JP3650919B2 - Electrochemical sensor - Google Patents

Electrochemical sensor Download PDF

Info

Publication number
JP3650919B2
JP3650919B2 JP24520098A JP24520098A JP3650919B2 JP 3650919 B2 JP3650919 B2 JP 3650919B2 JP 24520098 A JP24520098 A JP 24520098A JP 24520098 A JP24520098 A JP 24520098A JP 3650919 B2 JP3650919 B2 JP 3650919B2
Authority
JP
Japan
Prior art keywords
diaphragm
sample
cathode
electrochemical sensor
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24520098A
Other languages
Japanese (ja)
Other versions
JP2000074871A (en
Inventor
剛士 小林
健 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP24520098A priority Critical patent/JP3650919B2/en
Publication of JP2000074871A publication Critical patent/JP2000074871A/en
Application granted granted Critical
Publication of JP3650919B2 publication Critical patent/JP3650919B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、隔膜式の電気化学センサに関する。
【0002】
【従来の技術】
例えば液体に溶存する酸素の濃度を測定するセンサの一つに、ガルバニ電池式の溶存酸素センサがある。図3は従来のこの種溶存酸素センサの要部を模式的に示す図で、この図において、1はセンサ部で、合成樹脂など適宜の材料よりなる筒状のセンサボディ2の先端には測定対象ガスである酸素のみを透過させる隔膜(例えば四フッ化エチレン樹脂などの高分子膜)3が設けられている。この隔膜3の厚みは25μmである。そして、この隔膜3によってセンサボディ2内に形成された室4にはKOH溶液よりなる電解液5が充填されるとともに、この電解液5に浸漬されるようにして銀よりなるカソード6および鉛よりなるアノード7が設けられている。前記カソード6の直径はφ2mmである。
【0003】
8は図示していない本体側に設けられる電流計で、カソード6やアノード7などとともに測定回路9を形成している。
【0004】
上記構成の溶存酸素センサを用いて、試料としての液体10中の酸素を測定するには、スターラなど適宜の手法で攪拌されている試料10中にセンサ部1を浸漬する。試料10中に溶存している酸素は、隔膜3、隔膜3とカソード6との間の液薄膜5aを拡散してカソード6に達する。そして、このカソード6において、酸素は下記(1)式に示す反応により水素イオン(OH- )に還元される。
2 +2H2 O+4e- →4OH- ……(1)
【0005】
上記反応による電流は、測定回路9の電流計8により検出され、その出力は図示していない演算部に入力され、ここで適宜演算処理することにより、試料10中に溶存している酸素の濃度が得られる。なお、アノード7においては、下記(2)式に示す反応が行われる。
2Pb+4OH- →2PbO+2H2 O+4e- ……(2)
【0006】
【発明が解決しようとする課題】
ところで、図2(B)は、上記測定時におけるカソード6近傍の酸素濃度勾配を模式的に示すもので、この図において、横軸方向は、左から右に、カソード6,電解液5a,隔膜3,試料10の層を示し、縦軸は酸素濃度を示している。また、符号11は拡散層を示している。そして、図中の太い実線12は、試料10の流速がある一定の値であるときにおける濃度勾配を示し、細い仮想線13は、前記流速が前記ある一定の値よりも小さいときにおける濃度勾配を示している。
【0007】
また、前記カソード6における反応に起因して生ずる電流(ガルバニ電流)iは、次の式で表される。
i=nFADC/d ……(3)
ここで、nは(1)式に関与する電子数、Fはファラデー定数、Cは酸素濃度、Dは拡散定数、dは拡散層の厚みである。
【0008】
つまり、上記(3)式から理解されるように、測定電流iは、拡散層11の厚みdに依存している。このため、試料10の流速が変化すると、拡散層11の厚みdも変化し、特にこれが試料10に達するとその影響が大きくなり、測定電流iは試料10の流速影響を大きく受けることとなる。また、図2(B)の細い仮想線13に示されるように、試料10の流速が一定の値よりも小さい場合、酸素の拡散が試料10中でも行われているため、拡散層11の厚みdが安定せず、拡散層11の厚みdが試料10にまで達し、濃度勾配が試料10中においてもなかなか安定しないといった不都合がある。
【0009】
上述の問題は、溶存酸素センサのみならず、溶存するアンモニアや残留塩素などの濃度を測定する他の電気化学センサにおいても生じているところである。
【0010】
この発明は、前記の点に留意してなされたものであり、その目的は、拡散層の厚みを一定にし、試料の流速の影響をできるだけ受けないようにして測定対象成分の濃度を精度よく測定できる電気化学センサを提供することである。
【0011】
【課題を解決するための手段】
前記課題を解決するために、本発明の電気化学センサは、センサボディの一端に試料中の測定対象ガスのみを通過させる隔膜によって外部と区画された室を形成し、この室内に電解液を収容するとともに、この電解液中にアノードとカソードとを配置し、隔膜を通過した測定対象ガスが電極において反応することにより前記両極間に流れる電流を測定回路において測定するように構成された電気化学センサにおいて、前記試料における測定対象ガスの濃度の勾配が安定した状態になるように、前記隔膜の厚みを50μm〜200μmと厚く、前記カソードの面積をφ0.2mm〜0.5mmと小さくしたものである。
【0012】
したがって、試料における測定対象ガスの濃度の勾配が安定した状態になるように、隔膜の厚みを厚くするとともに、カソードの面積を小さくしたため、拡散層の厚みが全方向に一定になり、試料の流速の影響を受けることなく、測定対象成分の濃度測定を精度よく行うことができる。
【0013】
【発明の実施の形態】
発明の実施の1形態につき図1および図2(A)を参照して説明する。それらの図において、図2(B)および図3と同一符号は同一もしくは相当するものを示し、異なる点は、隔膜3の厚みを従来の25μmから50μmと約2倍にするとともに、カソード6の直径を従来のφ2mmからφ0.3mmにし、カソード6の接液面積をπmm2 から0.0225πmm2 と約1/45にした点であり、これにより、試料10における酸素濃度の勾配が、図2(A)に示すように、安定した状態となって、試料10の流速にかかわらず、拡散層11の全方向の厚みが一定になり、試料10中に溶存している酸素の濃度を正確に測定することができた。
【0014】
なお、本発明者らの実験によれば、隔膜3の厚みを50μm〜200μmとし、カソード6の面積はφ0.2mm〜φ0.5mmにすることにより、前記効果を奏することが判明した。
また、隔膜3の厚みが200μmを越えたり、あるいはカソード6の面積がφ0.2mm以下と小さくなりすぎると、応答が遅くなるという不都合がある。
【0015】
また、前記形態の場合、液体中に溶存している酸素の濃度を検出するセンサを例にとって説明したが、本発明はこれに限らず、アンモニア,残留塩素等の種々の電気化学センサに適用できることは勿論である。
【0016】
【発明の効果】
以上説明したように、本発明の電気化学センサは、試料における測定対象ガスの濃度の勾配が安定した状態になるように、隔膜の厚みを厚くするとともに、カソードの面積を小さくしたため、拡散層の厚みが全方向に一定になり、試料の流速の影響を受けることなく、測定対象成分の濃度測定を精度よく行うことができる。
【図面の簡単な説明】
【図1】 本発明の実施の1形態の概略構成図である。
【図2】 測定時におけるカソード近傍の酸素濃度勾配を模式的に示す図で、(A)は本発明の溶存酸素センサのものであり、(B)は従来の溶存酸素センサのものである。
【図3】 従来例の概略構成図である。
【符号の説明】
2…センサボディ、3…隔膜、4…室、5…電解液、6…カソード、7…アノード、9…測定回路、10…試料。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a diaphragm type electrochemical sensor.
[0002]
[Prior art]
For example, there is a galvanic cell type dissolved oxygen sensor as one of the sensors for measuring the concentration of oxygen dissolved in a liquid. FIG. 3 is a diagram schematically showing the main part of this conventional dissolved oxygen sensor. In this figure, reference numeral 1 denotes a sensor part, which is measured at the tip of a cylindrical sensor body 2 made of an appropriate material such as synthetic resin. A diaphragm (for example, a polymer film such as tetrafluoroethylene resin) 3 that allows only oxygen as a target gas to pass therethrough is provided. The thickness of the diaphragm 3 is 25 μm. The chamber 4 formed in the sensor body 2 by the diaphragm 3 is filled with an electrolytic solution 5 made of a KOH solution, and is immersed in the electrolytic solution 5 from a cathode 6 made of silver and lead. An anode 7 is provided. The diameter of the cathode 6 is φ2 mm.
[0003]
Reference numeral 8 denotes an ammeter (not shown) provided on the main body side, which forms a measurement circuit 9 together with the cathode 6 and the anode 7.
[0004]
In order to measure oxygen in the liquid 10 as a sample using the dissolved oxygen sensor having the above-described configuration, the sensor unit 1 is immersed in the sample 10 which is stirred by an appropriate method such as a stirrer. Oxygen dissolved in the sample 10 reaches the cathode 6 by diffusing the diaphragm 3, the liquid thin film 5 a between the diaphragm 3 and the cathode 6. In the cathode 6, oxygen is reduced to hydrogen ions (OH ) by the reaction shown in the following formula (1).
O 2 + 2H 2 O + 4e → 4OH (1)
[0005]
The current due to the above reaction is detected by the ammeter 8 of the measurement circuit 9, and the output is input to a calculation unit (not shown), and the concentration of oxygen dissolved in the sample 10 is appropriately calculated here. Is obtained. In the anode 7, the reaction shown in the following formula (2) is performed.
2Pb + 4OH → 2PbO + 2H 2 O + 4e (2)
[0006]
[Problems to be solved by the invention]
FIG. 2B schematically shows the oxygen concentration gradient in the vicinity of the cathode 6 at the time of the measurement. In this figure, the horizontal axis direction is from left to right, the cathode 6, the electrolyte 5a, and the diaphragm. 3 shows the layer of the sample 10, and the vertical axis shows the oxygen concentration. Reference numeral 11 denotes a diffusion layer. A thick solid line 12 in the figure indicates the concentration gradient when the flow rate of the sample 10 is a certain value, and a thin virtual line 13 indicates the concentration gradient when the flow rate is smaller than the certain value. Show.
[0007]
The current (galvanic current) i generated due to the reaction at the cathode 6 is expressed by the following equation.
i = nFADC / d (3)
Here, n is the number of electrons involved in the equation (1), F is the Faraday constant, C is the oxygen concentration, D is the diffusion constant, and d is the thickness of the diffusion layer.
[0008]
That is, as can be understood from the above equation (3), the measurement current i depends on the thickness d of the diffusion layer 11. For this reason, when the flow velocity of the sample 10 changes, the thickness d of the diffusion layer 11 also changes. In particular, when this reaches the sample 10, the influence increases, and the measurement current i is greatly affected by the flow velocity of the sample 10. In addition, as shown by the thin imaginary line 13 in FIG. 2B, when the flow velocity of the sample 10 is smaller than a certain value, oxygen is diffused in the sample 10, and thus the thickness d of the diffusion layer 11. Is not stable, the thickness d of the diffusion layer 11 reaches the sample 10, and the concentration gradient is not stable even in the sample 10.
[0009]
The above-described problems are occurring not only in dissolved oxygen sensors but also in other electrochemical sensors that measure the concentration of dissolved ammonia, residual chlorine, and the like.
[0010]
The present invention has been made in consideration of the above points, and its purpose is to accurately measure the concentration of the component to be measured while keeping the thickness of the diffusion layer constant and not being affected by the flow rate of the sample as much as possible. It is to provide an electrochemical sensor that can be used.
[0011]
[Means for Solving the Problems]
In order to solve the above problems, the electrochemical sensor of the present invention forms a chamber partitioned from the outside by a diaphragm that allows only the gas to be measured in the sample to pass through at one end of the sensor body, and accommodates the electrolyte in this chamber. In addition, an anode and a cathode are disposed in the electrolyte solution, and an electrochemical sensor configured to measure current flowing between the two electrodes in a measurement circuit when a measurement target gas that has passed through the diaphragm reacts at the electrode. in, as the gradient of concentration of the measurement target gas in the sample reaches a steady state, the thickness of the diaphragm is increased to 50 m to 200 m, the cathode area which was as small as φ0.2mm~0.5mm is there.
[0012]
Therefore, the thickness of the diaphragm is increased and the area of the cathode is reduced so that the gradient of the concentration of the gas to be measured in the sample is stable. Therefore, it is possible to accurately measure the concentration of the measurement target component without being influenced by the above.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the invention will be described with reference to FIGS. 1 and 2A. In these drawings, the same reference numerals as those in FIG. 2B and FIG. 3 indicate the same or corresponding parts. The difference is that the thickness of the diaphragm 3 is approximately doubled from the conventional 25 μm to 50 μm, and the cathode 6 to φ0.3mm diameter from conventional 2mm, wetted area of the cathode 6 is the point that the Paimm 2 to 0.0225Paimm 2 to about 1/45, thereby, the gradient of the oxygen concentration in the sample 10, FIG. 2 As shown to (A), it becomes a stable state, the thickness of the diffusion layer 11 becomes constant irrespective of the flow velocity of the sample 10, and the concentration of oxygen dissolved in the sample 10 is accurately determined. It was possible to measure.
[0014]
In addition, according to experiments by the present inventors, it has been found that the above-mentioned effect can be obtained by setting the thickness of the diaphragm 3 to 50 μm to 200 μm and the area of the cathode 6 to φ0.2 mm to φ0.5 mm.
Further, if the thickness of the diaphragm 3 exceeds 200 μm, or the area of the cathode 6 becomes too small as φ0.2 mm or less, there is a disadvantage that the response becomes slow.
[0015]
Moreover, in the case of the said form, although demonstrated taking the example of the sensor which detects the density | concentration of the oxygen dissolved in the liquid, this invention is applicable not only to this but to various electrochemical sensors, such as ammonia and a residual chlorine. Of course.
[0016]
【The invention's effect】
As described above, the electrochemical sensor of the present invention increases the thickness of the diaphragm and reduces the area of the cathode so that the gradient of the concentration of the measurement target gas in the sample is stable. The thickness is constant in all directions, and the concentration of the measurement target component can be accurately measured without being affected by the flow rate of the sample.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a first embodiment of the present invention.
2A and 2B are diagrams schematically showing an oxygen concentration gradient in the vicinity of a cathode at the time of measurement. FIG. 2A shows a dissolved oxygen sensor according to the present invention, and FIG. 2B shows a conventional dissolved oxygen sensor.
FIG. 3 is a schematic configuration diagram of a conventional example.
[Explanation of symbols]
2 ... sensor body, 3 ... diaphragm, 4 ... chamber, 5 ... electrolyte, 6 ... cathode, 7 ... anode, 9 ... measuring circuit, 10 ... sample.

Claims (2)

センサボディの一端に試料中の測定対象ガスのみを通過させる隔膜によって外部と区画された室を形成し、この室内に電解液を収容するとともに、この電解液中にアノードとカソードとを配置し、隔膜を通過した測定対象ガスが電極において反応することにより前記両極間に流れる電流を測定回路において測定するように構成された電気化学センサにおいて、前記試料における測定対象ガスの濃度の勾配が安定した状態になるように、前記隔膜の厚みを50μm〜200μmと厚く、前記カソードの面積をφ0.2mm〜0.5mmと小さくしたことを特徴とする電気化学センサ。A chamber separated from the outside by a diaphragm that allows only the gas to be measured in the sample to pass through is formed at one end of the sensor body, and an electrolytic solution is accommodated in the chamber, and an anode and a cathode are disposed in the electrolytic solution, In an electrochemical sensor configured to measure, in a measurement circuit, a current flowing between the electrodes when a gas to be measured that has passed through a diaphragm reacts at an electrode, the concentration gradient of the gas to be measured in the sample is stable so that the electrochemical sensor, characterized in that the thickness of the diaphragm is increased to 50 m to 200 m, and the cathode area as small as Fai0.2Mm~0.5Mm. 前記電気化学センサが溶存酸素センサであって、前記隔膜の厚みを50μm厚くし、前記カソードの面積φ0.3mmと小さくしたことを特徴とする請求項1に記載の電気化学センサ。The electrochemical sensor is a dissolved oxygen sensor, the thickness of the diaphragm is increased to 50 μm, and the area of the cathode is φ0 . The electrochemical sensor according to claim 1, wherein the electrochemical sensor is as small as 3 mm.
JP24520098A 1998-08-31 1998-08-31 Electrochemical sensor Expired - Fee Related JP3650919B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24520098A JP3650919B2 (en) 1998-08-31 1998-08-31 Electrochemical sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24520098A JP3650919B2 (en) 1998-08-31 1998-08-31 Electrochemical sensor

Publications (2)

Publication Number Publication Date
JP2000074871A JP2000074871A (en) 2000-03-14
JP3650919B2 true JP3650919B2 (en) 2005-05-25

Family

ID=17130120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24520098A Expired - Fee Related JP3650919B2 (en) 1998-08-31 1998-08-31 Electrochemical sensor

Country Status (1)

Country Link
JP (1) JP3650919B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4573405B2 (en) * 2000-07-21 2010-11-04 東亜ディーケーケー株式会社 Diaphragm cartridge
US6602401B1 (en) * 2000-11-01 2003-08-05 Rosemount Analytical Inc. Amperometric sensor for low level dissolved oxygen with self-depleting sensor design
JP2002195975A (en) * 2000-12-22 2002-07-10 Dkk Toa Corp Membrane-type electrode

Also Published As

Publication number Publication date
JP2000074871A (en) 2000-03-14

Similar Documents

Publication Publication Date Title
US3223597A (en) Method and means for oxygen analysis of gases
US20100276303A1 (en) Method for measuring hematocrit value of blood sample, method for measuring concentration of analyte in blood sample, sensor chip and sensor unit
EP2219024A1 (en) Electrochemical oxygen sensor
JPS6114565A (en) Instrument for measuring concentration of hydrogen ion
JPH0473095B2 (en)
EP1332358A1 (en) Acid gas measuring sensors and method of making same
US5106482A (en) High speed oxygen sensor
EP3495810B1 (en) Electrochemical oxygen sensor
US20070227908A1 (en) Electrochemical cell sensor
JP3650919B2 (en) Electrochemical sensor
US3329599A (en) Apparatus for measuring trace constituents
EP0068025A1 (en) Reference electrode
US4235689A (en) Apparatus for detecting traces of a gas
Pletcher et al. Studies of a microelectrode sensor for monitoring chlorine in water supplies
JPS5834352A (en) Solid-state reference electrode and its applied apparatus
JP3708208B2 (en) pH sensor and ion water generator
JP2002350384A (en) Oxygen sensor of galvanic cell type
JP2004177163A (en) Galvanic cell type dissolved oxygen sensor
JPS61176846A (en) Ion sensor body
JP3633077B2 (en) pH sensor and ion water generator
Chen et al. Study on Polarization Parameters of Micro Dissolved Oxygen Sensor
CN217156396U (en) Tectorial membrane multi-chamber water quality analysis sensor
JPS60111952A (en) Galvanic cell type gas sensor
JP3838774B2 (en) Cathode for oxygen electrode
JPS6332363A (en) Hydrogen peroxide electrode

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050209

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110304

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110304

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120304

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120304

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120304

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130304

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130304

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130304

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees