JPH08227933A - Wafer heater with electrostatic attracting function - Google Patents

Wafer heater with electrostatic attracting function

Info

Publication number
JPH08227933A
JPH08227933A JP3048395A JP3048395A JPH08227933A JP H08227933 A JPH08227933 A JP H08227933A JP 3048395 A JP3048395 A JP 3048395A JP 3048395 A JP3048395 A JP 3048395A JP H08227933 A JPH08227933 A JP H08227933A
Authority
JP
Japan
Prior art keywords
boron nitride
bonded
insulating layer
wafer
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3048395A
Other languages
Japanese (ja)
Inventor
Atsuo Kawada
敦雄 川田
Ryoji Nakajima
亮二 中島
Toshihiko Shindo
敏彦 進藤
Takaaki Nagao
貴章 長尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP3048395A priority Critical patent/JPH08227933A/en
Priority to US08/603,155 priority patent/US5663865A/en
Publication of JPH08227933A publication Critical patent/JPH08227933A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67103Apparatus for thermal treatment mainly by conduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • H01L21/6833Details of electrostatic chucks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N13/00Clutches or holding devices using electrostatic attraction, e.g. using Johnson-Rahbek effect

Abstract

PURPOSE: To obtain a wafer heater with electrostatic attracting function which exhibits sufficient electrostatic attraction in an intermediate temperature zone while protecting a device against damage due to leak current. CONSTITUTION: In the wafer heater with electrostatic attracting function, a supporting basic material 1 composed of a sintered mixture of boron nitride and aluminum nitride is bonded, on one side thereof, with a heating layer 2 of thermal decomposition graphite and an insulation layer 3 composed of thermal decomposition boron nitride is bonded thereon. The basic material is bonded, on the other side thereof, with an electrostatic attraction electrode 4 composed of thermal decomposition graphite and an insulation layer 5 composed of thermal decomposition baron nitride, containing 1-10wt.% of silicon, is bonded thereon.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は昇温工程を含む半導体プ
ロセスに使用される静電吸着機能を有するウエハ加熱装
置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wafer heating apparatus having an electrostatic attraction function used in a semiconductor process including a temperature raising step.

【0002】[0002]

【従来の技術】半導体デバイスの製造工程における半導
体ウエハの加熱には、従来金属線を巻いたヒーターが使
用されていたが、これについては半導体ウエハへの金属
汚染の問題があるため、セラミックスの薄膜を発熱体と
して使用した、セラミックス一体型ウエハ加熱装置の使
用が提案されている(特開平4−124076号公報参
照)。また、この半導体ウエハの加熱に当たってはヒー
ター上に半導体ウエハを固定するために減圧雰囲気では
静電吸着装置が使用されているが、プロセスの高温化に
伴ってその材質が樹脂からセラミックスに移行されてお
り(特開昭52−67353号公報、特開昭59−12
4140号公報参照)、また最近ではこれらのセラミッ
クス一体型ウエハ加熱装置と静電吸着装置を合体した静
電吸着機能を有するウエハ加熱装置も提案されており、
エッチング工程などの低温域では静電吸着装置の絶縁層
にアルミナを用いたものが(特開昭59−124140
号公報参照)、またCVD工程などの高温域においては
静電吸着装置の絶縁層に熱分解窒化硼素を用いたものが
使用されている(特開平4−358074号公報、特開
平5−109876号公報、特開平5−129210号
公報、特願平5−152015号公報参照)。
2. Description of the Related Art Conventionally, a heater wound with a metal wire has been used for heating a semiconductor wafer in a semiconductor device manufacturing process. However, this has a problem of metal contamination on the semiconductor wafer. It has been proposed to use a ceramics-integrated wafer heating device that uses as a heating element (see Japanese Laid-Open Patent Publication No. 4-124076). Further, in heating the semiconductor wafer, an electrostatic adsorption device is used in a depressurized atmosphere to fix the semiconductor wafer on a heater, but as the temperature of the process rises, the material is changed from resin to ceramics. (Japanese Patent Application Laid-Open No. 52-67353, Japanese Patent Application Laid-Open No. 59-12
No. 4140), and recently, a wafer heating device having an electrostatic attraction function, which is a combination of the ceramics-integrated wafer heating device and the electrostatic attraction device, has been proposed.
In the low temperature region such as the etching process, the one using alumina for the insulating layer of the electrostatic adsorption device is disclosed in JP-A-59-124140.
In the high temperature region such as the CVD process, the one using pyrolytic boron nitride for the insulating layer of the electrostatic adsorption device is used (JP-A-4-358074 and JP-A-5-109876). Japanese Patent Application Laid-Open No. 5-129210 and Japanese Patent Application No. 5-152015).

【0003】[0003]

【発明が解決しようとする課題】ここで、文献(渡部俊
也:ニューセラミックス、(7)、49〜53(1994))に記述さ
れているように、静電吸着力はこの絶縁層の体積抵抗率
が低くなれば強くなるが、低過ぎるとリーク電流による
デバイスの破損が生じるため、静電吸着装置の絶縁層の
体積抵抗率は1010〜1013Ωcm、好ましくは1011Ωcmであ
る必要があるとされる。しかし500℃から650℃ま
での中温域では、アルミナを絶縁層に用いた場合には抵
抗率が低くなり過ぎリーク電流によるデバイスの破損が
発生し、熱分解窒化硼素を用いた場合には抵抗率が高く
なり過ぎるため十分な静電吸着力( 100〜500gf/cm2
が得られないという問題があった。
As described in the literature (Toshiya Watanabe: New Ceramics, (7), 49-53 (1994)), the electrostatic adsorption force is the volume resistance of this insulating layer. If the rate is low, the strength will be strong, but if it is too low, the device will be damaged by leakage current.Therefore, the volume resistivity of the insulating layer of the electrostatic chuck should be 10 10 to 10 13 Ωcm, preferably 10 11 Ωcm. It is supposed to be. However, in the medium temperature range from 500 ° C to 650 ° C, the resistivity becomes too low when alumina is used for the insulating layer, and the device is damaged by leak current, and the resistivity when pyrolytic boron nitride is used. The electrostatic attraction force (100 to 500gf / cm 2 ) is sufficient because the temperature becomes too high.
There was a problem that could not be obtained.

【0004】[0004]

【課題を解決するための手段】本発明はこのような不
利、欠点を解消した500〜650℃の中温域での使用
に適する静電吸着機能を有するウエハ加熱装置に関する
もので、これは窒化硼素と窒化アルミニウムの混合焼結
体からなる支持基材の一方の面に熱分解グラファイトか
らなる発熱層を接合し、その上に熱分解窒化硼素からな
る絶縁層を接合し、該基材の他方の面に熱分解グラファ
イトからなる静電吸着用電極を接合し、その上に1〜1
0重量%の珪素を含有する熱分解窒化硼素からなる絶縁
層を接合してなることを特徴とする静電吸着機能を有す
るウエハ加熱装置を要旨とするものである。
SUMMARY OF THE INVENTION The present invention relates to a wafer heating apparatus having an electrostatic adsorption function suitable for use in a medium temperature range of 500 to 650.degree. A heat-generating layer made of pyrolytic graphite is bonded to one surface of a supporting base material made of a mixed sintered body of aluminum and aluminum nitride, and an insulating layer made of pyrolytic boron nitride is bonded thereon, and the other side of the base material is joined. Electrodes for electrostatic adsorption made of pyrolytic graphite are bonded to the surface, and 1-1
The present invention is directed to a wafer heating device having an electrostatic adsorption function, which is formed by joining an insulating layer made of pyrolytic boron nitride containing 0% by weight of silicon.

【0005】すなわち、本発明者らは従来公知の絶縁層
に熱分解窒化硼素を用いた静電吸着機能を有するウエハ
加熱装置における、中温域における静電吸着力の低下を
防止する方法について種々検討した結果、これについて
は、窒化硼素と窒化アルミニウムの混合焼結体からなる
支持基材の一方の面に熱分解グラファイトからなる発熱
層を接合し、その上に熱分解窒化硼素からなる絶縁層を
接合し、該基材の他方の面に熱分解グラファイトからな
る静電吸着用電極を接合し、その上に熱分解窒化硼素か
らなる絶縁層を接合してなる静電吸着機能を有するウエ
ハ加熱装置において、この静電吸着用電極上の絶縁層に
1〜10重量%の珪素を含有させればこの中温域での静
電吸着力の低下が起こらなくなるということを見いだ
し、本発明を完成させた。以下にこれをさらに詳述す
る。
That is, the inventors of the present invention have variously studied a method for preventing a decrease in electrostatic attraction force in a medium temperature range in a wafer heating device having an electrostatic attraction function using a conventionally known pyrolytic boron nitride for an insulating layer. As a result, with respect to this, a heat generating layer made of pyrolytic graphite was bonded to one surface of a supporting base material made of a mixed sintered body of boron nitride and aluminum nitride, and an insulating layer made of pyrolytic boron nitride was bonded onto it. A wafer heating device having an electrostatic adsorption function, which is obtained by joining an electrode for electrostatic adsorption made of pyrolytic graphite to the other surface of the base material and an insulating layer made of pyrolytic boron nitride on the electrode. In addition, it was found that if the insulating layer on the electrode for electrostatic attraction contains 1 to 10% by weight of silicon, the electrostatic attraction force does not decrease in this intermediate temperature range, and the present invention is completed. It was. This will be described in more detail below.

【0006】本発明は静電吸着機能を有するウエハ加熱
装置に関するものであり、図1に示すように、これは窒
化硼素と窒化アルミニウムの混合焼結体からなる支持基
材1の一方の面に熱分解グラファイトからなる発熱層2
を接合し、その上に熱分解窒化硼素からなる第一の絶縁
層3を接合し、該基材の他方の面に熱分解グラファイト
からなる静電吸着用電極層4を接合し、その上に1〜1
0重量%の珪素を含有する熱分解窒化硼素からなる第二
の絶縁層5を接合してなることを特徴とするものであ
る。これによれば中温域において静電吸着力が低下する
ことがなくなるのでこの静電吸着機能を有するウエハ加
熱装置とウエハとの密着面積が増え、ウエハの温度分布
がより均一になるという有利性が与えられる。
The present invention relates to a wafer heating apparatus having an electrostatic adsorption function, and as shown in FIG. 1, this is provided on one surface of a supporting substrate 1 made of a mixed sintered body of boron nitride and aluminum nitride. Heating layer 2 made of pyrolytic graphite
Is bonded, a first insulating layer 3 made of pyrolytic boron nitride is bonded thereon, and an electrostatic attraction electrode layer 4 made of pyrolytic graphite is bonded to the other surface of the base material, 1-1
It is characterized in that a second insulating layer 5 made of pyrolytic boron nitride containing 0% by weight of silicon is joined. According to this, since the electrostatic attraction force does not decrease in the middle temperature range, the contact area between the wafer heating device having the electrostatic attraction function and the wafer increases, and the temperature distribution of the wafer becomes more uniform. Given.

【0007】従来公知の静電吸着機能を有するウエハ加
熱装置は、窒化硼素と窒化アルミニウムの混合焼結体か
らなる支持基材の一方の面に熱分解グラファイトからな
る発熱層を接合し、その上に熱分解窒化硼素からなる絶
縁層を接合し、該基材の他方の面に熱分解グラファイト
からなる静電吸着用電極を接合し、その上に熱分解窒化
硼素からなる絶縁層を接合したものである。しかし、こ
の公知の構成では500〜650℃における絶縁層の熱
分解窒化硼素の体積抵抗率が大きいため十分な静電吸着
力が得られず、ウエハとウエハ加熱装置との密着性が悪
く温度分布が不均一になり、これによって製造されるデ
バイスの特性にばらつきを生じさせるという重大な欠点
がある。
In a conventionally known wafer heating apparatus having an electrostatic adsorption function, a heat-generating layer made of pyrolytic graphite is bonded to one surface of a supporting base material made of a mixed sintered body of boron nitride and aluminum nitride, and further on it. To which an insulating layer made of pyrolytic boron nitride is joined, an electrode for electrostatic adsorption made of pyrolytic graphite is joined to the other surface of the base material, and an insulating layer made of pyrolytic boron nitride is joined thereon. Is. However, in this known configuration, since the volume resistivity of the pyrolytic boron nitride of the insulating layer at 500 to 650 ° C. is large, a sufficient electrostatic attraction force cannot be obtained, and the adhesion between the wafer and the wafer heating device is poor and the temperature distribution is low. Has a serious drawback that it causes non-uniformity, which causes variations in characteristics of manufactured devices.

【0008】しかるに本発明に従って、静電吸着用電極
上の絶縁層を1〜10重量%の珪素を含有する熱分解窒
化硼素からなるものとすれば、500〜650℃の中温
域において十分な静電吸着力が得られ、ウエハの温度分
布はより均一なものになり、またリーク電流によるデバ
イスの損傷も発生しない。したがって本発明の静電吸着
機能を有するウエハ加熱装置を使用すれば、デバイス歩
留りが大幅に向上するという有利性が与えられる。な
お、珪素の含有率を1重量%未満とした場合はこの温度
範囲では十分な静電吸着力が得られず、一方、珪素の含
有率を10重量%より大きくした場合は、この温度範囲
ではリーク電流によるデバイスの損傷が起こる。図2は
加熱温度に対する各種絶縁層の体積抵抗率を表したもの
であり、PBNは熱分解窒化硼素を、PSiBN(1%)は
1重量%の珪素を含有する熱分解窒化硼素を、PSiB
N(10%) は10重量%の珪素を含有する熱分解窒化硼素
を、Al23 はアルミナを示す。これはPBN中のシ
リコン量を1〜10重量%の範囲で適当に選ぶことによ
り、温度500〜650℃で体積抵抗率をおよそ1010
1013Ωcmの範囲とすることができることを示している。
According to the present invention, however, if the insulating layer on the electrode for electrostatic adsorption is made of pyrolytic boron nitride containing 1 to 10% by weight of silicon, sufficient static electricity is maintained in the medium temperature range of 500 to 650.degree. Electroadhesive force is obtained, the temperature distribution of the wafer becomes more uniform, and device damage due to leakage current does not occur. Therefore, the use of the wafer heating apparatus having the electrostatic attraction function of the present invention provides the advantage that the device yield is significantly improved. If the silicon content is less than 1% by weight, sufficient electrostatic adsorption force cannot be obtained in this temperature range, while if the silicon content is greater than 10% by weight, Device damage due to leakage current occurs. FIG. 2 shows the volume resistivity of various insulating layers with respect to the heating temperature. PBN is pyrolytic boron nitride, PSiBN (1%) is pyrolytic boron nitride containing 1% by weight of silicon, and PSiB.
N (10%) means pyrolytic boron nitride containing 10% by weight of silicon, and Al 2 O 3 means alumina. This is because the volume resistivity at a temperature of 500 to 650 ° C. is about 10 10 〜 by properly selecting the amount of silicon in PBN in the range of 1 to 10 wt%.
It shows that it can be in the range of 10 13 Ωcm.

【0009】本発明の静電吸着機能を有するウエハ加熱
装置は上記したように、窒化硼素と窒化アルミニウムの
混合焼結体からなる支持基材、該基材の一方の面に接合
された熱分解グラファイトからなる発熱層、及びその上
に設けられた主成分が熱分解窒化硼素からなる第1の絶
縁層、該基材の他方の面に接合された熱分解グラファイ
トからなる静電吸着用電極、及びその上に設けられた1
〜10重量%の珪素を含有する熱分解窒化硼素からなる
第2の絶縁層から構成されたものとされる。
As described above, the wafer heating apparatus having the electrostatic adsorption function of the present invention has a supporting base material composed of a mixed sintered body of boron nitride and aluminum nitride, and a thermal decomposition bonded to one surface of the base material. A heat generating layer made of graphite, a first insulating layer having a main component made of pyrolytic boron nitride provided thereon, an electrostatic adsorption electrode made of pyrolytic graphite bonded to the other surface of the base material, And the one provided on it
The second insulating layer is composed of pyrolytic boron nitride containing 10 to 10% by weight of silicon.

【0010】支持基材の窒化硼素と窒化アルミニウムの
混合物は公知の方法で焼結させて得たものとすれば良
い。窒化硼素と窒化アルミニウムの混合割合は、アルミ
ニウムが多すぎると線膨張係数が大きすぎるという問題
があり、少なすぎると線膨張係数が小さすぎるという問
題があるので、重量比で1:0.05〜1の範囲とすればよ
い。発熱層及び静電吸着用電極の熱分解グラファイト
は、例えばメタンガスを1900〜2200℃、5Torrという条
件下で熱分解することによって得られたものとすれば良
い。この厚さは薄すぎると強度不足の問題があり、厚す
ぎると剥離の問題があるので10〜300 μmとすればよ
い。第1の絶縁層は主成分が熱分解窒化硼素よりなり、
これは例えばアンモニアと三塩化硼素との容量混合比
4:1の混合気体を1800〜2000℃、10Torrの条件下で
熱分解することによって得られたものとすれば良い。こ
の厚さは薄すぎると強度不足の問題があり、厚すぎると
剥離の問題があるので50〜500 μmとすればよい。ま
た、第2の絶縁層は1〜10重量%の珪素を含有した熱
分解窒化硼素からなるものとすることが必要とされるの
であるが、これは例えばアンモニアと三塩化硼素と四塩
化珪素の容量混合比40:9:1〜24:5:1の混合気体
を1600〜2000℃、5〜10Torrの条件下で化学気相蒸着
することによって得られたものとすれば良い。また、こ
の厚さは薄すぎると絶縁破壊の問題があり、厚すぎると
静電吸着力の低下の問題があるので50〜500 μmとすれ
ばよい。なお、第1の絶縁層は第2の絶縁層と同じ1〜
10重量%の珪素を含有した熱分解窒化硼素からなるも
のとしてもよく、こうすると製造工程が簡略化されるの
でコスト的に有利となる。
The mixture of boron nitride and aluminum nitride as the supporting substrate may be obtained by sintering by a known method. The mixing ratio of boron nitride and aluminum nitride has a problem that the linear expansion coefficient is too large when the amount of aluminum is too large, and the linear expansion coefficient is too small when the amount is too small. It should be a range. The pyrolytic graphite of the heat generating layer and the electrode for electrostatic adsorption may be obtained, for example, by thermally decomposing methane gas under the conditions of 1900 to 2200 ° C. and 5 Torr. If the thickness is too thin, there is a problem of insufficient strength, and if it is too thick, there is a problem of peeling. Therefore, the thickness may be set to 10 to 300 μm. The first insulating layer is mainly composed of pyrolytic boron nitride,
This may be obtained, for example, by thermally decomposing a mixed gas of ammonia and boron trichloride with a volume mixing ratio of 4: 1 under the conditions of 1800 to 2000 ° C. and 10 Torr. If the thickness is too thin, there is a problem of insufficient strength, and if it is too thick, there is a problem of peeling. Therefore, the thickness may be set to 50 to 500 μm. Also, the second insulating layer is required to be made of pyrolytic boron nitride containing 1 to 10% by weight of silicon, which is composed of, for example, ammonia, boron trichloride and silicon tetrachloride. It may be obtained by chemical vapor deposition of a mixed gas having a volume mixing ratio of 40: 9: 1 to 24: 5: 1 under the conditions of 1600 to 2000 ° C. and 5 to 10 Torr. If this thickness is too thin, there is a problem of dielectric breakdown, and if it is too thick, there is a problem of a decrease in electrostatic adsorption force. Therefore, the thickness may be 50 to 500 μm. Note that the first insulating layer is the same as the second insulating layer 1 to
It may be made of pyrolytic boron nitride containing 10% by weight of silicon, which is advantageous in terms of cost because the manufacturing process is simplified.

【0011】[0011]

【作用】このようにして1〜10重量%の珪素を含有す
る熱分解窒化硼素からなる絶縁層を有する、本発明の静
電吸着機能を有するウエハ加熱装置は、500〜650
℃の中温域において十分な静電吸着力が得られ、したが
ってウエハ温度分布の均一性が向上し、かつリーク電流
によるデバイスの損傷も起こらないため、デバイス歩留
が大幅に向上するという有利性が与えられる。
In this way, the wafer heating apparatus having the electrostatic adsorption function of the present invention having the insulating layer made of pyrolytic boron nitride containing 1 to 10% by weight of silicon is 500 to 650.
A sufficient electrostatic attraction force can be obtained in the middle temperature range of ℃, thus the uniformity of the wafer temperature distribution is improved, and the damage of the device due to the leakage current does not occur, so the device yield is greatly improved. Given.

【0012】[0012]

【実施例】つぎに本発明の実施例をあげる。 実施例 窒化硼素粉末と窒化アルミニウム粉末を重量比で3対1
の割合で混合したのち、1900℃、200kgf/mm2 の条件下
で焼結し、直径 200mm、厚さ10mmの窒化硼素と窒化ア
ルミニウムの混合焼結体からなる円板を作った。ついで
この上でメタンガスを2200℃、5Torrの条件下で熱分解
してこの円板上に厚さ100μmの熱分解グラファイト
層を形成し、表面の熱分解グラファイト層より電極パタ
ーンを、また裏面の熱分解グラファイト層よりヒーター
パターンを加工してそれぞれを静電吸着用電極と発熱層
とした。ついで反応ガスとしてアンモニアと三塩化硼素
と四塩化珪素を32:7:1の容量混合比で流し、1600
℃、5Torrの条件下で熱分解反応させてこの円板上に厚
さ200μmの珪素含有熱分解窒化硼素絶縁層を設ける
ことにより、静電吸着機能を有するウエハ加熱装置を作
った。この絶縁層の珪素含有率を測定したところ、7重
量%であった。この静電吸着機能を有するウエハ加熱装
置を使用し、シリコンウエハを600℃に加熱し、その
上にポリシリコン膜を堆積したところ、ウエハ上の温度
分布は±5℃、ポリシリコン膜の厚さの分布は0.10〜0.
11μmであった。
EXAMPLES Next, examples of the present invention will be given. Example A weight ratio of boron nitride powder and aluminum nitride powder is 3: 1.
After mixing at a ratio of 1900 ° C. and 200 kgf / mm 2 , the disc was made of a mixed sintered body of boron nitride and aluminum nitride having a diameter of 200 mm and a thickness of 10 mm. Then, methane gas was pyrolyzed on this disk under the conditions of 2200 ° C. and 5 Torr to form a pyrolytic graphite layer with a thickness of 100 μm on this disc. A heater pattern was processed from the decomposed graphite layer to form an electrostatic attraction electrode and a heating layer, respectively. Then, as reaction gas, ammonia, boron trichloride and silicon tetrachloride were caused to flow at a volume mixing ratio of 32: 7: 1, and 1600
A wafer heating device having an electrostatic adsorption function was produced by performing a thermal decomposition reaction under the conditions of ° C and 5 Torr to provide a 200 µm thick silicon-containing thermally decomposed boron nitride insulating layer on this disk. The silicon content of this insulating layer was measured and found to be 7% by weight. Using this wafer heating device having an electrostatic adsorption function, a silicon wafer was heated to 600 ° C. and a polysilicon film was deposited thereon. The temperature distribution on the wafer was ± 5 ° C., and the thickness of the polysilicon film was Has a distribution of 0.10 to 0.
It was 11 μm.

【0013】比較例 比較のために、絶縁層の反応ガスから四塩化珪素を除い
た以外は、実施例と同じ構成で、該静電吸着機能を有す
るウエハ加熱装置を作り、これについて同様の方法でシ
リコンウエハの上にポリシリコン膜の堆積を行ったとこ
ろ、ウエハ上の温度分布は±13℃、ポリシリコン膜の
厚さの分布は0.08〜0.12μmと悪かった。
Comparative Example For comparison, a wafer heating apparatus having the same electrostatic adsorption function was made with the same configuration as that of Example except that silicon tetrachloride was removed from the reaction gas of the insulating layer. When a polysilicon film was deposited on the silicon wafer, the temperature distribution on the wafer was ± 13 ° C. and the thickness distribution of the polysilicon film was 0.08 to 0.12 μm, which were bad.

【0014】[0014]

【発明の効果】本発明の装置を用いれば、500〜65
0℃の中温域において十分な静電吸着力が得られ、した
がってウエハ温度分布の均一性が向上し、かつリーク電
流によるデバイスの損傷も起こらないため、デバイス歩
留りが大幅に向上するという有利性が与えられる。
When the device of the present invention is used, the value of 500 to 65 can be obtained.
Sufficient electrostatic adsorption force can be obtained in the middle temperature range of 0 ° C., so that the uniformity of the wafer temperature distribution is improved and the device is not damaged by the leak current. Therefore, the device yield is significantly improved. Given.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による、静電吸着機能を有するウエハ加
熱装置の断面模式図。
FIG. 1 is a schematic sectional view of a wafer heating apparatus having an electrostatic attraction function according to the present invention.

【図2】下記絶縁層の、加熱温度に対する体積抵抗率。 □ PBN 熱分解窒化硼素 ● PSiBN(1%) 1重量%の珪素を含有する熱分
解窒化硼素 ○ PSiBN(10%) 10重量%の珪素を含有する熱分
解窒化硼素 △ Al23 アルミナ
FIG. 2 is a volume resistivity of the following insulating layer with respect to a heating temperature. □ PBN Pyrolytic Boron Nitride ● PSiBN (1%) Pyrolytic Boron Nitride Containing 1 wt% Silicon ○ PSiBN (10%) Pyrolytic Boron Nitride Containing 10 wt% Silicon △ Al 2 O 3 Alumina

【符号の説明】[Explanation of symbols]

1 支持基材 2 発熱層 3 第一の絶縁層 4 静電吸着用電極層 5 第二の絶縁層 1 Supporting Base Material 2 Heating Layer 3 First Insulating Layer 4 Electrostatic Adsorption Electrode Layer 5 Second Insulating Layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 長尾 貴章 群馬県安中市磯部2丁目13番1号 信越化 学工業株式会社精密機能材料研究所内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Takaaki Nagao 2-13-1, Isobe, Annaka-shi, Gunma Shin-Etsu Chemical Co., Ltd. Precision Materials Research Laboratory

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 窒化硼素と窒化アルミニウムの混合焼結
体からなる支持基材の一方の面に熱分解グラファイトか
らなる発熱層を接合し、その上に熱分解窒化硼素からな
る絶縁層を接合し、該基材の他方の面に熱分解グラファ
イトからなる静電吸着用電極を接合し、その上に1〜1
0重量%の珪素を含有する熱分解窒化硼素からなる絶縁
層を接合してなることを特徴とする静電吸着機能を有す
るウエハ加熱装置。
1. A heat-generating layer made of pyrolytic graphite is bonded to one surface of a supporting substrate made of a mixed sintered body of boron nitride and aluminum nitride, and an insulating layer made of pyrolytic boron nitride is bonded thereon. , An electrode for electrostatic adsorption made of pyrolytic graphite is bonded to the other surface of the base material, and 1 to 1 is bonded on the electrode.
A wafer heating apparatus having an electrostatic adsorption function, which is formed by joining an insulating layer made of pyrolytic boron nitride containing 0% by weight of silicon.
JP3048395A 1995-02-20 1995-02-20 Wafer heater with electrostatic attracting function Pending JPH08227933A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP3048395A JPH08227933A (en) 1995-02-20 1995-02-20 Wafer heater with electrostatic attracting function
US08/603,155 US5663865A (en) 1995-02-20 1996-02-20 Ceramic electrostatic chuck with built-in heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3048395A JPH08227933A (en) 1995-02-20 1995-02-20 Wafer heater with electrostatic attracting function

Publications (1)

Publication Number Publication Date
JPH08227933A true JPH08227933A (en) 1996-09-03

Family

ID=12305094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3048395A Pending JPH08227933A (en) 1995-02-20 1995-02-20 Wafer heater with electrostatic attracting function

Country Status (2)

Country Link
US (1) US5663865A (en)
JP (1) JPH08227933A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998047176A1 (en) * 1997-04-11 1998-10-22 The Morgan Crucible Company Plc Composite ceramic dielectrics
JP2002043033A (en) * 2000-07-19 2002-02-08 Nhk Spring Co Ltd Heater unit, and method of manufacturing the same
EP2071610A2 (en) 2007-10-26 2009-06-17 Shin-Etsu Chemical Co., Ltd. Corrosion-resistant multilayer ceramic member
JP2022050408A (en) * 2015-11-02 2022-03-30 ワトロー エレクトリック マニュファクチャリング カンパニー Electrostatic chuck for clamping in high temperature semiconductor processing and method of making the same

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3208029B2 (en) * 1994-11-22 2001-09-10 株式会社巴川製紙所 Electrostatic chuck device and manufacturing method thereof
JPH09260474A (en) * 1996-03-22 1997-10-03 Sony Corp Electrostatic chuck and wafer stage
US6114216A (en) * 1996-11-13 2000-09-05 Applied Materials, Inc. Methods for shallow trench isolation
US6184158B1 (en) * 1996-12-23 2001-02-06 Lam Research Corporation Inductively coupled plasma CVD
US6029197A (en) * 1997-02-14 2000-02-22 Advanced Micro Devices, Inc. Management information base (MIB) report interface for abbreviated MIB data
JPH10300085A (en) * 1997-04-22 1998-11-13 Ngk Spark Plug Co Ltd Ceramic heater and ceramic glow plug
JP3820706B2 (en) * 1997-10-30 2006-09-13 住友電気工業株式会社 Aluminum nitride heater
US5901030A (en) * 1997-12-02 1999-05-04 Dorsey Gage, Inc. Electrostatic chuck employing thermoelectric cooling
JPH11168134A (en) * 1997-12-03 1999-06-22 Shin Etsu Chem Co Ltd Electrostatic attracting device and manufacture thereof
JPH11260534A (en) * 1998-01-09 1999-09-24 Ngk Insulators Ltd Heating apparatus and manufacture thereof
US6641939B1 (en) 1998-07-01 2003-11-04 The Morgan Crucible Company Plc Transition metal oxide doped alumina and methods of making and using
US5886866A (en) * 1998-07-06 1999-03-23 Applied Materials, Inc. Electrostatic chuck having a combination electrode structure for substrate chucking, heating and biasing
DE19919902A1 (en) * 1999-04-30 2000-11-02 Aixtron Ag Process for producing a wafer carrier which is used in particular in a high-temperature CVD reactor or in a high-temperature CVD process using aggressive gases
US6376807B1 (en) 1999-07-09 2002-04-23 Applied Materials, Inc. Enhanced cooling IMP coil support
WO2001031978A1 (en) * 1999-10-22 2001-05-03 Ibiden Co., Ltd. Ceramic heater
US6410172B1 (en) * 1999-11-23 2002-06-25 Advanced Ceramics Corporation Articles coated with aluminum nitride by chemical vapor deposition
US6377437B1 (en) 1999-12-22 2002-04-23 Lam Research Corporation High temperature electrostatic chuck
JP2002057207A (en) 2000-01-20 2002-02-22 Sumitomo Electric Ind Ltd Wafer holder for semiconductor-manufacturing apparatus, manufacturing method of the same and the semiconductor-manufacturing apparatus
JP2001203257A (en) * 2000-01-20 2001-07-27 Sumitomo Electric Ind Ltd Wafer holder for semiconductor manufacturing apparatus
JP5165817B2 (en) * 2000-03-31 2013-03-21 ラム リサーチ コーポレーション Electrostatic chuck and manufacturing method thereof
US20030107865A1 (en) * 2000-12-11 2003-06-12 Shinsuke Masuda Wafer handling apparatus and method of manufacturing the same
KR20020046214A (en) * 2000-12-11 2002-06-20 어드밴스드 세라믹스 인터내셔날 코포레이션 Electrostatic chuck and method of manufacturing the same
EP1217655A1 (en) * 2000-12-23 2002-06-26 VenTec Gesellschaft für Venturekapital und Unternehmensberatung Method of handling a thin wafer
US6754062B2 (en) 2002-02-27 2004-06-22 Praxair S.T. Technology, Inc. Hybrid ceramic electrostatic clamp
JP4082985B2 (en) * 2002-11-01 2008-04-30 信越化学工業株式会社 Heating device having electrostatic adsorption function and method of manufacturing the same
US20040156985A1 (en) * 2002-12-18 2004-08-12 Frank-Dieter Zimmermann Process for the application of powder coatings
JP2006524077A (en) * 2003-04-01 2006-10-26 カウンシル フォー ザ セントラル ラボラトリー オブ ザ リサーチ カウンシルズ Large area detector and display
WO2005006734A1 (en) * 2003-07-09 2005-01-20 Council For The Central Laboratory Of The Research Councils Image machine using a large area electron multiplier
US20080314320A1 (en) * 2005-02-04 2008-12-25 Component Re-Engineering Company, Inc. Chamber Mount for High Temperature Application of AIN Heaters
US20090242544A1 (en) * 2005-10-12 2009-10-01 Shin-Etsu Chemical Co., Ltd. Wafer heating apparatus having electrostatic attraction function
US7446284B2 (en) * 2005-12-21 2008-11-04 Momentive Performance Materials Inc. Etch resistant wafer processing apparatus and method for producing the same
US20070169703A1 (en) * 2006-01-23 2007-07-26 Brent Elliot Advanced ceramic heater for substrate processing
WO2007132757A1 (en) * 2006-05-15 2007-11-22 Ulvac, Inc. Cleaning method and vacuum processing apparatus
US7929269B2 (en) * 2008-09-04 2011-04-19 Momentive Performance Materials Inc. Wafer processing apparatus having a tunable electrical resistivity
US20100177454A1 (en) * 2009-01-09 2010-07-15 Component Re-Engineering Company, Inc. Electrostatic chuck with dielectric inserts
KR101691044B1 (en) * 2009-02-04 2016-12-29 맷슨 테크놀로지, 인크. Electrostatic chuck system and process for radially tuning the temperature profile across the surface of a substrate
US8941968B2 (en) 2010-06-08 2015-01-27 Axcelis Technologies, Inc. Heated electrostatic chuck including mechanical clamp capability at high temperature
EP2490073B1 (en) 2011-02-18 2015-09-23 ASML Netherlands BV Substrate holder, lithographic apparatus, and method of manufacturing a substrate holder
NL2008630A (en) 2011-04-27 2012-10-30 Asml Netherlands Bv Substrate holder, lithographic apparatus, device manufacturing method, and method of manufacturing a substrate holder.
EP3683627A1 (en) 2012-02-03 2020-07-22 ASML Netherlands B.V. Substrate holder and lithographic apparatus
CN108527443B (en) * 2018-03-26 2020-03-17 西安交通大学 Flexible variable stiffness mechanism based on electrostatic adsorption and blocking principle and manufacturing method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07297268A (en) * 1993-12-27 1995-11-10 Shin Etsu Chem Co Ltd Ceramic heater with electrostatic chuck

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998047176A1 (en) * 1997-04-11 1998-10-22 The Morgan Crucible Company Plc Composite ceramic dielectrics
JP2002043033A (en) * 2000-07-19 2002-02-08 Nhk Spring Co Ltd Heater unit, and method of manufacturing the same
JP4545896B2 (en) * 2000-07-19 2010-09-15 日本発條株式会社 Heater unit and manufacturing method thereof
EP2071610A2 (en) 2007-10-26 2009-06-17 Shin-Etsu Chemical Co., Ltd. Corrosion-resistant multilayer ceramic member
US8829397B2 (en) 2007-10-26 2014-09-09 Shin-Etsu Chemical Co., Ltd. Corrosion-resistant multilayer ceramic member
JP2022050408A (en) * 2015-11-02 2022-03-30 ワトロー エレクトリック マニュファクチャリング カンパニー Electrostatic chuck for clamping in high temperature semiconductor processing and method of making the same

Also Published As

Publication number Publication date
US5663865A (en) 1997-09-02

Similar Documents

Publication Publication Date Title
JPH08227933A (en) Wafer heater with electrostatic attracting function
JPH07307377A (en) Ceramic heater with electrostatic chuck
JP4744855B2 (en) Electrostatic chuck
JP3699349B2 (en) Wafer adsorption heating device
JP4811608B2 (en) Wafer heating apparatus having electrostatic adsorption function
KR101188185B1 (en) A heating apparatus having electrostatic adsorption function
KR20020068542A (en) Articles coated with aluminum nitride by chemical vapor deposition
JPH07297268A (en) Ceramic heater with electrostatic chuck
KR100992498B1 (en) Heating apparatus having electrostatic attracting function and method of manufacturing the same
JPH0750736B2 (en) Wafer heating apparatus and manufacturing method thereof
JP2008159900A (en) Ceramic heater with electrostatic chuck
JP3481717B2 (en) Wafer heating device with electrostatic suction function
KR20070113959A (en) Electrostatic adsorption apparatus
JP2756944B2 (en) Ceramic electrostatic chuck
JP3662909B2 (en) Wafer adsorption heating device and wafer adsorption device
JP3914377B2 (en) Wafer heating device having electrostatic adsorption function
JP3180998B2 (en) Electrostatic chuck
JP3835491B2 (en) Wafer heating apparatus having electrostatic adsorption function
JP3152857B2 (en) Electrostatic chuck
JPH07297267A (en) Ceramic heater with electrostatic chuck
JP3812600B2 (en) Wafer heating apparatus having electrostatic adsorption function
JP4021254B2 (en) Heating device having electrostatic adsorption function and method of manufacturing the same
JPH09232409A (en) Wafer holding apparatus
JPH0897272A (en) Wafer support member
JP2000012665A (en) Ceramics component