JP3621985B2 - Novel β-N-acetylhexosaminidase and method for producing the same - Google Patents

Novel β-N-acetylhexosaminidase and method for producing the same Download PDF

Info

Publication number
JP3621985B2
JP3621985B2 JP2001053524A JP2001053524A JP3621985B2 JP 3621985 B2 JP3621985 B2 JP 3621985B2 JP 2001053524 A JP2001053524 A JP 2001053524A JP 2001053524 A JP2001053524 A JP 2001053524A JP 3621985 B2 JP3621985 B2 JP 3621985B2
Authority
JP
Japan
Prior art keywords
acetyl
acetylhexosaminidase
enzyme
nitrophenyl
activity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001053524A
Other languages
Japanese (ja)
Other versions
JP2002253226A (en
Inventor
静 藤嶋
尚子 山野
明彦 丸山
孝規 東原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2001053524A priority Critical patent/JP3621985B2/en
Publication of JP2002253226A publication Critical patent/JP2002253226A/en
Application granted granted Critical
Publication of JP3621985B2 publication Critical patent/JP3621985B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、新規なβ−N−アセチルヘキソサミニダーゼ生産菌、該微生物を用いてβ−N−アセチルヘキソサミニダーゼを製造する方法並びに新規なβ−N−アセチルヘキソサミニダーゼに関する。
【0002】
【従来の技術】
近年、N−アセチルグルコサミンがβ−1,4−結合した多糖であるキチンを加水分解して得られる単糖が変形性関節症の改善、治療薬として有用であることが注目され、来るべき高齢化社会に備えるべく、キチナーゼとともにキチンを分解してN−アセチルグルコサミンを製造するために有用なβ−N−アセチルグルコサミニダーゼ活性を持つ酵素の工業的な供給が求められている。
【0003】
また、近年の研究によって、生体内では糖脂質および糖タンパク質が多く存在し、β−グルコシド結合を含む糖鎖が重要な役割を果たしていることが明らかにされつつある。そこで、これらの糖鎖の構造解析が注目され、β−グルコシド結合を切断し単糖を遊離するβ−N−アセチルヘキソサミニダーゼの提供が求められている。
【0004】
一方、人間には強力なβ−N−アセチルヘキソサミニダーゼがあることは知られているが、医学あるいは工業等で利用できる酵素については、まだ研究が始められたばかりであり、現在研究用として低ユニットでしかも高価格のアスペルギルス(カビ)由来酵素と大腸菌による遺伝子組み換え酵素があるのみである。これらの酵素は酸性側に活性域があり、また低温では作用しない。従って、低温でも活性を有し、中性域で活性の強い酵素の提供が望まれている。また、キチンの有効利用に関しては、現在カニ、エビの甲殻を水酸化ナトリウム溶液内で熱処理しタンパク質を除去後、塩酸で灰分を除いて得られたキチンを、限定塩酸加水分解法によって低分子化してN−アセチルグルコサミンを得ている。あるいはキチンを完全酸分解して得られるグルコサミンのアセチル化によって製造される。いずれの方法においても、装置また廃水の処理に多大な費用を要するという欠点を有し、さらに食品分野で用いるためには化学合成法を避けたい要求がある。そこで、基質特異性により目的とする箇所のみに作用するため副生物が少なく、また常温、中性付近の温和な反応条件を有するためコストの軽減も期待されるβ−N−アセチルヘキソサミニダーゼによる酵素的製造法が求められているが、未だ酵素の生産技術は確立されていない。
【0005】
【発明が解決しようとする課題】
本発明は、新規なβ−N−アセチルヘキソサミニダーゼ生産菌、該微生物を用いてβ−N−アセチルヘキソサミニダーゼを製造する方法並びに非還元末端にあるβ−グルコシド結合に作用し、N−アセチル−D−グルコサミンまたはN−アセチル−D−ガラクトサミンを遊離する新規なβ−N−アセチルヘキソサミニダーゼの提供を目的とする。
【0006】
【課題を解決するための手段】
本発明者らは、上記問題点に鑑み、海洋低温細菌であるビブリオ(Vibrio)属についてキチン分解酵素の生産を鋭意研究した結果、該微生物が作用温度域が広く安定性の高いβ−N−アセチルグルコサミニダーゼ活性を持つ酵素を生産する事を見い出し、本発明を完成した。
【0007】
すなわち、本発明は、以下の微生物、製造法および酵素を提供するものである。
項1.ビブリオ属に属するβ−N−アセチルヘキソサミニダーゼ生産菌。
項2.前記微生物がビブリオ属細菌P2K−5菌株又は当該菌株と同一な菌学的性質を有する微生物である項1記載のβ−N−アセチルヘキソサミニダーゼ生産菌。
項3.項1または2に記載の微生物を培養し、培養物からβ−N−アセチルヘキソサミニダーゼを採取することを特徴とするβ−N−アセチルヘキソサミニダーゼの製造方法。
項4.以下の特性を有することを特徴とする新規なβ−N−アセチルヘキソサミニダーゼ。
Km値:0.101 mM(基質:p−ニトロフェニル−β−N−アセチル−D−グルコサミニド)
0.114 mM(基質:p−ニトロフェニル−β−N−アセチル−D−ガラクトサミニド)
至適pH:7.1
安定pH範囲:5.0〜10.5(30℃で1時間)
至適温度:43℃
熱安定性:37℃まで100%活性保持(pH7.1で1時間)
分子量:240kDa〜320kDa(ゲルろ過法)
酵素阻害物質:Zn2+、Ca2+、Fe2+
酵素活性化物質:Cu2+
【0008】
【発明の実施の形態】
本発明において、ビブリオ(Vibrio)属に属するβ−N−アセチルヘキソサミニダーゼ生産菌として使用可能な微生物は、ビブリオ属に属し、該β−N−アセチルヘキソサミニダーゼの生産能を有するものであれば、いずれも使用することができる。好ましくは、本発明者らが房総沖日本海溝の深層水から分離したビブリオ属に属する海洋低温細菌P2K−5菌株(FERM BP−5769)並びに該菌株と同一な菌学的性質を有しβ−N−アセチルヘキソサミニダーゼの生産能を備えた微生物を例示することができる。ここで、同一な菌学的性質とは下記に示した菌学的性質が同一であればよく、その他の菌学的性質の一致、不一致は問わない。
【0009】
前記P2K−5菌株(FERM BP−5769)の菌学的性質は、下記の通りである。なお、本菌株は、工業技術院生命工学工業技術研究所に受託番号FERM BP−5769として寄託されている。
1.形態的性質
(1)細胞形態 :稈状(rod)
(2)鞭毛形態 :極べん毛
2.生理的性質
(1)増殖温度
4℃:+
25℃:+
30℃:+
(2)O−Fテスト:Fermentative
(3)塩類要求性 :+
(4)色素生産 :−
(5)オキシダーゼ:+
(6)カタラーゼ :+
(7)グラム染色:陰性
(8)発光性:−
(9)増殖pH:6〜9
3.分離源:房総沖日本海溝の水深6000mの海水
上記菌学的性質の試験方法は、主として絵面良男:沿岸環境調査マニュアルII〔水質・微生物篇〕(日本海洋学会編、恒星社厚生閣、p.357−364(1990))に従った。また、駒形和男:微生物の分類と同定(下)(改訂版、長谷川武治編著、学会出版センター、p.99−161(1985))を参考にした。
【0010】
以上の菌学的性質を、絵面と清水の海洋細菌の簡易同定図式(沿岸環境調査マニュアルII〔水質・微生物篇〕、日本海洋学会編、恒星社厚生閣、p.357−364(1990))に基づき、Bergey’s Manual of Systematic Bacteriology, vol.1(N.R.Krieg、J.G.Holt編,Williams & Wilkins, Baltimor, 1984)及びBergey’s Manual of Determinative Bacteriology(第9版、J.G.Holt, N.R.Krieg,P.H.A.Sneath,J.T.Staley, S.T.Williams編、Williams & Wilkins,Baltimor, 1984)を参考にして対比した結果、本海洋低温細菌P2K−5菌株(FERM BP−5769)は、ビブリオ(Vibrio)属に属する菌株と同定された。
【0011】
この海洋低温細菌P2K−5菌株(FERM BP−5769)を用いて、β−N−アセチルヘキソサミニダーゼを生産するには、当該菌体を適当な培地に接種し、好ましくは誘導物質の存在下で常法に従って培養すればよい。この誘導物質としては、キチン、変成キチン、キチン分解物、キチン誘導体を単独又はこれらのうち2種以上を組み合わせたものを使用できる。誘導物質は、0.1 g/l以上、好ましくは1〜50 g/lの濃度で培地中に加える。培地としては通常の培地が用いられる。例えば、炭素源としてグルコース、マルトース、キシロース、スクロース、ペプトン等が例示でき、窒素源としては、イーストエキス、ペプトン、肉エキス、アミノ酸溶液等の有機窒素、または硫酸アンモニウム、塩化アンモニウム等の無機窒素が例示できる。また誘導物質を炭素源、窒素源としてもよい。無機塩としては、硫酸マグネシウム、塩化マグネシウム、リン酸ナトリウム、リン酸カリウム、塩化カリウム、塩化ナトリウム、塩化カルシウム等を適宜組み合わせて使用できる。上記培地のpHは、適当な酸または塩基を加えることにより、好ましくは6.5から8.5の範囲内に調整され、オートクレーブにより殺菌される。培養温度は、5〜35℃、好ましくは20から28℃で20〜72時間好気的に振とうまたは撹拌しながら培養を行う。また上記の炭素源、窒素源、無機塩、及び寒天を適宜含む平板培地を使用し、培養温度5〜35℃、好ましくは20から28℃で20〜120時間培養を行う。また、本菌の培養は、静置でも行われる。
【0012】
培養によって得られた培養物から培養液と菌体とを分離する方法としては、従来から行われている遠心分離法やろ過等の方法が使用できるが、遠心分離法が好適である。菌体内に蓄積された該酵素を菌体から抽出する方法としては、従来から行われている超音波による菌体破砕、あるいはガラス・ビーズとともに回転させるダイノミル細胞破砕機による菌体破砕、またはリゾチーム等の酵素やトルエン等の有機溶媒による細胞膜の破壊等の方法が挙げられる。これらの中から適当な方法を選択して菌体から酵素の抽出を行うことにより、酵素を採取することができる。
【0013】
これらの方法で抽出された粗酵素液からβ−N−アセチルヘキソサミニダーゼをさらに精製する必要がある場合には、通常実施されている一般的な酵素の精製手段である、塩析、イオン交換クロマトグラフィー、ゲルろ過法、吸着クロマトグラフィー、疎水クロマトグラフィー、調製用電気泳動法等を適宜組み合わせることによって、精製を行うことができる。
【0014】
上記のようにして得られた本発明のβ−N−アセチルヘキソサミニダーゼは、以下の理化学的性質を有する。
(1)作用:非還元末端にあるβ−グルコシド結合に作用し、N−アセチル−D−グルコサミン、またはN−アセチル−D−ガラクトサミンを遊離する。各反応でのKm値は、
基質 p−ニトロフェニル−β−N−アセチル−D−グルコサミニド:0.101 mM
基質 p−ニトロフェニル−β−N−アセチル−D−ガラクトサミニド:0.114
mM
なお、p−ニトロフェニル−β−D−グルコピラノシドには反応しない。
(2)至適pH:7.1
(3)安定pH範囲:5.0〜9.3(30℃で1時間)
(4)至適温度:43℃
(5)熱安定性:37℃まで100%活性保持(pH7.1で1時間)
(6)分子量:240kDa〜320kDa(ゲルろ過法)
(7)酵素阻害物質:Zn2+、Ca2+、Fe2+
(8)酵素活性化物質:Cu2+
なお活性は、以下の方法により測定した。
【0015】
試験管に基質溶液(0.15%)0.1 ml、及び0.1 Mリン酸緩衝液(pH7.8)0.3 mlを入れ3分間30℃の恒温槽で予熱した後、酵素溶液0.1 mlを加えて20分間振とうする。その後、0.1 M 炭酸ナトリウム溶液3.5 mlを加え、生成したp−ニトロフェノールをフェノレートとし、400 nmでの吸光度により測定する。なお酵素の1単位(ユニット)は、1分間に1 μmolのp−ニトロフェノールを生成する酵素量を表す。
【0016】
従来のβ−N−アセチルヘキソサミニダーゼは、酸性側に活性域があり、低温では作用しない。これに対し、本発明の酵素は低温でも活性を保持し、pH4.5〜11近くまで活性を保持している。
【0017】
以下、実施例により本発明をさらに詳細に説明するが、本発明はこれら実施例に限定されるものではない。
【0018】
【実施例】
実施例1
シリコン栓(信越ポリマー)付き試験管中の1/2TZ培地(A.Maruyama, A.Mita, and T.Higashihara, J. Oceanogr. 49, 353−376,1993)(成分(g/l):poly peptone(Daigo) 2.5、yeast extract(Difco) 0.5、HEPES(Dojin) 4.77、塩化ナトリウム 21.533、硫酸ナトリウム 3.607、塩化カリウム 0.609、炭酸水素ナトリウム 0.176、臭化カリウム 0.088、ホウ酸 0.023、フッ化ナトリウム 0.003、塩化マグネシウム・6水塩 9.747、塩化カルシウム・2水塩 1.368、塩化ストロンチウム・6水塩 0.022)5 mlに冷蔵保存菌P2K−5(FERM BP−5769)200 μlを植菌し、25℃で終夜振とうした。その後、本培養液1 mlをMarine broth(Difco)100 mlに加え、さらに24時間振とう培養した。該培養液25 mlを、キチン粉末20 gを含む1/2TZ培地1 lに添加、25℃で48時間、好気的に振とう培養した。その後、培養液を8000×gで20分間遠心分離を行い、湿重量40 gの菌体を得た。得られた菌体は、70 mlの生理食塩水にけん濁し、0℃で10分間超音波処理(20秒間作動、20秒間休止)を行った後、16000×gで1時間遠心分離を行い、上清液を得た。この上清液中の活性をp−ニトロフェニル−β−N−アセチル−D−グルコサミニドを基質として測定した結果、β−N−アセチルグルコサミニダーゼとしての総活性は172ユニット、比活性は0.243ユニット/mg−タンパク質であった。
【0019】
この粗酵素液を、予めリン酸緩衝液(0.1M、pH7.0)で平衡化した50 mlのTSK gel Super−Q TOYOPEARL650M(商品名、東ソー製)カラムに通し、目的とする酵素を吸着させた。カラムを同様のリン酸緩衝液で洗浄した後、段階的に塩化ナトリウムの濃度を変化させて目的酵素を溶出し、β−N−アセチルグルコサミニダーゼの総活性29.0ユニット、比活性0.177ユニット/mg−タンパクを有する酵素画分を得た。
【0020】
さらに上記の活性画分を、予め1.5 Mの硫酸アンモニウムを含むリン酸緩衝液(pH7.0)で平衡化したButyl Sepharose 4FF(商品名、ファルマシア製)カラムに通し、目的とする酵素を吸着させた。カラムを同様のリン酸緩衝液で洗浄した後、段階的にリン酸緩衝液中の硫酸アンモニウム濃度を変化させて目的酵素を溶出し、β−N−アセチルグルコサミニダーゼの総活性25.7ユニット、比活性0.286ユニット/mg−タンパク質を有する酵素標品を得た。またこの活性画分を濃縮した後、0.15 Mの塩化カリウムを含むリン酸緩衝液(pH7.0)で洗浄したSuperdex 200HR(商品名、ファルマシア製)カラムに添加、同緩衝溶液を用いて目的酵素を溶出し、β−N−アセチルグルコサミニダーゼの総活性8.6ユニット、比活性1.91ユニット/mg−タンパク質を有する酵素画分を得た。
【0021】
試験例1
実施例1で得られたβ−N−アセチルグルコサミニダーゼとしての比活性1.91ユニット/mg−タンパク質の酵素標品を用いて、p−ニトロフェニル−β−N−アセチル−D−グルコサミニド、p−ニトロフェニル−β−N−アセチル−D−ガラクトサミニド、p−ニトロフェニル−β−D−グルコピラノシドを基質とし、その濃度を変化させて反応の初速度を測定し、Lineweaver−BurkプロットからKm値を求めた。その結果、p−ニトロフェニル−β−D−グルコピラノシドには全く反応せず、p−ニトロフェニル−β−N−アセチル−D−グルコサミニドの場合0.101 mM、p−ニトロフェニル−β−N−アセチル−D−ガラクトサミニドでは0.114 mMの値が得られた。
【0022】
試験例2
試験例1で用いた酵素標品を用いて、β−N−アセチルグルコサミニダーゼ活性の至適pH及びpH安定性を以下の方法で調べた。
【0023】
試験管にp−ニトロフェニル−β−N−アセチル−D−グルコサミニド溶液(0.15%)0.1 ml、及びpH緩衝液0.3 mlを入れ3分間30℃の恒温槽で予熱した後、酵素溶液0.1 mlを加えて20分間振とうする。その後、0.1 M 炭酸ナトリウム溶液3.5 mlを加え、生成したp−ニトロフェノールをフェノレートとし、400 nmでの吸光度により測定した。pHの調整には、6.5以下は酢酸塩緩衝液、9.1まではリン酸緩衝液、それ以上では0.1M塩化カリウムを含むリン酸−水酸化ナトリウム溶液を用いた。また、安定性に対するpHの影響は、酵素溶液0.1 mlに各種緩衝液0.1 mlを加えて所定のpHに調整し30℃で1時間静置した後、pHを7.1に再調整し30℃で20分間反応を行い、残存活性を測定した。
【0024】
至適pH曲線及びpH安定性曲線を図1に示す。
【0025】
試験例3
試験例1で用いた酵素標品を用いて、β−N−アセチルグルコサミニダーゼ活性の至適温度及び熱安定性を以下の方法で調べた。
【0026】
試験管にp−ニトロフェニル−β−N−アセチル−D−グルコサミニド溶液(0.15%)0.1 ml、及びリン酸緩衝液(pH7.0)0.3 mlを入れ3分間所定の温度で予熱した後、酵素溶液0.1 mlを加えて20分間振とうする。その後、0.1 M 炭酸ナトリウム溶液3.5 mlを加え、生成したp−ニトロフェノールをフェノレートとし、400 nmでの吸光度により測定した。また、安定性に対する温度の影響は、酵素溶液0.1 mlにリン酸緩衝液(pH7.0)0.3 mlを入れ、所定の温度に1時間静置した後、p−ニトロフェニル−β−N−アセチル−D−グルコサミニド溶液(0.15%)0.1 mlを加えて30℃で20分間反応させ、残存活性を測定した。
【0027】
至適温度曲線及び熱安定性曲線を図2に示す。
【図面の簡単な説明】
【図1】ビブリオ(Vibrio)SP.P2K−5(FERM BP−5769)由来酵素のβ−N−アセチルグルコサミニダーゼ活性の至適pH曲線及びpH安定性曲線を示す。
【図2】同酵素のβ−N−アセチルグルコサミニダーゼ活性の至適温度曲線及び熱安定性を示す。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a novel β-N-acetylhexosaminidase-producing bacterium, a method for producing β-N-acetylhexosaminidase using the microorganism, and a novel β-N-acetylhexosaminidase.
[0002]
[Prior art]
In recent years, attention has been paid to the fact that monosaccharides obtained by hydrolyzing chitin, which is a β-1,4-linked polysaccharide of N-acetylglucosamine, are useful as an ameliorating and therapeutic agent for osteoarthritis. In order to prepare for a chemical society, there is a demand for an industrial supply of an enzyme having β-N-acetylglucosaminidase activity that is useful for producing N-acetylglucosamine by decomposing chitin together with chitinase.
[0003]
Further, recent studies are revealing that there are many glycolipids and glycoproteins in vivo, and that sugar chains containing β-glucoside bonds play an important role. Thus, structural analysis of these sugar chains attracts attention, and provision of β-N-acetylhexosaminidase that cleaves β-glucoside bonds and liberates monosaccharides is demanded.
[0004]
On the other hand, it is known that there is a strong β-N-acetylhexosaminidase in humans, however, research on enzymes that can be used in medicine or industry has just started and is currently being used for research. There are only low-unit and high-price Aspergillus (mold) -derived enzymes and E. coli genetically modified enzymes. These enzymes have an active region on the acidic side and do not act at low temperatures. Therefore, it is desired to provide an enzyme that is active at low temperatures and strong in the neutral range. As for the effective use of chitin, chitin obtained by heat treating crab and shrimp shells in sodium hydroxide solution to remove protein, and then removing ash with hydrochloric acid, is reduced in molecular weight by limited hydrochloric acid hydrolysis. To obtain N-acetylglucosamine. Alternatively, it is produced by acetylation of glucosamine obtained by complete acid decomposition of chitin. Each method has a drawback that it requires a great deal of cost to treat the apparatus or waste water, and there is a demand to avoid the chemical synthesis method for use in the food field. Therefore, β-N-acetylhexosaminidase is expected to reduce the cost because it acts only at the target site due to the substrate specificity, and has a mild reaction condition at normal temperature and near neutrality. Enzymatic production method is required, but the enzyme production technology has not been established yet.
[0005]
[Problems to be solved by the invention]
The present invention acts on a novel β-N-acetylhexosaminidase-producing bacterium, a method for producing β-N-acetylhexosaminidase using the microorganism, and a β-glucoside bond at the non-reducing end, An object is to provide a novel β-N-acetylhexosaminidase that releases N-acetyl-D-glucosamine or N-acetyl-D-galactosamine.
[0006]
[Means for Solving the Problems]
In view of the above problems, the present inventors have intensively studied the production of chitinolytic enzymes for the genus Vibrio, which is a marine psychrotrophic bacterium. As a result, β-N- has a wide action temperature range and high stability. It was found that an enzyme having acetylglucosaminidase activity was produced, and the present invention was completed.
[0007]
That is, the present invention provides the following microorganism, production method and enzyme.
Item 1. A β-N-acetylhexosaminidase-producing bacterium belonging to the genus Vibrio.
Item 2. Item 6. The β-N-acetylhexosaminidase-producing bacterium according to Item 1, wherein the microorganism is a Vibrio sp. P2K-5 strain or a microorganism having the same mycological properties as the strain.
Item 3. Item 3. A method for producing β-N-acetylhexosaminidase, comprising culturing the microorganism according to item 1 or 2, and collecting β-N-acetylhexosaminidase from the culture.
Item 4. A novel β-N-acetylhexosaminidase characterized by having the following properties:
Km value: 0.101 mM (substrate: p-nitrophenyl-β-N-acetyl-D-glucosaminide)
0.114 mM (substrate: p-nitrophenyl-β-N-acetyl-D-galactosaminide)
Optimum pH: 7.1
Stable pH range: 5.0 to 10.5 (1 hour at 30 ° C.)
Optimal temperature: 43 ° C
Thermal stability: 100% activity retention up to 37 ° C (1 hour at pH 7.1)
Molecular weight: 240 kDa to 320 kDa (gel filtration method)
Enzyme inhibitor: Zn 2+ , Ca 2+ , Fe 2+
Enzyme activating substance: Cu 2+
[0008]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, a microorganism that can be used as a β-N-acetylhexosaminidase-producing bacterium belonging to the genus Vibrio belongs to the genus Vibrio and has the ability to produce the β-N-acetylhexosaminidase. Any of them can be used. Preferably, the present inventors have a marine psychrotrophic bacterium P2K-5 strain (FERM BP-5769) belonging to the genus Vibrio isolated from the deep water of the Japan Trench off Boso and the same bacteriological properties as the strain β- A microorganism having an ability to produce N-acetylhexosaminidase can be exemplified. Here, the same bacteriological properties are not limited as long as the following bacteriological properties are the same, and other bacteriological properties are not matched or inconsistent.
[0009]
The mycological properties of the P2K-5 strain (FERM BP-5769) are as follows. This strain has been deposited at the National Institute of Advanced Industrial Science and Technology with the accession number FERM BP-5769.
1. Morphological properties (1) Cell morphology: rod
(2) Flagellar form: extreme flagella 2. Physiological properties (1) Growth temperature 4 ° C: +
25 ° C: +
30 ° C: +
(2) OF test: Fermentative
(3) Salt requirement: +
(4) Dye production:-
(5) Oxidase: +
(6) Catalase: +
(7) Gram staining: negative (8) Luminescence:-
(9) Growth pH: 6-9
3. Separation source: Seawater at a depth of 6000m off the Boso off the Japan Trench The test method for the above bacteriological properties is mainly picture good Yoshio: Coastal Environment Survey Manual II [Water Quality and Microorganisms] (Japan Oceanographic Society, Hoshiseisha Koseikaku, p 357-364 (1990)). Also, Kazuo Komagata: Classification and identification of microorganisms (bottom) (revised edition, edited by Takeharu Hasegawa, Society Publishing Center, p. 99-161 (1985)).
[0010]
The above-mentioned mycological properties are based on a simple identification scheme of marine bacteria in the picture and clear water (Coastal Environmental Research Manual II [Water Quality and Microorganisms], Japan Oceanographic Society, Hoshiseisha Koseikaku, p.357-364 (1990) ), Bergey's Manual of Systematic Bacteriology, vol. 1 (N. R. Krieg, edited by J. G. Holt, Williams & Wilkins, Baltimor, 1984) and Bergey's Manual of Detergent Bacteriology (9th edition, J. G. Holt, N. G. R. As a result of comparison with reference to H. A. Sneath, J. T. Staley, S. T. Williams, Williams & Wilkins, Baltimor, 1984), the marine low-temperature bacterium P2K-5 strain (FERM BP-5769) is And a strain belonging to the genus Vibrio.
[0011]
In order to produce β-N-acetylhexosaminidase using this marine psychrotrophic P2K-5 strain (FERM BP-5769), the cells are inoculated into an appropriate medium, and preferably an inducer is present. The culture may be carried out in accordance with a conventional method. As this inducer, chitin, modified chitin, chitin degradation products, chitin derivatives, or a combination of two or more of these can be used. The inducer is added to the medium at a concentration of 0.1 g / l or more, preferably 1 to 50 g / l. A normal medium is used as the medium. For example, glucose, maltose, xylose, sucrose, peptone and the like can be exemplified as the carbon source, and examples of the nitrogen source include organic nitrogen such as yeast extract, peptone, meat extract and amino acid solution, or inorganic nitrogen such as ammonium sulfate and ammonium chloride it can. The inducer may be a carbon source or a nitrogen source. As the inorganic salt, magnesium sulfate, magnesium chloride, sodium phosphate, potassium phosphate, potassium chloride, sodium chloride, calcium chloride and the like can be used in appropriate combination. The pH of the medium is preferably adjusted to a range of 6.5 to 8.5 by adding an appropriate acid or base, and sterilized by an autoclave. Culturing is performed at a temperature of 5 to 35 ° C., preferably 20 to 28 ° C. for 20 to 72 hours while aerobically shaking or stirring. In addition, a plate medium containing the above carbon source, nitrogen source, inorganic salt, and agar as appropriate is used, and the culture is performed at a culture temperature of 5 to 35 ° C., preferably 20 to 28 ° C. for 20 to 120 hours. Moreover, the culture of the present bacterium is also performed by standing.
[0012]
As a method for separating a culture solution and bacterial cells from a culture obtained by culturing, conventional methods such as centrifugation and filtration can be used, and a centrifugation method is preferred. As a method for extracting the enzyme accumulated in the microbial cells from the microbial cells, conventional microbial disruption by ultrasonic waves, microbial cell disruption by a dynomill cell crusher rotated with glass beads, lysozyme, etc. And cell membrane destruction with an organic solvent such as toluene or an organic solvent. By selecting an appropriate method from these and extracting the enzyme from the cells, the enzyme can be collected.
[0013]
When it is necessary to further purify β-N-acetylhexosaminidase from the crude enzyme solution extracted by these methods, salting out, ion, which are commonly used means for purifying enzymes, are generally used. Purification can be performed by appropriately combining exchange chromatography, gel filtration, adsorption chromatography, hydrophobic chromatography, preparative electrophoresis, and the like.
[0014]
The β-N-acetylhexosaminidase of the present invention obtained as described above has the following physicochemical properties.
(1) Action: Acts on a β-glucoside bond at the non-reducing end to release N-acetyl-D-glucosamine or N-acetyl-D-galactosamine. The Km value for each reaction is
Substrate p-nitrophenyl-β-N-acetyl-D-glucosaminide: 0.101 mM
Substrate p-nitrophenyl-β-N-acetyl-D-galactosaminide: 0.114
mM
It does not react with p-nitrophenyl-β-D-glucopyranoside.
(2) Optimum pH: 7.1
(3) Stable pH range: 5.0 to 9.3 (1 hour at 30 ° C.)
(4) Optimal temperature: 43 ° C
(5) Thermal stability: 100% activity retention up to 37 ° C (1 hour at pH 7.1)
(6) Molecular weight: 240 kDa to 320 kDa (gel filtration method)
(7) Enzyme inhibitor: Zn 2+ , Ca 2+ , Fe 2+
(8) Enzyme activating substance: Cu 2+
The activity was measured by the following method.
[0015]
Place 0.1 ml of substrate solution (0.15%) and 0.3 ml of 0.1 M phosphate buffer (pH 7.8) in a test tube, preheat in a thermostatic bath at 30 ° C. for 3 minutes, and then enzyme solution Add 0.1 ml and shake for 20 minutes. Thereafter, 3.5 ml of 0.1 M sodium carbonate solution is added, and the resulting p-nitrophenol is used as phenolate, and the absorbance is measured at 400 nm. In addition, 1 unit (unit) of an enzyme represents the amount of enzyme which produces | generates 1 micromol p-nitrophenol in 1 minute.
[0016]
Conventional β-N-acetylhexosaminidase has an active region on the acidic side and does not act at low temperatures. On the other hand, the enzyme of the present invention retains activity even at low temperatures, and retains activity up to pH 4.5-11.
[0017]
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples.
[0018]
【Example】
Example 1
1/2 TZ medium (A. Maruyama, A. Mita, and T. Higashihara, J. Oceangr. 49, 353-376, 1993) in a test tube with a silicon stopper (Shin-Etsu polymer) (component (g / l): poly) peptone (Daigo) 2.5, yeast extract (Difco) 0.5, HEPES (Dojin) 4.77, sodium chloride 21.533, sodium sulfate 3.607, potassium chloride 0.609, sodium bicarbonate 0.176, Potassium bromide 0.088, Boric acid 0.023, Sodium fluoride 0.003, Magnesium chloride hexahydrate 9.747, Calcium chloride dihydrate 1.368, Strontium chloride hexahydrate 0.022) 5 ml of refrigerated P2K-5 (FERM BP 5769) was inoculated 200 [mu] l, and shaken overnight at 25 ° C.. Thereafter, 1 ml of the main culture was added to 100 ml of Marine broth (Difco), and further cultured with shaking for 24 hours. 25 ml of the culture solution was added to 1 liter of 1 / 2TZ medium containing 20 g of chitin powder, and cultured with shaking at 25 ° C. for 48 hours. Thereafter, the culture solution was centrifuged at 8000 × g for 20 minutes to obtain bacterial cells having a wet weight of 40 g. The obtained microbial cells were suspended in 70 ml of physiological saline, sonicated at 0 ° C. for 10 minutes (operated for 20 seconds, paused for 20 seconds), and then centrifuged at 16000 × g for 1 hour. A supernatant was obtained. As a result of measuring the activity in the supernatant using p-nitrophenyl-β-N-acetyl-D-glucosaminide as a substrate, the total activity as β-N-acetylglucosaminidase was 172 units, and the specific activity was 0.243 units. / Mg-protein.
[0019]
This crude enzyme solution is passed through a 50 ml TSK gel Super-Q TOYOPARRL650M (trade name, manufactured by Tosoh) column previously equilibrated with a phosphate buffer (0.1 M, pH 7.0) to adsorb the target enzyme. I let you. After the column was washed with the same phosphate buffer, the concentration of sodium chloride was gradually changed to elute the target enzyme, and the total activity of β-N-acetylglucosaminidase was 29.0 units and the specific activity was 0.177 units. An enzyme fraction having / mg protein was obtained.
[0020]
Further, the above active fraction was passed through a Butyl Sepharose 4FF (trade name, manufactured by Pharmacia) column equilibrated in advance with a phosphate buffer (pH 7.0) containing 1.5 M ammonium sulfate to adsorb the target enzyme. I let you. After washing the column with the same phosphate buffer, the target enzyme was eluted stepwise by changing the ammonium sulfate concentration in the phosphate buffer, and the total activity of β-N-acetylglucosaminidase was 25.7 units, specific activity. An enzyme preparation having 0.286 units / mg protein was obtained. The active fraction was concentrated and then added to a Superdex 200HR (trade name, manufactured by Pharmacia) column washed with a phosphate buffer (pH 7.0) containing 0.15 M potassium chloride. The target enzyme was eluted to obtain an enzyme fraction having a total activity of 8.6 units of β-N-acetylglucosaminidase and a specific activity of 1.91 units / mg protein.
[0021]
Test example 1
Using the enzyme preparation with a specific activity of 1.91 units / mg-protein as β-N-acetylglucosaminidase obtained in Example 1, p-nitrophenyl-β-N-acetyl-D-glucosaminide, p- Nitrophenyl-β-N-acetyl-D-galactosaminide and p-nitrophenyl-β-D-glucopyranoside are used as substrates, the initial rate of the reaction is measured by changing the concentration, and the Km value is obtained from the Lineweaver-Burk plot. It was. As a result, p-nitrophenyl-β-D-glucopyranoside did not react at all, and in the case of p-nitrophenyl-β-N-acetyl-D-glucosaminide, 0.101 mM, p-nitrophenyl-β-N- Acetyl-D-galactosaminide gave a value of 0.114 mM.
[0022]
Test example 2
Using the enzyme preparation used in Test Example 1, the optimum pH and pH stability of β-N-acetylglucosaminidase activity were examined by the following method.
[0023]
Put 0.1 ml of p-nitrophenyl-β-N-acetyl-D-glucosaminide solution (0.15%) and 0.3 ml of pH buffer in a test tube and preheat in a thermostatic bath at 30 ° C. for 3 minutes. Add 0.1 ml of enzyme solution and shake for 20 minutes. Thereafter, 3.5 ml of a 0.1 M sodium carbonate solution was added, and the resulting p-nitrophenol was used as phenolate, and the absorbance was measured at 400 nm. For pH adjustment, an acetate buffer solution was used for 6.5 or less, a phosphate buffer solution for up to 9.1, and a phosphate-sodium hydroxide solution containing 0.1 M potassium chloride was used for more than 9.1. Also, the effect of pH on stability was determined by adding 0.1 ml of various buffer solutions to 0.1 ml of the enzyme solution, adjusting the pH to a predetermined value, and allowing to stand at 30 ° C. for 1 hour, and then adjusting the pH to 7.1 again. The mixture was adjusted and reacted at 30 ° C. for 20 minutes, and the residual activity was measured.
[0024]
The optimum pH curve and pH stability curve are shown in FIG.
[0025]
Test example 3
Using the enzyme preparation used in Test Example 1, the optimum temperature and thermal stability of β-N-acetylglucosaminidase activity were examined by the following method.
[0026]
Put 0.1 ml of p-nitrophenyl-β-N-acetyl-D-glucosaminide solution (0.15%) and 0.3 ml of phosphate buffer (pH 7.0) in a test tube for 3 minutes. After preheating, add 0.1 ml of enzyme solution and shake for 20 minutes. Thereafter, 3.5 ml of a 0.1 M sodium carbonate solution was added, and the resulting p-nitrophenol was used as phenolate, and the absorbance was measured at 400 nm. The effect of temperature on the stability was such that 0.3 ml of a phosphate buffer (pH 7.0) was added to 0.1 ml of an enzyme solution and allowed to stand at a predetermined temperature for 1 hour, and then p-nitrophenyl-β 0.1 ml of an N-acetyl-D-glucosaminide solution (0.15%) was added and reacted at 30 ° C. for 20 minutes, and the residual activity was measured.
[0027]
The optimum temperature curve and thermal stability curve are shown in FIG.
[Brief description of the drawings]
FIG. 1 Vibrio SP. The optimal pH curve and pH stability curve of (beta) -N-acetylglucosaminidase activity of the enzyme derived from P2K-5 (FERM BP-5769) are shown.
FIG. 2 shows an optimum temperature curve and thermal stability of β-N-acetylglucosaminidase activity of the enzyme.

Claims (2)

以下の特性を有することを特徴とする新規なβ−N−アセチルヘキソサミニダーゼ。
作用:非還元末端にあるβ−グルコシド結合に作用し、N−アセチル−D−グルコサミン、またはN−アセチル−D−ガラクトサミンを遊離する。
基質特異性:p−ニトロフェニル−β−N−アセチル−D−グルコサミニド( Km 0.101 mM ),p−ニトロフェニル−β−N−アセチル−D−ガラクトサミニド( Km 0.114 mM 至適pH:7.1
安定pH範囲:5.0〜10.5(30℃で1時間)
至適温度:43℃
熱安定性:37℃まで100%活性保持(pH7.1で1時間)
分子量:240kDa〜320kDa(ゲルろ過法)
酵素阻害物質:Zn2+、Ca2+、Fe2+
酵素活性化物質:Cu2+
A novel β-N-acetylhexosaminidase characterized by having the following properties:
Action: acts on a β-glucoside bond at the non-reducing end to release N-acetyl-D-glucosamine or N-acetyl-D-galactosamine.
Substrate specificity: p-nitrophenyl-β-N-acetyl-D-glucosaminide ( Km value 0.101 mM ), p-nitrophenyl-β-N-acetyl-D-galactosaminide ( Km value 0.114 mM ) optimum pH: 7 .1
Stable pH range: 5.0 to 10.5 (1 hour at 30 ° C.)
Optimal temperature: 43 ° C
Thermal stability: 100% activity retention up to 37 ° C (1 hour at pH 7.1)
Molecular weight: 240 kDa to 320 kDa (gel filtration method)
Enzyme inhibitor: Zn 2+ , Ca 2+ , Fe 2+
Enzyme activating substance: Cu 2+
ビブリオ属細菌 P2K-5 菌株( FERM BP-5769 )を培養し、培養物から請求項1に記載のβ−N−アセチルヘキソサミニダーゼを採取することを特徴とする、請求項1に記載のβ−N−アセチルヘキソサミニダーゼの製造方法。 Culturing a Vibrio bacterium P2K-5 strain (FERM BP-5769), and recovering the beta-N-acetyl-hexosaminidase as claimed in claim 1 from the culture, according to claim 1 A method for producing β-N-acetylhexosaminidase.
JP2001053524A 2001-02-28 2001-02-28 Novel β-N-acetylhexosaminidase and method for producing the same Expired - Lifetime JP3621985B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001053524A JP3621985B2 (en) 2001-02-28 2001-02-28 Novel β-N-acetylhexosaminidase and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001053524A JP3621985B2 (en) 2001-02-28 2001-02-28 Novel β-N-acetylhexosaminidase and method for producing the same

Publications (2)

Publication Number Publication Date
JP2002253226A JP2002253226A (en) 2002-09-10
JP3621985B2 true JP3621985B2 (en) 2005-02-23

Family

ID=18913978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001053524A Expired - Lifetime JP3621985B2 (en) 2001-02-28 2001-02-28 Novel β-N-acetylhexosaminidase and method for producing the same

Country Status (1)

Country Link
JP (1) JP3621985B2 (en)

Also Published As

Publication number Publication date
JP2002253226A (en) 2002-09-10

Similar Documents

Publication Publication Date Title
JP3605414B2 (en) Sugar compounds
JPH04278087A (en) New heparitinases, their production and microorganism producing the same
CN112795556A (en) beta-N-acetylglucosaminidase 159 and cloning expression and application thereof
JP3865801B2 (en) Novel β-agarase, process for producing the same and use thereof
JP3621985B2 (en) Novel β-N-acetylhexosaminidase and method for producing the same
JP3118573B1 (en) Chitinase and method for producing the same
JP2726274B2 (en) Novel keratan sulfate degrading enzyme and microorganism and method for producing the same
JP4110243B2 (en) Method for producing N-acetylglucosamine
JPH0763370B2 (en) N-acetyl-D-glucosamine deacetylase
US5744325A (en) Process for producing N-acetylglucosamine-6-phosphate deacetylase
JP2000116376A (en) New kappa-carrageenase, microorganism for producing the same, production of the carrageenase and its use
JP2615443B2 (en) Method for producing N-acetyl-D-glucosamine deacetylase
JPH07322886A (en) Production of oligosaccharide and monosaccharide
JP3076856B2 (en) Degradation method of alginic acid by bacteria
JP3002140B2 (en) Novel chitinase and its production method
JP2952579B2 (en) Thermostable chitinase
JP3556704B2 (en) β-galactosidase
JP2748046B2 (en) Thermostable chitinase
JPH01228465A (en) Novel beta-agarase and production thereof
JPS61280277A (en) Production of chitosanase
JPH10229876A (en) Alfa-1,3-multi-branched dextran-hydrolyzing enzyme, its production, and production of cyclic isomalto-oligosaccharide
JP3026312B2 (en) Production method of chitin degradation products
JPH07322878A (en) New alpha-agarase and its production
JPH08275776A (en) New chitinase and its production
JPH07255475A (en) New rhodophyceous mucous polysaccharide decomposition enzyme, its production and new microorganism therefor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041026

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3621985

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term