JP3616237B2 - トルク検出装置 - Google Patents

トルク検出装置 Download PDF

Info

Publication number
JP3616237B2
JP3616237B2 JP28127697A JP28127697A JP3616237B2 JP 3616237 B2 JP3616237 B2 JP 3616237B2 JP 28127697 A JP28127697 A JP 28127697A JP 28127697 A JP28127697 A JP 28127697A JP 3616237 B2 JP3616237 B2 JP 3616237B2
Authority
JP
Japan
Prior art keywords
magnetic
shaft
torque
region
stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28127697A
Other languages
English (en)
Other versions
JPH11101699A (ja
Inventor
佳年雄 毛利
伸芳 杉谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP28127697A priority Critical patent/JP3616237B2/ja
Priority to US09/158,553 priority patent/US6098468A/en
Publication of JPH11101699A publication Critical patent/JPH11101699A/ja
Application granted granted Critical
Publication of JP3616237B2 publication Critical patent/JP3616237B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
    • G01L3/101Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means
    • G01L3/102Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means involving magnetostrictive means

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Power Steering Mechanism (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、トルク検出装置装置に係り、更に詳細には磁歪効果の逆現象(本明細書に於いては「応力磁気効果」という)を利用したトルク検出装置に係る。
【0002】
【従来の技術】
応力磁気効果、即ち周方向の磁界が与えられた軸がトルクを受けると逆ウィッデマン効果により磁界が周方向に対し傾斜した方向に偏向され、また軸線方向の磁界が与えられた軸がトルクを受けると磁界が軸線方向に対し傾斜した方向に偏向される現象を利用したトルク検出装置の一つとして、例えば特開平5−196517号公報に記載されている如く、軸線に沿って互いに締まり嵌めされた実質的に円柱状の軸及び実質的に円筒状の磁歪管を有し、磁歪管には軸線周りの周方向の1軸の磁気異方性及び周方向の磁界が与えられたトルク−磁気変換器を有するトルク検出装置が従来より知られている。
【0003】
かかるトルク検出装置によれば、軸に軸線周りのトルクが作用すると、磁歪管には軸線に対し±45°傾斜した方向に圧縮応力及び引張り応力が発生し、これらの応力及び磁歪管に与えられている周方向の引張り応力による応力磁気効果として周方向の磁界が周方向に対し傾斜した方向に偏向される。かくして偏向された磁界の周方向の成分は閉磁路を構成するので、この成分を外部より検出することはできないが、上記偏向された磁界の軸線方向の成分は外部より検出可能であり、従ってこの軸線方向の成分の強度及び方向を例えばホール効果素子によって検出することによりトルクの大きさ及び方向を検出することができる。
【0004】
【発明が解決しようとする課題】
しかし上述の如き従来のトルク検出装置に於いては、トルク−磁気変換器が互いに締まり嵌めされた軸及び磁歪管よりなっているため、締まり嵌めの嵌め合い公差にばらつきが生じ易く、従って磁歪管に与えられる周方向の引張り応力にばらつきが生じ易く、そのため検出感度にばらつきが生じ易いという問題がある。またこの問題を解消すべく、嵌め合い公差を厳密に管理しようとすると、トルク検出装置が高コストになる。
【0005】
また軸及び磁歪管を構成する材料は互いに異なるので、それらの熱膨張係数も異なり、そのためトルク−磁気変換器の温度変化に起因して磁歪管に与えられた周方向の引張り応力が変動し、従ってトルク検出装置の精度が温度により影響を受けるという問題がある。更に切削加工等に比して高コストな締まり嵌め工程が必須であるため、トルク検出装置が高価になるという問題がある。
【0006】
本発明は、互いに締まり嵌めされた軸及び磁歪管が使用される従来のトルク検出装置に於ける上述の如き問題に鑑みてなされたものであり、本発明の主要な課題は、磁歪管を使用せず、軸部材に応力磁気効果による磁気変化の大きい領域と小さい領域とを形成することにより、実質的に温度による影響を受けることなく非常に低廉にトルクを検出することである。
【0007】
また本発明の他の一つの課題は、実質的に温度による影響を受けることなく非常に高精度に且つ低廉にトルクを検出することである。
【0008】
また本発明の更に他の一つの課題は、実質的に温度による影響を受けることなく高精度に且つ非常に低廉にトルクを検出することである。
【0009】
【課題を解決するための手段】
上述の主要な課題は、本発明によれば、請求項1の構成、即ち軸線周りのトルクを受ける軸部材であって、応力磁気効果による磁気変化の大きい領域と小さい領域とが軸線に沿って形成された軸部材と、前記軸部材に磁界を与える手段と、前記磁気変化の大きい領域又は前記磁気変化の小さい領域の磁気を検出する磁気検出手段とを含むトルク検出装置によって達成される。
【0010】
また上述の他の一つの課題は、本発明によれば、請求項2の構成、即ち軸線周りのトルクを受ける軸部材であって、応力磁気効果による磁気変化の大きい領域と小さい領域とが軸線に沿って形成された軸部材と、前記軸部材に磁界を与える手段と、前記磁気変化の大きい領域の磁気を検出する第一の磁気検出手段と、前記磁気変化の小さい領域の磁気を検出する第二の磁気検出手段とを含むトルク検出装置によって達成される。
【0011】
また上述の更に他の一つの課題は、本発明によれば、請求項3の構成、即ち軸線周りのトルクを受ける軸部材であって、応力磁気効果による磁気変化の大きい領域と小さい領域とが軸線に沿って互いに隔置して形成された軸部材と、前記軸部材に磁界を与える手段と、前記磁気変化の大きい領域と前記磁気変化の小さい領域との間の磁気を検出する磁気検出手段とを含むトルク検出装置によって達成される。
【0012】
一般に、軸部材に軸線周りのトルクが作用すると、軸部材の表面部に軸線に対し±45°傾斜した方向に引張り応力及び圧縮応力が発生する。この引張り応力又は圧縮応力による応力磁気効果により軸部材の磁界が引張り応力又は圧縮応力の方向に近付く方向に偏向される。また磁界の偏向の方向はトルクの方向に対応し、磁界の偏向の程度はトルクの大きさに対応している。更に磁界の偏向の程度は応力磁気効果による磁気変化の小さい領域よりも応力磁気効果による磁気変化の大きい領域に於いて大きい。
【0013】
また軸部材の磁界が偏向されると、応力磁気効果による磁気変化の大きい領域及び小さい領域の両端に現れる磁極の強さが変化し、これに応じて該磁極により発生される磁界の強さが変化する。そしてこの磁界の強さ及び方向は軸部材に作用するトルクの大きさ及び方向に対応している。
【0014】
上記請求項1の構成によれば、軸線周りのトルクを受ける軸部材には応力磁気効果による磁気変化の大きい領域と小さい領域とが軸線に沿って形成され、軸部材には磁界が与えられ、磁気検出手段により磁気変化の大きい領域又は磁気変化の小さい領域の磁気が検出されるので、軸部材に作用するトルクの大きさ及び方向が一つの磁気検出手段により磁界の強さ及び方向として検出される。
【0015】
また一般に、軸部材を構成する材料が半硬質磁性体である場合には、軸部材に作用するトルクの増減変化に伴い、応力磁気効果による磁気変化の大きい領域及び小さい領域の両端に現れる磁極により発生される磁界の強さは比較的大きいヒステリシス及び非線形性を伴って変化するが、後に詳細に説明する如く、両者の磁界の強さのヒステリシスの形状は互いに非常に近似しており、両者の磁界の強さの線形和はトルクの増減変化に対し実質的にヒステリシスを生じることなく線形的に変化する。
【0016】
また上記請求項2の構成によれば、軸線周りのトルクを受ける軸部材には応力磁気効果による磁気変化の大きい領域と小さい領域とが軸線に沿って形成され、軸部材には磁界が与えられ、第一の磁気検出手段により磁気変化の大きい領域の磁気が検出され、第二の磁気検出手段により磁気変化の小さい領域の磁気が検出されるので、例えば二つの磁気検出手段の出力の線形和を求めることにより、軸部材に作用するトルクの大きさ及び方向が非常に高精度に検出される。
【0017】
また上述の如く、応力磁気効果による磁気変化の大きい領域及び小さい領域の両端に現れる磁極により発生される磁界の強さの線形和はトルクの増減変化に対し実質的にヒステリシスを生じることなく線形的に変化する。従って磁気変化の大きい領域と小さい領域とが互いに隔置して形成される場合には、二つの領域の間の適宜な位置に磁気検出手段が配置されれば、二つの領域の端部に現れる磁極による二つの磁界の強さの線形和に相当する磁界の強さが検出される。
【0018】
また上記請求項3の構成によれば、軸線周りのトルクを受ける軸部材には応力磁気効果による磁気変化の大きい領域と小さい領域とが軸線に沿って互いに隔置して形成され、軸部材には磁界が与えられ、磁気検出手段により磁気変化の大きい領域と磁気変化の小さい領域との間の磁気が検出されるので、軸部材に作用するトルクの大きさ及び方向が一つの磁気検出手段により磁界の強さ及び方向として高精度に検出される。
【0019】
【課題解決手段の好ましい態様】
本発明の一つの好ましい態様によれば、上記請求項1乃至3の何れかの構成に於いて、応力磁気効果による磁気変化の小さい領域はトルクによる表面応力が小さい領域であるよう構成される(好ましい態様1)。
【0020】
また本発明の他の一つの好ましい態様によれば、上記好ましい態様1の構成に於いて、トルクによる表面応力が小さい領域は軸線に沿って互いに隔置された位置に形成されたトルクによる表面応力の伝達を抑制する二つの部分の間の領域であるよう構成される(好ましい態様2)。
【0021】
また本発明の他の一つの好ましい態様によれば、上記好ましい態様2の構成に於いて、トルクによる表面応力の伝達を抑制する部分は軸部材の表面に形成された窪んだ部分であるよう構成される(好ましい態様3)。
【0022】
また本発明の他の一つの好ましい態様によれば、上記好ましい態様3の構成に於いて、窪んだ部分は軸部材の他の部分に比して小径の部分であるよう構成される(好ましい態様4)。
【0023】
また本発明の他の一つの好ましい態様によれば、上記好ましい態様3の構成に於いて、窪んだ部分は軸線の周りに延在する溝であるよう構成される(好ましい態様5)。
【0024】
また本発明の他の一つの好ましい態様によれば、上記好ましい態様3の構成に於いて、窪んだ部分は軸線の周りに互いに隔置された窪みであるよう構成される(好ましい態様6)。
【0025】
また本発明の他の一つの好ましい態様によれば、上記好ましい態様1の構成に於いて、トルクによる表面応力が小さい領域は軸部材の他の部分に比して大径の部分であるよう構成される(好ましい態様7)。
【0026】
本発明の他の一つの好ましい態様によれば、上記請求項1乃至3の何れかの構成に於いて、応力磁気効果による磁気変化の小さい領域は磁気変化の大きい領域の応力磁気効果よりも低い応力磁気効果を有する材料にて形成されるよう構成される(好ましい態様8)。
【0027】
本発明の他の一つの好ましい態様によれば、上記請求項1乃至3の何れかの構成に於いて、応力磁気効果による磁気変化の小さい領域は実質的に応力磁気効果を有しない材料にて形成されるよう構成される(好ましい態様9)。
【0028】
また本発明の他の一つの好ましい態様によれば、上記請求項1乃至3の何れかの構成に於いて、軸部材に磁界を与える手段は軸部材に着磁により与えられた残留磁界であるよう構成される(好ましい態様10)。
【0029】
また本発明の他の一つの好ましい態様によれば、上記請求項1乃至3の構成に於いて、軸部材に磁界を与える手段は実質的に軸線に沿って軸部材に磁界を与える外部磁界付与手段であるよう構成される(好ましい態様11)。
【0030】
また本発明の他の一つの好ましい態様によれば、上記請求項1の構成に於いて、磁気変化の大きい領域を構成する材料は軟質磁性体であるよう構成される(好ましい態様12)。
【0031】
また本発明の他の一つの好ましい態様によれば、上記請求項1の構成に於いて、磁気検出手段は磁気変化の大きい領域又は磁気変化の小さい領域の端部に近接して配置されるよう構成される(好ましい態様13)。
【0032】
また本発明の他の一つの好ましい態様によれば、上記請求項2の構成に於いて、第一の磁気検出手段は磁気変化の大きい領域の端部に近接して配置され、第二の磁気検出手段は磁気変化の小さい領域の端部に近接して配置されるよう構成される(好ましい態様14)。
【0033】
また本発明の他の一つの好ましい態様によれば、上記請求項2又は3の構成に於いて、磁気変化の大きい領域及び磁気変化の小さい領域を構成する材料は半硬質磁性体であるよう構成される(好ましい態様15)。
【0034】
また本発明の他の一つの好ましい態様によれば、上記請求項1乃至3の何れかの構成に於いて、磁気検出手段は磁気インピーダンス効果素子であるよう構成される(好ましい態様16)。
【0035】
また本発明の他の一つの好ましい態様によれば、上記好ましい態様16の構成に於いて、磁気インピーダンス効果素子はアモルファスワイヤのヘッドを有する磁気インピーダンス効果素子であるよう構成される(好ましい態様17)。
【0036】
【発明の実施の形態】
以下に添付の図を参照しつつ、本発明を幾つかの好ましい実施形態について詳細に説明する。
【0037】
第一の実施形態
図1は請求項2の構成に対応する本発明によるトルク検出装置の第一の実施形態を示す概略構成図、図2はシャフトにトルクが作用した場合の磁界の変化を示す説明図、図3はシャフトにトルクTが作用した場合に溝の両縁の近傍に発生する磁界を示す拡大部分断面図である。
【0038】
図1に於いて、10は軸線12に沿って延在し軸線12の周りのトルクTを受ける断面円形の軸部材としてのシャフトを示している。シャフト10は炭素鋼や合金鋼(例えばニッケル−クロム鋼)の如き応力磁気効果を有する半硬質磁性体にて形成されている。尚シャフト10は例えば自動車のステアリング系に組み込まれたステアリングシャフトの如き構造部材又はその一部であってよい。
【0039】
シャフト10には着磁により軸線12の周りの周方向の磁界Ha が与えられている。尚周方向の磁界Ha は前述の特開平5−196517号公報に記載されている如く磁石を使用して与えられてもよいが、例えば1万アンペアの単発パルス状の直流大電流又は半周期分の正弦波大電流を軸線12に沿ってシャフト10に流すことにより付与されることが好ましい。
【0040】
シャフト10は同一の直径を有する第一乃至第三のシャフト部10A、10B、10Cを有し、第一のシャフト部10Aと第二のシャフト部10Bとの間には軸線12の周りに全周に亘り延在する深さ一定の溝14が形成され、第二のシャフト部10Bと第三のシャフト部10Cとの間には軸線12の周りに全周に亘り延在する深さ一定の溝16が形成されている。前述の如く、シャフト10がその軸線12の周りにトルクTを受けると、軸線12に垂直な方向に見てシャフト10の表面部には軸線12に対し45°傾斜した方向に引張り応力が発生し、軸線12に対し−45°傾斜した方向に圧縮応力が発生する。
【0041】
しかし溝14及び16はシャフトの表面に於ける捩じりによる引張り応力及び圧縮応力の伝達を抑制する部分として機能し、溝14及び16の両端は応力磁気効果の不連続部14A、14B及び16A、16Bとして機能する。またトルクにより溝14と16との間の第二のシャフト部10Bの表面部に発生される捩じりによる引張り応力及び圧縮応力は第一及び第三のシャフト部10A、10Cの表面部に発生される引張り応力及び圧縮応力よりも小さい。従って第一及び第三のシャフト部10A、10Cは表面応力の大きい領域を郭定し、第二のシャフト部10Bは表面応力の小さい領域を郭定している。
【0042】
応力磁気効果の不連続部14A及び14Bに近接した位置にはそれぞれシャフト部10A及び10Bの表面に近接して磁気検出装置18及び20が配置されている。磁気検出装置18及び20はそれぞれ対応する位置の磁界の強さ及び方向に対応する電圧及び符号の電圧信号を出力し、これらの出力信号は信号処理装置22へ入力される。
【0043】
図1に解図的に示されている如く、信号処理装置22は磁気検出装置20の出力電圧をK倍する乗算回路24と、二つの入力信号を加算増幅する加算増幅回路26とを有し、乗算回路24の乗算係数Kは調節可能である。磁気検出装置18の出力電圧は加算増幅回路26の一方の正の入力端子に入力され、乗算回路24の出力電圧は加算増幅回路26の他方の正の入力端子に入力される。加算増幅回路26の出力信号は表示装置28へ入力され、表示装置28によりシャフト10に作用するトルクTの大きさ及び方向が表示される。
【0044】
図示の第一の実施形態(及び後述の他の実施形態)に於いては、磁気検出装置18及び20はアモルファスワイヤのヘッドを有する磁気インピーダンス効果素子である。尚磁気インピーダンス効果素子は本願の一方の発明者である毛利佳年雄により発明されたマイクロ寸法の磁気センサであり(必要ならば特開平7−181239号公報参照)、検出されるべき磁界を1マイクロガウスの分解能にて検出することが可能な感度、安定性(S/N比)、応答性、低電力消費性に優れたものである。
【0045】
この第一の実施形態に於いて、シャフト10がその軸線12の周りにトルクTを受けると、シャフト10の表面部に軸線12に対し±45°傾斜した方向に引張り応力及び圧縮応力が発生し、この引張り応力又は圧縮応力による応力磁気効果により、図2に示されている如く、表面応力の大きい領域及び小さい領域の周方向の磁界Ha がそれぞれ周方向に対し傾斜した方向の磁界Hb 、Hc に偏向される。
【0046】
この場合磁界の偏向の度合(傾斜の度合)はシャフト10に作用するトルクTの大きさに比例し、磁界の偏向の方向(傾斜の方向)はシャフト10に作用するトルクTの方向に対応している。またこの場合、表面応力の相違から磁界Hb の偏向の度合はHc の偏向の度合よりも大きいので、第一及び第三のシャフト部10A、10Cは応力磁気効果による磁気変化の大きい領域であり、第二のシャフト部Bは応力磁気効果による磁気変化の小さい領域である。
【0047】
周方向の磁界Ha が上述の如く偏向されると、応力磁気効果の不連続部14A、14B及び16A、16Bとして機能する溝14及び16の両縁には磁極N、Sが発生し、これらの磁極により図3に示されている如く溝14及び16の両縁の近傍にそれぞれ磁界Hx 、Hy が発生される。磁界Hb の偏向の度合はHc の偏向の度合よりも大きいので、不連続部14A及び16Bの近傍に発生する磁界Hx の強さは不連続部14B及び16Aの近傍に発生する磁界Hy の強さよりも大きい。従って磁気検出装置18により検出される磁界の強さは磁気検出装置20により検出される磁界の強さよりも大きい。
【0048】
図4はシャフト10に作用するトルクTと磁気検出装置18の出力電圧(実線)及び磁気検出装置20の出力電圧(破線)との間の関係の一例を示している。図4より解る如く、トルクTの変化に対する磁気検出装置18及び20の出力電圧の変化には比較的大きいヒステリシス及び非線形性が存在し、両者の傾斜も大きく異なるが、ヒステリシスの形状は相互に非常によく似ている。
【0049】
図5は磁気検出装置18の出力電圧と磁気検出装置20の出力電圧の3倍の電圧との差をトルクTの変化について示すグラフである。図5に示されている如く、出力電圧の線形和はヒステリシスが非常に小さく、しかもトルクTの変化に対し線形的に変化する。従って第一の実施形態によれば、二つの磁気検出装置の出力電圧の線形和により、例えば二つの磁気検出装置の出力電圧が図4の関係にあるときには信号処理装置22の乗算回路24の乗算係数Kを3に設定することにより、シャフト10に作用するトルクTの大きさ及び方向を非常に高精度に検出し得ることが解る。
【0050】
尚二つの磁気検出装置の出力電圧のヒステリシスの形状が相互に非常によく似ていることはシャフトを構成する半硬質磁性体の種類、シャフトに与えられる磁界の強さ、溝の深さや形状等に拘らず普遍的に成立する関係であり、従って二つの磁気検出装置の出力電圧の線形和によれば、シャフトを構成する材料の種類等に拘らずシャフトに作用するトルクの大きさ及び方向を非常に高精度に検出することが可能である。
【0051】
また磁気検出装置が配置される位置を図2のP1 〜P4 とすると、磁気検出装置18及び20は図示の実施形態の如く下記の表1の組合せ1の他に組合せ2〜4の位置に配置されてもよい。但し組合せ3及び4の場合には対応する磁極が同一の磁極になるので、乗算回路24の出力電圧は加算増幅回路の負の入力端子に入力される。更に組合せ1及び3に於ける磁気検出装置18の位置は第一のシャフト部10Aの不連続部14Aとは反対側の端部であってもよく、同様に組合せ2及び4に於ける磁気検出装置18の位置は第二のシャフト部10Bの不連続部16Bとは反対側の端部であってもよい。
【0052】
【表1】
Figure 0003616237
【0053】
第二乃至第四の実施形態
図6乃至図8はそれぞれ第一の実施形態の修正例として構成された本発明によるトルク検出装置の第二乃至第四の実施形態を示す概略構成図である。尚図6乃至図8に於いて、図1に示された部材と同一の部材には図1に於いて付された符号と同一の符号が付されている。
【0054】
図6に示された第二の実施形態に於いては、シャフト10は同一の直径を有する第一及び第二のシャフト部10A及び10Bと、第一及び第二のシャフト部よりも直径の小さい第三のシャフト部10Cとを有する。また第二のシャフト部10Bは第一のシャフト部10Aと第三のシャフト部10Cとの間に位置し、第一のシャフト部10Aと第二のシャフト部10Bとの間には溝14が形成されている。
【0055】
この実施形態に於いては、第一のシャフト部10Aが表面応力の大きい領域、即ち応力磁気効果による磁気変化の大きい領域として機能し、第二のシャフト部10Bは表面応力の小さい領域、即ち応力磁気効果による磁気変化の小さい領域として機能する。従って磁気検出装置18は溝14の側の第一のシャフト部10Aの端部の表面に近接して配置され、磁気検出装置20は溝14の側の第二のシャフト部10Bの端部の表面に近接して配置されている。尚磁気検出装置20は溝14とは反対の側の第二のシャフト部10Bの端部の表面に近接して配置されてもよい。
【0056】
図7に示された第三の実施形態に於いては、シャフト10は小径の第一のシャフト10Aと大径の第二のシャフト部10Bとを有し、二つのシャフト部の間に溝14が形成されている。従ってこの実施形態に於いても、シャフト部の直径の関係から、第一のシャフト部10Aは表面応力の大きい領域、即ち応力磁気効果による磁器変化の大きい領域として機能し、第のシャフト部10Bは表面応力の小さい領域、即ち応力磁気効果による磁気変化の小さい領域として機能し、磁気検出装置18及び20は第二の実施形態と同様の位置に配置されている。
【0057】
図8に示された第四の実施形態に於いては、第一の実施形態に於ける溝14又は16に相当する溝は形成されておらず、シャフト10は互いに直径の異なる第一乃至第三のシャフト部10A〜10Cを有している。第一のシャフト部10Aは第二のシャフト10Bと第三のシャフト10Cとの間に位置し、第二のシャフト部10Bは最も大きい直径を有し、第三のシャフト部10Cは最も小さい直径を有しており、磁気検出装置18及び20はそれぞれ第三のシャフト部10Cに近い側の第一のシャフト部10A、第二のシャフト部10Bの端部の表面に近接して配置されている。
【0058】
従ってこの実施形態に於いては、第一のシャフト部10Aが応力磁気効果による磁気変化の大きい領域を郭定し、第二のシャフト部10Bが応力磁気効果による磁気変化の小さい領域を郭定している。
【0059】
第五の実施形態
図9乃至図11はそれぞれ請求項3の構成に対応する本発明によるトルク検出装置の第五乃至第七の実施形態を示す概略構成図である。尚図9乃至図11に於いて、図1に示された部材と同一の部材には図1に於いて付された符号と同一の符号が付されている。
【0060】
図9に示された第五の実施形態に於いては、シャフト10自体は溝14の幅が小さく設定されている点を除き第一の実施形態と同様に形成されており、一つの磁気検出装置18のみが溝14の位置に配置されている。特に磁気検出装置18は、第一の実施形態に於ける二つの磁気検出装置の出力電圧の線形和によるヒステリシスの相殺と同様の作用が不連続部14Aの磁極により発生される磁界及び不連続部14Bの磁極により発生される磁界との相互作用によって達成されるよう、不連続部14Aと不連続部14Bのと中間よりも不連続部14Bに近い位置に配置されている。
【0061】
例えばシャフト10に作用するトルクTの変化に伴い、磁気検出装置18のヘッドに於ける第一のシャフト部10Aの不連続部14Aの磁極による磁界Hx の強さ及び第三のシャフト部10Cの不連続部14Bの磁極による磁界Hy の強さが図12に於いてそれぞれ実線及び破線にて示されている如く変化するものとすると、磁気検出装置18はこれらの磁界の強さの和を検出することになり、磁気検出装置18のヘッドに於ける全体としての磁界の強さは図13に示されている如く変化する。
【0062】
従って磁気検出装置18の出力電圧はヒステリシスが非常に小さく、しかもトルクTの変化に対し線形的に変化するので、磁気検出装置18の出力電圧を適宜に増幅することにより、第一の実施形態の場合と同様、例えば図5に示されている如き関係が得られ、これにより一つの磁気検出装置のみによりシャフトに作用するトルクを非常に正確に検出することができる。
【0063】
それぞれ図10及び図11に示された第六及び第七の実施形態に於いても、シャフト10自体は溝14の幅が小さく設定されている点を除きそれぞれ第二及び第三の実施形態と同様に形成されており、これらの実施形態の他の点は第五の実施形態と同様に構成されている。
【0064】
第八の実施形態
図14は請求項1の構成に対応する本発明によるトルク検出装置の第八の実施形態を示す概略構成図である。尚図14に於いて図1に示された部材と同一の部材には図1に於いて付された符号と同一の符号が付されている。
【0065】
この実施形態に於いては、シャフト10は同一の直径を有する第一及び第二のシャフト部10A及び10Bを有し、これらのシャフト部の間には溝14が形成されている。また磁気検出装置18は溝14の側の第一のシャフト部10Aの端部の表面に近接して配置されている。尚シャフト10は応力磁気効果を有する軟質磁性体、例えばパーマロイ、マルエージング鋼等のFe −Ni 合金や3%Si −Fe 合金にて形成されていることが好ましい。
【0066】
またこの実施形態に於いて、シャフト10がその軸線12の周りにトルクTを受けた場合にシャフト10の表面部に発生する引張り応力又は圧縮応力は、直径の相違から第一及び第二のシャフト部10A及び10Bの表面部に於けるよりも溝14の表面部に於いて高く、従って第一及び第二のシャフト部10A及び10Bの表面部に於いて低く、溝14の部分は応力磁気効果による磁気変化の大きい領域を郭定し、第一及び第二のシャフト部10A及び10Bは応力磁気効果による磁気変化の小さい領域を郭定している。
【0067】
磁気検出装置18は不連続部14Aの磁極により発生される磁界を検出し、この磁界の強さはシャフト10に作用するトルクTの大きさに比例し、磁界の方向はシャフト10に作用するトルクTの方向に対応しているので、この実施形態に於ける磁気検出装置18の出力信号の電圧及び符号もそれぞれシャフト10に作用するトルクTの大きさ及び方向を示す。
【0068】
図15は第八の実施形態に於けるトルクTと磁気検出装置18の出力電圧との関係の一例を示している。図15より解る如く、トルクTの変化に対する磁気検出装置18の出力電圧の変化には或る程度のヒステリシス及び非線形性が存在するが、第八の実施形態によれば上述の第一乃至第七の実施形態に比して遥かに簡単な構成によりシャフト10に作用するトルクTの大きさ及び方向を検出し得ることが解る。
【0069】
尚磁気検出装置は、以上の説明より解る如く、溝14に対し第八の実施形態の磁気検出装置18の位置とは反対の側、即ち図14の磁気検出装置18′の位置に配置されてもよい(このことは後述の第九及び第十一の実施形態についても同様である)。
【0070】
第九乃至第十一の実施形態
図16乃至図18はそれぞれ第八の実施形態の修正例として構成された本発明によるトルク検出装置の第九乃至第十一の実施形態を示す概略構成図である。尚図16乃至図18に於いて、図1に示された部材と同一の部材には図1に於いて付された符号と同一の符号が付されている。
【0071】
図16に示された第九の実施形態に於いては、シャフト10は小径の第一及び第二のシャフト部10A及び10Bと、これらの間に位置する大径の第三のシャフト部10Cとを有している。大径の第三のシャフト部10Cは応力磁気効果による磁気変化の小さい領域を郭定し、第一及び第二のシャフト部10A及び10Bは応力磁気効果による磁気変化の大きい領域を郭定している。また磁気検出装置18は第三のシャフト部10Cの一端の表面に近接して配置されている。
【0072】
この実施形態に於いて、シャフト10に作用するトルクTにより周方向の磁界が偏向されると、応力磁気効果の不連続部30A、30Bとして機能する大径の第三のシャフト部10Cの両端には磁極が発生し、その磁極により第三のシャフト部の両端の近傍に磁界が発生され、その磁界の強さ及び方向がそれぞれシャフト10に作用するトルクTの大きさ及び方向を示す情報として磁気検出装置18により検出される。
【0073】
図17に示された第十の実施形態に於いては、シャフト10は小径の第一のシャフト部10Aと、該第一のシャフト部よりも大きい直径を有する第二のシャフト部10Bとを有し、これらのシャフト部の間には不連続部30Aとして機能する肩部が郭定されている。また磁気検出装置18は大径の第二のシャフト部10Bの不連続部30Aの側の端部の表面に近接して配置されている。
【0074】
図18に示された第十一の実施形態に於いては、シャフト10は同一の直径を有する第一及び第二のシャフト部10A及び10Bと、第一及び第二のシャフト部の間に溶接等の手段によりこれらと一体的に接続され第一及び第二のシャフト部の同一の直径を有する第三のシャフト部10Cとを有している。第一及び第二のシャフト部10A及び10Bは応力磁気効果を有する軟質磁性体にて形成され、第三のシャフト部10Cは実質的に応力磁気効果を有しない材料にて形成されている。また磁気検出装置18は第三のシャフト部10Cの側の第一のシャフト部10Aの端部の表面に近接して配置されている。
【0075】
シャフト10がトルクTを受けることによりシャフト部10A、10B、10Cの何れの表面部にも引張り応力及び圧縮応力が発生するが、第三のシャフト部10Cの材料は実質的に応力磁気効果を有しないので、第一及び第二のシャフト部10A及び10Bは応力磁気効果による磁気変化の大きい領域として機能し、第三のシャフト部は応力磁気効果による磁気変化の小さい領域として機能し、シャフト部10Cの両端は応力磁気効果の不連続部30A及び30Bとして機能する。
【0076】
シャフト10に作用するトルクTにより周方向の磁界が偏向されると、第三のシャフト部10Cの側の第一及び第二のシャフト部10A及び10Bの端部には磁極が発生し、その磁極によりこれらの端部の近傍に磁界が発生され、第一のシャフト部10Aの端部近傍の磁界の強さ及び方向がそれぞれシャフト10に作用するトルクTの大きさ及び方向を示す情報として磁気検出装置18により検出される。
【0077】
尚第十一の図示の実施形態に於いては、第一乃至第三のシャフト部は実質的に同一の直径を有しているが、これらは互いに異なる直径を有していてもよい。また第一及び第二のシャフト部10A及び10Bを構成する材料は同一の軟質磁性体であってもよく、また互いに異なる軟質磁性体であってもよい。またシャフト部10Cを形成する非磁性体は第一及び第二のシャフト部10A及び10Bを形成する軟質磁性体と実質的に同一の機械的性質を有しているが、両者の機械的性質も互いに異なっていてもよい。更に第三のシャフト部10Cは第一及び第二のシャフト部10A、10Bを形成する軟質磁性体とは応力磁気効果が異なる軟質磁性体にて形成されていてもよい。
【0078】
以上に於ては本発明を特定の実施形態について詳細に説明したが、本発明は上述の実施形態に限定されるものではなく、本発明の範囲内にて他の種々の実施形態が可能であることは当業者にとって明らかであろう。
【0079】
例えば上述の各実施形態に於いては、シャフト10は着磁により周方向の磁界が与えられているが、磁界の方向は軸線方向又は軸線方向に対し傾斜した方向であってもよい。また磁界は例えばシャフト10の周りに巻回されたコイルやシャフトの端部に配置された永久磁石の如き外部磁界付与手段により軸線方向に与えられてもよい。
【0080】
また上述の各実施形態に於いては、磁気検出装置は磁気インピーダンス効果素子であるが、磁気検出装置は対応する領域の磁気を検出し得る限り任意の検出装置であってよく、例えばホール効果素子、MR素子、GMR素子、コイル等であってもよい。更にシャフト10の周りに巻回され交流電流が通電されるコイルにより軸線方向に交播磁界が与えられ、その交播磁界のトルクによる変化が磁気検出装置としてのコイルにより磁気変調として検出されてもよい。
【0081】
また磁気応力効果による磁気変化の大きい領域又は磁気変化の小さい領域の端部に近接した位置は他の位置に比して磁界の強さが大きいので、上述の各実施形態に於いては、磁気検出装置は磁気変化の大きい領域又は磁気変化の小さい領域の端部に近接して配置されているが、磁気検出装置は対応する領域の磁気を検出し得る限り、磁気変化の大きい領域又は磁気変化の小さい領域の両端の間の如き他の位置に配置されてもよい。
【0082】
また上述の各実施形態に於いては、磁気検出装置は磁気変化の大きい領域又は磁気変化の小さい領域の端部に近接して一つずつ配置されているが、複数個の磁気検出装置がシャフトの周りに好ましくは軸線の周りに等間隔に配置され、これにより例えばシャフトが回転する場合に於ける軸ぶれに起因するトルク検出精度の悪化が防止されてもよい。
【0083】
更に上述の各実施形態に於いては、捩じりトルクによる表面応力の伝達を抑制する窪んだ部分は円周溝又は小径の部分であるが、窪んだ部分は例えば周方向に部分的に延在する溝、周方向に互いに隔置して形成された複数個の窪み等であってもよい。また磁気変化の大きい領域又は磁気変化の小さい領域は例えばレーザや電子ビームを熱源とする局部的表面処理によりシャフトの表面部に形成されてもよい。
【0084】
【発明の効果】
以上の説明より明らかである如く、本発明の請求項1の構成によれば、軸線周りのトルクを受ける軸部材には応力磁気効果による磁気変化の大きい領域と小さい領域とが軸線に沿って形成され、軸部材には磁界が与えられ、磁気検出手段により磁気変化の大きい領域又は磁気変化の小さい領域の磁気が検出されるので、軸部材に作用するトルクの大きさ及び方向を一つの磁気検出手段により磁界の強さ及び方向として検出することができる。
【0085】
また請求項2の構成によれば、軸線周りのトルクを受ける軸部材には応力磁気効果による磁気変化の大きい領域と小さい領域とが軸線に沿って形成され、軸部材には磁界が与えられ、第一の磁気検出手段により磁気変化の大きい領域の磁気が検出され、第二の磁気検出手段により磁気変化の小さい領域の磁気が検出されるので、例えば二つの磁気検出手段の出力の線形和を求めて各磁気検出手段により検出される磁界の強さのヒステリシス及び非線形性を相殺し消去することができ、これにより軸部材に作用するトルクの大きさ及び方向を非常に高精度に検出することができる。
【0086】
更に請求項3の構成によれば、軸線周りのトルクを受ける軸部材には応力磁気効果による磁気変化の大きい領域と小さい領域とが軸線に沿って互いに隔置して形成され、軸部材には磁界が与えられ、磁気検出手段により磁気変化の大きい領域と磁気変化の小さい領域との間にて軸部材に近接した位置の磁気が検出されるので、軸部材に作用するトルクの大きさ及び方向を一つの磁気検出手段により磁界の強さ及び方向として高精度に検出することができる。
【0087】
また本発明によれば、磁歪管やその締まり嵌めの加工は不要であり、軸部材の構成材料はトルクを受ける部材に一般的に使用されている半硬質磁性体又は軟質磁性体であってよく、更には温度変化による締まり嵌めの引張り応力の変動等が発生しないので、温度変化に拘らずトルクを正確に検出することができ、またトルク検出装置のコストを低減することができる。特に請求項1又は3の構成によれば、磁気検出手段は一つでよいので、請求項2の構成の場合に比してトルク検出装置を低廉に構成することができ、逆に請求項2の構成によれば、請求項1又は3の構成の場合に比して高精度にトルクを検出することができる。
【図面の簡単な説明】
【図1】請求項2の構成に対応する本発明によるトルク検出装置の第一の実施形態を示す概略構成図である。
【図2】第一の実施形態に於いてシャフトにトルクTが作用した場合の磁界の変化を示す説明図である。
【図3】第一の実施形態に於いてシャフトにトルクTが作用した場合に溝の両縁の近傍に発生する磁界を示す拡大部分断面図である。
【図4】第一の実施形態に於いてシャフトにトルクTが作用した場合のトルクTと二つの磁気検出装置の出力電圧との間の関係を示すグラフである。
【図5】図4に示された二つの磁気検出装置の出力電圧の線形和とトルクTとの間の関係を示すグラフである。
【図6】第一の実施形態の修正例として構成された本発明によるトルク検出装置の第二の実施形態を示す概略構成図である。
【図7】第一の実施形態の修正例として構成された本発明によるトルク検出装置の第三の実施形態を示す概略構成図である。
【図8】第一の実施形態の修正例として構成された本発明によるトルク検出装置の四の実施形態である。
【図9】請求項3の構成に対応する本発明によるトルク検出装置の第五の実施形態を示す概略構成図である。
【図10】第五の実施形態の修正例として構成された本発明によるトルク検出装置の第六の実施形態を示す概略構成図である。
【図11】第五の実施形態の修正例として構成された本発明によるトルク検出装置の第七の実施形態を示す概略構成図である。
【図12】第五の実施形態についてシャフトに作用するトルクTと溝の両縁に現れる磁極による磁界Hx 及びHy の強さとの間の関係を示すグラフである。
【図13】第五の実施形態についてシャフトに作用するトルクTと磁気検出装置のヘッドに於ける磁界の強さとの間の関係を示すグラフである。
【図14】請求項1の構成に対応する本発明によるトルク検出装置の第八の実施形態を示す概略構成図である。
【図15】第八の実施形態に於けるトルクTと磁気検出装置の出力電圧との関係の一例を示すグラフである。
【図16】第八の実施形態の修正例として構成された本発明によるトルク検出装置の第九の実施形態を示す概略構成図である。
【図17】第八の実施形態の修正例として構成された本発明によるトルク検出装置の第十の実施形態を示す概略構成図である。
【図18】第八の実施形態の修正例として構成された本発明によるトルク検出装置の第十一の実施形態を示す概略構成図である。
【符号の説明】
10…シャフト
14、16…溝
14A、14B、16A、16B…応力磁気効果の不連続部
18、20…磁気検出装置
22…信号処理装置
28…表示装置

Claims (3)

  1. 軸線周りのトルクを受ける軸部材であって、応力磁気効果による磁気変化の大きい領域と小さい領域とが軸線に沿って形成された軸部材と、前記軸部材に磁界を与える手段と、前記磁気変化の大きい領域又は前記磁気変化の小さい領域の磁気を検出する磁気検出手段とを含むトルク検出装置。
  2. 軸線周りのトルクを受ける軸部材であって、応力磁気効果による磁気変化の大きい領域と小さい領域とが軸線に沿って形成された軸部材と、前記軸部材に磁界を与える手段と、前記磁気変化の大きい領域の磁気を検出する第一の磁気検出手段と、前記磁気変化の小さい領域の磁気を検出する第二の磁気検出手段とを含むトルク検出装置。
  3. 軸線周りのトルクを受ける軸部材であって、応力磁気効果による磁気変化の大きい領域と小さい領域とが軸線に沿って互いに隔置して形成された軸部材と、前記軸部材に磁界を与える手段と、前記磁気変化の大きい領域と前記磁気変化の小さい領域との間の磁気を検出する磁気検出手段とを含むトルク検出装置。
JP28127697A 1997-09-29 1997-09-29 トルク検出装置 Expired - Fee Related JP3616237B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP28127697A JP3616237B2 (ja) 1997-09-29 1997-09-29 トルク検出装置
US09/158,553 US6098468A (en) 1997-09-29 1998-09-22 Torque measuring device by integral shaft based upon inverse magnetostriction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28127697A JP3616237B2 (ja) 1997-09-29 1997-09-29 トルク検出装置

Publications (2)

Publication Number Publication Date
JPH11101699A JPH11101699A (ja) 1999-04-13
JP3616237B2 true JP3616237B2 (ja) 2005-02-02

Family

ID=17636825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28127697A Expired - Fee Related JP3616237B2 (ja) 1997-09-29 1997-09-29 トルク検出装置

Country Status (2)

Country Link
US (1) US6098468A (ja)
JP (1) JP3616237B2 (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9808792D0 (en) * 1998-04-23 1998-06-24 Effective Torque Technologies Magnetising arrangements for torque/force sensor
GB0007532D0 (en) * 2000-03-28 2000-05-17 Fast Technology Gmbh Magnetic-based force/torque sensing
US6456913B1 (en) * 2000-12-22 2002-09-24 S.N.R. Roulements Steering column with hall linear array
EP1298051A3 (en) * 2001-09-28 2005-12-14 Kabushiki Kaisha Moric Electrically assisted unit
EP1504246B1 (en) * 2002-05-15 2013-07-10 The Timken Company Eddy current sensor assembly for shaft torque measurement
EP1508022B1 (en) * 2002-05-29 2014-02-12 The Timken Company In-bearing torque sensor assembly
US7095198B1 (en) * 2005-06-16 2006-08-22 Honeywell International Inc. Speed sensor for a power sensor module
US7363827B2 (en) * 2005-10-21 2008-04-29 Stoneridge Control Devices, Inc. Torque sensor system including an elliptically magnetized shaft
US7469604B2 (en) * 2005-10-21 2008-12-30 Stoneridge Control Devices, Inc. Sensor system including a magnetized shaft
JP4945155B2 (ja) * 2006-03-20 2012-06-06 本田技研工業株式会社 磁歪式トルクセンサおよび電動パワーステアリング装置
JP4586128B2 (ja) 2006-10-27 2010-11-24 オムロンオートモーティブエレクトロニクス株式会社 照明制御装置および方法
JP4936958B2 (ja) * 2007-04-03 2012-05-23 カヤバ工業株式会社 トルクセンサ
JP4572227B2 (ja) 2007-11-29 2010-11-04 本田技研工業株式会社 磁歪式トルクセンサ及び電動ステアリング装置
DE102010020088B4 (de) * 2010-05-10 2013-06-27 Thyssenkrupp Presta Aktiengesellschaft Verfahren und Vorrichtung zur Regelung eines steuerbaren Energieabsorbers
DE102013211000A1 (de) * 2013-06-13 2014-12-18 Schaeffler Technologies Gmbh & Co. Kg Anordnungen und Verfahren zum Messen einer Kraft oder eines Momentes an einem Maschinenelement
WO2015082835A1 (fr) * 2013-12-03 2015-06-11 Snecma Dispositif de mesure de couple pour arbre de turbomachine
DE102015200268B3 (de) * 2015-01-12 2016-06-09 Schaeffler Technologies AG & Co. KG Anordnung zur Messung einer Kraft oder eines Momentes mit einem Magnetfeldsensor und mit einem Magnetfeldleitelement
JP2019117103A (ja) * 2017-12-27 2019-07-18 アズビル株式会社 トルクセンサにおける零点誤差の補正方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4760745A (en) * 1986-12-05 1988-08-02 Mag Dev Inc. Magnetoelastic torque transducer
JP2800347B2 (ja) * 1990-02-07 1998-09-21 株式会社豊田自動織機製作所 磁歪式トルクセンサ
US5351555A (en) * 1991-07-29 1994-10-04 Magnetoelastic Devices, Inc. Circularly magnetized non-contact torque sensor and method for measuring torque using same
US5591925A (en) * 1991-07-29 1997-01-07 Garshelis; Ivan J. Circularly magnetized non-contact power sensor and method for measuring torque and power using same
US5412999A (en) * 1993-02-26 1995-05-09 Sensorteck L.P. Position sensing with magnetostrictive stress sensor
JP3197414B2 (ja) * 1993-12-22 2001-08-13 科学技術振興事業団 磁気インピーダンス効果素子
JP3099680B2 (ja) * 1995-02-13 2000-10-16 株式会社豊田自動織機製作所 トルクセンサ及び歪み検出素子
JPH10325764A (ja) * 1997-03-25 1998-12-08 Toyota Autom Loom Works Ltd トルクセンサの取付け方法

Also Published As

Publication number Publication date
US6098468A (en) 2000-08-08
JPH11101699A (ja) 1999-04-13

Similar Documents

Publication Publication Date Title
JP3616237B2 (ja) トルク検出装置
JP5684442B2 (ja) 磁気センサ装置
US6910391B1 (en) Magnetized torque transducer elements
US5351555A (en) Circularly magnetized non-contact torque sensor and method for measuring torque using same
JP2545365B2 (ja) トルク測定装置
US6581480B1 (en) Magnetising arrangements for torque/force sensor
EP1046893B1 (en) Torque sensing apparatus
JP3099680B2 (ja) トルクセンサ及び歪み検出素子
US20070227268A1 (en) Magnetostrictive torque sensor
JP3673413B2 (ja) パルス信号発生装置
JP3352366B2 (ja) パルス信号発生装置
JP3431471B2 (ja) パルス信号発生装置
JP3583671B2 (ja) トルク検出装置
JP2002090234A (ja) トルク検出装置
JP3673412B2 (ja) パルス信号発生装置
JP4197360B2 (ja) 力および変位の検出方法
JP2000002602A (ja) トルク検出装置
JP2608498B2 (ja) 磁歪式トルクセンサ
JP2006300902A (ja) 応力検出方法及び装置
JP3617604B2 (ja) パルス信号発生装置
JP6071609B2 (ja) 磁歪式トルクセンサ
JP2008268175A (ja) 磁歪式応力センサ
JP2000266619A (ja) トルクセンサ及びステアリングシャフトのトルク検出装置
JP6717679B2 (ja) 磁歪式トルクセンサおよび駆動装置
JP4919013B2 (ja) 磁歪リング及び磁歪リング式トルクセンサ

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041026

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041104

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111112

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111112

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees