JP3614567B2 - Sealed nickel metal hydride battery - Google Patents

Sealed nickel metal hydride battery Download PDF

Info

Publication number
JP3614567B2
JP3614567B2 JP15228496A JP15228496A JP3614567B2 JP 3614567 B2 JP3614567 B2 JP 3614567B2 JP 15228496 A JP15228496 A JP 15228496A JP 15228496 A JP15228496 A JP 15228496A JP 3614567 B2 JP3614567 B2 JP 3614567B2
Authority
JP
Japan
Prior art keywords
cobalt
powder
battery
hydrogen
metal hydride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15228496A
Other languages
Japanese (ja)
Other versions
JPH103939A (en
Inventor
純 中村
泰造 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp filed Critical Yuasa Corp
Priority to JP15228496A priority Critical patent/JP3614567B2/en
Publication of JPH103939A publication Critical patent/JPH103939A/en
Application granted granted Critical
Publication of JP3614567B2 publication Critical patent/JP3614567B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、初期充放電サイクル特性が優れた密閉形ニッケル水素電池に関するものである。
【0002】
【従来技術及びその課題】
今日におけるポータブル機器の進歩は著しく、これらの機器に使用される電池には、高いエネルギー密度が求められており、従来から使用されているニッケルカドミウム電池に代わり、軽量且つ高容量のニッケル水素電池が注目されている。そして、ニッケル水素電池においては、充放電サイクル特性の向上、特に初期充放電サイクル特性の向上が、強く要望されている。
【0003】
本発明は、初期充放電サイクル特性が優れた密閉形ニッケル水素電池を提供することを目的とする。
【0004】
【課題を解決するための手段】
本発明は、水素吸蔵合金を主成分として含有する負極と、水酸化ニッケルを主成分として含有する正極と、電解液と、セパレータとを備えた密閉形ニッケル水素電池において、負極原料粉末に、水素吸蔵合金粉末の量に対して0.8重量%以上1.5重量%以下の一酸化コバルト粉末を添加混合し、電解液中に生成した2価のコバルト錯イオンを還元させることにより、又は一酸化コバルトを直接還元させることにより、水素吸蔵合金粉末の表面にコバルトからなる層を形成し、このコバルト層が形成された負極を用いたことを特徴としている。
【0005】
本発明において、一酸化コバルトは、2価のコバルト錯イオンとして電解液中に存在することとなり、この錯イオンは、電池を充電する際に還元されることにより、水素吸蔵合金粉末表面に付着してコバルト層を形成する。また、一酸化コバルト粉末は、電極作製の段階で水素吸蔵合金粉末中に均一に分散させると、電池を充電する際に直接還元され、水素吸蔵合金粉末表面にコバルト層を形成する。一酸化コバルト粉末の添加量が水素吸蔵合金粉末の量に対して0.8重量%以上1.5重量%以下であると、初期充放電サイクル特性が顕著に向上する。
【0006】
【発明の実施の形態】
以下の構成の密閉形ニッケル水素電池A〜Fを作製し、検討した。なお、本発明の電池は、B〜Eである。
【0007】
図1は密閉形ニッケル水素電池の外観図である。この電池は、円筒密閉形のものである。そして、この電池は、次のような正極、電解液、セパレータ、及び負極を構成材料として備えた2000mAh形のものである。
【0008】
正極は、亜鉛が固溶体化された高密度水酸化ニッケル粉末をペースト状としてニッケル繊維基板に充填してなるものである。セパレータは、ポリアミド不織布からなるものである。電解液は、7規定の水酸化カリウム及び1規定の水酸化リチウムからなるものである。
【0009】
そして、負極は、水素吸蔵合金であるMmNiAlMnCo系合金粉末に合金量に対して種々の割合の量の一酸化コバルト粉末を添加混合したものをペースト状として穿孔鋼板基板に充填し、この充填体を所定サイズとして他の電池構成材料と組み合わせて電池とし、その後、室温で20時間放置して2価のコバルト錯イオンを形成した後、充電反応に供することにより、水素吸蔵合金粉末表面にコバルト層が形成されたものである。ここで、添加する一酸化コバルト粉末の種々の割合の量(重量%)は、0.5,0.8,1.0,1.2,1.5に設定し、それぞれ電池A,B,C,D,Eとした。また、一酸化コバルト粉末を添加しない場合も設定し、これを電池Fとした。
【0010】
図2は一酸化コバルト粉末を添加した場合の上記充填体における一酸化コバルトの状態変化を示す図である。上記充填体が電解液に満たされると、混合されている一酸化コバルト11は、2価のコバルト錯イオンとなって電解液中に溶出し、上記合金粉末間の隙間に入り込んでいく(図2(b))。そして、充電反応に供すると、上記錯イオンは、還元されてコバルトとなり、上記合金粉末の表面に付着して層12を形成する(図2(c))。即ち、負極の上記合金粉末表面には、コバルトからなる層が形成されている。なお、1回の充電だけでは還元が不十分な場合には、充放電を繰り返してもよい。また、一酸化コバルト粉末を添加混合する際に均一に分散すれば、一酸化コバルトは水素吸蔵合金粉末表面上で直接還元を受け、コバルトが水素吸蔵合金表面に付着して層12が形成される。
【0011】
図3は上記構成の各電池A〜Fの初期充放電サイクル特性を示す図である。充電条件は0.1CmAで16時間とし、放電条件は0.2CmAで終止電圧1.0Vとした。図3から明らかなように、一酸化コバルト粉末の添加量が0.8重量%以上1.5重量%以下である電池B〜Eでは、1サイクル目から非常に高い容量を示し、初期充放電サイクル特性が優れている。
【0012】
図4は上記構成の各電池A〜Fの初回放電時の電池電圧と容量との関係を示す図である。充電条件は0.1CmAで16時間とし、放電条件は0.2CmAで終止電圧1.0Vとした。図4から明らかなように、一酸化コバルト粉末の添加量が0.8%重量以上1.5重量%以下である電池B〜Eでは、高い電池電圧を維持しながら放電が進行し、1.0Vの状態では略100%の放電が行なわれており、初回放電特性が優れている。
【0013】
図5は一酸化コバルト粉末の添加量を種々変えた水素吸蔵電極の放電容量特性を示す図である。充電条件は0.1CmAで16時間とし、放電条件は0.2CmAで参照極に対し終止電圧0.17Vとし、参照極としてCd/Cd(OH)2 を用いた。図5から明らかなように、添加量0.8重量%を境にして容量が顕著に増大している。
【0014】
このように、一酸化コバルト粉末の添加量が0.8wt%以上1.5wt%以下である電池B〜Eは、初期充放電サイクル特性、特に初回放電特性が優れており、高容量を達成できる。
【0015】
また、本発明は、角形の密閉形ニッケル水素電池にも、もちろん適用でき、更に、その他の種々の形状の密閉形ニッケル水素電池にも適用できる。
【0016】
【発明の効果】
以上のように、本発明の密閉形ニッケル水素電池によれば、負極原料粉末に、水素吸蔵合金粉末の量に対して0.8重量%以上1.5重量%以下の一酸化コバルト粉末を添加混合し、水素吸蔵合金粉末の表面にコバルトからなる層を形成したので、初期充放電サイクル特性、特に初回放電特性を優れたものにでき、高容量を達成できる。
【図面の簡単な説明】
【図1】本発明の密閉形ニッケル水素電池の外観図である。
【図2】本発明の電池の負極の形成過程における一酸化コバルトの状態変化を示す図である。
【図3】本発明及び比較対象の電池の初期充放電サイクル特性を示す図である。
【図4】本発明及び比較対象の電池の初回放電時の電池電圧と容量との関係を示す図である。
【図5】一酸化コバルト粉末の添加量を種々変えた水素吸蔵電極の放電特性を示す図である。
【符号の説明】
11 一酸化コバルト粉末
12 層
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a sealed nickel-metal hydride battery having excellent initial charge / discharge cycle characteristics.
[0002]
[Prior art and its problems]
The progress of portable devices today is remarkable, and batteries used in these devices are required to have a high energy density. Instead of the nickel cadmium batteries that have been used in the past, lightweight and high capacity nickel metal hydride batteries are used. Attention has been paid. In nickel-metal hydride batteries, improvement of charge / discharge cycle characteristics, particularly improvement of initial charge / discharge cycle characteristics, is strongly desired.
[0003]
An object of the present invention is to provide a sealed nickel-metal hydride battery having excellent initial charge / discharge cycle characteristics.
[0004]
[Means for Solving the Problems]
The present invention includes a negative electrode containing a hydrogen storage alloy as a main component, a positive electrode containing nickel hydroxide as a main component, and an electrolytic solution, in a sealed nickel-hydrogen battery example Bei and a separator, the negative electrode material powder, water by 0.8 wt% to 1.5 wt% of cobalt monoxide powder added and mixed relative to the amount of hydrogen absorbing alloy powder, thereby reducing the divalent cobalt complex ions produced in the electrolytic solution, or By directly reducing cobalt monoxide, a layer made of cobalt is formed on the surface of the hydrogen-absorbing alloy powder , and a negative electrode on which this cobalt layer is formed is used.
[0005]
In the present invention, cobalt monoxide is present in the electrolyte as a divalent cobalt complex ion, and this complex ion is reduced when the battery is charged, thereby adhering to the surface of the hydrogen storage alloy powder. To form a cobalt layer. Further, when the cobalt monoxide powder is uniformly dispersed in the hydrogen storage alloy powder at the stage of electrode preparation, it is directly reduced when the battery is charged to form a cobalt layer on the surface of the hydrogen storage alloy powder . When the addition amount of the cobalt monoxide powder is 0.8 wt% or more and 1.5 wt% or less with respect to the amount of the hydrogen storage alloy powder , the initial charge / discharge cycle characteristics are remarkably improved.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Sealed nickel-metal hydride batteries A to F having the following configurations were produced and studied. In addition, the battery of this invention is BE.
[0007]
FIG. 1 is an external view of a sealed nickel-metal hydride battery. This battery is of a cylindrical sealed type. This battery is of the 2000 mAh type including the following positive electrode, electrolytic solution, separator, and negative electrode as constituent materials.
[0008]
The positive electrode is formed by filling a nickel fiber substrate in a paste form with high-density nickel hydroxide powder in which zinc is formed into a solid solution. The separator is made of a polyamide nonwoven fabric. The electrolytic solution is composed of 7 N potassium hydroxide and 1 N lithium hydroxide.
[0009]
The negative electrode is filled with a perforated steel plate substrate in the form of a paste obtained by adding and mixing MmNiAlMnCo-based alloy powder, which is a hydrogen storage alloy, with cobalt monoxide powder in various proportions with respect to the amount of the alloy. A battery is formed in combination with other battery constituent materials of a predetermined size, and then left at room temperature for 20 hours to form a divalent cobalt complex ion, and then subjected to a charging reaction, whereby a cobalt layer is formed on the surface of the hydrogen storage alloy powder. It is formed. Here, the amount (% by weight) of various proportions of the cobalt monoxide powder to be added is set to 0.5, 0.8, 1.0, 1.2, and 1.5, respectively, and the batteries A, B, C, D, E. Moreover, the case where no cobalt monoxide powder was added was also set, and this was designated as battery F.
[0010]
FIG. 2 is a diagram showing a change in the state of cobalt monoxide in the above-described filler when cobalt monoxide powder is added. When the filling body is filled with the electrolytic solution, the mixed cobalt monoxide 11 elutes into the electrolytic solution as a divalent cobalt complex ion and enters the gaps between the alloy powders (FIG. 2). (B)). When subjected to a charging reaction, the complex ions are reduced to cobalt and adhere to the surface of the alloy powder to form the layer 12 (FIG. 2C). That is, a layer made of cobalt is formed on the surface of the alloy powder of the negative electrode. In addition, when reduction | restoration is inadequate only by one charge, you may repeat charging / discharging. If the cobalt monoxide powder is uniformly dispersed when added and mixed, the cobalt monoxide is directly reduced on the surface of the hydrogen storage alloy powder , and the cobalt adheres to the surface of the hydrogen storage alloy to form the layer 12. .
[0011]
FIG. 3 is a diagram showing initial charge / discharge cycle characteristics of the batteries A to F having the above-described configuration. Charging conditions were 0.1 CmA for 16 hours, and discharging conditions were 0.2 CmA and a final voltage of 1.0 V. As is clear from FIG. 3, the batteries B to E in which the addition amount of cobalt monoxide powder is 0.8 wt% or more and 1.5 wt% or less show a very high capacity from the first cycle, and the initial charge / discharge Excellent cycle characteristics.
[0012]
FIG. 4 is a diagram showing the relationship between the battery voltage and the capacity during the initial discharge of each of the batteries A to F having the above configuration. Charging conditions were 0.1 CmA for 16 hours, and discharging conditions were 0.2 CmA and a final voltage of 1.0 V. As is clear from FIG. 4, in the batteries B to E in which the addition amount of the cobalt monoxide powder is 0.8% to 1.5 % by weight, the discharge proceeds while maintaining a high battery voltage. In the state of 0V, approximately 100% of the discharge is performed, and the initial discharge characteristics are excellent.
[0013]
FIG. 5 is a graph showing the discharge capacity characteristics of the hydrogen storage electrode with various addition amounts of cobalt monoxide powder . The charging condition was 0.1 CmA for 16 hours, the discharging condition was 0.2 CmA, the end voltage was 0.17 V with respect to the reference electrode, and Cd / Cd (OH) 2 was used as the reference electrode. As is apparent from FIG. 5, the capacity increases remarkably at the added amount of 0.8% by weight.
[0014]
As described above, the batteries B to E in which the addition amount of the cobalt monoxide powder is 0.8 wt% or more and 1.5 wt% or less have excellent initial charge / discharge cycle characteristics, particularly initial discharge characteristics, and can achieve a high capacity. .
[0015]
In addition, the present invention is naturally applicable to a rectangular sealed nickel-metal hydride battery, and can also be applied to other various shapes of sealed nickel-metal hydride batteries.
[0016]
【The invention's effect】
As described above, according to the sealed-type nickel-metal hydride battery of the present invention, the negative electrode material powder, 1.5 wt% 0.8 wt% or more relative to the amount of hydrogen absorbing alloy powder of the following cobalt monoxide powder By adding and mixing and forming a layer made of cobalt on the surface of the hydrogen storage alloy powder , the initial charge / discharge cycle characteristics, particularly the initial discharge characteristics, can be improved, and a high capacity can be achieved.
[Brief description of the drawings]
FIG. 1 is an external view of a sealed nickel-metal hydride battery of the present invention.
FIG. 2 is a diagram showing a change in state of cobalt monoxide in the process of forming a negative electrode of the battery of the present invention.
FIG. 3 is a diagram showing initial charge / discharge cycle characteristics of the present invention and a comparative battery.
FIG. 4 is a diagram showing a relationship between battery voltage and capacity at the time of initial discharge of the battery of the present invention and a comparative object.
FIG. 5 is a diagram showing discharge characteristics of a hydrogen storage electrode in which the amount of cobalt monoxide powder added is variously changed.
[Explanation of symbols]
11 12 layers of cobalt monoxide powder

Claims (1)

水素吸蔵合金を主成分として含有する負極と、水酸化ニッケルを主成分として含有する正極と、電解液と、セパレータとを備えた密閉形ニッケル水素電池において、
負極原料粉末に、水素吸蔵合金粉末の量に対して0.8重量%以上1.5重量%以下の一酸化コバルト粉末を添加混合し、電解液中に生成した2価のコバルト錯イオンを還元させることにより、又は一酸化コバルトを直接還元させることにより、水素吸蔵合金粉末の表面にコバルトからなる層を形成し、このコバルト層が形成された負極を用いたことを特徴とする密閉形ニッケル水素電池。
A negative electrode containing a hydrogen storage alloy as a main component, a positive electrode containing nickel hydroxide as a main component, and an electrolytic solution, in a sealed nickel-hydrogen battery example Bei and a separator,
The negative electrode material powder, 1.5 wt% or less of cobalt monoxide powder 0.8 wt% or more relative to the amount of hydrogen absorbing alloy powder were added to and mixed with, a divalent cobalt complex ions produced in the electrolytic solution by reducing, or by reducing the cobalt monoxide directly, enclosed nickel which is formed a layer of cobalt on the surface of the hydrogen-absorbing alloy powder, characterized by using a negative electrode cobalt layer is formed Hydrogen battery.
JP15228496A 1996-06-13 1996-06-13 Sealed nickel metal hydride battery Expired - Fee Related JP3614567B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15228496A JP3614567B2 (en) 1996-06-13 1996-06-13 Sealed nickel metal hydride battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15228496A JP3614567B2 (en) 1996-06-13 1996-06-13 Sealed nickel metal hydride battery

Publications (2)

Publication Number Publication Date
JPH103939A JPH103939A (en) 1998-01-06
JP3614567B2 true JP3614567B2 (en) 2005-01-26

Family

ID=15537164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15228496A Expired - Fee Related JP3614567B2 (en) 1996-06-13 1996-06-13 Sealed nickel metal hydride battery

Country Status (1)

Country Link
JP (1) JP3614567B2 (en)

Also Published As

Publication number Publication date
JPH103939A (en) 1998-01-06

Similar Documents

Publication Publication Date Title
JP2771592B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JPH04137368A (en) Nickel-hydrogen storage battery and its manufacture
JPH11162505A (en) Nickel-hydrogen battery
JP3598665B2 (en) Active materials for batteries and batteries
JP3614567B2 (en) Sealed nickel metal hydride battery
JPH10106550A (en) Hydrogen storage alloy electrode and its manufacture
US6218047B1 (en) Active electrode compositions comprising Raney based catalysts and materials
JP2001291511A (en) Hydrogen storage alloy electrode, secondary battery, hybrid car and electric vehicle
JP3653710B2 (en) Hydrogen storage electrode
Geng et al. The characteristics of the negative electrode of a nickel-metal hydride battery
JP2603188B2 (en) Hydrogen storage alloy electrode
JPH07272722A (en) Paste type nickel positive electrode for alkaline storage battery
JPH04109556A (en) Closed-type secondary battery
JPS61233966A (en) Manufacture of sealed nickel-hydrogen storage battery
JPH08148179A (en) Nickel-hydrogen storage battery
JP2586752B2 (en) Hydrogen storage alloy electrode
JPH06150925A (en) Manufacture of nickel positive electrode for alkaline storage battery and alkaline storage battery equipped with electrode
JP3330088B2 (en) Negative electrode for secondary battery
JP3101622B2 (en) Nickel-hydrogen alkaline storage battery
JPH103940A (en) Nickel-metal hydride storage battery and its manufacture
JP2553780B2 (en) Hydrogen storage alloy electrode
JP2568967B2 (en) Manufacturing method of sealed nickel-hydrogen secondary battery
JP2857148B2 (en) Construction method of sealed nickel-hydrogen storage battery
JPH1040950A (en) Alkaline secondary battery
JP2022134586A (en) Nickel metal hydride storage battery

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041027

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees