43は内部に活性炭や中空糸膜などを備えた浄水部、44は導電率を高めるミネラル添加筒、45は電解槽、50は第1電解室である陰極室、52は第2電解室である陽極室である。46は陰極側処理水吐出路、47は陽極側処理水吐出路、48aは陰極側給水路、48bは陽極側給水路、49は陰極、51は陽極、53は陰極端子、54は陽極端子である。55は電解槽45を2分する隔膜、56は電源部、57はpHセンサ34のセンサ電圧に応じて両電極端子に印加する電圧を制御したりする制御部、58はpH濃度を表示するpH表示部である。以上のように構成すると、第1電解室の処理水がアルカリ性イオン水となって陰極側処理水吐出路46から吐出する。しかし、この実施の形態2で説明したものとは印加電圧の極性を逆にして、第1電解室を陽極室、第2電解室を陰極室にすると、第1電解室で生成される処理水が酸性イオン水となる。そこで、以下の説明は第1電解室を陰極室、第2電解室を陽極室として説明するが、極性を反転させたものも本実施の形態2のイオン水生成器41に含まれるもので、このとき第1電解室が陽極室、第2電解室が陰極室で処理水が酸性イオン水となる点で相違するだけである。
【0024】
30は陰極室50側の水を吐出する吐水の一部をpHセンサ34に供給する分岐路、32はアルカリ性イオン水の一部が通過する被測定液室、33は水素イオンに感応するpH応答ガラス膜を備えたpH感知ガラス部、31は測定が終了した被測定液を排出する排水路である。
【0025】
以上のように構成されたイオン水生成器41について以下その動作を説明する。原水管42から矢印で示した様に給水された原水は浄水器43及びミネラル添加筒44を経由して陰極側給水路48a及び陽極側給水路48bから陰極室50及び陽極室52のそれぞれに給水される。原水が電解槽45内に所定量流入した後に電源部56からの電圧を制御部57で所定の電圧に制御して、陰極端子53には負電圧、陽極端子54には正電圧を印加して電気分解を開始する。この電気分解によって電解槽45ではアルカリ性イオン水と酸性イオン水が生成される。原水が連続して給水され、電圧が連続して印加されることによって陰極側処理水吐出路46からは処理水であるアルカリ性イオン水が、陽極側処理水吐出路47からは処理水である酸性イオン水が連続して吐出してくることになる。
【0026】
このように生成されたアルカリ性イオン水の大部分は陰極側処理水吐出路46を経て外部に吐出されるが、その一部の微少流量(300(cc/分)より少なく75(cc/分)以上の流量)のアルカリ性イオン水が陰極側処理水吐出路46に設けた分岐路30を経てpHセンサ34の被測定液室32に流入する。ところで電解槽45で電気分解された処理水には電気分解の際発生したガスが混入しており、このうちアルカリ性イオン水には水素ガスが混入している。従ってこのアルカリ性イオン水がpH感知ガラス部33の表面部に接触しながら通過すると、pH感知ガラス部33の表面にこの水素ガスの気泡が付着し、pH測定が困難に陥りやすいが、本実施の形態では0.005(分)≦V/Q≦0.01(分)のpHセンサを使用しているから、微量であっても応答性よくpHを測定することができる。このpH測定された被測定液は排水路31より系外に排水されるが、排水路31を陽極側処理水吐出路47に接続するのが好ましい。pHセンサ34によりアルカリ性イオン水のpHを検知して、センサ電圧を制御部57に送り、制御部57はpH表示部58にpHを表示させるとともに、予め制御部57に設けた記憶部に記憶させたpHになるように電極への印加電圧を制御してpHを調整することができる。
【0027】
このように原水を連続して流入させ、陰極端子53と陽極端子54に連続的に電圧を印加しておくことによりアルカリ性イオン水が連続して生成させることができ、分岐路30で分岐するアルカリ性イオン水の流量を微少流量(300cc/分程度以下の流量)に抑えてアルカリ性イオン水のpH濃度の検知と表示及び調整が同時に連続的に行え、排水するアルカリ性イオン水を少なくして無駄を少なくすることができる。
【0028】
【発明の効果】
以上から明らかなように本発明のpHセンサは、被測定液室を設け、被測定液室の容積をV(cc)とし、流入路から流入する被測定液の流量をQ(cc/分)としたとき、75(cc/分)≦Q<300(cc/分)である場合VがQとの間に0.005(分)≦V/Q≦0.01(分)の関係を有したものであり、被測定液室の容積と流量をコントロールすることで被測定液のpH変動に対応する応答時間を短縮し、微少流量の被測定液のpH測定の精度を高め、自動測定できるという効果を有する。
【0029】
また、本発明のイオン水生成器は、生成されるイオン水から微少流量の被測定液を抜き出し、そのpHを短時間に自動測定し、制御部で正確にpH制御することができるという効果を有する。
【図面の簡単な説明】
【図1】本発明の実施の形態1におけるpHセンサの構造断面図
【図2】(a)本発明の実施の形態1におけるpHセンサの応答時間と平均通過時間(V/Q)の流量100(cc/分)のときの関係図
(b)本発明の実施の形態1におけるpHセンサの応答時間と平均通過時間(V/Q)の流量250(cc/分)のときの関係図
(c)本発明の実施の形態1におけるpHセンサの応答時間と平均通過時間(V/Q)の流量75(cc/分)のときの関係図
【図3】本発明の実施の形態2におけるイオン水生成器の全体概略図
【図4】従来のガラス電極の概略構造図
【符号の説明】
1 円筒状外筒
2 サンプル注入用の孔
3 サンプルキャップ
4 ガラス電極
11、34 pHセンサ
12、33 pH感知ガラス部
13 第1内部電極
14 流入路
15、31 排水路
16、32 被測定液室
17 液絡部
18 内部液
19 比較電極液
20 ガラス電極
21 補充口
22 第2内部電極
23 比較電極室
24 第1出力端子
25 第2出力端子
26、57 制御部
27 被測定液
28、58 pH表示部
30 分岐路
41 イオン水生成器
42 原水管
43 浄水部
44 ミネラル添加筒
45 電解槽
46 陰極側処理水吐出路
47 陽極側処理水吐出路
48a 陰極側給水路
48b 陽極側給水路
49 陰極
50 陰極室
51 陽極
52 陽極室
53 陰極端子
54 陽極端子
55 隔膜
56 電源部[0001]
BACKGROUND OF THE INVENTION
The present invention is used when measuring the pH value of ionic water, etc., and is composed of a glass electrode filled with an internal liquid, and a micro flow rate pH sensor that accurately measures the pH of a micro liquid to be measured and ionic water generation It is about a vessel.
[0002]
[Prior art]
Conventional pH sensors include semiconductor electrodes, ion conductive diaphragm electrodes, glass electrodes, etc., but glass electrode type pH sensors composed of glass electrodes are used for reasons such as good operability and low price. There are many cases.
[0003]
Therefore, a conventional glass electrode type pH sensor will be described. The glass electrode type pH sensor is composed of a glass electrode and a reference electrode. The glass electrode is an exposed pH sensing glass part, an internal electrode for outputting a voltage, and a standard solution (pH = 7.0) in which the internal electrode is immersed. Consists of. The reference electrode is made of a neutral salt solution in which the internal electrode is immersed, and communicates with the liquid to be measured through the liquid junction. When the glass electrode is directly immersed in a large amount of liquid to be measured, the concentration of hydrogen ions in contact with the surface of the pH-sensing glass part increases or decreases depending on the pH of the liquid to be measured, and the potential changes correspondingly to the internal electrode. An electromotive force is generated, compared with the potential of the reference electrode, and output as a sensor voltage. However, since this sensor voltage depends on the concentration of hydrogen ions in contact with the pH sensing glass surface, when the amount of the liquid to be measured is sufficiently large, hydrogen ions are stably supplied to the pH sensing glass surface. Therefore, although the pH can be measured accurately and stably, this conventional pH sensor opens and exposes the surface of the pH sensing glass, and a large flow for immersing a large amount of liquid to be measured and the pH sensing glass for flowing it. Since the road space is assumed, the flow rate of the liquid to be measured passing through the pH-sensing glass surface is designed independently of the pH sensor, and the flow of the liquid to be measured flowing on the surface is poor when the liquid to be measured is very small. In addition, there is a problem that the supply of hydrogen ions is unstable due to the influence of bubbles in the liquid, the sensor voltage varies, and the accuracy is not sufficient. For this reason, in the case of measuring pH while continuously passing water, a large amount of liquid to be measured is required, and measurement was practically difficult in a region called a micro flow rate of about 300 (cc / min) or less.
[0004]
Although it is difficult to perform pH measurement with a very small liquid to be measured, the following technology (Japanese Utility Model Laid-Open No. 1-67559) has been proposed as a pH sensor that does not allow water to pass through. FIG. 4 is a schematic structural diagram of a conventional glass electrode. As shown in FIG. 4, a sample cap 3 provided with a sample injection hole 2 is attached to the lower end of a cylindrical outer cylinder 1 having a glass electrode 4 therein, and a sample is injected into the sample injection hole 2. Thus, the pH of a trace amount of sample can be measured.
[0005]
In addition, ion water generators have recently become widespread. However, the pH value, mineral content, and conductivity of raw water are different in local areas, so it is necessary to control the pH value of the generated ion water. Water generators have also been proposed.
[0006]
[Problems to be solved by the invention]
However, the glass electrode for pH measurement described in Japanese Utility Model Laid-Open No. 1-67559 reduces the volume of the liquid chamber to be measured, samples a part of the liquid to be measured by another means, and enters the liquid chamber to be measured. By injecting, pH can be measured even with a small amount of liquid to be measured, but the pH of the liquid to be measured that continuously changes cannot be measured, and sampling can only be repeated frequently, but this cannot be automated. There was a problem. In addition, since the liquid to be measured is in a stationary state, hydrocarbons, carbonate scales and the like are likely to adhere to the pH sensing glass portion of the glass electrode, resulting in a long response time and at the same time insufficient measurement accuracy.
[0007]
In addition, the ion water generator has a problem in that gas bubbles generated during electrolysis adhere to the surface of the pH sensor, making pH measurement difficult.
[0008]
Accordingly, the present invention solves the above-mentioned conventional problems, has a simple structure, and the pH of the liquid to be measured having a minute flow rate (flow rate of 300 (cc / min) or less) that is continuously passed is high. An object of the present invention is to provide a pH sensor that can stably and automatically measure and has a short response time.
[0009]
It is another object of the present invention to provide an ionic water generator that can automatically and stably detect the pH value of ionic water and can control the pH of discharged ionic water.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, a pH sensor of the present invention includes a measured liquid chamber filled with a measured liquid and having a pH sensing glass portion inserted therein, and an inflow path through which the measured liquid flows into the measured liquid chamber And 75 (cc ) where the volume of the liquid chamber to be measured is V (cc) and the flow rate of the liquid to be measured flowing from the inflow path is Q (cc / min). / Min) ≦ Q <300 (cc / min), V has a relationship of 0.005 (min) ≦ V / Q ≦ 0.01 (min) with Q To do.
[0011]
As a result, it has a simple structure and is less than a minute flow rate (300 (cc / min) less than 75 (c
c / min), the pH of the liquid to be measured can be measured automatically with high accuracy and stability.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
According to the first aspect of the present invention, there is provided a glass electrode that includes a pH sensing glass part and senses the hydrogen ion concentration of the liquid to be measured, and the object to be measured in which the liquid to be measured is filled and the pH sensing glass part is inserted. The liquid chamber is provided with an inflow path through which the liquid to be measured flows and a drain path through which the liquid to be measured is discharged. The volume of the liquid chamber to be measured is V (cc) and flows from the inflow path. When the flow rate of the liquid to be measured is Q (cc / min) and Q <300 (cc / min), 0.005 (min) ≦ V / Q ≦ 0.01 (V) between V and Q Min), and has the effect of shortening the response time corresponding to the pH fluctuation of the liquid to be measured and increasing the accuracy of pH measurement of the liquid to be measured at a minute flow rate.
[0013]
The invention according to claim 2 includes an electrolytic cell, a pair of electrodes provided in the electrolytic cell, a discharge path connected to the electrolytic cell, and a branch path branched from the discharge path. The pH sensor described above is provided, and has an effect that it can be inserted into a small amount of waste water to measure the pH of the liquid to be measured, and ion water whose pH is controlled with high accuracy can be generated.
[0014]
Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1 and 2.
(Embodiment 1)
FIG. 1 is a structural cross-sectional view of a pH sensor according to Embodiment 1 of the present invention. 11 is a pH sensor, 13 is a first internal electrode made of Ag / AgCl, and is an internal liquid 18 that is a salt solution having a pH of 7.0. Soaked. Reference numeral 16 denotes a measured liquid chamber, which is provided with an inflow path 14 through which the measured liquid 27 flows and a drainage path 15 through which the measured liquid 27 discharges. Reference numeral 20 denotes a tube-shaped glass electrode made of inert glass, and a pH sensing glass portion 12 is provided at the lower end thereof. The pH sensing glass part 12 is made of spherical silicate glass containing a small amount of lithium oxide or the like, and the inside is filled with an internal liquid 18. In this silicate glass, the lithium ion works as a solid electrolyte and exhibits ionic conductivity. Therefore, a potential proportional to the hydrogen ion concentration of the liquid 27 to be measured is charged on the outer surface portion of the pH sensing glass portion 12. A reference electrode chamber 23 is filled with a reference electrode solution 19 made of a neutral salt solution, and a second internal electrode 22 made of Ag / AgCl is immersed in the reference electrode solution 19. A liquid junction 17 is made of porous ceramic or the like and communicates the liquid 27 to be measured and the reference electrode liquid 19. Reference numeral 21 denotes a replenishing port for replenishing the comparison electrode liquid 19, 24 is a first output terminal connected to the first internal electrode 13, and 25 is a second output terminal connected to the second internal electrode 22, to the control unit 26. It is connected. Reference numeral 28 denotes a pH display unit for displaying pH.
[0015]
The liquid to be measured 27 flows into the inflow path 14 from the direction of the arrow a, fills the liquid chamber 16 to be measured, and is discharged from the drainage path 15 in the direction of the arrow b. At this time, the pH sensing glass part 12 is inserted into the measured liquid chamber 16, and hydrogen ions of the measured liquid 27 come into contact with the surface of the pH sensing glass part 12 to generate an electromotive force between the internal liquid 18. . On the other hand, the liquid to be measured 27 is communicated with the comparative electrode liquid 19 by the liquid junction portion 17, and the second internal electrode 22 immersed in the comparative electrode liquid 19 becomes zero potential with respect to the liquid 27 to be measured. A sensor voltage that is in contact with the surface of the pH sensing glass portion 12 between the terminal 24 and the second output terminal 25 and is proportional to the hydrogen ion concentration of the liquid 27 to be measured is output. This sensor output is expressed by the following equation.
[0016]
E = α · 0.059 (pH 0) -PH 1 ) + Cv
Where E: Sensor voltage (V)
α: electrode coefficient 0 <α ≦ 1
pH 0 : PH value of the internal solution, here pH = 7.0
pH 1 : pH value of the solution to be measured Cv: electrode-specific asymmetric potential difference (V)
Since this pH sensor 11 is a standard pH sensor and the pH 0 of the internal liquid 18 is 7.0, if the pH 1 of the liquid 27 to be measured is neutral (pH = 7.0), the asymmetric potential difference Cv is set. If they are separated, the sensor voltage is 0V. On the other hand, if the pH 1 of the liquid 27 to be measured is acidic (pH <7.0), the sensor voltage E becomes a positive voltage if the asymmetric potential difference Cv is separated, and the pH 1 of the liquid 27 to be measured is alkaline (pH > 7.0), the sensor voltage E becomes a negative voltage apart from the asymmetric potential difference Cv. The output sensor voltage E is transmitted to the control unit 26 and amplified as necessary. The control unit 26 displays the pH value on the pH display unit 28 or transmits the sensor voltage E to a control mechanism such as an ion water generator. In addition, the pH value of ionic water generated continuously is controlled.
[0017]
By the way, when the measured liquid 27 whose pH is not constant is continuously supplied, the length of response time of pH measurement, that is, the responsiveness becomes a problem. This response time depends on how quickly new incoming hydrogen ions come into contact with the surface of the pH sensing glass portion 12. Therefore, it is influenced by the flow rate of the liquid 27 to be measured flowing from the inflow path 14 and the internal volume of the liquid chamber 16 to be measured. Therefore, the volume (V) of the liquid chamber 16 to be measured and the response time (T) of the pH measurement were measured when the liquid 27 to be measured having a minute flow rate (300 (cc / min) or less) was continuously supplied. . The results when the flow rate (Q) is 100 (cc / min) are shown in Table 1 as an example.
[0018]
[Table 1]
Figure 0003633077
[0019]
Here, the reason why the minute flow rate is set to a flow rate of 300 (cc / min) or less is that, in the prior art, 300 (cc / min) was considered to be a limit that allows accurate measurement while passing water. Here, the response time (T) was measured in the following order. As shown in FIG. 1, a spherical pH sensing glass portion 12 having a maximum diameter of about 6 mm, a volume of 0.32 cc, and a surface area of 2.45 cm 2 is accommodated in liquid chambers 16 to be measured of various sizes ( Each of the volumes shown in Table 1) is formed, and the liquid to be measured 27 is allowed to flow therein. For each of the volumes, first, the liquid to be measured 27 having pH = 4 is first flowed into the liquid chamber 16 to be measured, the pH is measured, and the pH display unit stably displays pH = 4. Confirm. Next, the measured liquid 27 having pH = 10 is caused to flow from the inflow path 14 at a flow rate (Q). After a while in this state, since the measured liquid 27 having pH = 10 is mixed into the measured liquid 27 having pH = 4, the display on the pH display unit 28 becomes unstable and starts to fluctuate. Let t 1 be the time to start this variation. Next, the measured liquid chamber 16 is almost replaced with the measured liquid 27 with pH = 10 after a predetermined time has elapsed, and after a while, the pH display unit 28 shows the vicinity of pH = 10, and after a while, the pH is displayed. The display unit 28 stably displays pH = 10. The entered the stable state time and t 2, and this t 2 -t 1 = T (seconds) 10 times measured response time by taking the average (T). Here, the maximum and minimum response times (T) and the average are shown. In (Table 1), (V / Q) is (volume / flow rate) of the liquid chamber to be measured, and how long it takes for the liquid 27 to be measured to pass through the volume of the liquid chamber 16 to be measured. It is considered to represent a representative numerical value. Here, it is referred to as an average transit time and expressed in units of time (minutes).
[0020]
Therefore, the magnitude of the fluctuation range of the average passing time (V / Q) and the response time (T) will be described with reference to FIG. FIG. 2A is a relationship diagram when the pH sensor response time and average passage time (V / Q) flow rate 100 (cc / min) in the first embodiment of the present invention. The results of experiments conducted under the same conditions except for (Table 1) and flow rate (Q) are shown in FIGS. 2 (b) and 2 (c), respectively. FIG. 2 (b) is a relationship diagram when the flow rate of the pH sensor response time and average passage time (V / Q) is 250 (cc / min) in Embodiment 1 of the present invention, and FIG. It is a relationship figure at the time of the flow rate 75 (cc / min) of the response time and average passage time (V / Q) of the pH sensor in Embodiment 1 of invention. 2A, 2B, and 2C, the vertical axis represents response time (T seconds), and the horizontal axis represents average passage time (V / Q) on a logarithmic scale. The numbers described in FIG. 2A correspond to the numbers given in (Table 1). First, in FIG. 2A in which the flow rate (Q) of the liquid 27 to be measured is 100 (cc / min), those with numbers 4 to 6 have a fast response time (T) of 15.2 seconds or less, and 10 times. It can be seen that the most stable measurement is possible with little variation between measurements. On the other hand, those with numbers 1 to 3 have a response time (T) as slow as 16 seconds or more, and at the same time, the fluctuation range becomes large and instability is increased. This is because when the average transit time (V / Q) is 0.005 or less, the volume (V) of the liquid chamber to be measured is as small as 0.41 cc or less, so that the liquid to be measured flows in at a flow rate of 100 cc / min. This is because the flow velocity increases when 27 passes through the measured liquid chamber 16 and a large dead water region is formed in the measured liquid chamber 16. That is, when the liquid to be measured 27 passes around the pH sensing glass part 12, it begins to peel off on the side surface of the pH sensing glass part 12, and an unstable circulating flow is formed on the back side of the pH sensing glass part 12. This is because a dead water region is formed. And the liquid 27 to be measured cannot come into contact with the surface of the pH detection glass part 12 existing in the dead water region. Thus, if the volume (V) of the liquid chamber to be measured is too small, the fluctuation range of the response time (T) is large and unstable, and the response time increases abruptly. Measurement becomes difficult.
[0021]
On the other hand, when the average passage time (V / Q) is 0.01 or more, the volume (V) of the liquid chamber 16 to be measured increases to 1.00 cc or more with respect to the flow rate of 100 (cc / min). The liquid 27 flows relatively smoothly in the liquid chamber 16 to be measured, but bubbles that have already adhered to and moored on the surface of the pH sensing glass portion 12 cannot be removed by the flow. This is remarkable in the case of ionic water or the like produced by electrolysis, which contains hydrogen and oxygen gas. In this way, the bubbles partially obstruct the contact of hydrogen ions with the surface of the pH sensing glass part 12, and the response time (T) becomes slow. This particularly changes significantly when the average transit time (V / Q) is from 0.01 to 0.013. Therefore, it can be seen that it is appropriate that the response time (T) is within the range of 0.005 (min) ≦ V / Q ≦ 0.01 (min) in order to shorten the response time (T) and reduce the fluctuation.
[0022]
Next, in FIG. 2B in which the flow rate (Q) is 250 (cc / min), the fluctuation width of the response time (T) at each (V / Q) is 100 (cc / min). 2 and the response time (T) when the average transit time (V / Q) is 0.015 or more is shortened by several seconds. It can be seen that a region where Q) is 0.005 or more and 0.01 or less has the shortest response time (T) and a small fluctuation range. On the other hand, in FIG. 2 (c) in which the flow rate (Q) is reduced to 75 cc / min, the response time (T) increases drastically when (V / Q) is 0.005 or less and 0.01 or more. Even in (V / Q), the fluctuation range is large. Also in this case, it can be seen that the region where (V / Q) is 0.005 or more and 0.01 or less has the shortest response time (T) and the fluctuation range is also small. In this way, when measuring the liquid 27 to be measured having a minute flow rate (a flow rate of less than 300 (cc / min) and 75 (cc / min) or more ), the inflow path 14 is provided in the liquid chamber 16 to be measured. The pH sensor 11 is configured so as to be in a range of 0.005 (min) ≦ V / Q ≦ 0.01 (min), and can be measured accurately in a short time.
[0023]
(Embodiment 2)
Next, an ion water generator provided with the pH sensor 11 of the present invention will be described. FIG. 3 is an overall schematic diagram of an ionic water generator according to Embodiment 2 of the present invention. In FIG. 3, 41 is an ionic water generator, 42 is a raw water pipe, 43 is a water purification unit having activated carbon, hollow fiber membranes and the like inside, 44 is a mineral addition cylinder for increasing conductivity, 45 is an electrolytic cell, and 50 is a first tank. A cathode chamber which is one electrolysis chamber and 52 is an anode chamber which is a second electrolysis chamber. 46 is a cathode side treated water discharge path, 47 is an anode side treated water discharge path, 48a is a cathode side water supply path, 48b is an anode side water supply path, 49 is a cathode, 51 is an anode, 53 is a cathode terminal, and 54 is an anode terminal. is there. 55 is a diaphragm that divides the electrolytic cell 45 into two parts, 56 is a power supply unit, 57 is a control unit that controls the voltage applied to both electrode terminals according to the sensor voltage of the pH sensor 34, and 58 is a pH that displays the pH concentration. It is a display unit. If comprised as mentioned above, the process water of a 1st electrolysis chamber turns into alkaline ionized water, and it discharges from the cathode side process water discharge path 46. FIG. However, when the polarity of the applied voltage is reversed from that described in the second embodiment and the first electrolysis chamber is the anode chamber and the second electrolysis chamber is the cathode chamber, the treated water generated in the first electrolysis chamber is generated. Becomes acidic ion water. Therefore, in the following description, the first electrolysis chamber is described as the cathode chamber, and the second electrolysis chamber is described as the anode chamber. However, the inverted polarity is also included in the ionic water generator 41 of the second embodiment. In this case, the only difference is that the first electrolysis chamber is the anode chamber, the second electrolysis chamber is the cathode chamber, and the treated water is acidic ion water.
[0024]
30 is a branch path for supplying a part of water discharged from the cathode chamber 50 to the pH sensor 34, 32 is a liquid chamber to be measured through which a part of alkaline ionized water passes, and 33 is a pH response sensitive to hydrogen ions. A pH sensing glass part 31 provided with a glass film is a drainage channel for discharging the liquid to be measured after measurement.
[0025]
The operation of the ionic water generator 41 configured as described above will be described below. The raw water supplied from the raw water pipe 42 as indicated by an arrow is supplied to the cathode chamber 50 and the anode chamber 52 from the cathode side water supply channel 48a and the anode side water supply channel 48b via the water purifier 43 and the mineral addition tube 44, respectively. Is done. After a predetermined amount of raw water flows into the electrolytic cell 45, the voltage from the power supply unit 56 is controlled to a predetermined voltage by the control unit 57, and a negative voltage is applied to the cathode terminal 53 and a positive voltage is applied to the anode terminal 54. Start electrolysis. By this electrolysis, alkaline ionic water and acidic ionic water are generated in the electrolytic cell 45. When raw water is continuously supplied and voltage is continuously applied, alkaline ionized water that is treated water from the cathode side treated water discharge passage 46 and acidic water that is treated water from the anode side treated water discharge passage 47. Ionized water will be discharged continuously.
[0026]
Most of the alkaline ionized water thus generated is discharged to the outside through the cathode-side treated water discharge passage 46, but a part of the minute flow rate (300 (cc / min) is less than 75 (cc / min). The alkaline ionized water having the above flow rate flows into the measured liquid chamber 32 of the pH sensor 34 through the branch passage 30 provided in the cathode side treated water discharge passage 46. By the way, the gas generated at the time of electrolysis is mixed in the treated water electrolyzed in the electrolytic cell 45, and hydrogen gas is mixed in the alkaline ionized water. Therefore, when the alkaline ionized water passes while contacting the surface portion of the pH sensing glass portion 33, the hydrogen gas bubbles adhere to the surface of the pH sensing glass portion 33, and the pH measurement tends to be difficult. In the embodiment, since a pH sensor of 0.005 (min) ≦ V / Q ≦ 0.01 (min) is used, the pH can be measured with good responsiveness even in a minute amount. The measured liquid whose pH has been measured is drained from the drainage channel 31 to the outside of the system, and the drainage channel 31 is preferably connected to the anode-side treated water discharge channel 47. The pH sensor 34 detects the pH of the alkaline ionized water and sends the sensor voltage to the control unit 57. The control unit 57 displays the pH on the pH display unit 58 and stores it in a storage unit provided in the control unit 57 in advance. The pH can be adjusted by controlling the voltage applied to the electrode so as to achieve a high pH.
[0027]
In this way, by supplying raw water continuously and applying a voltage continuously to the cathode terminal 53 and the anode terminal 54, alkaline ionized water can be generated continuously, and the alkalinity branched at the branch path 30. The flow rate of ionic water is kept to a very low level (flow rate of about 300 cc / min or less), and the pH concentration of alkaline ionic water can be detected, displayed and adjusted continuously at the same time. can do.
[0028]
【The invention's effect】
As apparent from the above, the pH sensor of the present invention is provided with a liquid chamber to be measured, the volume of the liquid chamber to be measured is V (cc), and the flow rate of the liquid to be measured flowing from the inflow path is Q (cc / min). When 75 (cc / min) ≦ Q <300 (cc / min), there is a relationship of 0.005 (min) ≦ V / Q ≦ 0.01 (min) between V and Q. By controlling the volume and flow rate of the liquid chamber to be measured, the response time corresponding to the pH fluctuation of the liquid to be measured can be shortened, and the pH measurement accuracy of the liquid to be measured with a small flow rate can be improved and automatic measurement can be performed. It has the effect.
[0029]
In addition, the ionic water generator of the present invention has the effect of extracting a liquid to be measured at a minute flow rate from the generated ionic water, automatically measuring the pH in a short time, and accurately controlling the pH by the control unit. Have.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of the structure of a pH sensor according to a first embodiment of the present invention. FIG. 2A is a flow rate of response time and average passage time (V / Q) of the pH sensor according to a first embodiment of the present invention. (B) Relationship diagram at the time of flow rate 250 (cc / min) of the response time and average passage time (V / Q) of the pH sensor in Embodiment 1 of the present invention (c) FIG. 3 is a diagram showing the relationship between the response time of the pH sensor and the average passage time (V / Q) flow rate of 75 (cc / min) in the first embodiment of the present invention. General diagram of the generator [Fig. 4] Schematic structure of a conventional glass electrode [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Cylindrical outer cylinder 2 Hole for sample injection | pouring 3 Sample cap 4 Glass electrode 11, 34 pH sensor 12, 33 pH sensing glass part 13 1st internal electrode 14 Inflow path 15, 31 Drain path 16, 32 Liquid chamber 17 to be measured Liquid junction 18 Internal liquid 19 Comparative electrode liquid 20 Glass electrode 21 Replenishment port 22 Second internal electrode 23 Comparative electrode chamber 24 First output terminal 25 Second output terminals 26 and 57 Control section 27 Liquid to be measured 28 and 58 pH display section DESCRIPTION OF SYMBOLS 30 Branching path 41 Ionized water generator 42 Raw water pipe 43 Water purification part 44 Mineral addition cylinder 45 Electrolyzer 46 Cathode side treated water discharge path 47 Anode side treated water discharge path 48a Cathode side water supply path 48b Anode side water supply path 49 Cathode 50 Cathode chamber 51 Anode 52 Anode Chamber 53 Cathode Terminal 54 Anode Terminal 55 Diaphragm 56 Power Supply Unit

Claims (2)

pH感知ガラス部を備えて被測定液の水素イオン濃度を感知するガラス電極と、前記被測定液を満たすことができるとともに前記pH感知ガラス部が挿入された被測定液室を備え、前記被測定液室には前記被測定液が流入する流入路と前記被測定液が吐出される排水路を設け、前記被測定液室の容積をV(cc)とし、前記流入路から流入する前記被測定液の流量をQ(cc/分)としたとき、75(cc/分)≦Q<300(cc/分)である場合、前記Vが前記Qとの間に0.005(分)≦V/Q≦0.01(分)の関係を有していることを特徴とするpHセンサ。a glass electrode that has a pH sensing glass part to sense the hydrogen ion concentration of the liquid to be measured, and a liquid chamber to be measured that can fill the liquid to be measured and in which the pH sensing glass part is inserted; The liquid chamber is provided with an inflow path through which the liquid to be measured flows and a drain path through which the liquid to be measured is discharged, and the volume of the liquid chamber to be measured is V (cc), and the measured liquid flowing in from the inflow path When the flow rate of the liquid is Q (cc / min), when 75 (cc / min) ≦ Q <300 (cc / min), V is 0.005 (min) ≦ V between Q and Q. A pH sensor characterized by having a relationship of /Q≦0.01 (min). 電解槽と、前記電解槽に設けた一対の電極と、前記電解槽に接続された吐出路と、前記吐出路から分岐された分岐路とを備え、前記分岐路に請求項1記載のpHセンサを設けたことを特徴とするイオン水生成器。2. The pH sensor according to claim 1, comprising an electrolytic cell, a pair of electrodes provided in the electrolytic cell, a discharge channel connected to the electrolytic cell, and a branch channel branched from the discharge channel. An ionic water generator characterized by comprising:
JP03028796A 1996-02-19 1996-02-19 pH sensor and ion water generator Expired - Fee Related JP3633077B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03028796A JP3633077B2 (en) 1996-02-19 1996-02-19 pH sensor and ion water generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03028796A JP3633077B2 (en) 1996-02-19 1996-02-19 pH sensor and ion water generator

Publications (2)

Publication Number Publication Date
JPH09222417A JPH09222417A (en) 1997-08-26
JP3633077B2 true JP3633077B2 (en) 2005-03-30

Family

ID=12299513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03028796A Expired - Fee Related JP3633077B2 (en) 1996-02-19 1996-02-19 pH sensor and ion water generator

Country Status (1)

Country Link
JP (1) JP3633077B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111686568A (en) * 2020-05-18 2020-09-22 成都市排水有限责任公司 Sludge incineration flue gas emission standard control system and method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021131521A1 (en) * 2019-12-27 2021-07-01 株式会社堀場アドバンスドテクノ Electrochemical measurement unit, electrochemical measurement device, and electrochemical measurement method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111686568A (en) * 2020-05-18 2020-09-22 成都市排水有限责任公司 Sludge incineration flue gas emission standard control system and method

Also Published As

Publication number Publication date
JPH09222417A (en) 1997-08-26

Similar Documents

Publication Publication Date Title
US3223597A (en) Method and means for oxygen analysis of gases
JPS6363858B2 (en)
US4581121A (en) Free chlorine gas analyzer
JPH08304331A (en) Electrochemical measuring cell
US3329599A (en) Apparatus for measuring trace constituents
US4661210A (en) Method and apparatus for electrochemical analysis of solutions
US3258411A (en) Method and apparatus for measuring the carbon monoxide content of a gas stream
JP3633077B2 (en) pH sensor and ion water generator
US3248309A (en) Automatic titration apparatus and method
JP3708208B2 (en) pH sensor and ion water generator
US3315270A (en) Dissolved oxidant analysis
KR19990008214A (en) Electrolysis, dropping mercury electrode electrolyzer
US3761377A (en) Atmospheric chlorine detection apparatus
US4441979A (en) Nutating probe for gas analysis
US3315271A (en) Cell for dissolved oxidant analysis
JP3903524B2 (en) Electrolyzed water generator
JP3662692B2 (en) Electrolyzed water generator
JPS5923385B2 (en) Method for measuring the concentration of sodium in a mercury-sodium amalgam flow
JP3650919B2 (en) Electrochemical sensor
US3377256A (en) Alkali analysis
US3450620A (en) Gas sensor
JPH06222038A (en) Dissolved oxygen sensor
JPH05340914A (en) Reference electrode
JPH09178701A (en) Ph-sensor and ion water generator
Chen et al. Study on Polarization Parameters of Micro Dissolved Oxygen Sensor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041220

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080107

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120107

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120107

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees